WorldWideScience

Sample records for mature somatic cells

  1. Water relations in culture media influence maturation of avocado somatic embryos.

    Science.gov (United States)

    Márquez-Martín, Belén; Sesmero, Rafael; Quesada, Miguel A; Pliego-Alfaro, Fernando; Sánchez-Romero, Carolina

    2011-11-15

    Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 gl(-1) agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  3. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  4. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    Science.gov (United States)

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo

  5. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...

  6. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  7. Maturation and germination of somatic embryos of Sorghum bicolor (L. Moench cultivar 'CIAP 132R-05'

    Directory of Open Access Journals (Sweden)

    Silvio de J Martínez

    2017-03-01

    Full Text Available In sorghum [Sorghum bicolor (L. Moench], developed protocols for plant regeneration via somatic embryogenesis do not include maturation stage. The present work was carried out with the aim of achieving the maturation and germination of sorghum somatic embryos in cultivar 'CIAP 132R-05'. It were studied four concentrations of sucrose (30, 50, 70 and 90 g l-1, two of abscisic acid (0.25 and 0.5 μM and a control without this growth regulator. Germination initiation (days and number of somatic embryos with complete germination were evaluated in three periods (1 - 7, 8 - 14 and 15 - 21 days of culture. In addition, the effect of 6-BAP (8.9, 17.8 and 26.6 μM on somatic embryo germination was determined. The germination start time (days and after 21 days the number of somatic embryos with complete germination and plants with malformations were determined. The addition of 70 g l-1 sucrose in the culture medium without abscisic acid increased the germination of the somatic embryos to 37.2 plants per embryo group (0.5 g of fresh mass. The highest number of somatic embryos germinated was obtained with 17.78 μM 6-BAP in the germination culture medium. It was demonstrated the need of a maturation stage in the sorghum somatic embryogenesis to increase the germination percentage.   Keywords: somatic embryogenesis, sorghum, sucrose, 6-BAP

  8. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  9. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    International Nuclear Information System (INIS)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-01-01

    Highlights: ► The sperm centriole is the progenitor of centrosomes in all somatic cells. ► Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. ► Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. ► Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  10. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  11. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  12. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  13. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.

    Science.gov (United States)

    Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J

    2015-05-15

    Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  15. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  16. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  17. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  18. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  19. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole.

    Science.gov (United States)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-11-18

    In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  1. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  2. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes.

    Science.gov (United States)

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H

    2017-03-01

    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  3. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  4. Development of Somatic Embryo Maturation and Growing Techniques of Norway Spruce Emblings towards Large-Scale Field Testing

    Directory of Open Access Journals (Sweden)

    Mikko Tikkinen

    2018-06-01

    Full Text Available The possibility to utilize non-additive genetic gain in planting stock has increased the interest towards vegetative propagation. In Finland, the increased planting of Norway spruce combined with fluctuant seed yields has resulted in shortages of improved regeneration material. Somatic embryogenesis is an attractive method to rapidly facilitate breeding results, not in the least, because juvenile propagation material can be cryostored for decades. Further development of technology for the somatic embryogenesis of Norway spruce is essential, as the high cost of somatic embryo plants (emblings limits deployment. We examined the effects of maturation media varying in abscisic acid (20, 30 or 60 µM and polyethylene glycol 4000 (PEG concentrations, as well as the effect of cryopreservation cycles on embryo production, and the effects of two growing techniques on embling survival and growth. Embryo production and nursery performance of 712 genotypes from 12 full-sib families were evaluated. Most embryos per gram of fresh embryogenic mass (296 ± 31 were obtained by using 30 µM abscisic acid without PEG in the maturation media. Transplanting the emblings into nursery after one-week in vitro germination resulted in 77% survival and the tallest emblings after the first growing season. Genotypes with good production properties were found in all families.

  5. Cryopreservation of somatic embryogenic cultures of Pinus pinaster: effects on regrowth and embryo maturation.

    Science.gov (United States)

    Álvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-01-01

    Pinus pinaster is one of the most economically important conifers in the world. Somatic embryogenesis is a powerful tool in breeding programmes because it allows the generation of a great number of different clonal lines from seeds of superior genotypes. Unfortunately, embryogenic competence decreases with the age of cultures. Therefore, it is necessary to have a cryopreservation protocol that ensures a continuous supply of juvenile mass while allowing good maturation and conversion rates into vigorously growing plants. In this work we studied the influence of several cryopreservation parameters, such as cryoprotectant solution and pre-cooling temperature, on embryogenic culture regrowth and embryo maturation. Recovery of rewarmed samples after cryopreservation in a -150 degree C freezer depended on the cooling temperature reached prior to plunging the tubes into liquid nitrogen. As a result, we present an optimised cryopreservation protocol that ensures high recovery and embryo maturation rates. The protocol presented is a simple and fast alternative and enabled successful cryopreservation and recovery of 100 percent of the lines tested. Cryopreserved lines presented the same maturation rates as non-cryopreserved controls.

  6. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  8. Buriti oil (Mauritia flexuosa L.) negatively impacts somatic growth and reflex maturation and increases retinol deposition in young rats.

    Science.gov (United States)

    Medeiros, Maria C; Aquino, Jailane S; Soares, Juliana; Figueiroa, Edigleide B; Mesquita, Hanni M; Pessoa, Debora C; Stamford, Tania M

    2015-11-01

    Buriti oil contains nutrients such as essential fatty acids and vitamins, which are directly involved with neonates' development. However, the refining process of this oil can change its nutrient profile. This study investigated the effects of maternal consumption of Buriti oil (crude or refined), on reflex and somatic development and retinol levels in neonatal rats. Thirty-six Wistar male neonate rats born from mothers who consumed diet with 7% lipids during gestation and lactation were used. Rats were randomized into three groups: rats receiving diet added of soybean oil (control-CG), crude Buriti oil (CB) and refined Buriti oil (RB). Offspring weight, tail length, reflex ontogeny and somatic maturation were assessed during lactation. At the end of the experiment, serum and liver retinol concentrations were measured. Animals from CB and RB groups showed delayed onset of palm grasp, righting reflex and cliff avoidance reflexes compared to the control group (CG). However, animals from RB group showed anticipation of auditory startle compared to those from BC group. Regarding somatic maturation indicators, animals from RB group showed delayed eye opening and eruption of superior and inferior incisors in relation to control and anticipation in the auditory conduit opening in relation to CB group. Rats from CB and RB groups showed higher serum and liver vitamin A contents. Buriti oil delays physical parameters and reflex maturation and increases serum and liver retinol deposition among neonatal rats. Copyright © 2015. Published by Elsevier Ltd.

  9. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope.

    Science.gov (United States)

    Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav

    2017-07-01

    Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

  10. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  11. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  12. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-01-01

    Full Text Available Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germination and that makes its natural propagation difficult. The aim of this study was to establish a protocol of regeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculated on WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein or glutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D (22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed casein or glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture medium containing NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction (8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein and the development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promoted in WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containing hydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. During the maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages. The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histological studies.

  13. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812343Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germinationand that makes its natural propagation difficult. The aim of this study was to establish a protocol ofregeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculatedon WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein orglutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D(22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed caseinor glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture mediumcontaining NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction(8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein andthe development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promotedin WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containinghydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. Duringthe maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages.The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histologicalstudies.

  14. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    Science.gov (United States)

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  15. File list: Pol.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  16. Regulation of somatic embryo development in Norway spruce (Picea abies). A molecular approach to the characterization of specific developmental stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabala, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1998-12-31

    Embryo development is a complex process involving a set of strictly regulated events. The regulation of these events is poorly understood especially during the early stages of embryo development. Somatic embryos go through the same developmental stages as zygotic embryos making them an ideal model system for studying the regulation of embryo development. We have used embryogenic cultures of Picea abies to study some aspects of the regulation of embryo development in gymnosperms. The bottle neck during somatic embryogenesis is the switch from the proliferation stage to the maturation stage. This switch is initiated by giving somatic embryos a maturation treatment i.e. the embryos are treated with abscisic acid (ABA). Somatic embryos which respond to ABA by forming mature somatic embryos were stimulated to secret a 70 kDa protein, AF70. The af70 gene was isolated and characterised. The expression of the af70 gene was constitutive in embryos but was highly ABA-induced in seedlings. Moreover, expression of this gene was stimulated during cold acclimation of Picea abies seedlings. A full length Picea abies cDNA clone Pa18, encoding a protein with the characteristics of plant lipid transfer proteins (LTPs), was isolated and characterised. The Pa18 gene is constitutively expressed in embryogenic cultures of Picea abies representing different stages of development as well as in nonembryogenic callus and seedlings. In situ hybridization showed that Pa18 gene is expressed in all embryonic cells of proliferating somatic embryos but the expression of the gene in mature somatic and zygotic embryos is restricted to the outer cell layer. Southern blot analysis at different stringencies was consistent with a single gene. An alteration in expression of Pa18 causes disturbance in the formation of the proper outer cell layer in the maturing somatic embryos. In addition to its influence on embryo development the Pa18 gene product also inhibits growth of Agrobacterium tumefaciens 195

  17. An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells

    Science.gov (United States)

    Wei, Tingyi; Chen, Wen; Wang, Xiukun; Zhang, Man; Chen, Jiayu; Zhu, Songcheng; Chen, Long; Yang, Dandan; Wang, Guiying; Jia, Wenwen; Yu, Yangyang; Duan, Tao; Wu, Minjuan; Liu, Houqi; Gao, Shaorong; Kang, Jiuhong

    2015-01-01

    The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding and DNA demethylation at the promoters of iPS cell maturation-related genes during the transition of pre-iPS cells to a fully reprogrammed state. We also found that HDAC2 competed with TET1 in the binding of the RbAp46 protein at the promoters of maturation genes and knockdown of TET1 markedly prevented the activation of these genes. Collectively, our data not only demonstrated a novel intrinsic mechanism that the HDAC2-TET1 switch critically regulates iPS cell maturation, but also revealed an underlying mechanism of the interplay between histone acetylation and DNA demethylation in gene regulation. PMID:25934799

  18. File list: Oth.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  19. File list: Oth.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  20. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  1. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  2. Protecting genomic integrity in somatic cells and embryonic stem cells

    International Nuclear Information System (INIS)

    Hong, Y.; Cervantes, R.B.; Tichy, E.; Tischfield, J.A.; Stambrook, P.J.

    2007-01-01

    Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10 -4 . The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis

  3. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...

  4. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Influences of somatic donor cell sex on and embryo development following somatic cell nuclear transfer in pigs

    Directory of Open Access Journals (Sweden)

    Jae-Gyu Yoo

    2017-04-01

    Full Text Available Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8 was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT groups (31.4±8.3 to 33.4±11.1. After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05 between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

  6. Somatic embryogenesis in plantain cultivar 'FHIA - 25' (AAB from meristem tips

    Directory of Open Access Journals (Sweden)

    Dayana Rodríguez González

    2015-07-01

    Full Text Available Plantain cultivar 'FHIA – 25' (AAB shows high yielding qualities and high resistance to Black Sigatoka disease, but its sugar content in the fruit is low, so a regeneration method at cell level is necessary, such as somatic embryogenesis supported by biotechnological tools to improve fruit quality. This work was performed with the aim of establishing a plant regeneration method via somatic embryogenesis using initial explants of shoot apices from axillary buds in liquid culture medium. Homogenous embryogenic cell suspensions were obtained from mentioned explants. The highest cellular multiplication rates were achieved at 3,0% density. The incubation of somatic embryos during 30 days in the maturation culture medium permitted to increase germination. During the acclimatization stage, plants regenerated from somatic embryos, as well as plants from organogenesis, showed a high survival percentage (98 and 97 respectively, without somaclonal variation.

  7. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  8. File list: His.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  9. File list: His.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  10. File list: His.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  11. Relationship of milking rate to somatic cell count.

    Science.gov (United States)

    Brown, C A; Rischette, S J; Schultz, L H

    1986-03-01

    Information on milking rate, monthly bucket somatic cell counts, mastitis treatment, and milk production was obtained from 284 lactations of Holstein cows separated into three lactation groups. Significant correlations between somatic cell count (linear score) and other parameters included production in lactation 1 (-.185), production in lactation 2 (-.267), and percent 2-min milk in lactation 2 (.251). Somatic cell count tended to increase with maximum milking rate in all lactations, but correlations were not statistically significant. Twenty-nine percent of cows with milking rate measurements were treated for clinical mastitis. Treated cows in each lactation group produced less milk than untreated cows. In the second and third lactation groups, treated cows had a shorter total milking time and a higher percent 2-min milk than untreated cows, but differences were not statistically significant. Overall, the data support the concept that faster milking cows tend to have higher cell counts and more mastitis treatments, particularly beyond first lactation. However, the magnitude of the relationship was small.

  12. File list: Unc.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.50.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  13. File list: Unc.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.05.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  14. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  15. File list: Unc.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.10.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  16. File list: NoD.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.50.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  17. File list: NoD.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.05.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  18. File list: NoD.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.20.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  19. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  20. File list: Pol.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  1. File list: Pol.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.10.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  2. File list: DNS.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.20.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  3. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  4. File list: DNS.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.50.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  5. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  6. File list: DNS.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  7. File list: DNS.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.10.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  8. File list: ALL.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.05.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591729,SRX591728,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  9. File list: ALL.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.20.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  10. File list: ALL.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.50.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  11. Number and importance of somatic cells in goat’s milk

    Directory of Open Access Journals (Sweden)

    Lidija Kozačinski

    2001-04-01

    Full Text Available Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test. 427 of the examined milk samples (46.82% had positive reaction from 1 to 3 while other 485 samples (53.18% had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT with the number of somatic cells and findings of mastitis agents in milk showed that higher number of somatic cells is not the only indication of goat’s mammary gland illness. Mastitis-test is method that can exclude inflammation of goat’s mammary gland, but every positive reaction should be confirmed or eliminate with bacteriological examination. Based on the results of this research, it has been shown that the limit for somatic cells number in goat's milk can be over 1 000 000/ml.

  12. Changes in the profile of simple mucin-type O-glycans and polypeptide GalNAc-transferases in human testis and testicular neoplasms are associated with germ cell maturation and tumour differentiation

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, E; Poll, S N; Goukasian, I

    2007-01-01

    Testicular germ cell tumours (TGCT) exhibit remarkable ability to differentiate into virtually all somatic tissue types. In this study, we investigated changes in mucin-type O-glycosylation, which have been associated with somatic cell differentiation and cancer. Expression profile of simple mucin......-glycosylation pattern in haploid germ cells suggests a role in their maturation or egg recognition/fertilization warranting further studies in male infertility, whereas the findings in TGCT provide new diagnostic tools and support our hypothesis that testicular cancer is a developmental disease of germ cell...

  13. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  14. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  15. [Product safety analysis of somatic cell cloned bovine].

    Science.gov (United States)

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  16. Somatic cell counts in bulk milk and their importance for milk processing

    Science.gov (United States)

    Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.

    2017-09-01

    Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.

  17. File list: NoD.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.10.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  18. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  19. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    Science.gov (United States)

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  20. File list: InP.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.20.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  1. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  2. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  3. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  4. File list: InP.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.10.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somati...c cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  5. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method.

    Science.gov (United States)

    Prado, María Jesús; Largo, Asier; Domínguez, Cristina; González, María Victoria; Rey, Manuel; Centeno, María Luz

    2014-06-15

    The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Cloning animals by somatic cell nuclear transfer – biological factors

    Science.gov (United States)

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  7. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  8. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  9. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-01-01

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  10. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  11. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    Science.gov (United States)

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  13. Morphological characterization of pre- and peri-implantation in vitro cultured, somatic cell nuclear transfer and in vivo derived ovine embryos

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Peura, T.T.; Hartwich, K.M.

    2005-01-01

    The processes of cellular differentiation were studied in somatic cell nuvlear transfer (SCNT), in vitro cultured (IVC) and in vivo developed (in vivo) ovine embryos on days 7, 9, 11, 13, 17 and 19. SCNT embryos were constructed from in vitro matured oocytes and granulosa cells, and IVC embryos...... were produced by in vitro culture of in vivo fertilized zygotes. Most SCNT and IVC embryos were transferred to recipients on day 6 while some remained in culture for day 7 processing. In vivo embryos were collected as zygotes, transferred to intermediate recipients and retransferred to final recipients...

  14. At the crossroads of fate - somatic cell lineage specification in the fetal gonad

    DEFF Research Database (Denmark)

    Rotgers, Emmi; Jørgensen, Anne; Yao, Humphrey Hung-Chang

    2018-01-01

    The reproductive endocrine systems are vastly different between male and female. This sexual dimorphism of endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. The majority of gonadal somatic cells arise from the adrenogonadal...... of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modelled using genetically modified mouse models. In this review, we focus...

  15. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S.

    2005-01-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  16. Induction of somatic embryogenesis by polyethylene glycol and ...

    African Journals Online (AJOL)

    VIJI

    2012-06-05

    Jun 5, 2012 ... supplemented with 2,4-D (2 µM), abscisic acid (3 µM) and glutamine (0.03 mM). The somatic embryos ... essential amino acids of seed proteins, shortened vegetative ... or somatic embryo maturation in diverse plants such as.

  17. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  18. Syntheses of nucleic acid and protein in somatic embryos of Fritillaria ussuriensis maxim in different development stages

    International Nuclear Information System (INIS)

    Wang Shuyu; Tang Wei; Wang Hui

    1993-09-01

    After developing a procedure for somatic embryogenesis in Fritillaria ussuriensis, dynamics on the syntheses of DNA, RNA, and protein during globular, heart-shaped, torpedo-shaped, cotyledonary, and mature somatic embryo stages was demonstrated by both autoradiography and scintillation counting. The rates of syntheses of DNA, RNA, and protein gradually increase between the globular and cotyledonary somatic embryos stages. DNA, RNA, and protein synthesis rates are in peak at the cotyledonary later stage, precotyledonary stage, and cotyledonary stage, respectively. It appears that more DNA, RNA, and protein are synthesized in the cotyledonary somatic embryo stage than in other stages. All these results indicate that an increased syntheses of DNA, RNA, and protein is associated with the differentiation of embryogenic cells and organogenesis in somatic embryos

  19. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  20. Anatomy of somatic embryogenesis in Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Juliana A. Fernando

    2001-09-01

    Full Text Available Mature zygotic embryos of Carica papaya L. ‘Sunrise Solo’ were used as explants for embryogenesis induction. The explants were inoculated on Murashige and Skoog culture medium supplemented with 2 mg.L-1 2,4-dichlorophenoxyacetic acid and incubated in darkness at 25+2°C. Histological analysis of callogenesis and somatic embryogenesis indicated occurrence of direct and indirect somatic embryogenesis development. Direct somatic embryo formation was observed from hypocotyledonary epidermic cells only from explant 18 days after inoculation. Somatic embryos formed indirectly were originated from embryogenic superficial cells of pre-embryonic complexes located on peripherical and on internal cell layers of callus 49 days after inoculation. Diverse morphological differences including disformed embryos were observed among the somatic embryos.Embriões zigóticos maduros de Carica papaya L. ‘Sunrise Solo’ foram utilizados como explantes para indução da embriogênese. Estes explantes foram inoculados em meio de cultura de Murashige & Skoog suplementado com 2,0 mg.L-1 de 2,4 ácido diclorofenoxiacético (2,4-D e mantidos no escuro em câmara de crescimento à temperatura de 21°C por período de tempo variável. Através da análise histológica foi possível verificar que os primeiros embriões somáticos formaram-se diretamente a partir de células únicas da epiderme hipocotiledonar do explante após o 18º dia de cultura. Porém, os demais embriões somáticos originaram-se indiretamente a partir de células superficiais de complexos pré-embriônicos presentes nas camadas periféricas e internas do calo após o 49º dia de cultura. Foram detectadas algumas diferenças morfológicas entre os embriões somáticos obtidos.

  1. Somatic embryogenesis on Musa AAAB, cv. FHIA-18, using liquids culture mediums

    Directory of Open Access Journals (Sweden)

    Luis A. Barranco

    2002-04-01

    Full Text Available Homogenous cell suspensions were iniciated from somatic embryos in the globular stage and the greatest volume of cell biomass on multiplying the suspensions at a density of 3.0% PCV. From the fifteenth day in culture medium for the formation of embryos, structures consisting of proembryos and somatic embryos in the globular stage started to form. With respect to the densities studied, the best results were obtained with 100 mgFW, where 1 871 SE.l-1 formed with a weight of 248 mgFW.l-1 after 30 days. With an initial density of 0.6 gFW in the culture medium for secondary multiplication, an increase of 42.9-fold the initial amount of fresh weight was obtained; after 60 days of culture 15 985 SE.l-1 were obtained. The greatest percentage of maturation was obtained with 400 mgFW with 70% of mature somatic embryos. The positive effect of Biobras-6 (brassinosteroid analogous was confirmed, with a concentration of 0.01 mg.l-1 the best germination percentages were obtained in liquid and semisolid culture medium. Embryo germination in temporaly inmersion (RITA was achieved with an inoculum density of 0.5 gFW for system with 85% germination. One thousand plants obtained from somatic embryos were taken to ex vitro environment, along with plants derived from conventional micropropagation (shoot tips to carry out studies on the possible presence of somaclonal variation. During the first cycle of production, the plants derived from the two methods in vitro culture showed differences with respect to the plants derived from corms in height, diameter and number of suckers. In the second production cycle, the plants from somatic embryos showed similar characteristics to the plants derived from shoot tip and corms with respect to the morphological parameters evaluated, with only 0.2% of the plants with phenotypic changes. Key Words: Banana, cellular density, germination, somaclonal variability, somatic embryo

  2. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  3. Use of somatic cell banks in the conservation of wild felids.

    Science.gov (United States)

    Praxedes, Érika A; Borges, Alana A; Santos, Maria V O; Pereira, Alexsandra F

    2018-05-03

    The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species. © 2018 Wiley Periodicals, Inc.

  4. Development of direct somatic embryogenesis and regeneration on citrus sinesis

    International Nuclear Information System (INIS)

    Chong Saw Peng; Alvina Lindsay Mijen; Rusli Ibrahim

    2004-01-01

    The plant regeneration processes in Citrus sinensis involves direct somatic embryogenesis. Culture medium used was MS basal supplemented with 50 mg/L sucrose, 0.27% agar and 0.1% vitamin at pH 5.8. Sucrose is the major carbon source for the induction of somatic embryo and also the maturation and germination of somatic embryo. (Author)

  5. Direct Reprogramming of Adult Human Somatic Stem Cells Into Functional Neurons Using Sox2, Ascl1, and Neurog2

    Directory of Open Access Journals (Sweden)

    Jessica Alves de Medeiros Araújo

    2018-06-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPS or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs SRY (sex determining region Y-box 2 (Sox2, Mammalian achaete-scute homolog 1 (Ascl1, or Neurogenin 2 (Neurog2 is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC into induced neurons (iNs. Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2 may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

  6. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  7. Influence of different dose irradiation on genetic effect in mice somatic and germ cells

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Molofej, V.P.; Mosseh, I.B.

    2007-01-01

    Comparison of clastogenic effects of different radiation doses in somatic and germ cells of one the same animals has been studied. Correlation analysis allows to extrapolate genetic effects from somatic cells to germ ones. This can be useful for human model elaboration. (authors)

  8. Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Pedro Sousa-Victor

    2017-09-01

    Full Text Available Sophisticated mechanisms that preserve genome integrity are critical to ensure the maintenance of regenerative capacity while preventing transformation of somatic stem cells (SCs, yet little is known about mechanisms regulating genome maintenance in these cells. Here, we show that intestinal stem cells (ISCs induce the Argonaute family protein Piwi in response to JAK/STAT signaling during acute proliferative episodes. Piwi function is critical to ensure heterochromatin maintenance, suppress retrotransposon activation, and prevent DNA damage in homeostasis and under regenerative pressure. Accordingly, loss of Piwi results in the loss of actively dividing ISCs and their progenies by apoptosis. We further show that Piwi expression is sufficient to allay age-related retrotransposon expression, DNA damage, apoptosis, and mis-differentiation phenotypes in the ISC lineage, improving epithelial homeostasis. Our data identify a role for Piwi in the regulation of somatic SC function, and they highlight the importance of retrotransposon control in somatic SC maintenance.

  9. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    Science.gov (United States)

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by

  10. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  11. Somatic activating ARAF mutations in Langerhans cell histiocytosis

    NARCIS (Netherlands)

    Nelson, David S.; Quispel, Willemijn; Badalian-Very, Gayane; van Halteren, Astrid G. S.; van den Bos, Cor; Bovée, Judith V. M. G.; Tian, Sara Y.; van Hummelen, Paul; Ducar, Matthew; MacConaill, Laura E.; Egeler, R. Maarten; Rollins, Barrett J.

    2014-01-01

    The extracellular signal-regulated kinase (ERK) signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes, but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on

  12. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  13. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  14. Pre-screening method for somatic cell contamination in human sperm epigenetic studies.

    Science.gov (United States)

    Jenkins, Timothy G; Liu, Lihua; Aston, Kenneth I; Carrell, Douglas T

    2018-04-01

    Sperm epigenetic profiles are frequently studied and are of great interest in many fields. One major technical concern when assessing these marks is the potential for somatic cell contamination. Because somatic cells have dramatically different epigenetic signatures, even small levels of contamination can result in significant problems in analysis and interpretation of data. In this study we evaluate an assay, which we designed to offer a reliable 'pre-screen' for somatic cell contamination that directly assesses the DNA being used in the study to determine tissue purity. In brief, we designed an inexpensive and simple assay that utilizes the strong differential methylation between sperm and somatic cells at four genomic loci to assess the general purity of samples prior to performing expensive and time intensive assays. The assay is able to reliably detect contamination qualitatively by running the sample on an agarose gel, or quantitatively with the use of a bioanalyzer. With this technique we have found that we can detect potentially contaminating signals in samples of many different types, including those from patients with poor sperm phenotypes (oligozoospermia, asthenozoospermia, and teratozoospermia). We also have found that the use of multiple sites to determine potential contamination is key, as some conditions (asthenozoospermia specifically) appear at one site to reflect a somatic-like profile, while at all other sites it appears to have very typical sperm DNA methylation signatures. Taken together, the use of the assay described herein was effective at identifying contamination and could be implemented in many labs to quickly and inexpensively pre-screen samples prior to performing far more expensive and labor intensive procedures. Additionally, the principles applied to the development of this assay could be easily adapted for the development of other assays to pre-screen different tissue/cell types or model organisms.

  15. Somatic (CSS and differential cell count (DCC during a lactation period in ass’milk

    Directory of Open Access Journals (Sweden)

    Paolo Polidori

    2010-01-01

    Full Text Available Hypoallergenic properties of ass’s milk protein fractions have been recently con- firmed, allowing ass’s milk to be considered as a valid substitute of the available hypoallergenic infant formulas. The objective of this study was to give a further contribution to the knowledge of ass’s milk safety and quality characteristics. A new procedure has been developed with a cytospin centrifuge in differential counts of milk somatic cells. Somatic cells count (SCC, differential somatic cells count (DCC and cultural examinations have been carried out in 62 milk samples collected from 11 asses at three different stages of lactation. Four major cells populations had been identified in ass’s milk too: lymphocytes (Ly, monocytes/macrophages (MA, polymorphonuclear neutrophils (PMNL, and epithelial cells (CE. The patterns of these cells have been discussed in comparison with cells found in dairy cows and ewes milk. In conclusion, a reproducible standard procedure has been developed to determine cell count of ass’s milk.

  16. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Umeki, Shigeko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Nakamura, Nori; Sasaki, Masao; Mori, Takesaburo; Ishikawa, Yuichi; Cologne, J.B.; Akiyama, Mitoshi.

    1992-10-01

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  17. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  18. Genetic associations for pathogen-specific clinical mastitis and patterns of peaks in somatic cell count

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2003-01-01

    Genetic associations were estimated between pathogen-specific cases of clinical mastitis (CM), lactational average somatic cell score (LACSCS), and patterns of peaks in somatic cell count (SCC) which were based on deviations from the typical lactation curve for SCC. The dataset contained test-day

  19. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    Science.gov (United States)

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  20. X-ray sensitivity of somatic cell hybrids

    International Nuclear Information System (INIS)

    Zampetti-Bosseler, F.; Heilporn, V.; Lievens, A.; Limbosch, S.

    1976-01-01

    Different somatic cell hybrids have been studied as a function of their x-ray survival and karyotypic properties. Hybrids between x-ray-sensitive mouse lymphoma cells and mouse fibroblasts, retaining a large proportion of both parental chromosomes, were much more resistant to irradiation than either of the parental cells. On the other hand, hybrids between sensitive mouse lymphoma cells and hamster fibroblasts which also retained a relatively high number of chromosomes from both parents had a sensitivity intermediate between the sensitivities of the parental cell lines. Finally, hybrids between mouse fibroblasts and hamster fibroblasts carrying at least one hamster genome and less than one mouse genome resembled the hamster parent with respect to survival capactity. The significance of these results is discussed

  1. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  3. INFLUENCE OF SOMATIC CELL COUNT IN THE COMPOSITION OF GIROLANDO COW’S MILK IN TROPICAL ZONE

    Directory of Open Access Journals (Sweden)

    Vanessa Nunes Silva

    2016-08-01

    Full Text Available Bovine mastitis has been identified as the main disease affecting dairy cattle worldwide. Somatic Cell Count (SCC in milk is one of the most important indicators to evaluate the udder health of cows due to the high direct correlation with the mammary gland’s degree of infection. This study aimed to evaluate the different ranges of somatic cell count (SCC on the composition of bovine milk as well as finding a correlation between somatic cell count and body condition score on milk production and composition of this species. The experiment was conducted on a commercial farm located in São José de Mipibu, Rio Grande do Norte, Brazil. The same cows were milked mechanically, obtaining a milk production record for the period of December 2011 to May 2012. For this, 24 Girolando breed cows (3/4 and 7/8 were used, being 50% primiparous and 50% multiparous with average production 7.51 ± 2.58 kg day-1 and 10.98 ± 2.49 kg day-1, respectively. The cows were milked mechanically, obtaining a record of milk production over a period of five months, and milk samples were collected and sent for laboratory analysis. The levels of milk composition were evaluated. Lactose, non-fat solids and milk urea nitrogen were influenced by different intervals of somatic cell count of milk. In milk samples from primiparous and multiparous cows, positive correlations between somatic cell count and some components were found. As for body condition score, significant correlations were also found for milk production and composition. It was concluded the different levels of somatic cell count influenced the percentage of lactose, non-fat solids and milk urea nitrogen. Somatic cell count and body condition score also showed significant correlations with milk production and composition.

  4. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    Science.gov (United States)

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  5. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  6. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n =

  7. The Use of Light Microscopy for Detection of Somatic Embryos

    African Journals Online (AJOL)

    usuario

    2014-02-05

    Feb 5, 2014 ... 2,4-D. After four weeks of culture of explants on the callus induction medium, globular structures were obtained. At the end of 20 days in maturation medium, somatic embryos were observed. Histological analysis showed somatic embryos with caulinar and root apex, protodermal tissue, and the vascular ...

  8. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  9. Evaluation of porcine stem cells competence for somatic cell nuclear transfer and production of cloned animals

    DEFF Research Database (Denmark)

    Secher, Jan; Liu, Ying; Petkov, Stoyan

    2017-01-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than...... somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem...... cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl...

  10. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  11. Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes.

    Science.gov (United States)

    De Bem, Tiago H C; Chiaratti, Marcos R; Rochetti, Raquel; Bressan, Fabiana F; Sangalli, Juliano R; Miranda, Moysés S; Pires, Pedro R L; Schwartz, Kátia R L; Sampaio, Rafael V; Fantinato-Neto, Paulo; Pimentel, José R V; Perecin, Felipe; Smith, Lawrence C; Meirelles, Flávio V; Adona, Paulo R; Leal, Cláudia L V

    2011-10-01

    Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585±34,775 vs. 595,579±31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179±45,617 vs. 498,771±33,231) and blastocysts (816,627±40,235 vs. 765,332±51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.

  12. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  13. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-01-01

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  14. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  15. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    NARCIS (Netherlands)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-01-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared

  16. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    Smit, Laura A.; van Maldegem, Febe; Langerak, Anton W.; van der Schoot, C. Ellen; de Wit, Mireille J.; Bea, Silvia; Campo, Elias; Bende, Richard J.; van Noesel, Carel J. M.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and

  17. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2008-10-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  18. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium

    Science.gov (United States)

    Smith, D. L.; Krikorian, A. D.

    1989-01-01

    Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and

  19. Breeding value estimation for somatic cell score in South African ...

    African Journals Online (AJOL)

    Breeding value estimation for somatic cell score in South African dairy cattle. ... are not unity, the RM-model estimates more competitive variances and requires ... are therefore recommended for breeding value estimation on a national basis.

  20. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos.

    Science.gov (United States)

    Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang

    2013-06-15

    Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome.

    Science.gov (United States)

    Levy, Y; Gupta, N; Le Deist, F; Garcia, C; Fischer, A; Weill, J C; Reynaud, C A

    1998-10-27

    Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40-75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.

  2. Somatic mutation and cell differentiation in neoplastic transformation

    International Nuclear Information System (INIS)

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs

  3. THE BIOTECHNOLOGY OF EMBRYOGENIC CELL LINES OBTAINING AND PLANTLETS OF CONIFEROUS SPECIES IN SIBERIA IN CULTURE IN VITRO

    Directory of Open Access Journals (Sweden)

    Tretiakova I.

    2012-08-01

    Full Text Available Experiments of culturing the immature isolated embryos and megagamethophytes of Siberian coniferous species were carried out on different modified media: ½ LV medium for Pinus sibirica and Pinus pumila, MSG and AI media (patent № 2431651 for Larix sibirica and Larix gmelinii, DCR medium for Picea ajanensis. For induction of embryogenic callus every species needs the optimized medium supplemented with L-glutamine, casein hydrolysate, ascorbic acid and hormones with different concentrations and their different proportions. The active proliferation of embryonal masses is observed on the same medium with reduced concentration of cytokinins. The proliferation of embryonal masses was significantly improved when they were subcultured after dispersing in liquid medium. The somatic embryos from embryonal masses are matured on basal medium with ABA (60-120 mM and PEG. In spite of species specificity the embryogenesis of morphogenic structures had the same scheme: elongation and asymmetric division of somatic cells, formation of initial cells and embryonal tubes, development of globular, torpedo and bipolar somatic embryos, embryos maturation and germination. However, not all donor-plants of coniferous species can form the embryogenic cell lines and somatic embryos. The active development of embryonal masses and formation of somatic embryos are observed from zygotic embryo of hybrid seeds of P. sibirica and L. sibirica. The obtained embryogenic lines were characterized by different proliferative activity. During 10 months cultivation the value of embryonal masses in different lines was 140-570 g. The number of somatic embryos varies from 210 to 410 per 100 mg of callus fresh weight. Decreasing proliferation activity did not observed during 24-45 months cultivation. However, development of somatic embryos in long cultivated lines decreased. Maturation of somatic embryos and development of plantlets were established in L. sibirica and P. pumila 50

  4. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  5. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    Science.gov (United States)

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  6. Effects of somatic cell count in subclinical mastitis on raw milk quality in dairy farms of Khuzestan province

    Directory of Open Access Journals (Sweden)

    mohammad Hossieni nejad

    2016-01-01

    Full Text Available Mastitis is an infectious disease that is spread in livestock and can cause cattle mortality. Generally a cow with mastitis has a 15 per cent decrease in milk production. In addition, losses from changes in some components of milk should also be considered. Any change in milk properties can be severe hazard for milk producers, dairy factories and consumers. In this study, the effect of somatic cell count on row milk quality of cows affected by subclinical mastitis was studied. For this purpose 240 milk samples were collected from dairy farms with subclinical mastitis (traditional and industrial of Khuzestan province in 2014 and their somatic cell count, protein and lipid contact and acidity determined. The mean±SD for somatic cells, acidity, protein and fat were 3.20×105±1.37×105 SCC/ml, 14.50±0.62 D°, 3.12±0.06% and 3.23±0.14% respectively. After statistical analysis, reverse correlation were found between somatic cell count with milk fat and protein. However, direct correlation was observed between range of milk fat and protein (p>0.01. Furthermore the results indicated that the range of acidity in spring and winter, protein and fat in winter and somatic cell in summer and autumn were more than the other seasons. According to statistical analysis, protein percent of milk samples in industrial farms were higher than traditional farms although the range of somatic cells was higher for traditional milk samples ‏p>0.05 According to the result, it seems that the somatic cell count of milk influences raw milk fat and protein content and acidity.

  7. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders.

    Science.gov (United States)

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  8. Somatic cell nuclear transfer in its first and the second decade: sussesses, setbacks, paradoxes and perspectives

    DEFF Research Database (Denmark)

    Vajta, Gabor

    2007-01-01

    The present review gives a subjective outline of the past and future of somatic cell nuclear trensfer (SCNT). The first decade was full of contradictions: amazing successes were followed by frustrating fiascos. Although the possibility of reversing somatic cell differentiation completely is a more...

  9. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  10. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  11. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis,

  12. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  13. Neonatal administration of citalopram delays somatic maturation in rats

    Directory of Open Access Journals (Sweden)

    T.C.B.J. Deiró

    2004-10-01

    Full Text Available We investigated the somatic maturation of neonate rats treated during the suckling period with citalopram, a selective serotonin reuptake inhibitor. Groups with 6 male neonates were randomly assigned to different treatments 24 h after birth. Each litter was suckled by one of the dams until the 21st postnatal day. Body weight, head axis and tail length were measured daily from the 1st to the 21st postnatal day. Time of ear unfolding, auditory conduit opening, incisor eruption, and eye opening was determined. Pups received 5 mg (Cit5, 10 mg (Cit10 or 20 mg/kg (Cit20 citalopram sc, or saline (0.9% NaCl, w/v, sc. Compared to saline, body weight was lower (24.04%, P < 0.01 for Cit10 from the 10th to the 21st day and for Cit20 from the 6th to the 21st day (38.19%, P < 0.01. Tail length was reduced in the Cit20 group (15.48%, P < 0.001 from the 8th to the 21st day. A reduction in mediolateral head axis (10.53%, P < 0.05 was observed from the 11th to the 21st day in Cit10 and from the 6th to the 21st day in Cit20 (13.16%, P < 0.001. A reduction in anteroposterior head axis was also observed in the Cit20 group (5.28%, P < 0.05 from the 13th to the 21stday. Conversely, this axis showed accelerated growth from the 12th to the 21stday in the Cit5 group (13.05%, P < 0.05. Auditory conduit opening was delayed in the Cit5 and Cit20 groups and incisor eruption was delayed in all citalopram groups. These findings show that citalopram injected during suckling to rats induces body alterations and suggest that the activity of the serotoninergic system participates in growth mechanisms.

  14. Review of somatic cell nuclear transfer in pig | Muenthaisong ...

    African Journals Online (AJOL)

    It is now more than 8 years, since the first cloned pig from nuclear transfer was reported. Success of somatic cell nuclear transfer (SCNT) in pig is still low compared to that in bovine. Embryonic and neonatal abnormalities of cloned piglets are probably a result of incorrect or incomplete reprogramming of the transferred ...

  15. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    xz

    2015-04-29

    Apr 29, 2015 ... the standard method to determine the quality of raw milk. (Ribas, 1999). Magalhães .... somatic cell score (SCS) resulted in an increase in the protein concentration of .... Yield of Dairy Herds]. C. E. Martins, C. N. Costa, J. R. F..

  16. Maturation of Shark Single-Domain (IgNAR) Antibodies: Evidence for Induced-Fit Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stanfield, R.L.; Dooley, H.; Verdino, P.; Flajnik, M.F.; Wilson, I.A.; /Scripps Res. Inst. /Maryland U.

    2007-07-13

    Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts with antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.

  17. Multicellularity makes somatic differentiation evolutionarily stable

    Science.gov (United States)

    Wahl, Mary E.; Murray, Andrew W.

    2016-01-01

    Many multicellular organisms produce two cell lineages: germ cells, whose descendants produce the next generation, and somatic cells, which support, protect, and disperse the germ cells. This germ-soma demarcation has evolved independently in dozens of multicellular taxa but is absent in unicellular species. A common explanation holds that in these organisms, inefficient intercellular nutrient exchange compels the fitness cost of producing nonreproductive somatic cells to outweigh any potential benefits. We propose instead that the absence of unicellular, soma-producing populations reflects their susceptibility to invasion by nondifferentiating mutants that ultimately eradicate the soma-producing lineage. We argue that multicellularity can prevent the victory of such mutants by giving germ cells preferential access to the benefits conferred by somatic cells. The absence of natural unicellular, soma-producing species previously prevented these hypotheses from being directly tested in vivo: to overcome this obstacle, we engineered strains of the budding yeast Saccharomyces cerevisiae that differ only in the presence or absence of multicellularity and somatic differentiation, permitting direct comparisons between organisms with different lifestyles. Our strains implement the essential features of irreversible conversion from germ line to soma, reproductive division of labor, and clonal multicellularity while maintaining sufficient generality to permit broad extension of our conclusions. Our somatic cells can provide fitness benefits that exceed the reproductive costs of their production, even in unicellular strains. We find that nondifferentiating mutants overtake unicellular populations but are outcompeted by multicellular, soma-producing strains, suggesting that multicellularity confers evolutionary stability to somatic differentiation. PMID:27402737

  18. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-01-01

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  19. Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2008-02-01

    Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.

  20. Somatic Embryogenesis in Juniperus Procera using Juniperus ...

    African Journals Online (AJOL)

    The aim for this particular research was initially an adaptation of optimum half strength lithium chloride-sodium propionate (LP) medium protocol for growth and proliferation of embryogenic ... Additional study on the effect of seed extraction to the growing embryogenic culture showed no effect on mature somatic embryos.

  1. Effects of herd management practices on somatic cell counts in an arid climate

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi-Sefidmazgi

    2014-09-01

    Full Text Available The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran were analyzed. Average lactation SCC (cells × 1,000 was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lactation SCC were determined separately using mixed linear models in the MIXED procedure with average lactation somatic cell score (SCS included as the dependent variable. Some of the management practices associated with low average lactation SCS included sawdust combined with sand bedding, using automatic cup removers, disinfection of the teats by dipping into disinfectant, using washable towels for teat cleaning, free-stall barns, wet disposable tissue for udder washing, wearing gloves during milking and the use of humidifiers and shade. Lower-production herds and larger-size herds had lower average lactation somatic cell counts. Most herd management practices associated with average lactation SCC in dairy herds in the arid region of Isfahan are in agreement with most previous studies. However, different results are found for use of humidifier, bedding materials and herd size.

  2. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-c...... in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term....

  3. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  4. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  5. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    DEFF Research Database (Denmark)

    Svane, I M; Nikolajsen, K; Walter, M R

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required......, maturation with IFN-alpha has only a small effect on induction of autologous T-cell stimulatory capacity of the DC. However, an increase in DC allogeneic T-cell stimulatory capacity was observed. These data suggest that IFN-alpha has a potential as a maturation agent used in DC-based cancer vaccine trials...

  6. Economic cost of increased somatic cell count in South African dairy ...

    African Journals Online (AJOL)

    cuthbert

    2014-06-24

    Jun 24, 2014 ... Relative economic values, standardized to the value of protein, were ... as somatic cell count (SCC), is the most widely used measure of raw milk quality. .... Milk (l). Fat (kg). Protein (kg). Calving interval (days). Live weight (kg).

  7. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga

    2015-01-01

    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrate...

  8. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    Science.gov (United States)

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  9. Biocultural approach of the association between maturity and physical activity in youth.

    Science.gov (United States)

    Werneck, André O; Silva, Danilo R; Collings, Paul J; Fernandes, Rômulo A; Ronque, Enio R V; Coelho-E-Silva, Manuel J; Sardinha, Luís B; Cyrino, Edilson S

    2017-11-13

    To test the biocultural model through direct and indirect associations between biological maturation, adiposity, cardiorespiratory fitness, feelings of sadness, social relationships, and physical activity in adolescents. This was a cross-sectional study conducted with 1,152 Brazilian adolescents aged between 10 and 17 years. Somatic maturation was estimated through Mirwald's method (peak height velocity). Physical activity was assessed through Baecke questionnaire (occupational, leisure, and sport contexts). Body mass index, body fat (sum of skinfolds), cardiorespiratory fitness (20-m shuttle run test), self-perceptions of social relationship, and frequency of sadness feelings were obtained for statistical modeling. Somatic maturation is directly related to sport practice and leisure time physical activity only among girls (β=0.12, pmaturity and physical activity in boys and for occupational physical activity in girls. In general, models presented good fit coefficients. Biocultural model presents good fit and emotional/biological factors mediate part of the relationship between somatic maturation and physical activity. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  10. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  11. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  12. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  13. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    ... of the School of Veterinary Medicine and Animal Science of the Federal University of Goiás (Escola de Veterinária e Zootecnia da Universidade Federal de Goiás). Protein, fat, lactose, casein, urea, defatted dry extract and somatic cell counts (SCC) were analyzed. A completely randomized experimental design was used.

  14. Potential role of centrioles in determining the morphogenetic status of animal somatic cells.

    Science.gov (United States)

    Tkemaladze, J; Chichinadze, K

    2005-05-01

    Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells. Cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called 'Hayflick limit'. Existing links between cell division, differentiation and apoptosis make it possible to conclude that all these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (diplosome) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination and modification of the morphogenetic status. It may contain differently encoded RNA molecules stacked in a definite order. During mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, RNA can be embedded in nuclear DNA. This process presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.

  15. POSTTREATMENT NEUROBLASTOMA MATURATION TO GANGLIONIC CELL TUMOR

    Directory of Open Access Journals (Sweden)

    M. V. Ryzhova

    2012-01-01

    Full Text Available Tumor cells can differentiate into more mature forms in undifferentiated or poorly differentiated tumors, such as medulloblastomas with increased nodularity, as well as neuroblastomas. The authors describe 2 cases of neuroblastoma maturation into ganglioneuroblastoma 5 months after chemotherapy in a 2-year-old girl and 3 years after radiotherapy in a 16-year-old girl.

  16. Associations between pathogen-specific clinical mastitis and somatic cell count patterns

    NARCIS (Netherlands)

    Haas, de Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H.

    2004-01-01

    Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch

  17. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  18. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    Science.gov (United States)

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  19. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    Science.gov (United States)

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  20. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  1. Somatic embryogenesis of East Kalimantan local upland rice varieties

    Science.gov (United States)

    Nurhasanah; Ramitha; Supriyanto, B.; Sunaryo, W.

    2018-04-01

    Somatic embryogenesis is the formation, growth and development of embryos from somatic cells. Somatic embryo induction is one of the in vitro plant propagation techniques that is very important for plant developmental purposes. Four local upland rice varieties of East Kalimantan, Mayas Pancing, Gedagai, Siam and Serai, were used in this study. A total of 200 explants (mature rice grains) for each varieties were inoculated on MS solid medium supplemented with 1 mg L-1 2,4 Dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L-1 6-Benzylaminopurine (BAP). The results showed that response of each variety differed to embryosomatic induction, indicated by callus induction rate and callus quality, in terms of callus color and structure. The fastest callus formation was sobserved in Gedagai variety (8 days) while Mayas Pancing (13 days) was the latest one. The rate of callus induction varied from 60 to 98.5 %, and Serai variety has the highest callus induction rate. The highest friable callus structure was found in Siam variety (89.1%) and the lowest was in Gedagai (62.5%). Callus color was dominated by the yellowish-white (transparent) on all varieties tested. Most of the callus was potential as embryogenic callus characterized from the nodular and globular of friable callus structure and its yellowish-white color.

  2. Cutting edge: double-stranded DNA breaks in the IgV region gene were detected at lower frequency in affinity-maturation impeded GANP-/- mice.

    Science.gov (United States)

    Kawatani, Yousuke; Igarashi, Hideya; Matsui, Takeshi; Kuwahara, Kazuhiko; Fujimura, Satoru; Okamoto, Nobukazu; Takagi, Katsumasa; Sakaguchi, Nobuo

    2005-11-01

    Double-stranded DNA breaks (DSBs) at the IgV region (IgV) genes might be involved in somatic hypermutation and affinity-maturation of the B cell receptor in response to T cell-dependent Ag. By ligation-mediated PCR, we studied IgV DSBs that occurred in mature germinal center B cells in response to nitrophenyl-chicken gamma-globulin in a RAG1-independent, Ag-dependent, and IgV-selective manner. We quantified their levels in GANP-deficient B cells that have impaired generation of high-affinity Ab. GANP-/- B cells showed a decreased level of DSBs with blunt ends than control B cells and, on the contrary, the ganp gene transgenic (GANPTg) B cells showed an increased level. These results suggested that the level of IgV DSBs in germinal center B cells is associated with GANP expression, which is presumably required for B cell receptor affinity maturation.

  3. Simplification of Bovine Somatic Cell Nuclear Transfer by Application of a Zona-Free Manipulation Technique

    DEFF Research Database (Denmark)

    Booth, Paul J; Tan, Shijian; Reipurth, Rikke

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods. The techni......Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods....... The technique comprises the bisection of zona-free oocytes and the reconstruction of embryos comprising two half cytoplasts and a somatic cell by adherence using phytohaemagglutinin-P (PHA) followed by an electropulse and subsequent culture in microwells (termed WOWs--well of the well). The development......-intact zygotes were not different in either blastocyst yield (44.6 +/- 2.4% versus 51.8 +/- 13.5% [mean +/- SEM]) or quality (126.3 +/- 48.4 versus 119.9 +/- 32.6 total cells), and exposure of zygotes to PHA-P did not reduce blastocyst yields compared to vehicle control (40.8 +/- 11.6% versus 47.1 +/- 20...

  4. Somatic genomic variations in extra-embryonic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Weier, Heinz-Ulli G.

    2010-05-21

    In the mature chorion, one of the membranes that exist during pregnancy between the developing fetus and mother, human placental cells form highly specialized tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes; however, chromosome losses were detected infrequently. With chromosomes gained in what appeared to be a chromosome-specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on gestational age, but were strongly associated with the extraembryonic compartment at the fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we conclude that aneuploidy is a part of the normal process of placentation potentially limiting the proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect on the organism.

  5. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  6. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster.

    Science.gov (United States)

    Renault, Andrew D

    2012-10-15

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  7. In vitro somatic embryogenesis and plant regeneration of cassava.

    Science.gov (United States)

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  8. Somatic cell cloning in Buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures.

    Science.gov (United States)

    Kitiyanant, Y; Saikhun, J; Chaisalee, B; White, K L; Pavasuthipaisit, K

    2001-01-01

    Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.

  9. Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree.

    Science.gov (United States)

    Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J

    2014-07-16

    Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene

  10. Alternative Somatic Cell Count Traits as Mastitis Indicators for Genetic Selection

    NARCIS (Netherlands)

    Haas, de Y.; Ouweltjes, W.; Napel, ten J.; Windig, J.J.; Jong, de G.

    2008-01-01

    The aim of this study was to define alternative traits of somatic cell count (SCC) that can be used to decrease genetic susceptibility to clinical and subclinical mastitis (CM and SCM, respectively). Three kinds of SCC traits were evaluated: 1) lactation-averages of SCC, 2) traits derived from the

  11. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  12. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  13. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  14. Sex-reversed somatic cell cloning in the mouse.

    Science.gov (United States)

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  15. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  17. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  18. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  19. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  20. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  1. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  2. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.

  3. Total bacterial count and somatic cell count in refrigerated raw milk stored in communal tanks

    Directory of Open Access Journals (Sweden)

    Edmar da Costa Alves

    2014-09-01

    Full Text Available The current industry demand for dairy products with extended shelf life has resulted in new challenges for milk quality maintenance. The processing of milk with high bacterial counts compromises the quality and performance of industrial products. The study aimed to evaluate the total bacteria counts (TBC and somatic cell count (SCC in 768 samples of refrigerated raw milk, from 32 communal tanks. Samples were collected in the first quarter of 2010, 2011, 2012 and 2013 and analyzed by the Laboratory of Milk Quality - LQL. Results showed that 62.5%, 37.5%, 15.6% and 27.1% of the means for TBC in 2010, 2011, 2012 and 2013, respectively, were above the values established by legislation. However, we observed a significant reduction in the levels of total bacterial count (TBC in the studied periods. For somatic cell count, 100% of the means indicated values below 600.000 cells/mL, complying with the actual Brazilian legislation. The values found for the somatic cell count suggests the adoption of effective measures for the sanitary control of the herd. However, the results must be considered with caution as it highlights the need for quality improvements of the raw material until it achieves reliable results effectively.

  4. Fibroblast and T cells conditioned media induce maturation dendritic cell and promote T helper immune response

    Directory of Open Access Journals (Sweden)

    Masoumeh Asadi

    2012-06-01

    Full Text Available Dendritic cells (DCs induce pathogen-specific T cell responses. We comprehensively studied the effects of addition of maturation stimulus, fibroblasts (fibroblast conditioned medium, PHA activated T cells (T cell conditioned medium, and mixture of fibroblast & PHA activated T cells (FCM-TCCM conditioned media on maturation of DCs. Monocytes were cultured with GM-CSF and IL-4 for five days. Maturation factors included MCM and TNF-α as control group. FCM and TCCM, or FCM-TCCM supernatant were considered as the treatment group. Tumor antigens were added at day five. Matured DCs were harvested at day seven. Phenotypic and functional analyses were carried out using anti (CD14, CD80, CD86, CD83 and HLA-DR monoclonal antibodies. Phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production were also evaluated. At the end of culturing period, significantly fully matured DCs with large amount cytoplasm and copious dendritic projections were found in the presence of MCM, TNF-α with or without FCM, TCCM, FCM as well as TCCM. Flow cytometric analysis revealed that expression of CD14 decreased in particular in treated DCs, at the 5th day and expression of CD80, CD86 and HLA-DR was higher when FCM, TCCM, FCM plus TCCM were added to maturation factor. This study demonstrated that DCs matured with these methods had optimum function in comparison with either factor alone.

  5. The economic value of somatic cell count in South African Holstein ...

    African Journals Online (AJOL)

    Somatic cell count (SCC) is of economic importance in dairy production as it directly influences the revenue from the sale of milk. The current study was carried out to determine the economic value of SCC in South African Holstein and Jersey cattle, in order to establish its relative emphasis in breeding objectives. Bulk-tank ...

  6. Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-02-01

    Full Text Available The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.

  7. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  8. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  9. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity.

    Science.gov (United States)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte; Abdallah, Basem M; Kassem, Moustapha; Klein-Nulend, Jenneke

    2010-02-01

    For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC-mature exhibited higher osteocalcin and alkaline phosphatase gene expression and activity than PDSC-immature. Pulsating fluid flow (PFF) stimulated nitric oxide production within 5 min by PDSC-mature but not by PDSC-immature. In PDSC-mature, PFF induced prostaglandin E(2) production, and cyclooxygenase 2 gene expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs and produce more bone in vivo. These data suggest that PDSCs with a mature osteogenic phenotype might be preferable for bone tissue engineering to restore, for example, maxillofacial defects, because they might be able to perform mature bone cell-specific functions during bone adaptation to mechanical loading in vivo.

  10. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  11. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

    Science.gov (United States)

    Menendez, Javier A; Vellon, Luciano; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Vazquez-Martin, Alejandro

    2011-11-01

    Molecular controllers of the number and function of tissue stem cells may share common regulatory pathways for the nuclear reprogramming of somatic cells to become induced Pluripotent Stem Cells (iPSCs). If this hypothesis is true, testing the ability of longevity-promoting chemicals to improve reprogramming efficiency may provide a proof-of-concept validation tool for pivotal housekeeping pathways that limit the numerical and/or functional decline of adult stem cells. Reprogramming is a slow, stochastic process due to the complex and apparently unrelated cellular processes that are involved. First, forced expression of the Yamanaka cocktail of stemness factors, OSKM, is a stressful process that activates apoptosis and cellular senescence, which are the two primary barriers to cancer development and somatic reprogramming. Second, the a priori energetic infrastructure of somatic cells appears to be a crucial stochastic feature for optimal successful routing to pluripotency. If longevity-promoting compounds can ablate the drivers and effectors of cellular senescence while concurrently enhancing a bioenergetic shift from somatic oxidative mitochondria toward an alternative ATP-generating glycolytic metabotype, they could maximize the efficiency of somatic reprogramming to pluripotency. Support for this hypothesis is evidenced by recent findings that well-characterized mTOR inhibitors and autophagy activators (e.g., PP242, rapamycin and resveratrol) notably improve the speed and efficiency of iPSC generation. This article reviews the existing research evidence that the most established mTOR inhibitors can notably decelerate the cellular senescence that is imposed by DNA damage-like responses, which are somewhat equivalent to the responses caused by reprogramming factors. These data suggest that fine-tuning mTOR signaling can impact mitochondrial dynamics to segregate mitochondria that are destined for clearance through autophagy, which results in the loss of

  12. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    Science.gov (United States)

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  13. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  14. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Mosseh, I.B.; Molofej, V.P.

    2008-01-01

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  15. Effect of temperament on milk production, somatic cell count, chemical composition and physical properties in Lacaune dairy sheep breed

    Directory of Open Access Journals (Sweden)

    Gábor Tóth

    2017-01-01

    Full Text Available Effect of temperament on milk yield, lactation length, physico-chemical properties and somatic cell count of Lacaune ewes were evaluated. The investigation was carried out at a sheep farm in the county of Győr-Moson-Sopron. The temperament of 106 Lacaune ewes was measured by the temperament 5-point-scale test (1=very nervous, 5=very quiet during milking. Furthermore, 42 ewes were randomly selected from a herd of 106 animals for the analysis of milk composition (fat, protein and lactose, pH, electrical conductivity as well as somatic cell count. It was found that the temperament had a significant effect on lactation length and lactation milk production, lactose, electrical conductivity and somatic cell count. Calm ewes had significantly longer lactation (4 score: 220.7 day; 5 score: 201.4 day as well as higher milk production (4 score: 207.9 kg; 5 score: 193.3 kg compared to more temperamental animals (2+3 scores: 166.5 day and 135.5 kg; P<0.05. The content of lactose was significantly lower (4.32 in the more temperamental group, while electrical conductivity was higher (4.81 mS cm-1 compared to calmer animals (4.69 % and 4.16 mS cm-1. Additionally, significant differences were found in milk somatic cell count among the temperament categories. Calmer ewes had a lower somatic cell count in milk (5.17 log cm-3 than more temperamental ones (5.67 log cm-3; P<0.05.

  16. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity.

    Science.gov (United States)

    Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo

    2015-10-01

    The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.

  18. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice

    Directory of Open Access Journals (Sweden)

    Cheng-Jie Zhou

    2016-03-01

    Full Text Available Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes, in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes, and in vitro-matured, denuded oocytes without cumulus cells (DOs. Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  19. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  20. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  1. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Aimée Bastidas-Ponce

    2017-06-01

    Full Text Available Objective: The transcription factors (TF Foxa2 and Pdx1 are key regulators of beta-cell (β-cell development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY, pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. Methods: In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBFDHom fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF with the newly generated Pdx1-BFP (blue fluorescent protein fusion (PBF mice. Results: Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBFDHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. Conclusions: Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass. Keywords: Foxa2, Pdx1, β-Cell maturation, β-Cell identity, Trans-differentiation

  2. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  3. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  4. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...... transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development....

  5. MITOCHONDRIAL DYNAMICS IN PRE- AND POSTPUBERTAL PIG OOCYTES BEFORE AND AFTER IN VITRO MATURATION

    DEFF Research Database (Denmark)

    Pedersen, H. S.; Løvendahl, P.; Nikolaisen, N. K.

    2013-01-01

    Oocytes from prepubertal (PRE) or postpubertal (POST) pigs are used in, for example, somatic cell nuclear transfer and in vitro fertilization. Here we describe mitochondrial dynamics in pig oocytes of different sizes before and after in vitro maturation (IVM), isolated from PRE or POST animals....... In PRE oocytes, inside-zona pellucida diameter was measured before and after IVM (μm; small: ≤110, medium: >110, large: ≥120) and used for evaluation of (1) mitochondrial numbers before maturation and (2) mitochondrial morphology and location before and after maturation in comparison with POST oocytes....... Oocytes were processed for transmission electron microscopy (Acta Anat. 129:12). For assessment of mitochondrial numbers, paired dissector sections were collected at uniform intervals throughout the oocyte, and in each set of dissector sections a known area fraction was sampled for mitochondrial counting...

  6. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  7. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  8. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.

    Science.gov (United States)

    Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I

    2017-06-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular

  9. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Hayashi, Katsuhiko; Saitou, Mitinori

    2013-08-01

    Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.

  10. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes

    International Nuclear Information System (INIS)

    Ishii, Takamichi; Yasuchika, Kentaro; Fujii, Hideaki; Hoppo, Toshitaka; Baba, Shinji; Naito, Masato; Machimoto, Takafumi; Kamo, Naoko; Suemori, Hirofumi; Nakatsuji, Norio; Ikai, Iwao

    2005-01-01

    It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 ± 12.2% (means ± SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes

  11. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  12. Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).

    Science.gov (United States)

    Akhtar, Nasim

    2013-01-01

    Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.

  13. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  14. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    Science.gov (United States)

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, Jutta [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Anderegg, Ulf; Saalbach, Anja [Department for Dermatology, Venerology and Allergology, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Rosin, Britt; Patties, Ina; Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Kamprad, Manja [Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Scholz, Markus [Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstr. 16-18, 04103 Leipzig (Germany); Hildebrandt, Guido, E-mail: Guido.Hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock (Germany); Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany)

    2011-05-10

    Ionizing irradiation could act directly on immune cells and may induce bystander effects mediated by soluble factors that are released by the irradiated cells. This is the first study analyzing both the direct effect of low dose ionizing radiation (LDIR) on the maturation and cytokine release of human dendritic cells (DCs) and the functional consequences for co-cultured T-cells. We showed that irradiation of DC-precursors in vitro does not influence surface marker expression or cytokine profile of immature DCs nor of mature DCs after LPS treatment. There was no difference of single dose irradiation versus fractionated irradiation protocols on the behavior of the mature DCs. Further, the low dose irradiation did not change the capacity of the DCs to stimulate T-cell proliferation. But the irradiation of the co-culture of DCs and T-cells revealed significantly lower proliferation of T-cells with higher doses. Summarizing the data from approx. 50 DC preparations there is no significant effect of low dose ionizing irradiation on the cytokine profile, surface marker expression and maturation of DCs in vitro although functional consequences cannot be excluded.

  16. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G.E.; Kirk, R.L.B.; Welcome, Frank L.; Schukken, Y.H.; Ruegg, P.L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to

  17. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G. E.; Kirk, R. L.Bamber; Welcome, Frank L.; Schukken, Y. H.; Ruegg, P. L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to 2004.

  18. Somatic embryogenesis in ferns: a new experimental system.

    Science.gov (United States)

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  19. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  20. Induced Pluripotent Stem Cell Generation from Blood Cells Using Sendai Virus and Centrifugation.

    Science.gov (United States)

    Rim, Yeri Alice; Nam, Yoojun; Ju, Ji Hyeon

    2016-12-21

    The recent development of human induced pluripotent stem cells (hiPSCs) proved that mature somatic cells can return to an undifferentiated, pluripotent state. Now, reprogramming is done with various types of adult somatic cells: keratinocytes, urine cells, fibroblasts, etc. Early experiments were usually done with dermal fibroblasts. However, this required an invasive surgical procedure to obtain fibroblasts from the patients. Therefore, suspension cells, such as blood and urine cells, were considered ideal for reprogramming because of the convenience of obtaining the primary cells. Here, we report an efficient protocol for iPSC generation from peripheral blood mononuclear cells (PBMCs). By plating the transduced PBMCs serially to a new, matrix-coated plate using centrifugation, this protocol can easily provide iPSC colonies. This method is also applicable to umbilical cord blood mononuclear cells (CBMCs). This study presents a simple and efficient protocol for the reprogramming of PBMCs and CBMCs.

  1. Neural induction from ES cells portrays default commitment but instructive maturation.

    Directory of Open Access Journals (Sweden)

    Nibedita Lenka

    Full Text Available The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.

  2. Somatic embryogenesis and plant regeneration of Capsicum baccatum L.

    Directory of Open Access Journals (Sweden)

    Peddaboina Venkataiah

    2016-06-01

    Full Text Available A plant regeneration protocol via somatic embryogenesis was achieved in cotyledon and leaf explants of Capsicum baccatum, when cultured on MS medium supplemented with various concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D, 0.5–5.0 mg l−1 in combination with Kinetin (Kn, 0.5 mg l−1 and 3% sucrose. Various stages were observed during the development of somatic embryos, including globular, heart, and torpedo-stages. Torpedo stage embryos were separated from the explants and subcultured on medium supplemented with various concentrations of different plant growth regulators for maturation. Maximum percentage (55% of somatic embryo germination and plantlet formation was found at 1.0 mg l−1 BA. Finally, about 68% of plantlets were successfully established under field conditions. The regenerated plants were morphologically normal, fertile and able to set viable seeds.

  3. Local Actions of Melatonin in Somatic Cells of the Testis.

    Science.gov (United States)

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-05-31

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.

  4. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Csomor, Eszter; Bajtay, Zsuzsa; Sándor, Noémi

    2007-01-01

    Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q...... activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose......-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1...

  5. Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells

    Science.gov (United States)

    Patzelt, Thomas; Keppler, Selina J.; Gorka, Oliver; Thoene, Silvia; Wartewig, Tim; Reth, Michael; Förster, Irmgard; Lang, Roland; Buchner, Maike; Ruland, Jürgen

    2018-01-01

    The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma. PMID:29507226

  6. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  7. Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle

    OpenAIRE

    Strapáková, Eva; Candrák, Juraj; Strapák, Peter

    2016-01-01

    The objective of this study was to estimate the breeding values (BVs) of lactation persistency, the test day of milk yield, the somatic cell score, reproductive traits (calving interval, days open), longevity in Slovak Holstein dairy cattle. BVs were used for the detection of relationships among the persistency of lactation and other selected traits. Data for the estimation of BVs of milk production and somatic cell score were collected from 855 240 cows. BVs for reproductive t...

  8. Molecular Evolution of Two Distinct dmrt1 Promoters for Germ and Somatic Cells in Vertebrate Gonads.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Musashijima, Masato; Wada, Mikako; Izutsu, Yumi; Kurakata, Erina; Park, Min Kyun; Takamatsu, Nobuhiko; Ito, Michihiko

    2017-03-01

    The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  10. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  11. Human dendritic cells sequentially matured with CD4(+) T cells as a secondary signal favor CTL and long-term T memory cell responses.

    Science.gov (United States)

    Simon, Thomas; Tanguy-Royer, Séverine; Royer, Pierre-Joseph; Boisgerault, Nicolas; Frikeche, Jihane; Fonteneau, Jean-François; Grégoire, Marc

    2012-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  12. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Barboni Barbara

    2003-05-01

    Full Text Available Abstract Background The possibility to predict the ability of a germ cell to properly sustain embryo development in vitro or in vivo as early as possible is undoubtedly the main problem of reproductive technologies. To date, only the achievement of nuclear maturation and cumulus expansion is feasible, as all the studies on cytoplasmic maturation are too invasive and have been complicated by the death of the cells analyzed. The authors studied the possibility to test the cytoplasmic quality of pig oocytes by evaluating their ability to produce steroidogenesis enabling factor(s. To this aim, oocytes matured under different culture conditions that allowed to obtain gradable level of cytoplasmic maturation, were used to produce conditioned media (OCM. The secretion of the factor(s in conditioned media was then recorded by evaluating the ability of the spent media to direct granulosa cells (GC steroidogenesis. Methods In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique. Results Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by

  13. Effects of herd management practices on somatic cell counts in an arid climate

    OpenAIRE

    Ali Sadeghi-Sefidmazgi; Farahnaz Rayatdoost-Baghal

    2014-01-01

    The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC) and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran) were analyzed. Average lactation SCC (cells × 1,000) was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lac...

  14. Mechanism of Na,K-ATPase decline during sheep red cell maturation

    International Nuclear Information System (INIS)

    Grafova, E.; Blostein, R.

    1987-01-01

    Na,K-ATPase of immature and mature sheep red cells of both the high-K + and low-K + genotypes as well as cells of both types matured in vitro was detected using polyclonal antiserum to sheep kidney Na,K-ATPase. Following SDS-PAGE and immunoblotting, the major reactive component was the ∼ 100 kDa catalytic α subunit. A less prominent band migrating as a sharper, lower molecular weight (50 kDa) component than the kidney Na,K-ATPase β subunit is apparent in reticulocytes but not mature cells. Membranes from both genotypes showed identical immunologically reactive peptides, except for the lower intensity of the α subunit in the mature cells of the low- compared to high-K + sheep. Following culture of both types, moderate reduction in reactivity was apparent. Immunologically reactive α subunit as well as the 50 kDa species were detected in membranous material shed into the culture medium. This material was functionally inactive (lack of both [ 3 H] ouabain binding and Na + -dependent phosphorylation of Na,K-ATPase). The existence in reticulocytes of an intracellular pool of ouabain binding sites is evidenced in appearance of extra sites following rapid ATP depletion and also after addition of chloroquine. Taken together, these findings are consistent with a maturation-associated decrease of sodium pumps by a process of membrane recycling, processing and, to some extent, exocytosis

  15. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...

  16. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  17. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    Science.gov (United States)

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  18. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  19. Human dendritic cells sequentially matured with CD4+ T cells as a secondary signal favor CTL and long-term T memory cell responses

    Directory of Open Access Journals (Sweden)

    Thomas Simon

    2012-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  20. Antibody Affinity Maturation in Fishes—Our Current Understanding

    Directory of Open Access Journals (Sweden)

    Brad G. Magor

    2015-07-01

    Full Text Available It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig mutator enzyme activation-induced cytidine deaminase (AID. We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes.

  1. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer

    NARCIS (Netherlands)

    Inoue, K.; Kohda, T.; Sugimoto, M.; Sado, T.; Ogonuki, N.; Matoba, S.; Shiura, H.; Ikeda, R.; Mochida, K.; Fujii, T.; Sawai, K.; Otte, A.P.; Tian, X.C.; Yang, X.; Ishino, F.; Abe, K.; Ogura, A.

    2010-01-01

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that

  2. Somatic PI3K activity regulates transition to the spermatocyte stages ...

    Indian Academy of Sciences (India)

    Spermatogenesis, involving multiple transit amplification divisions and meiosis, occurs within an enclosure formed bytwo somatic cells. As the cohort of germline cells divide and grow, the surface areas of the somatic cells expandmaintaining a tight encapsulation throughout the developmental period. Correlation between ...

  3. Effect of supplemented diet with maturation plant extract on reproductive performance of Etroplus suratansis

    Directory of Open Access Journals (Sweden)

    S. Albin Dhas

    2015-11-01

    Full Text Available This study was carried out to understand the effect of herbal maturation diet on reproductive successes in Etroplus suratensis. Three herbal maturation diets (EXD1, EXD2, EXD3 and one control diet (EXD0 were prepared with different combinations of herbal ingredients and normal diet ingredients. The experimental animal were observed for the success in reproductive performance like Gonado Somatic Index (GSI, fecundity, striping response, percentage of fertilization, percentage of hatching, percentage of deformed and formed larvae, volume of milt, number of sperm cell, percentage of sperm motility, sperm survival time, percentage of active sperm. The EXD3 diet combination increased the GSI (3.14, fecundity (1325, striping responds (87.23, percentage of fertilization (96.45 percentage of hatching (91.89, percentage of formed larvae (87.53, volume of milt (287 μl, number of sperm cell per μl (1912 percentage of sperm motility (94.18, time of sperm survival (72′15″ and percentage of active sperm cells (92.27 and reduced deformed larva percentage (4.36. From this observation it is more evident that the combination of EXD3 was the best combination and it could be utilized for the formulation of maturation diets for E. suratensis.

  4. Mechanism of Na,K-ATPase decline during sheep red cell maturation

    Energy Technology Data Exchange (ETDEWEB)

    Grafova, E.; Blostein, R.

    1987-05-01

    Na,K-ATPase of immature and mature sheep red cells of both the high-K/sup +/ and low-K/sup +/ genotypes as well as cells of both types matured in vitro was detected using polyclonal antiserum to sheep kidney Na,K-ATPase. Following SDS-PAGE and immunoblotting, the major reactive component was the approx. 100 kDa catalytic ..cap alpha.. subunit. A less prominent band migrating as a sharper, lower molecular weight (50 kDa) component than the kidney Na,K-ATPase ..beta.. subunit is apparent in reticulocytes but not mature cells. Membranes from both genotypes showed identical immunologically reactive peptides, except for the lower intensity of the ..cap alpha.. subunit in the mature cells of the low- compared to high-K/sup +/ sheep. Following culture of both types, moderate reduction in reactivity was apparent. Immunologically reactive ..cap alpha.. subunit as well as the 50 kDa species were detected in membranous material shed into the culture medium. This material was functionally inactive (lack of both (/sup 3/H) ouabain binding and Na/sup +/-dependent phosphorylation of Na,K-ATPase). The existence in reticulocytes of an intracellular pool of ouabain binding sites is evidenced in appearance of extra sites following rapid ATP depletion and also after addition of chloroquine. Taken together, these findings are consistent with a maturation-associated decrease of sodium pumps by a process of membrane recycling, processing and, to some extent, exocytosis.

  5. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  6. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  7. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    Science.gov (United States)

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  8. Novel technologies using radiation and somatic embryogenesis for Kenaf improvement

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Siti Mariam Mohd Nahar; Siti Hajar Mohd Nahar; Abdul Rahim Harun; Azhar Mohamad; Sobri Hussein

    2010-01-01

    Full text: Kenaf (Hibiscus cannabinus L.) is a plant in the Malvaceae family, similar to roselle (Hibiscus sabdariffa), cotton (Gossypium hirsutum L.) and okra (Abelmoschus esculentus), holds a promising potential in the Malaysian bio composite industry. Its long fibres are suitable in the process of making a number of products such as pulp and paper, fibre and particle boards, as well as fibre reinforced plastic components and chemical absorbent. Most varieties of kenaf are photo period sensitive and vegetative growth increases until the daylight period becomes less than 12 h 30 min. flowering is then initiated and the vegetative growth rate declines. At present, most of the varieties planted by the farmers produced very low yield, between 3-5 tons/ha. The aim of this research proposal is to study the potential of using nuclear technique with the use radiation in combination with biotechnology to induce genetic variability in kenaf using somatic embryogenesis. Since mutation is a single cell event, irradiation of cell cultures such as somatic embryos will induce high rate of mutation for selection of desired traits. One of the main objectives of the project was to establish an efficient and productive regeneration system for intact plants from somatic embryos obtained from the original mother plant varieties: G4, V36 dan G393. Once regeneration protocol has been optimized, somatic embryos were irradiated using both acute (high dose rate) and chronic (lower dose rate) gamma irradiation with effective doses (2-3 doses). It takes between 4-5 months to reach maximum height of 4-6 meters from seed propagated plants before they can be harvested. With the use of in vitro mutagenesis, screening and selection of new mutant lines with traits of interest can be achieved within a short period of time (3-5 years). Field evaluations were carried out in collaboration with National Kenaf and Tobacco Board (NKTB) and Kelantan Biotech Corporation Sdn. Bhd. targeted for desired

  9. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    Science.gov (United States)

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (pcollections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (pcollections and mature unintended cells harvests (pcollections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  11. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles.

    Science.gov (United States)

    Kong, Dong; Farmer, Veronica; Shukla, Anil; James, Jana; Gruskin, Richard; Kiriyama, Shigeo; Loncarek, Jadranka

    2014-09-29

    Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.

  12. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  13. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær; Lutterodt, Melissa Catherine R; Mamsen, Linn S

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...

  14. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  16. Somatic point mutation calling in low cellularity tumors.

    Directory of Open Access Journals (Sweden)

    Karin S Kassahn

    Full Text Available Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/ for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.

  17. In vitro testing of defense reactions in zygotic and somatic embryos of Abies numidica

    Directory of Open Access Journals (Sweden)

    Jiří Hřib

    2011-01-01

    Full Text Available Defense of desiccated cotyledonary somatic embryos and mature zygotic embryos of Abies numidica was tested in vitro by dual cultures with tester, fungus Phaeolus schweinitzii. Both types of embryos expressed defense reactions manifested by inhibited growth of fungal tester towards the embryos. Mycelial growth was described by logistic sigmoid growth model with a single asymptote. Mutual comparisons of mycelial growth in presence of zygotic and somatic embryos showed significant differences in parameters of mycelium growth curves towards the embryos. Larger defense reactions were observed in zygotic embryos relative to somatic embryos and unlimited control cultivations without embryo. The possible role of auxin in the defense response of plant embryos is discussed.

  18. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  19. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    Directory of Open Access Journals (Sweden)

    Miseon Lee

    2015-03-01

    Full Text Available BackgroundMutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis.MethodsWe immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles.ResultsNinein signals were significantly impaired in CPAP-depleted cells.ConclusionThe results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.

  20. Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach

    DEFF Research Database (Denmark)

    Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage

    2008-01-01

    Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expression...... upon maturation. The protein expression profile of immature and mature DCs, derived from CD14+ peripheral blood monocytes was investigated using two pH ranges (pH 4-7 and 6-9) (n = 4). Ninety one differentially expressed spots (p...

  1. Comparing carbohydrate status during norway spruce seed development and somatic embryo formation

    NARCIS (Netherlands)

    Gösslová, M.; Svobodová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D.

    2001-01-01

    The carbohydrate status of developing seeds of Picea abies was examined in order to provide a frame of reference for the evaluation of changes in carbohydrate content in maturing somatic embryos of the same species. Samples were taken at weekly intervals from 12 May 1998 (estimated time of

  2. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    Science.gov (United States)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  3. What do somatic hypermutation and class switch recombination teach us about chronic lymphocytic leukaemia pathogenesis?

    Science.gov (United States)

    Oppezzo, P; Dighiero, G

    2005-01-01

    B-CLL cells express CD5 and IgM/IgD and thus have a mantle zone-like phenotype of naive cells, which, in normal conditions express unmutated Ig genes. However, recent studies have shown that 50%-70% of CLL harbour somatic mutations of VH genes, as if they had matured in a lymphoid follicle. Interestingly, the presence or absence of somatic hypermutation (SHM) process is associated with the use of particular VH genes. Particular alleles of the VH1-69 gene and the VH4-39 gene are preferentially expressed in an unmutated form, while VH4-34 or the majority of VH3 family genes frequently contain somatic mutations. The fact that some genes like VH1-69 and VH3-07 recombine this VH segment to particular JH segments and the restricted use of CDR3 sequences by CLLs expressing the VH4-39 gene suggest that the observed differences in BCR structure in B-CLL could result from selection by distinct antigenic epitopes. It is currently unclear whether this putative antigen-driven process could occur prior to leukaemic transformation and/or that the precursors were transformed into leukaemic cells at distinct maturational stages. The mutational profile of Ig genes has been shown to be associated with disease prognosis. These results could favour the idea that CLL could correspond to two different diseases that look alike in morphologic and phenotypic terms. In CLL with mutated Ig genes, the proliferating B cell may have transited through germinal centres, the physiologic site of hypermutation, whereas in CLL with unmutated Ig genes the malignant B cell may derive from a pre-germinal centre naïve B cell. Despite these clinical and molecular differences, recent studies on gene expression profiling of B-CLL cells showed that CLL is characterized by a common gene expression signature that is irrespective of Ig mutational status and differs from other lymphoid cancers and normal lymphoid subpopulations, suggesting that CLL cases share a common mechanism of transformation and/or cell of

  4. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  5. Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Simone P. Sittig

    2015-12-01

    Full Text Available Dendritic cell (DC-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.

  6. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen

    International Nuclear Information System (INIS)

    Yum, Min Kyu; Jung, Mi Young; Cho, Daeho; Kim, Tae Sung

    2011-01-01

    Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17β-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, we evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A b ) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-α, whereas it didn't affect IL-10 and IL-1β expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: ► Daidzein inhibited expression of maturation-associated cell surface markers in DCs. ► Daidzein suppressed expression of pro-inflammatory cytokines in LPS-stimulated DCs. ► Daidzein

  8. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    International Nuclear Information System (INIS)

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-01-01

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 μM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion

  9. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    Science.gov (United States)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  10. Wolbachia infect ovaries in the course of their maturation: last minute passengers and priority travellers?

    Directory of Open Access Journals (Sweden)

    Lise-Marie Genty

    Full Text Available Wolbachia are widespread endosymbiotic bacteria of arthropods and nematodes. Studies on such models suggest that Wolbachia's remarkable aptitude to infect offspring may rely on a re-infection of ovaries from somatic tissues instead of direct cellular segregation between oogonia and oocytes. In the terrestrial isopod Armadillidium vulgare, Wolbachia are vertically transmitted to the host offspring, even though ovary cells are cyclically renewed. Using Fluorescence in situ hybridization (FISH, we showed that the proportion of infected oocytes increased in the course of ovary and oocyte maturation, starting with 31.5% of infected oocytes only. At the end of ovary maturation, this proportion reached 87.6% for the most mature oocytes, which is close to the known transmission rate to offspring. This enrichment can be explained by a secondary acquisition of the bacteria by oocytes (Wolbachia can be seen as last minute passengers and/or by a preferential selection of oocytes infected with Wolbachia (as priority travellers.

  11. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes

    Science.gov (United States)

    Suliman, Hagir B.; Zobi, Fabio

    2016-01-01

    Abstract Aims: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Results: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. Innovation: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Conclusion: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as

  12. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  13. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  14. Cellular and molecular changes associated with somatic embryogenesis induction in Agave tequilana.

    Science.gov (United States)

    Portillo, L; Olmedilla, A; Santacruz-Ruvalcaba, F

    2012-10-01

    In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.

  15. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  16. Low somatic cell count : a risk factor for subsequent clinical mastitis in a dairy herd

    NARCIS (Netherlands)

    Suriyasathaporn, W.; Schukken, Y.H.; Nielen, M.; Brand, A.

    2000-01-01

    A case-control study was conducted to evaluate factors measured at the udder inflammation-free state as risk factors for subsequent clinical mastitis. The factors including somatic cell count (SCC), body condition score, milk yield, percentages of milk fat and milk protein, and diseases were

  17. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    Science.gov (United States)

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  18. NF-κB activation impairs somatic cell reprogramming in ageing.

    Science.gov (United States)

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  19. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis.

    Science.gov (United States)

    Vorsanova, Svetlana G; Zelenova, Maria A; Yurov, Yuri B; Iourov, Ivan Y

    2018-04-01

    Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual's brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.

  20. Cancer treatment in childhood and testicular function: the importance of the somatic environment

    Science.gov (United States)

    Stukenborg, Jan-Bernd; Jahnukainen, Kirsi; Hutka, Marsida

    2018-01-01

    Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment. PMID:29351905

  1. CD11c-targeted Delivery of DNA to Dendritic Cells Leads to cGAS- and STING-dependent Maturation

    DEFF Research Database (Denmark)

    Laursen, Marlene F.; Christensen, Esben; Degn, Laura L.T.

    2018-01-01

    monocyte-derived dendritic cells (moDC) and human monocytic THP-1 cells to targeted and untargeted DNA. We used an anti-CD11c antibody conjugated with double-stranded DNA to analyze the maturation status of human moDCs, as well as maturation using a cGAS KO and STING KO THP-1 cell maturation model. We...... with boosting the existing tumor-specific T-cell response. One way to achieve this could be by increasing the level of maturation of dendritic cells locally and in the draining lymph nodes. When exposed to cancer cells, dendritic cells may spontaneously mature because of dangerassociated molecular patterns...... derived from the tumor cells. Doublestranded DNA play a particularly important role in the activation of the dendritic cells, through engagement of intracellular DNAsensors, and signaling through the adaptor protein STING. In the present study, we have investigated the maturational response of human...

  2. Squamous cell carcinoma arising in a mature cystic teratoma

    Directory of Open Access Journals (Sweden)

    Gupta Vishwanath

    2009-04-01

    Full Text Available Two cases of squamous cell carcinoma (SCC arising in a mature cystic teratoma (MCT are being discussed for their rarity and pattern of infiltration of tumor cells in the stroma (alpha mode, beta mode and gamma mode, which is a key factor in deciding the prognosis and patient survival.

  3. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  4. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.

    Science.gov (United States)

    Power, J B; Berry, S F; Chapman, J V; Cocking, E C

    1980-01-01

    Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.

  5. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  6. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hafidh Said

    2009-12-01

    Full Text Available Abstract Background New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana. Results In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen. Conclusions Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.

  7. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  8. Plant regeneration of Michelia champaca L., through somatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... as a basic material for perfume, cosmetic, and medicine. The development of an ... Plant regeneration systems of M. champaca through somatic ... The embryogenic cells proliferated and formed somatic embryos (30%) after four to six .... by using MS excel program and Duncan's new multiple range test.

  9. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count

    NARCIS (Netherlands)

    Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H.

    2008-01-01

    This study explored the potential value of in-line composite somatic cell count (ISCC) sensing as a sole criterion or in combination with quarter-based electrical conductivity (EC) of milk, for automatic detection of clinical mastitis (CM) during automatic milking. Data generated from a New Zealand

  10. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  11. Blood count and number of somatic cells in milk of cows infected with Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Radinović Miodrag

    2011-01-01

    Full Text Available The objective of the work was to examine the intensity of the local immune response of the mammary gland and the changes in the differential blood count of chronically infected cows. An experiment was performed on a group of cows with Q fever serologically proven using the ELISA test (IDEXX. Based on the ELISA test results, an experimental group of ten infected cows was formed. Blood was sampled from the experimental cows, and cumulative milk samples were taken. The number of erythrocytes was determined spectrophotometrically, and the number of leucocytes using the method according to Bürker - Türk. The blood analysis established an increased number of erythrocytes, while the number of leucocytes was within the limits of physiological values. The milk samples were used for the determination of the number of somatic cells using flow cytometric measurements. The processing of the milk samples established an average number of somatic cells of 853.000 /mL milk.

  12. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  13. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  14. Evaluation of sexual maturity among adolescent male sickle cell ...

    African Journals Online (AJOL)

    Methods. We conducted a cross-sectional case-control study evaluating sexual maturation of male patients with sickle cell anaemia and those .... statistical location were calculated for continuous data and ..... Butterworth's Medical Dictionary.

  15. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  16. Chronic alcohol consumption enhances iNKT cell maturation and activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui, E-mail: hzhang@wsu.edu; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  17. Chronic alcohol consumption enhances iNKT cell maturation and activation

    International Nuclear Information System (INIS)

    Zhang, Hui; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-01

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1 − iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1 + CD44 hi mature iNKT cells but does not alter the number of NK1.1 − immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1 − iNKT cells, especially the NK1.1 − CD44 lo Stage I iNKT cells. The percentage of NKG2A + iNKT cells increases in all of the tissues and organs examined; whereas CXCR3 + iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol consumption induces Th1 immune response upon i

  18. Squamous cell carcinoma arising in mature cystic teratoma of ovary

    Directory of Open Access Journals (Sweden)

    Ranu Patni

    2014-01-01

    Full Text Available Squamous cell carcinoma of the ovary is a rare condition and usually arises in mature cystic teratoma (MCT or dermoid cyst of the ovary. The reported incidence of malignant transformation in MCT is approximately 2%. A case of squamous cell carcinoma arising in a dermoid cyst of the ovary presenting at an early stage is presented here. A 53-year-old postmenopausal lady, presented with the complaint of pain in right lower abdomen since one month and a large complex abdomino-pelvic mass on examination and investigations. Final histopathology was reported as squamous cell carcinoma of left ovary arising from dermoid cyst and a benign dermoid cyst in the right ovary. The patient was assigned to squamous cell carcinoma of the ovary arising in a mature cystic teratoma, surgical stage Ic2. In view of the poor prognosis, adjuvant chemotherapy was started.

  19. Iκb Kinase α Is Essential for Mature B Cell Development and Function

    Science.gov (United States)

    Kaisho, Tsuneyasu; Takeda, Kiyoshi; Tsujimura, Tohru; Kawai, Taro; Nomura, Fumiko; Terada, Nobuyuki; Akira, Shizuo

    2001-01-01

    IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells. PMID:11181694

  20. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    OpenAIRE

    Lee Rita SF; Couldrey Christine

    2010-01-01

    Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appr...

  1. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Kelly, A L; Caroprese, M; Marino, R; Sevi, A

    2015-11-01

    Individual caprine milk with different somatic cell counts (SCC) were studied with the aim of investigating the percentage distribution of leukocyte cell types and the activities of indigenous proteolytic enzymes; proteolysis of casein was also studied in relation to cell type following recovery from milk. The experiment was conducted on 5 intensively managed dairy flocks of Garganica goats; on the basis of SCC, the experimental groups were denoted low (L-SCC; 1,501,000 cells/mL) SCC. Leukocyte distribution differed between groups; polymorphonuclear neutrophilic leukocytes were higher in M-SCC and H-SCC milk samples, the percentage macrophages was the highest in H-SCC, and levels of nonviable cells significantly decreased with increasing SCC. Activities of all the main proteolytic enzymes were affected by SCC; plasmin activity was the highest in H-SCC milk and the lowest in L-SCC, and elastase and cathepsin D activities were the highest in M-SCC. Somatic cell count influenced casein hydrolysis patterns, with less intact α- and β-casein in H-SCC milk. Higher levels of low electrophoretic mobility peptides were detected in sodium caseinate incubated with leukocytes isolated from L-SCC milk, independent of cell type, whereas among cells recovered from M-SCC milk, macrophages yielded the highest levels of low electrophoretic mobility peptides from sodium caseinate. The level of high electrophoretic mobility peptides was higher in sodium caseinate incubated with polymorphonuclear neutrophilic leukocytes and macrophages isolated from M-SCC, whereas the same fraction of peptides was always the highest, independent of leukocyte type, for cells recovered from H-SCC milk. In caprine milk, a level of 700,000 cells/mL represented the threshold for changes in leukocyte distribution, which is presumably related to the immune status of the mammary gland. Differences in the profile of indigenous lysosomal proteolytic enzymes in caprine milk may influence the integrity of casein

  2. Signals sustaining human immunoglobulin V gene hypermutation in isolated germinal centre B cells

    NARCIS (Netherlands)

    K. Dahlenborg; J.D. Pound (J.); J. Gordon (Jocelynne); C.A.K. Borrebaeck (C. A K); R. Carlsson (R.)

    2000-01-01

    textabstractAffinity maturation of antibody responses depends on somatic hypermutation of the immunoglobulin V genes. Hypermutation is initiated specifically in proliferating B cells in lymphoid germinal centres but the signals driving this process remain unknown. This study identifies signals that

  3. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  4. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  5. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Science.gov (United States)

    Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A; Ptak, Grazyna; Loi, Pasqualino

    2013-01-01

    The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  6. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  7. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  8. A quantitative system for discriminating induced pluripotent stem cells, embryonic stem cells and somatic cells.

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells (SCs and embryonic stem cells (ESCs provide promising resources for regenerative medicine and medical research, leading to a daily identification of new cell lines. However, an efficient system to discriminate the different types of cell lines is lacking. Here, we develop a quantitative system to discriminate the three cell types, iPSCs, ESCs, and SCs. The system consists of DNA-methylation biomarkers and mathematical models, including an artificial neural network and support vector machines. All biomarkers were unbiasedly selected by calculating an eigengene score derived from analysis of genome-wide DNA methylations. With 30 biomarkers, or even with as few as 3 top biomarkers, this system can discriminate SCs from pluripotent cells (PCs, including ESCs and iPSCs with almost 100% accuracy. With approximately 100 biomarkers, the system can distinguish ESCs from iPSCs with an accuracy of 95%. This robust system performs precisely with raw data without normalization as well as with converted data in which the continuous methylation levels are accounted. Strikingly, this system can even accurately predict new samples generated from different microarray platforms and the next-generation sequencing. The subtypes of cells, such as female and male iPSCs and fetal and adult SCs, can also be discriminated with this method. Thus, this novel quantitative system works as an accurate framework for discriminating the three cell types, iPSCs, ESCs, and SCs. This strategy also supports the notion that DNA-methylation generally varies among the three cell types.

  9. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  10. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  11. NKT Cell-TCR Expression Activates Conventional T Cells in Vivo, but Is Largely Dispensable for Mature NKT Cell Biology

    Science.gov (United States)

    Vahl, J. Christoph; Heger, Klaus; Knies, Nathalie; Hein, Marco Y.; Boon, Louis; Yagita, Hideo; Polic, Bojan; Schmidt-Supprian, Marc

    2013-01-01

    Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR. PMID:23853545

  12. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology.

    Directory of Open Access Journals (Sweden)

    J Christoph Vahl

    Full Text Available Natural killer T (NKT cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR.

  13. Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Teyssier, Caroline; Trontin, Jean-François; Eliášová, Kateřina; Pešek, Bedřich; Beaufour, Martine; Morabito, Domenico; Boizot, Nathalie; Le Metté, Claire; Belal-Bessai, Leila; Reymond, Isabelle; Harvengt, Luc; Cadene, Martine; Corbineau, Françoise; Vágner, Martin; Label, Philippe; Lelu-Walter, Marie-Anne

    2014-09-01

    Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets. © 2014 Scandinavian Plant Physiology Society.

  14. The FOX and the mutants in mature human B cells and DLBCL: The role of FOXP1 in mature human B cell biology and lymphomagenesis & prevalence of oncogenic MyD88 and CD79B mutations in diffuse large B cell lymphoma

    NARCIS (Netherlands)

    van Keimpema, M.

    2015-01-01

    The transcription factor FOXP1 is prominently expressed in mature B cells and is a potential oncogene in B cell non-Hodgkin lymphomas; however, the functions of FOXP1 in mature B cells and B cell lymphomagenesis have not yet been fully explored. In the first part of this thesis, the roles of FOXP1

  15. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  16. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  17. Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-12-01

    Full Text Available Summary: A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an “interrupted reprogramming” strategy to generate “induced progenitor-like (iPL cells” using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine. : In this article Waddell, Nagy, and colleagues present an “interrupted reprogramming” strategy to produce highly specified functional “induced progenitor-like cells” from mature quiescent cells. They propose that careful control of the duration of transient expression of iPSC reprogramming factors (OSKM allows controlled expansion yet preservation of parental lineage without traversing the pluripotent state. Keywords: generation of induced progenitor-like cells

  18. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  19. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    Science.gov (United States)

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.

  20. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  1. Cortisol and somatization.

    Science.gov (United States)

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  2. The somatic genomic landscape of chromophobe renal cell carcinoma.

    Science.gov (United States)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome.

    Science.gov (United States)

    Dowdell, Kennichi C; Niemela, Julie E; Price, Susan; Davis, Joie; Hornung, Ronald L; Oliveira, João Bosco; Puck, Jennifer M; Jaffe, Elaine S; Pittaluga, Stefania; Cohen, Jeffrey I; Fleisher, Thomas A; Rao, V Koneti

    2010-06-24

    Autoimmune lymphoproliferative syndrome (ALPS) is characterized by childhood onset of lymphadenopathy, hepatosplenomegaly, autoimmune cytopenias, elevated numbers of double-negative T (DNT) cells, and increased risk of lymphoma. Most cases of ALPS are associated with germline mutations of the FAS gene (type Ia), whereas some cases have been noted to have a somatic mutation of FAS primarily in their DNT cells. We sought to determine the proportion of patients with somatic FAS mutations among a group of our ALPS patients with no detectable germline mutation and to further characterize them. We found more than one-third (12 of 31) of the patients tested had somatic FAS mutations, primarily involving the intracellular domain of FAS resulting in loss of normal FAS signaling. Similar to ALPS type Ia patients, the somatic ALPS patients had increased DNT cell numbers and elevated levels of serum vitamin B(12), interleukin-10, and sFAS-L. These data support testing for somatic FAS mutations in DNT cells from ALPS patients with no detectable germline mutation and a similar clinical and laboratory phenotype to that of ALPS type Ia. These findings also highlight the potential role for somatic mutations in the pathogenesis of nonmalignant and/or autoimmune hematologic conditions in adults and children.

  4. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  5. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  6. Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece.

    Science.gov (United States)

    Lundy, David J; Lee, Desy S; Hsieh, Patrick C H

    2017-03-01

    There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al ., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

  7. BC-Box Motif-Mediated Neuronal Differentiation of Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2018-02-01

    Full Text Available Von Hippel-Lindau tumor suppressor protein (pVHL functions to induce neuronal differentiation of neural stem/progenitor cells (NSCs and skin-derived precursors (SKPs. Here we identified a neuronal differentiation domain (NDD in pVHL. Neuronal differentiation of SKPs was induced by intracellular delivery of a peptide composed of the amino-acid sequences encoded by the NDD. Neuronal differentiation mediated by the NDD was caused by the binding between it and elongin C followed by Janus kinase-2 (JAK2 ubiquitination of JAK2 and inhibition of the JAK2/the signal transducer and activator of transcription-3(STAT3 pathway. The NDD in pVHL contained the BC-box motif ((A,P,S,TLXXX (A,C XXX(A,I,L,V corresponding to the binding site of elongin C. Therefore, we proposed that other BC-box proteins might also contain an NDD; and subsequently also identified in them an NDD containing the amino-acid sequence encoded by the BC-box motif in BC-box proteins. Furthermore, we showed that different NDD peptide-delivered cells differentiated into different kinds of neuron-like cells. That is, dopaminergic neuron-like cells, cholinergic neuron-like cells, GABAnergic neuron-like cells or rhodopsin-positive neuron-like cells were induced by different NDD peptides. These novel findings might contribute to the development of a new method for promoting neuronal differentiation and shed further light on the mechanism of neuronal differentiation of somatic stem cells.

  8. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Smits, K.; Piepers, S.; Abbeel, Van den E.; Woelders, H.; Soom, Van A.

    2016-01-01

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were

  9. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  10. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  11. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1

    International Nuclear Information System (INIS)

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J.; Goldring, Christopher E.; Park, B. Kevin

    2009-01-01

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p < 0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  12. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1.

    Science.gov (United States)

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J; Goldring, Christopher E; Park, B Kevin

    2009-07-15

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p<0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  13. OP9 Feeder Cells Are Superior to M2-10B4 Cells for the Generation of Mature and Functional Natural Killer Cells from Umbilical Cord Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Lara Herrera

    2017-06-01

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of mature and functional NK cells. An option for future immunotherapy treatments is to use large amounts of NK cells derived and differentiated from umbilical cord blood (UCB CD34+ hematopoietic stem cells (HSCs, mainly because UCB is one of the most accessible HSC sources. In our study, we compared the potential of two stromal cell lines, OP9 and M2-10B4, for in vitro generation of mature and functional CD56+ NK cells from UCB CD34+ HSC. We generated higher number of CD56+ NK cells in the presence of the OP9 cell line than when they were generated in the presence of M2-10B4 cells. Furthermore, higher frequency of CD56+ NK cells was achieved earlier when cultures were performed with the OP9 cells than with the M2-10B4 cells. Additionally, we studied in detail the maturation stages of CD56+ NK cells during the in vitro differentiation process. Our data show that by using both stromal cell lines, CD34+ HSC in vitro differentiated into the terminal stages 4–5 of maturation resembled the in vivo differentiation pattern of human NK cells. Higher frequencies of more mature NK cells were reached earlier by using OP9 cell line than M2-10B4 cells. Alternatively, we observed that our in vitro NK cells expressed similar levels of granzyme B and perforin, and there were no significant differences between cultures performed in the presence of OP9 cell line or M2-10B4 cell line. Likewise, degranulation and cytotoxic activity against K562 target cells were very similar in both culture conditions. The results presented here provide an optimal strategy to generate high numbers of mature and functional NK cells in vitro, and point toward the use of the OP9 stromal cell line to accelerate the culture procedure to obtain them. Furthermore, this method could establish the basis for the generation of mature NK cells ready for cancer immunotherapy.

  14. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  15. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  16. Efficient somatic embryo production of Limau madu ( Citrus ...

    African Journals Online (AJOL)

    Effects of N6-benzylaminopurine (BAP) concentration, initial cell density and carbon sources and concentrations for producing cell suspension and somatic embryos of Limau madu (Citrus suhuiensis Hort. ex Tanaka) were investigated using cell suspension culture. Cells were first inoculated into Murashige and Skoog (MS) ...

  17. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation.

    Science.gov (United States)

    Zhang, W; Kong, C W; Tong, M H; Chooi, W H; Huang, N; Li, R A; Chan, B P

    2017-02-01

    Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study. Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips

  18. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  19. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?

    Directory of Open Access Journals (Sweden)

    Nuria Izquierdo-Useros

    2010-03-01

    Full Text Available Exosomes are secreted cellular vesicles that can induce specific CD4(+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs. The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4(+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4(+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.

  20. Somatic Embryogenesis in Parana Pine (Araucaria angustifolia (Bert. O. Kuntze

    Directory of Open Access Journals (Sweden)

    Santos André Luis Wendt dos

    2002-01-01

    Full Text Available Embryogenic cultures of Araucaria angustifolia were induced from dominant and non-dominant zygotic embryos excised from immature seeds proceeding from three different genotypes and five harvest dates. Zygotic embryos were inoculated in inductive culture medium LP and BM supplemented with or without plant growth regulators 2,4-D (5 µM, BA (2 µM and Kin (2 µM. The genotype of the mother tree and the developmental explant stage affected the induction frequency. In the maintenance phase, embryogenic cultures were maintained at continuous repetitive cell cycles every 20 days in semi-solid or liquid medium. In the maturation phase the culture medium was supplemented with different types and levels of growth regulators, osmotic agents, carbohydrates and derived. Embryogenic cultures inoculated in culture medium supplemented with PEG 3350 (6 and 9%, maltose (6 and 9%, plus BA and Kin (1 µM each resulted in the progression of somatic embryos to globular and torpedo developmental stages.

  1. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  2. Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Min Kyu; Jung, Mi Young [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Cho, Daeho [Department of Life Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Tae Sung, E-mail: tskim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-12-15

    Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17{beta}-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, we evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A{sup b}) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-{alpha}, whereas it didn't affect IL-10 and IL-1{beta} expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: Black-Right-Pointing-Pointer Daidzein inhibited expression of maturation-associated cell surface markers in DCs. Black-Right-Pointing-Pointer Daidzein suppressed expression

  3. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells.

    Science.gov (United States)

    Gao, Wen-Xiang; Sun, Yue-Qi; Shi, Jianbo; Li, Cheng-Lin; Fang, Shu-Bin; Wang, Dan; Deng, Xue-Quan; Wen, Weiping; Fu, Qing-Ling

    2017-03-02

    Mesenchymal stem cells (MSCs) have potent immunomodulatory effects on multiple immune cells and have great potential in treating immune disorders. Induced pluripotent stem cells (iPSCs) serve as an unlimited and noninvasive source of MSCs, and iPSC-MSCs have been reported to have more advantages and exhibit immunomodulation on T lymphocytes and natural killer cells. However, the effects of iPSC-MSCs on dendritic cells (DCs) are unclear. The aim of this study is to investigate the effects of iPSC-MSCs on the differentiation, maturation, and function of DCs. Human monocyte-derived DCs were induced and cultured in the presence or absence of iPSC-MSCs. Flow cytometry was used to analyze the phenotype and functions of DCs, and enzyme-linked immunosorbent assay (ELISA) was used to study cytokine production. In this study, we successfully induced MSCs from different clones of human iPSCs. iPSC-MSCs exhibited a higher proliferation rate with less cell senescence than BM-MSCs. iPSC-MSCs inhibited the differentiation of human monocyte-derived DCs by both producing interleukin (IL)-10 and direct cell contact. Furthermore, iPSC-MSCs did not affect immature DCs to become mature DCs, but modulated their functional properties by increasing their phagocytic ability and inhibiting their ability to stimulate proliferation of lymphocytes. More importantly, iPSC-MSCs induced the generation of IL-10-producing regulatory DCs in the process of maturation, which was mostly mediated by a cell-cell contact mechanism. Our results indicate an important role for iPSC-MSCs in the modulation of DC differentiation and function, supporting the clinical application of iPSC-MSCs in DC-mediated immune diseases.

  4. Somatic Expression of Psychological Problems (Somatization: Examination with Structural Equation Model

    Directory of Open Access Journals (Sweden)

    Tugba Seda Çolak

    2014-09-01

    Full Text Available The main purpose of the research is to define which psychological symptoms (somatization, depression, obsessive ‐ compulsive, hostility, interpersonal sensitivity, anxiety, phobic anxiety, paranoid ideation and psychoticism cause somatic reactions at most. Total effect of these psychological symptoms on somatic symptoms had been investigated. Study was carried out with structural equation model to research the relation between the psychological symptoms and somatization. The main material of the research is formed by the data obtained from 492 people. SCL‐90‐R scale was used in order to obtain the data. As a result of the structural equation analysis, it has been found that 1Psychoticism, phobic anxiety, and paranoid ideation do not predict somatic symptoms.2There is a negative relation between interpersonal sensitivity level mand somatic reactions.3Anxiety symptoms had been found as causative to occur the highest level of somatic reactions.

  5. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  6. Antigen-specific IL-23/17 pathway activation by murine semi-mature DC-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Shinya; Iwasaki, Takumi; Okano, Tomoko [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan); Chiba, Joe, E-mail: chibaj@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan)

    2009-09-11

    We analyzed the phenotype and function of bone marrow-derived dendritic cells (DCs) induced in vitro without using any serum during the late stage of cultivation. These 'serum-free' DCs (SF-DCs) possessed the ability to induce T cell proliferation as well as antibody responses, indicating that they were functional DCs. Surprisingly, the SF-DCs akin to semi-mature DCs in terms of both phenotypic and functional characteristics. The SF-DCs did not produce IL-12 but produced large amounts of IL-23 following lipopolysaccharide stimulation. The antigen-specific production of IL-17 by CD4{sup +} T cells co-cultured with OVA-loaded SF-DCs was significantly higher than that with OVA-loaded conventional DCs. These results suggest that SF-DCs tend to produce IL-23 and can consequently induce the IL-17 producing CD4{sup +} T cells. The semi-mature DC-like cells reported here will be useful vehicles for DC immunization and might contribute to studies on the possible involvement of semi-mature DCs in Th17 cell differentiation.

  7. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  8. Survey on the frequency of somatic mutations in A-bomb survivors

    International Nuclear Information System (INIS)

    Akiyama, Mitoshi

    1992-01-01

    Several methods have recently been established for quantitatively detecting somatic cell mutations on a specific locus using human blood cells. These methods have enabled the biological estimation of A-bomb radiation doses in surveys on somatic cell mutations. This paper outlines HPRT, GPA, and TCR assays used to measure somatic cell mutations, focusing on the outcome in A-bomb survivors. HPRT assay is based on colony formation with interleukin-2. The frequency of HPRT mutant cells was significantly increased with advancing age in A-bomb survivors and was positively correlated with the frequency of chromosomal aberrations in lymphocytes. There was also a significantly positive correlation between HPRT mutant cell frequencies and DS86 estimated doses, although the slope was slow. In GPA assay, flow cytometric measurements of fluorescence-labeled erythrocytes are used to detect somatic cell mutations. There was a positive correlation between GPA mutant cell frequencies and age in A-bomb survivors. The GPA mutant cell frequencies showed much more positive correlation with lymphocyte chromosomal aberration frequencies than the HPRT mutant cell frequencies. When anti-CD3 antibody and anti-CD4 antibody are labeled with different fluorescences and are analyzed by using flow cytometry, TCR mutant cells having CD3 - 4 + can be detected. When the frequency of TCR mutant cells was examined in 342 A-bomb survivors, it did not correlate with radiation doses. This implies that TCR assay may be unadequate for biological estimation of A-bomb radiation doses throughout a lifetime of A-bomb survivors, because TCR mutant cells seems to be unable to live for a long time due to national selection. (N.K.)

  9. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    International Nuclear Information System (INIS)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis ( 3 H-thymidine, autoradiography) or protein synthesis ( 35 S-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test

  10. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    OpenAIRE

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (?10 units) are present within exonic sequences of >350 genes, re...

  11. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  12. Cutaneous mast cell maturation does not depend on an intact bone marrow microenvironment

    International Nuclear Information System (INIS)

    Charley, M.R.; Mikhael, A.; Sontheimer, R.D.; Gilliam, J.N.; Bennett, M.

    1984-01-01

    A study was made to determine whether the maturation of murine cutaneous mast cells from stem cells depends on an intact bone marrow microenvironment. Normal bone marrow cells (+/+) were infused into 2 groups of mast cell-deficient mice: WBB6F1-W/Wv mice and 89 Sr-pretreated W/Wv mice. 89 Sr is a long-lived bone-seeking radioisotope which provides continuous irradiation of the marrow and thereby ablates the marrow microenvironment. Skin biopsies revealed that the 89 Sr-pretreated mice and the controls had repopulated their skin with mast cells equally well. Natural killer cell function was significantly depressed in the 89 Sr-treated mice, confirming that the marrow microenvironment had been functionally altered. It appears that, although the precursors for cutaneous mast cells are marrow derived, they do not need an intact marrow microenvironment for maturation

  13. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  14. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    Directory of Open Access Journals (Sweden)

    Shuzhen Liu

    Full Text Available Acrylamide (ACR is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  15. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus

    2007-01-01

    The present study was designed to examine the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on development of porcine cloned embryos. Our results showed that treatment of cloned embryos derived from sow oocytes with 50 nM TSA for up to 24 h after the onset of activation cou...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  16. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. CARABĂ

    2009-05-01

    Full Text Available During the experiments we have carried out with imature oocyte collected from the ovarian follicles, wefound a variety of oocyte-cumulus complexes. We got the following experiment in order to understand therole of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select theoocyte-cumulus complexes collected both from cows and sows according to the number of cumular celllayers and we watched their development to the blastocyst stade. Thus, we achieved three groups of COC(oocyte-cumulus complexes.One group was made of oocyte without cumular cells, the second group had a layer of cumular cells andthe third group had many layers of cumular cells. we performed an incubation of all these types of COCin TCM-199 enriched with 20% of bovine fetal serum. Because only 1,2 oocyte of the ones who lack thecumular cells layer had maturation signs during cultivation in the thermostat versus 55 and 115,respectively, of the ones that had many cellular layers, presents a solid evidence that cumular cells areindispensable for the maturation and even to the fecundation process. The cumular cells perform adecisive role on the cytoplasma and oocyte nucleus maturation process.

  17. Efficacy of dendritic cells matured early with OK-432 (Picibanil), prostaglandin E2, and interferon-alpha as a vaccine for a hormone refractory prostate cancer cell line.

    Science.gov (United States)

    Yoo, Changhee; Do, Hyun-Ah; Jeong, In Gab; Park, Hongzoo; Hwang, Jung-Jin; Hong, Jun Hyuk; Cho, Jin Seon; Choo, Myong-Soo; Ahn, Hanjong; Kim, Choung-Soo

    2010-09-01

    Dendritic cells (DCs) are potent antigen-presenting cells. OK432 (Picibanil) was introduced as a potent stimulator of DC maturation in combination with prostaglandin-E(2) and interferon-alpha. We compared the efficacy of a DC-prostate cancer vaccine using early-mature DCs stimulated with OK432, PGE2 and INF-alpha (OPA) with that of vaccines using other methods. On days 3 or 7 of DC culture, TNF-alpha (T), TNF-alpha and LPS (TL) or OPA were employed as maturation stimulators. DU145 cells subjected to heat stress were hybridized with mature DCs using polyethyleneglycol. T cells were sensitized by the hybrids, and their proliferative and cytokine secretion activities and cytotoxicity were measured. The yields of early-mature DCs were higher, compared to yields at the conventional maturation time (P<0.05). In the early maturation setting, the mean fusion ratios, calculated from the fraction of dual-positive cells, were 13.3%, 18.6%, and 39.9%, respectively (P=0.051) in the T only, TL, and OPA-treated groups. The function of cytotoxic T cells, which were sensitized with the hybrids containing DCs matured early with OPA, was superior to that using other methods. The antitumor effects of DC-DU145 hybrids generated with DCs subjected to early maturation with the OPA may be superior to that of the hybrids using conventional maturation methods.

  18. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco

    2013-01-01

    induction of type 1 effector T cells. Standard matured clinical grade DCs “sDCs” were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs “αDC1s” (TNF-α, IL-1β, IFN-γ, IFN-α, Poly(I:C)) and “mDCs” (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail...... – “mpDCs”, containing MPL, IFN-γ and PGE2. αDC1s and mDCs secreted IL-12 directly and following re-stimulation with CD40L-expressing cells and they mainly secreted the T effector cell attracting chemokines CXCL10 and CCL5 as opposed to sDCs that mainly secreted CCL22, known to attract regulatory T cells...

  19. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272.

    Science.gov (United States)

    Li, Yue; Zeng, Xiaoli; He, Lijuan; Yuan, Hui

    2015-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells for initiating immune responses. DC maturation can be induced by exposing of immature DC to pathogen products or pro-inflammatory factor, which dramatically enhances the ability of DC to activate Ag-specific T cells. In this study, a recombinant calreticulin fragment 39-272 (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed and purified in Escherichia coli. Functional analysis studies revealed that rCRT/39-272 has potent immunostimulatory activities in both activating human monocytes and B cells to secrete cytokines. rCRT/39-272 can drive the activation of bone marrow derived DC in TLR4/CD14 dependent way, as indicated by secretion of cytokines IL-12/IL-23 (p40) and IL-1β. Exposure of DC to rCRT/39-272 induces P-Akt, suggesting that rCRT/39-272 induces maturation of DC through PI3K/Akt signaling pathway. The results suggest that soluble rCRT/39-272 is a potent stimulatory agent to DC maturation in TLR4/CD14 and PI3K/Akt dependent pathway. It may play important roles in initiating cellular immunity in vivo and the T cell response in vitro. Thus it could be used for study of DC-based tumor vaccines.

  20. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.

    Science.gov (United States)

    Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T

    2013-08-01

    The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).

  1. Immunoglobulin diversification in B cell malignancies: internal splicing of heavy chain variable region as a by-product of somatic hypermutation

    NARCIS (Netherlands)

    Bende, R. J.; Aarts, W. M.; Pals, S. T.; van Noesel, C. J. M.

    2002-01-01

    In this study we describe alternative splicing of somatically mutated immunoglobulin (Ig) variable heavy chain (V-H) genes in three distinct primary B cell non-Hodgkin's lymphomas (B-NHL). In two V4-34 expressing lymphomas, ie a post-germinal center type B cell chronic lymphocytic leukemia (B-CLL)

  2. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  3. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  4. Studies on mRNA electroporation of immature and mature dendritic cells

    DEFF Research Database (Denmark)

    Met, Ozcan; Eriksen, Jens; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  5. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-01-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3 - , CD4 + , CD1 + , CD8 + , is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig + , B1 + , B532 + , EBNA + , HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  6. Somatic PI3K activity regulates transition to the spermatocyte stages ...

    Indian Academy of Sciences (India)

    Samir Gupta

    2017-04-22

    Apr 22, 2017 ... like growth factor (IGF) families, control the tissue homeosta- sis (Biteau et al. 2011 ... A breach in the somatic encapsulation due to the loss of somatic cyst cells .... populations at the apical region of testes of 4-days-old adults.

  7. Evaluation of CD307a expression patterns during normal B-cell maturation and in B-cell malignancies by flow cytometry.

    Science.gov (United States)

    Auat, Mariangeles; Cardoso, Chandra Chiappin; Santos-Pirath, Iris Mattos; Rudolf-Oliveira, Renata Cristina Messores; Matiollo, Camila; Lange, Bárbara Gil; da Silva, Jessica Pires; Dametto, Gisele Cristina; Pirolli, Mayara Marin; Colombo, Maria Daniela Holthausen Perico; Santos-Silva, Maria Claudia

    2018-02-24

    Flow cytometric immunophenotyping is deemed a fundamental tool for the diagnosis of B-cell neoplasms. Currently, the investigation of novel immunophenotypic markers has gained importance, as they can assist in the precise subclassification of B-cell malignancies by flow cytometry. Therefore, the purpose of the present study was to evaluate the expression of CD307a during normal B-cell maturation and in B-cell malignancies as well as to investigate its potential role in the differential diagnosis of these entities. CD307a expression was assessed by flow cytometry in normal precursor and mature B cells and in 115 samples collected from patients diagnosed with precursor and mature B-cell neoplasms. CD307a expression was compared between neoplastic and normal B cells. B-acute lymphoblastic leukemia cases exhibited minimal expression of CD307a, displaying a similar expression pattern to that of normal B-cell precursors. Mantle cell lymphoma (MCL) cases showed the lowest levels of CD307a among mature B-cell neoplasms. CD307a expression was statistically lower in MCL cases than in chronic B lymphocytic leukemia (CLL) and marginal zone lymphoma (MZL) cases. No statistical differences were observed between CD307a expression in neoplastic and normal plasma cells. These results indicate that the assessment of CD307a expression by flow cytometry could be helpful to distinguish CLL from MCL, and the latter from MZL. Although these results are not entirely conclusive, they provide a basis for further studies in a larger cohort of patients. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  8. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  9. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  10. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  11. Immature and maturation-resistant human dendritic cells generated from bone marrow require two stimulations to induce T cell anergy in vitro.

    Directory of Open Access Journals (Sweden)

    Thomas G Berger

    Full Text Available Immature dendritic cells (DC represent potential clinical tools for tolerogenic cellular immunotherapy in both transplantation and autoimmunity. A major drawback in vivo is their potential to mature during infections or inflammation, which would convert their tolerogenicity into immunogenicity. The generation of immature DC from human bone marrow (BM by low doses of GM-CSF (lowGM in the absence of IL-4 under GMP conditions create DC resistant to maturation, detected by surface marker expression and primary stimulation by allogeneic T cells. This resistence could not be observed for BM-derived DC generated with high doses of GM-CSF plus IL-4 (highGM/4, although both DC types induced primary allogeneic T cell anergy in vitro. The estabishment of the anergic state requires two subsequent stimulations by immature DC. Anergy induction was more profound with lowGM-DC due to their maturation resistance. Together, we show the generation of immature, maturation-resistant lowGM-DC for potential clinical use in transplant rejection and propose a two-step-model of T cell anergy induction by immature DC.

  12. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  13. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  14. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  15. Efficacy of Dendritic Cells Matured Early with OK-432 (Picibanil®), Prostaglandin E2, and Interferon-α as a Vaccine for a Hormone Refractory Prostate Cancer Cell Line

    Science.gov (United States)

    Yoo, Changhee; Do, Hyun-Ah; Jeong, In Gab; Park, Hongzoo; Hwang, Jung-Jin; Hong, Jun Hyuk; Cho, Jin Seon; Choo, Myong-Soo; Ahn, Hanjong

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells. OK432 (Picibanil®) was introduced as a potent stimulator of DC maturation in combination with prostaglandin-E2 and interferon-α. We compared the efficacy of a DC-prostate cancer vaccine using early-mature DCs stimulated with OK432, PGE2 and INF-α (OPA) with that of vaccines using other methods. On days 3 or 7 of DC culture, TNF-α (T), TNF-α and LPS (TL) or OPA were employed as maturation stimulators. DU145 cells subjected to heat stress were hybridized with mature DCs using polyethyleneglycol. T cells were sensitized by the hybrids, and their proliferative and cytokine secretion activities and cytotoxicity were measured. The yields of early-mature DCs were higher, compared to yields at the conventional maturation time (P<0.05). In the early maturation setting, the mean fusion ratios, calculated from the fraction of dual-positive cells, were 13.3%, 18.6%, and 39.9%, respectively (P=0.051) in the T only, TL, and OPA-treated groups. The function of cytotoxic T cells, which were sensitized with the hybrids containing DCs matured early with OPA, was superior to that using other methods. The antitumor effects of DC-DU145 hybrids generated with DCs subjected to early maturation with the OPA may be superior to that of the hybrids using conventional maturation methods. PMID:20808670

  16. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  17. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  18. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming.

    Science.gov (United States)

    Dalod, Marc; Chelbi, Rabie; Malissen, Bernard; Lawrence, Toby

    2014-05-16

    Dendritic cells (DC) are key regulators of both protective immune responses and tolerance to self-antigens. Soon after their discovery in lymphoid tissues by Steinman and Cohn, as cells with the unique ability to prime naïve antigen-specific T cells, it was realized that DC can exist in at least two distinctive states characterized by morphological, phenotypic and functional changes-this led to the description of DC maturation. It is now well appreciated that there are several subsets of DC in both lymphoid and non-lymphoid tissues of mammals, and these cells show remarkable functional specialization and specificity in their roles in tolerance and immunity. This review will focus on the specific characteristics of DC subsets and how their functional specialization may be regulated by distinctive gene expression programs and signaling responses in both steady-state and in the context of inflammation. In particular, we will highlight the common and distinctive genes and signaling pathways that are associated with the functional maturation of DC subsets. © 2014 The Authors.

  19. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts

    NARCIS (Netherlands)

    M. Nethe (Micha); B.J. de Kreuk (Bart-Jan); D.V.F. Tauriello (Daniele); E.C. Anthony (Eloise); B. Snoek (Barbara); T. Stumpel (Thomas); M. Salinas; K. Maurice (Karelle); D. Geerts (Dirk); A.M. Deelder (André); P. Hensbergen (Paul); P.L. Hordijk (Peter )

    2012-01-01

    textabstractThe Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4

  20. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT. Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5 during development of cattle generated either by artificial insemination (AI or in vitro fertilization (IVF and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic

  1. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  2. Aspects of Chemical Composition and Somatic Cell count of Cow Milk Marketed at Dispensers

    Directory of Open Access Journals (Sweden)

    Mircea Valentin MUNTEAN

    2018-05-01

    Full Text Available Milk quality is influenced by many factors: lactation, fat, protein, lactose, number of somatic cells. In order to process raw milk and compare with criteria of quality and food safety the Regulation of European Parliament and the council no. 853/2004. Analysing the total number of somatic cells (SCC in the period July-August 2017 it is noted that in case of samples collected from first automatic milk dispenser exceed 2 times the maximum admissible values and the samples collected from second automatic milk dispenser are up to the maximum allowable values which show that milking hygiene and animal health are at the European standards required. Analysis of fat content for both cases indicates that it is within the standard values for cow's milk and fat variations for DM1 samples are very low at temperatures above 30 degrees Celsius which shows that high temperatures do not influence these parameters. The biological material study was represented analysed by 30 samples of milk from only two cow milk dispensers functional located in this period in Cluj-Napoca city. These samples were collected at the same time period during July-August months. The aim of present study is to determine whether milk marketed through dispensers under the high temperature conditions specific to this period is affected in terms of qualitative parameter analysis.

  3. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  4. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  5. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2018-03-01

    The efficiency of somatic cell cloning in mammals remains disappointingly low. Incomplete and aberrant reprogramming of epigenetic memory of somatic cell nuclei in preimplantation nuclear- transferred (NT) embryos is one of the most important factors that limit the cloning effectiveness. The extent of epigenetic genome-wide alterations, involving histone or DNA methylation and histone deacetylation, that are mediated by histone-lysine methyltransferases (HMTs) or DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be modulated/reversed via exogenous inhibitors of these enzymes throughout in vitro culture of nuclear donor cells, nuclear recipient oocytes and/or cloned embryos. The use of the artificial modifiers of epigenomically-conditioned gene expression leads to inhibition of both chromatin condensation and transcriptional silencing the genomic DNA of somatic cells that provide a source of nuclear donors for reconstruction of enucleated oocytes and generation of cloned embryos. The onset of chromatin decondensation and gene transcriptional activity is evoked both through specific/selective inactivating HMTs by BIX-01294 and through non-specific/non-selective blocking the activity of either DNMTs by 5-aza-2'-deoxycytidine, zebularine, S-adenosylhomocysteine or HDACs by trichostatin A, valproic acid, scriptaid, oxamflatin, sodium butyrate, m-carboxycinnamic acid bishydroxamide, panobinostat, abexinostat, quisinostat, dacinostat, belinostat and psammaplin A. Epigenomic modulation of nuclear donor cells, nuclear recipient cells and/or cloned embryos may facilitate and accelerate the reprogrammability for gene expression of donor cell nuclei that have been transplanted into a host ooplasm and subsequently underwent dedifferentiating and re-establishing the epigenetically dependent status of their transcriptional activity during pre- and postimplantation development of NT embryos. Nevertheless, a comprehensive additional work is necessary to determine

  6. T cell maturation stage prior to and during GMP processing informs on CAR T cell expansion in patients

    NARCIS (Netherlands)

    Y. Klaver (Yarne); S.C.L. van Steenbergen; S. Sleijfer (Stefan); J.E.M.A. Debets (Reno); C.H.J. Lamers (Cor)

    2016-01-01

    textabstractAutologous T cells were genetically modified to express a chimeric antigen receptor (CAR) directed toward carboxy-anhydrase-IX (CAIX) and used to treat patients with CAIX-positive metastatic renal cell carcinoma. In this study, we questioned whether the T cell maturation stage in the

  7. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  8. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  9. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    Science.gov (United States)

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  10. Effects of polysaccharides from Pholiota nameko on maturation of murine bone marrow-derived dendritic cells.

    Science.gov (United States)

    Li, Haiping; Liu, Lizeng; Tao, Yongqing; Zhao, Pei; Wang, Fengling; Huai, Lihua; Zhi, Dexian; Liu, Jiangmei; Li, Guoliang; Dang, Chunlan; Xu, Yufeng

    2014-02-01

    This paper studied some structure characters of the Pholiota nameko polysaccharides (PNPS-1), including morphology under SEM and AFM, also the effects of PNPS-1 on the maturation of bone marrow dendritic cells (BMDCs) via concrete changes both inside and outside BMDCs. These impacts on BMDCs were assessed with use of inverted phase contrast microscope for morphology, flow cytometry for key surface molecules, mixed lymphocyte reaction (MLR) for allogeneic T cells proliferation, and bio-assay and enzyme linked immunosorbent assay (ELISA) for cytokine production. We found that PNPS-1 could inhibit phenotypic maturation as evidenced by decreasing expression of CD11c, CD40, CD80, CD83, CD86, and I-A/I-E. Functional maturation inhibition was further confirmed by decreased naive T cell stimulatory activity of BMDCs. Finally, PNPS-1 also stimulated production of more cytokine IL-10 and less IL-12 and TNF-α. These data indicated that PNPS-1 could markedly inhibit the maturation of BMDCs and had potential significant down-regulation immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    Science.gov (United States)

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  13. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    International Nuclear Information System (INIS)

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Fujita, Takuya; Yamamoto, Akira; Okada, Naoki

    2008-01-01

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35ΔRGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The α v -integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-α, and interferon-α in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of α v -integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes

  14. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  15. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  16. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  17. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng

    2008-01-01

    Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based...... on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of beta-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested. We show now that Cdc42-deficient...... immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null keratinocytes...

  18. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Directory of Open Access Journals (Sweden)

    Meredith Brian K

    2012-03-01

    Full Text Available Abstract Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems. This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input. Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework

  19. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Science.gov (United States)

    2012-01-01

    Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input). Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the

  20. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  1. Influence of plant growth regulators on somatic embryos induction ...

    African Journals Online (AJOL)

    TANOH

    2013-04-17

    Theobroma cacao L.) using Thidiazuron. In vitro Cell Dev. Biol. 34:293-299. Michaux-Ferrière N, Carron MP (1989). Histology of early somatic embryogenesis in Hevea brasiliensis. The importance of timing of subculturing. Plant Cell Tiss ...

  2. Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression

    Science.gov (United States)

    Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin

    2012-01-01

    ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400

  3. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows

    NARCIS (Netherlands)

    Berry, D.P.; Buckley, F.; Dillon, P.P.; Evans, R.D.; Veerkamp, R.F.

    2004-01-01

    Phenotypic and genetic (co)variances among type traits, milk yield, body weight, fertility and somatic cell count were estimated. The data analysed included 3,058 primiparous spring-calving Holstein-Friesian cows from 80 farms throughout the south of Ireland. Heritability estimates for the type

  4. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would

  5. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  6. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells

    OpenAIRE

    Gervois, Pascal; Wolfs, Esther; Dillen, Yörg; Hilkens, Petra; Ratajczak, Jessica; Driesen, Ronald; Vangansewinkel, Tim; Bronckaers, Annelies; Brône, Bert; Struys, Tom; Lambrichts, Ivo

    2017-01-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC s...

  7. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Elena Arellano-Orden

    Full Text Available Conflicting data exist on the role of pulmonary dendritic cells (DCs and their maturation in patients with chronic obstructive pulmonary disease (COPD. Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs, BDCA3-positive mDCs, and plasmacytoid DCs (pDCs-and determine their maturation markers (CD40, CD80, CD83, and CD86 in all participants. We also identified follicular DCs (fDCs, Langerhans DCs (LDCs, and pDCs in 42 patients by immunohistochemistry.COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers, whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers. The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively. Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.

  8. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    Science.gov (United States)

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  9. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  10. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    Science.gov (United States)

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  11. The special cell effects and somatic consequences of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Regina Fedortseva; Sergei Aleksanin; Eugene Zheleznyakov; Irina Bychkovskaya

    2007-01-01

    Complete text of publication follows. Objective: The experimental data presented in the report put some clarity into the ongoing polemics about possibility of induction of harmful non-carcinogenic effects in human body as a result of exposure to low doses of radiation. The denial of this possibility is based on the fact that traditionally studied genotoxic effects cannot be the cause of this pathology: the incidence of these effects in exposure to low doses of radiation is fairly low; the effects are not overt in critical slowly regenerating tissues, since they can only be morphologically manifested in actively growing cell populations. Methods: Endothelium of myocardial and alveolar capillaries were studied ultra-structurally in 236 rats irradiated by a wide range of X-ray doses (0,25;0,5;2,25;4,5;9;30;48;100) and 28 intact control animals. Studies were conducted during 12-18 months. The material consisted of 2-3 portions from various parts of myocardium and lung. From each portion, sections were prepared, in which all capillary sections were analyzed and ultra-structure of all lining capillary endotheliocytes (their number most often was more than 100) was studied. In each animal the percentage of non-viable endotheliocytes with signs of generalized organoid destruction, damage of plasmalemma and nuclear structures was accounted. Results: Irradiation of rat to low and higher doses caused significant (up to 7 times) increase number of endothelial cells with various ultra-structural damages (from relatively light ones to in the cell death). Even the lowest dose - 0,25 Gy produce an increasing degeneration, intracellular lysis and defects of mitochondria. We found unusual features of postradiational endothelium changes: dose independence, necessity of revealing the long-term, non-mutational cellular effects, massive involvement of cells, early development of the maximum effect already after the low dose irradiation. These special somatic effects, unlike genotoxic

  12. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm and testa

    Directory of Open Access Journals (Sweden)

    Traud eWinkelmann

    2015-08-01

    Full Text Available Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified.Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.

  13. Somatic symptom disorder

    Science.gov (United States)

    ... related disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder References American Psychiatric Association. Somatic symptom disorder. Diagnostic and Statistical Manual of Mental Disorders . ...

  14. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  15. The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling

    Science.gov (United States)

    Yamawaki, Tracy M.; Berman, Jennifer R.; Suchanek-Kavipurapu, Monika; McCormick, Mark; Gaglia, Marta Maria; Lee, Seung-Jae; Kenyon, Cynthia

    2010-01-01

    In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12. PMID:20824162

  16. The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling.

    Directory of Open Access Journals (Sweden)

    Tracy M Yamawaki

    2010-08-01

    Full Text Available In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12.

  17. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  18. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tsao

    2017-01-01

    Full Text Available There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.

  19. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Tsao, Yu-Tzu; Huang, Yi-Jeng; Wu, Hao-Hsiang; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K.

    2017-01-01

    There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing. PMID:28106724

  20. The Tec kinase ITK regulates thymic expansion, emigration, and maturation of γδ NKT cells.

    Science.gov (United States)

    Yin, Catherine C; Cho, Ok Hyun; Sylvia, Katelyn E; Narayan, Kavitha; Prince, Amanda L; Evans, John W; Kang, Joonsoo; Berg, Leslie J

    2013-03-15

    The Tec family tyrosine kinase, Itk, regulates signaling downstream of the TCR. The absence of Itk in CD4(+) T cells results in impaired Th2 responses along with defects in maturation, cytokine production, and survival of iNKT cells. Paradoxically, Itk(-/-) mice have spontaneously elevated serum IgE levels, resulting from an expansion of the Vγ1.1(+)Vδ6.3(+) subset of γδ T cells, known as γδ NKT cells. Comparisons between γδ NKT cells and αβ iNKT cells showed convergence in the pattern of cell surface marker expression, cytokine profiles, and gene expression, suggesting that these two subsets of NKT cells undergo similar differentiation programs. Hepatic γδ NKT cells have an invariant TCR and are derived predominantly from fetal progenitors that expand in the thymus during the first weeks of life. The adult thymus contains these invariant γδ NKT cells plus a heterogeneous population of Vγ1.1(+)Vδ6.3(+) T cells with diverse CDR3 sequences. This latter population, normally excluded from the liver, escapes the thymus and homes to the liver when Itk is absent. In addition, Itk(-/-) γδ NKT cells persistently express high levels of Zbtb16 (PLZF) and Il4, genes that are normally downregulated in the most mature subsets of NKT cells. These data indicate that Itk signaling is required to prevent the expansion of γδ NKT cells in the adult thymus, to block their emigration, and to promote terminal NKT cell maturation.

  1. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Lindhardt Johansen, Marie; Juul, Anders

    2015-01-01

    in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which......Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through...

  2. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    Science.gov (United States)

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

  3. Determination of somatic mutations in human erythrocytes by cytometry

    International Nuclear Information System (INIS)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-01-01

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab

  4. Determination of somatic mutations in human erythrocytes by cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  5. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    OpenAIRE

    Lee, Miseon; Rhee, Kunsoo

    2015-01-01

    Background Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. Methods We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. ...

  6. The anti-actin drugs latrunculin and cytochalasin affect the maturation of spruce somatic embryos in different ways

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Vágner, Martin

    2014-01-01

    Roč. 221, MAY 2014 (2014), s. 90-99 ISSN 0168-9452 R&D Projects: GA MŠk 7AMB12FR017 Institutional support: RVO:61389030 Keywords : Somatic embryo genesis * Cytoskeleton * Actin Subject RIV: GK - Forestry Impact factor: 3.607, year: 2014

  7. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  8. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  9. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Science.gov (United States)

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  10. Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation.

    Science.gov (United States)

    van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2011-01-01

    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.

  11. Numerical Chromosome Errors in Day 7 Somatic Nuclear Transfer Bovine Blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J.; VIUFF, Dorte; Tan, Shijian

    2002-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...

  12. Management of somatic symptoms

    DEFF Research Database (Denmark)

    Schröder, Andreas; Dimsdale, Joel

    2014-01-01

    on the recognition and effective management of patients with excessive and disabling somatic symptoms. The clinical presentation of somatic symptoms is categorized into three groups of patients: those with multiple somatic symptoms, those with health anxiety, and those with conversion disorder. The chapter provides...

  13. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine interferon-γ (IFN-γ is approved as a drug to treat chronic granulomatous disease (CGD and osteopetrosis and is also used in hyperimmunoglobulin E syndromes. Patients with CGD have defects in proteins of the NOX2 NADPH oxidase system. This leads to reduced production of microbicidal ROS by PMNs and recurrent life threatening infections. The goal of this study was to better understand how IFN-γ might support phagocyte function in these diseases, and to obtain information that might expand potential uses for IFN-γ. Neutrophils mature in the bone marrow and then enter the blood where they quickly undergo apoptotic cell death with a half-life of only 5-10 hours. Therefore we reasoned that IFN-γ might exert its effects on neutrophils via prolonged exposure to cells undergoing maturation in the marrow rather than by its brief exposure to short-lived circulating cells. To explore this possibility we made use of PLB-985 cells, a myeloblast-like myeloid cell line that can be differentiated into a mature, neutrophil-like state by treatment with various agents including DMSO. In initial studies we investigated transcription and protein expression in PLB-985 cells undergoing maturation in the presence or absence of IFN-γ. We observed IFN-γ induced differences in expression of genes known to be involved in classical aspects of neutrophil function (transmigration, chemotaxis, phagocytosis, killing and pattern recognition as well as genes involved in apoptosis and other mechanisms that regulating neutrophil number. We also observed differences for genes involved in the major histocompatibility complex I (MHCI and MHCII systems whose involvement in neutrophil function is controversial and not well defined. Finally, we observed significant changes in expression of genes encoding guanylate binding proteins (Gbps that are known to have roles in immunity but which have not as yet been linked to neutrophil function. We propose that changes in the

  14. The effect of Propionibacterium acnes on maturation of dendritic cells derived from acne patients' peripherial blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Maria Juszkiewicz-Borowiec

    2009-01-01

    Full Text Available Propionibacterium acnes (P. acnes has been implicated in the pathogenesis of acne vulgaris which is the most common cutaneous disorder. It has a proinflammatory activity and takes part in immune reactions modulating the Th1/Th2 cellular response. The exposure of dendritic cells (DCs to whole bacteria, their components, cytokines or other inflammatory stimuli and infectious agents induces differentiation from immature DCs into antigen-presenting mature DCs. The aim of the study was to evaluate the capability of P. acnes to induce the maturation of DCs. We stimulated monocyte derived dendritic cells (Mo-DCs from acne patients with various concetrations of heat-killed P. acnes (10(6-10(8 bacteria/ml cultured from acne lesions. The results showed an increase in CD80+/CD86+/DR+ and CD83+/CD1a+/DR+ cells percentage depending on the concetration of P. acnes. The expression of CD83 and CD80 (shown as the mean fluorescence intensity - MFI increased with higher concetrations of P. acnes. There were also significant correlations between MFI of CD83, CD80, CD86 and concetration of P. acnes. The study showed that P. acnes in the concetration of 10(8 bacteria/ml is most effective in the induction of Mo-DCs maturation. Futher studies concerning the influence on the function of T cells are needed.

  15. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S

    2011-01-01

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated...... in canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model...... and characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted...

  16. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  17. Further evidence for a broader concept of somatization disorder using the somatic symptom index.

    Science.gov (United States)

    Hiller, W; Rief, W; Fichter, M M

    1995-01-01

    Somatization syndromes were defined in a sample of 102 psychosomatic inpatients according to the restrictive criteria of DSM-III-R somatization disorder and the broader diagnostic concept of the Somatic Symptom Index (SSI). Both groups showed a qualitatively similar pattern of psychopathological comorbidity and had elevated scores on measures of depression, hypochondriasis, and anxiety. A good discrimination between mild and severe forms of somatization was found by using the SSI criterion. SSI use accounted for a substantial amount of comorbidity variance, with rates of 15%-20% for depression, 16% for hypochondriasis, and 13% for anxiety. The results provide further evidence for the validity of the SSI concept, which reflects the clinical relevance of somatization in addition to the narrow definition of somatization disorder.

  18. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  19. Novel somatic and germline mutations in intracranial germ cell tumours.

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  20. Novel somatic and germline mutations in intracranial germ cell tumors

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  1. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus.

    Science.gov (United States)

    Ott, Jeannine A; Castro, Caitlin D; Deiss, Thaddeus C; Ohta, Yuko; Flajnik, Martin F; Criscitiello, Michael F

    2018-04-17

    Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates. © 2018, Ott et al.

  2. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  3. Is somatic comorbidity associated with more somatic symptoms, mental distress, or unhealthy lifestyle in elderly cancer survivors?

    Science.gov (United States)

    Grov, Ellen Karine; Fosså, Sophie D; Dahl, Alv A

    2009-06-01

    The associations of lifestyle factors, somatic symptoms, mental distress, and somatic comorbidity in elderly cancer survivors have not been well studied. This study examines these associations among elderly cancer survivors (age >or=65 years) in a population-based sample. A cross-sectional comparative study of Norwegian elderly cancer survivors. Combining information from The Norwegian Cancer Registry, and by self-reporting, 972 elderly cancer survivors were identified, of whom 632 (65%) had somatic comorbidity and 340 did not. Elderly cancer survivors with somatic comorbidity had significantly higher BMI, more performed minimal physical activity, had more somatic symptoms, used more medication, and had more frequently seen a medical doctor than survivors without somatic comorbidity. In multivariable analyses, unhealthy lifestyle and higher somatic symptoms scores were significantly associated with cancer cases with somatic comorbidity. In univariate analyses those with somatic comorbidity were significantly older, had lower levels of education, higher proportions of BMI >or= 30, less physical activity, poorer self-rated health, higher somatic symptoms score, more mental distress, had more frequently seen a medical doctor last year, and more frequently used daily medication. Our outcome measures of lifestyle, somatic symptoms and mental distress were all significantly associated with somatic comorbidity in elderly cancer survivors, however only lifestyle and somatic symptoms were significant in multivariable analyses. In elderly cancer survivors not only cancer, but also somatic comorbidity, deserve attention. Such comorbidity is associated with unhealthy lifestyles, more somatic symptoms and mental distress which should be evaluated and eventually treated.

  4. Endometrial aspiration biopsy: a non-invasive method of obtaining functional lymphoid progenitor cells and mature natural killer cells.

    LENUS (Irish Health Repository)

    McMenamin, Moya

    2012-09-01

    The aim of this study was to compare the efficacy of endometrial aspiration biopsy (EAB) with the more traditional dilatation and curettage (D&C) for the procurement of lymphoid progenitor cells and uterine natural killer (NK) populations in endometrial tissue. This prospective observational study conducted in a tertiary referral university hospital examined endometrium obtained from 32 women admitted for laparoscopic gynaecological procedures. Each participant had endometrium sampled using both EAB and D&C. Both methods were assessed as a source of uterine NK and lymphoid progenitor cells. Similar proportions of mature CD45+CD56+ NK cells (range 25.4-36.2%) and CD45+CD34+ lymphoid progenitors (range 1.2-2.0%) were found in tissue obtained using both EAB and D&C. These cells were adequate for flow cytometric analysis, magnetic bead separation and culture. Colony formation by the CD34+ population demonstrated maturational potential. Tissues obtained via endometrial biopsy and D&C are equivalent, by analysis of uterine NK and lymphoid progenitor cells. The aim of this study was to compare two methods of endometrial sampling - endometrial aspiration biopsy and traditional dilatation and curettage - for the procurement of haematopoietic stem cells and uterine natural killer (NK) populations in endometrial tissue. Thirty-two women who had gynaecological procedures in a tertiary referral hospital participated in this study and had endometrial tissue collected via both methods. Similar populations of mature NK cells and haematopoietic stem cells were found in tissue obtained using both endometrial aspiration biopsy and dilatation and curettage. Tissue obtained via endometrial aspiration biopsy was adequate for the culture and growth of haematopoietic stem cells. We conclude that tissue obtained via endometrial biopsy and dilatation and curettage is equivalent, by analysis of uterine NK and haematopoietic stem cells using flow cytometry. This has implications for further

  5. Directly Converted Human Fibroblasts Mature to Neurons and Show Long-Term Survival in Adult Rodent Hippocampus

    Directory of Open Access Journals (Sweden)

    Natalia Avaliani

    2017-01-01

    Full Text Available Direct conversion of human somatic cells to induced neurons (iNs, using lineage-specific transcription factors has opened new opportunities for cell therapy in a number of neurological diseases, including epilepsy. In most severe cases of epilepsy, seizures often originate in the hippocampus, where populations of inhibitory interneurons degenerate. Thus, iNs could be of potential use to replace these lost interneurons. It is not known, however, if iNs survive and maintain functional neuronal properties for prolonged time periods in in vivo. We transplanted human fibroblast-derived iNs into the adult rat hippocampus and observed a progressive morphological differentiation, with more developed dendritic arborisation at six months as compared to one month. This was accompanied by mature electrophysiological properties and fast high amplitude action potentials at six months after transplantation. This proof-of-principle study suggests that human iNs can be developed as a candidate source for cell replacement therapy in temporal lobe epilepsy.

  6. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2016-09-01

    Full Text Available The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4 in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  7. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle.

    Science.gov (United States)

    Clarke, Hugh J

    2018-01-01

    Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic

  8. Genotoxicity evaluation of buprofezin, petroleum oil and profenofos in somatic and germ cells of male mice.

    Science.gov (United States)

    Fahmy, M A; Abdalla, E F

    1998-01-01

    The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.

  9. Transcriptional landscape of ncRNA and Repeat elements in somatic cells

    KAUST Repository

    Ghosheh, Yanal

    2016-12-01

    The advancement of Nucleic acids (DNA and RNA) sequencing technology has enabled many projects targeted towards the identification of genome structure and transcriptome complexity of organisms. The first conclusions of the human and mouse projects have underscored two important, yet unexpected, findings. First, while almost the entire genome is transcribed, only 5% of it encodes for proteins. Thereby, most transcripts are noncoding RNA. This includes both short RNA (<200 nucleotides (nt)) comprising piRNAs; microRNAs (miRNAs); endogenous Short Interfering RNAs (siRNAs) among others, and includes lncRNA (>200nt). Second, a significant portion of the mammalian genome (45%) is composed of Repeat Elements (REs). RE are mostly relics of ancestral viruses that during evolution have invaded the host genome by producing thousands of copies. Their roles within their host genomes have yet to be fully explored considering that they sometimes produce lncRNA, and have been shown to influence expression at the transcriptional and post-transcriptional levels. Moreover, because some REs can still mobilize within host genomes, host genomes have evolved mechanisms, mainly epigenetic, to maintain REs under tight control. Recent reports indicate that REs activity is regulated in somatic cells, particularily in the brain, suggesting a physiological role of RE mobilization during normal development. In this thesis, I focus on the analysis of ncRNAs, specifically REs; piRNAs; lncRNAs in human and mouse post-mitotic somatic cells. The main aspects of this analysis are: Using sRNA-Seq, I show that piRNAs, a class of ncRNAs responsible for the silencing of Transposable elements (TEs) in testes, are present also in adult mouse brain. Furthermore, their regulation shows only a subset of testes piRNAs are expressed in the brain and may be controlled by known neurogenesis factors. To investigate the dynamics of the transcriptome during cellular differentiation, I examined deep RNA-Seq and Cap

  10. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    Science.gov (United States)

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  11. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  12. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  13. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  14. The effects of Ostertagia occidentalis somatic antigens on ovine TLR2 and TLR4 expression

    Directory of Open Access Journals (Sweden)

    Hassan BORJI

    2015-10-01

    Full Text Available Background: Recognition of helminth-derived pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRRs, including toll like recep­tors (TLRs is the first step towards initiating anti–helminth immune re­sponses.Methods: Using somatic antigens of Ostertagia occidentalis, an important abomasal parasite of ruminants, the expression of ovine TLR2 and TLR4 in peripheral blood mononuclear cells (PBMCs was analyzed by real-time quatitative reverse-transcrip­tion polymerase chain reaction (qRT-PCR. Somatic antigens of O. occidentalis were prepared to stimulate ovine PBMCs in a time and dose dependent manner.Results: A high expression of TLR2 and TLR4 was observed in PBMCs cultured with somatic antigens of the parasites specially when PBMCs were cultured with 100 µg/ml of somatic antigens and incubated for 2h. Up-regulation of TLR2 expres­sion was more pronounced and evident in our study.Conclsusion: Somatic antigens of O. occidentalis have immunostimulatory and domi­nant role on peripheral immune cells. This study provide for the first time evidence of induction of TLRs in ovine PBMCs by somatic antigen of O. occidentalis

  15. Body dissatisfaction and sociodemographic, anthropometric and maturational factors among artistic gymnastics athletes

    Directory of Open Access Journals (Sweden)

    Clara Mockdece NEVES

    2016-03-01

    Full Text Available Abstract This study aimed to evaluate the overall body dissatisfaction and in specific areas in adolescents who practice artistic gymnastic in elite and non-elite levels, and to analyze the influence of sociodemographic, anthropometric and maturational factors on body dissatisfaction. The research is characterized as transversal, quantitative, descriptive and correlational. The sample consisted of 285 adolescents, of both sexes, practicing gymnastics. They were divided into two groups: 245 non-elite athletes and 40 elite athletes. The participants were aged between 10 and 18 years (mean 12.86 ± 1.80 and were resident of the city of Três Rios-RJ. The assessment instruments were: Body Shape Questionnaire, Body Areas Scale, Critério de Classificação Econômica Brasil and socio-demographic questionnaire. Anthropometric and somatic maturation data were collected. The results showed that 24.9% of the non-elite athletes and 15% of elite athletes were dissatisfied with their body as a whole. For specific body areas, nonelite athletes were significantly more dissatisfied with their body area “weight” than the elite athletes. Sociodemographic and economic factors had no influence on overall body dissatisfaction. For non-elite athletes, only the body percentage of fat and somatic maturation were predictors for the overall body dissatisfaction and in specific areas, respectively. It was concluded that the non-elite athletes were more dissatisfied with their body and weight than the elite athletes.

  16. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan

    2008-01-01

    The current "gold standard" for generation of dendritic cell (DC) used in DC-based cancer vaccine studies is maturation of monocyte-derived DCs with tumor necrosis factor-alpha (TNF-alpha)/IL-1beta/IL-6 and prostaglandin E(2) (PGE(2)). Recently, a protocol for producing so-called alpha-Type-1...... polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC......-regulation of inhibitory molecules such as PD-L1, ILT2, ILT3 as compared to sDC. Although alphaDC1 matured DCs secreted more IL-12p70 and IL-23 these DCs had lower or similar stimulatory capacity compared to sDCs when used as stimulating cells in mixed lymphocyte reaction (MLR) or for induction of autologous influenza...

  17. Dog cloning with in vivo matured oocytes obtained using electric chemiluminescence immunoassay-predicted ovulation method.

    Science.gov (United States)

    Lee, Seunghoon; Zhao, Minghui; No, Jingu; Nam, Yoonseok; Im, Gi-Sun; Hur, Tai-Young

    2017-01-01

    Radioactive immunoassay (RIA) is a traditional serum hormone assay method, but the application of the method in reproductive studies is limited by the associated radioactivity. The aim of present study was to evaluate the reliability of RIA and to compare its canine serum progesterone concentration determination accuracy to that of the electric chemiluminescence immunoassay (ECLI). In vivo matured oocytes were utilized for canine somatic cell nuclear transfer (SCNT), and serum progesterone levels were assessed to accurately determine ovulation and oocyte maturation. Canine serum progesterone concentrations during both proestrus and estrus were analyzed by RIA and ECLI to determine the ovulation day. Although both methods detected similar progesterone levels before ovulation, the mean progesterone concentration determined using ECLI was significantly higher than of RIA three days before ovulation. Following ovulation, oocytes were collected by surgery, and a lower percentage of mature oocytes were observed using ECLI (39%) as compared to RIA (67%) if 4-8ng/ml of progesterone were used for determination of ovulation. A high percentage of mature oocytes was observed using ECLI when 6-15 ng/mL of progesterone was used for ovulation determination. To determine whether ECLI could be used for canine cloning, six canines were selected as oocyte donors, and two puppies were obtained after SCNT and embryo transfer. In conclusion, compared to the traditional RIA method, the ECLI method is a safe and reliable method for canine cloning.

  18. Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Pandey

    2012-01-01

    Full Text Available A central question in plant regeneration biology concerns the primary driving forces invoking the acquisition of somatic embryogenesis. Recently, the role of micronutrient boron (B in the initiation and perpetuation of embryogenesis has drawn considerable attention within the scientific community. This interest may be due in part to the bewildering observation that the system-wide induction of embryogenic potential significantly varied in response to a minimal to optimal supply of B (minimal ≤ 0.1 mM, optimal = 0.1 mM. At the cellular level, certain channel proteins and cell wall-related proteins important for the induction of embryogenesis have been shown to be transcriptionally upregulated in response to minimal B supply suggesting the vital role of B in the induction of embryogenesis. At the molecular level, minimal to no B supply increased the endogenous level of auxin, which subsequently influenced the auxin-inducible somatic embryogenesis receptor kinases, suggesting the role of B in the induction of embryogenesis. Also, minimal B concentration may “turn on” other genetic and/or cellular transfactors reported earlier to be essential for cell-restructuring and induction of embryogenesis. In this paper, both the direct and indirect roles of B in the induction of somatic embryogenesis are highlighted and suggested for future validation.

  19. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  20. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Pantano, Serafino; Jarrossay, David; Saccani, Simona; Bosisio, Daniela; Natoli, Gioacchino

    2006-01-01

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  1. Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2017-07-01

    Full Text Available The establishment of DNA methylation patterns in oocytes is a highly dynamic process marking gene-regulatory events during fertilization, embryonic development, and adulthood. However, after epigenetic reprogramming in primordial germ cells, how and when DNA methylation is re-established in developing human oocytes remains to be characterized. Here, using single-cell whole-genome bisulfite sequencing, we describe DNA methylation patterns in three different maturation stages of human oocytes. We found that while broad-scale patterns of CpG methylation have been largely established by the immature germinal vesicle stage, localized changes continue into later development. Non-CpG methylation, on the other hand, undergoes a large-scale, generalized remodeling through the final stage of maturation, with the net overall result being the accumulation of methylation as oocytes mature. The role of the genome-wide, non-CpG methylation remodeling in the final stage of oocyte maturation deserves further investigation.

  2. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  3. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation

    OpenAIRE

    Deville, Sarah; Bare, Birgit; Piella, Jordi; Tirez, Kristof; Hoet, Peter; Monopoli, Marco P.; Dawson, Kenneth A.; Puntes, Victor F.; Nelissen, Inge

    2016-01-01

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observe...

  4. Milk Somatic Cell Counts and Some Hemato-Biochemical Changes in Sub-Clinical Mastitic Dromedary She-Camels (Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Farah Ali, Riaz Hussain, Abdul Qayyum, Shafia Tehseen Gul, Zahid Iqbal and Mohammad Farooque Hassan

    2016-11-01

    Full Text Available The dromedary camels are considered as the best livestock animals in arid, semiarid and desert areas and camel milk is known as the valuable food source in these areas. The present study was aimed to investigate milk somatic cell counts and some biochemical changes in milk due to sub-clinical mastitis in camels. For this purpose milk samples were collected from 33 lactating animals and examined for sub clinical mastitis using California Mastitis Test. The chi-square and frequency analysis did not show any significant association with age, lactation stage, parity and quarter involved. The results indicated significant (P<0.01 increase in milk electrical conductivity and milk pH while significantly lower values for milk proteins, lactose and fat contents were recorded. The results revealed that the total milk somatic cell and neutrophil counts were significantly increased while the lymphocytes and macrophages were decreased in infected animals. Moreover, milk enzymes; aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase were significantly increased in mastitic animals as compared to the non-infected animals. The results indicated that milk electrical conductivity and some milk enzymes can be screened to investigate the sub-clinical mastitis in Camelus dromedaries.

  5. In vivo cytogenetic effects of 2-trans hexenal on somatic and germ ...

    African Journals Online (AJOL)

    Francis

    meiotic cells. Wyrobek et al. (1983) emphasized that chemicals which are mutagenic to somatic cells, could also affect germ cells. The dose-dependent increase in the frequency of abnormal sperm observed in the present study suggests that ...

  6. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    Science.gov (United States)

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of

  7. Primary cutaneous B-cell lymphoma is associated with somatically hypermutated immunoglobulin variable genes and frequent use of VH1-69 and VH4-59 segments.

    Science.gov (United States)

    Perez, M; Pacchiarotti, A; Frontani, M; Pescarmona, E; Caprini, E; Lombardo, G A; Russo, G; Faraggiana, T

    2010-03-01

    Accurate assessment of the somatic mutational status of clonal immunoglobulin variable region (IgV) genes is relevant in elucidating tumour cell origin in B-cell lymphoma; virgin B cells bear unmutated IgV genes, while germinal centre and postfollicular B cells carry mutated IgV genes. Furthermore, biases in the IgV repertoire and distribution pattern of somatic mutations indicate a possible antigen role in the pathogenesis of B-cell malignancies. This work investigates the cellular origin and antigenic selection in primary cutaneous B-cell lymphoma (PCBCL). We analysed the nucleotide sequence of clonal IgV heavy-chain gene (IgVH) rearrangements in 51 cases of PCBCL (25 follicle centre, 19 marginal zone and seven diffuse large B-cell lymphoma, leg-type) and compared IgVH sequences with their closest germline segment in the GenBank database. Molecular data were then correlated with histopathological features. We showed that all but one of the 51 IgVH sequences analysed exhibited extensive somatic hypermutations. The detected mutation rate ranged from 1.6% to 21%, with a median rate of 9.8% and was independent of PCBCL histotype. Calculation of antigen-selection pressure showed that 39% of the mutated IgVH genes displayed a number of replacement mutations and silent mutations in a pattern consistent with antigenic selection. Furthermore, two segments, VH1-69 (12%) and VH4-59 (14%), were preferentially used in our case series. Data indicate that neoplastic B cells of PBCBL have experienced germinal centre reaction and also suggest that the involvement of IgVH genes is not entirely random in PCBCL and that common antigen epitopes could be pathologically relevant in cutaneous lymphomagenesis.

  8. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  9. First cloned Bactrian camel (Camelus bactrianus calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels.

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad Wani

    Full Text Available Studies were conducted to explore the possibility of employing dromedary camel (Camelus dromedarius oocytes as recipient cytoplasts for the development of interspecies somatic cell nuclear transfer (iSCNT embryos using skin fibroblast cells of an adult Bactrian camel (Camelus bactrianus and Llama (Llama glama as donor nuclei. Also, the embryos reconstructed with Bactrian cells were transferred into the uterus of synchronized dromedary camel recipients to explore the possibility of using them as surrogate mothers. Serum-starved skin fibroblast cells were injected into the perivitelline space of enucleated mature oocytes, collected from super-stimulated dromedary camels, and fused using an Eppendorf electroporator. After activation with 5μM ionomycin and 6-dimethylaminopurine, they were cultured at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. In experiment 1, Day 7 blastocysts were stained with Hoechst to count their cell numbers, while in experiment 2, they were transferred to synchronized dromedary recipients. A lower number (P < 0.05 of blastocysts were obtained from reconstructs utilizing fibroblast cells from Llama when compared with those reconstructed with dromedary and Bactrian fibroblast cells. However, no difference was observed in their cell numbers. In experiment 2, a higher (P < 0.05 proportion of blastocysts were obtained from the cleaved embryos reconstructed with Bactrian fibroblast cells when compared to those reconstructed with dromedary cells. Twenty-six Day 7 blastocysts reconstructed with Bactrian cells were transferred to 23 synchronized dromedary recipients with 5 pregnancies established on Day 30, however, only one of the pregnancies developed to term and a healthy calf weighing 33 kgs was born after completing 392 days of gestation. Unfortunately, the calf died on day 7 due to acute septicemia. In conclusion, the present study reports, for the first time, birth of a cloned Bactrian calf by iSCNT using

  10. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels

    Science.gov (United States)

    Vettical, Binoy S.; Hong, Seung B.

    2017-01-01

    Studies were conducted to explore the possibility of employing dromedary camel (Camelus dromedarius) oocytes as recipient cytoplasts for the development of interspecies somatic cell nuclear transfer (iSCNT) embryos using skin fibroblast cells of an adult Bactrian camel (Camelus bactrianus) and Llama (Llama glama) as donor nuclei. Also, the embryos reconstructed with Bactrian cells were transferred into the uterus of synchronized dromedary camel recipients to explore the possibility of using them as surrogate mothers. Serum-starved skin fibroblast cells were injected into the perivitelline space of enucleated mature oocytes, collected from super-stimulated dromedary camels, and fused using an Eppendorf electroporator. After activation with 5μM ionomycin and 6-dimethylaminopurine, they were cultured at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. In experiment 1, Day 7 blastocysts were stained with Hoechst to count their cell numbers, while in experiment 2, they were transferred to synchronized dromedary recipients. A lower number (P < 0.05) of blastocysts were obtained from reconstructs utilizing fibroblast cells from Llama when compared with those reconstructed with dromedary and Bactrian fibroblast cells. However, no difference was observed in their cell numbers. In experiment 2, a higher (P < 0.05) proportion of blastocysts were obtained from the cleaved embryos reconstructed with Bactrian fibroblast cells when compared to those reconstructed with dromedary cells. Twenty-six Day 7 blastocysts reconstructed with Bactrian cells were transferred to 23 synchronized dromedary recipients with 5 pregnancies established on Day 30, however, only one of the pregnancies developed to term and a healthy calf weighing 33 kgs was born after completing 392 days of gestation. Unfortunately, the calf died on day 7 due to acute septicemia. In conclusion, the present study reports, for the first time, birth of a cloned Bactrian calf by iSCNT using dromedary camel

  11. The Influence of Ouabain on Human Dendritic Cells Maturation

    Directory of Open Access Journals (Sweden)

    C. R. Nascimento

    2014-01-01

    Full Text Available Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua. Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days. To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.

  12. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  13. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  14. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    I. J. Guerra-Santos

    Full Text Available Abstract Vernonanthura polyanthes (Spreng. A.J. Vega & Dematt. (Asteraceae, known as “assa-peixe”, has been used in ethnomedicine for the treatment of various diseases such as bronchitis, pneumonia, hemoptysis, persistent cough, internal abscesses, gastric and kidney stone pain. Moreover, some studies demonstrated that species of Genus Vernonia present antifungal activity. Due to the biological relevance of this species, the aim of this study was to investigate the toxic, genotoxic, antigenotoxic and antifungal potential of V. polyanthes leaves aqueous extract in somatic cells of Drosophila melanogaster or against Candida spp. The aqueous extract of the plant showed no toxic, genotoxic and antigenotoxic activity in the experimental conditions tested using the wing somatic mutation and recombination test (SMART/wing. However, when the extract was associated with doxorubicin, used in this work as a positive control, the mutagenic potential of doxorubicin was enhanced, increasing the number of mutations in D. melanogaster somatic cells. In the other hand, no inhibitory activity against Candida spp. was observed for V. polyanthes leaves aqueous extract using agar-well diffusion assay. More studies are necessary to reveal the components present in the V. polyanthes leaves aqueous extract that could contribute to potentiate the doxorubicin genotoxicity.

  15. Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris).

    Science.gov (United States)

    Rugini, Eddo; Silvestri, Cristian

    2016-01-01

    Protocols for olive somatic embryogenesis from zygotic embryos and mature tissues have been described for both Olea europaea sub. europaea var. sativa and var. sylvestris. Immature zygotic embryos (no more than 75 days old), used after fruit collection or stored at 12-14 °C for 2-3 months, are the best responsive explants and very slightly genotype dependent, and one single protocol can be effective for a wide range of genotypes. On the contrary, protocols for mature zygotic embryos and for mature tissue of cultivars are often genotype specific, so that they may require many adjustments according to genotypes. The use of thidiazuron and cefotaxime seems to be an important trigger for induction phase particularly for tissues derived from cultivars. Up to now, however, the application of this technique for large-scale propagation is hampered also by the low rate of embryo germination; it proves nonetheless very useful for genetic improvement.

  16. Naturally Engineered Maturation of Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Gaetano J. Scuderi

    2017-05-01

    Full Text Available Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte

  17. Maturity Gonad Sea Cucumber Holothuria scabra Under The Month Cycle

    Science.gov (United States)

    Penina Tua Rahantoknam, Santi

    2017-10-01

    Gonad maturity level of the sea cucumber Holothuria scabra is important to note for selection of parent ready spawn. Sea cucumbers are giving a reaction to the treatment of excitatory spawn mature individuals only. For the determination of the level of maturity of gonads of sea cucumbers, the necessary observation of the gonads are microscopic, macroscopic and gonad maturity gonado somatic indeks (GSI). GSI value is important to know the changes that occur in the gonads quantitatively, so that time can be presumed spawning (Effendie, 1997). Reproductive cycle can be determined by observing the evolution of GSI. The study of sea cucumbers Holothuria scabra gonad maturity conducted in Langgur, Southeast Maluku. Observations were made at every cycle of the moon is the full moon phase (BP) and new moon (BB) in the period January 29, 2017 until July 23, 2017. Observations H. scabra gonad maturity level is done with surgery, observation and calculation GSI gonad histology. GSI highest value obtained in May that full moon cycle at 90% of individuals that are in the spawning stage (phase 5), then 70% of the individuals that are in the spawning stage (phase 5) in March that the full moon cycle. The results obtained show that the peak spawning H. scabra period January 2017 to July 2017 occurred on the full moon cycle in May.

  18. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  19. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Time-series models on somatic cell score improve detection of matistis

    DEFF Research Database (Denmark)

    Norberg, E; Korsgaard, I R; Sloth, K H M N

    2008-01-01

    In-line detection of mastitis using frequent milk sampling was studied in 241 cows in a Danish research herd. Somatic cell scores obtained at a daily basis were analyzed using a mixture of four time-series models. Probabilities were assigned to each model for the observations to belong to a normal...... "steady-state" development, change in "level", change of "slope" or "outlier". Mastitis was indicated from the sum of probabilities for the "level" and "slope" models. Time-series models were based on the Kalman filter. Reference data was obtained from veterinary assessment of health status combined...... with bacteriological findings. At a sensitivity of 90% the corresponding specificity was 68%, which increased to 83% using a one-step back smoothing. It is concluded that mixture models based on Kalman filters are efficient in handling in-line sensor data for detection of mastitis and may be useful for similar...