WorldWideScience

Sample records for mature schwann cells

  1. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  2. Autophagy is involved in the reduction of myelinating Schwann cell cytoplasm during myelin maturation of the peripheral nerve.

    Directory of Open Access Journals (Sweden)

    So Young Jang

    Full Text Available Peripheral nerve myelination involves dynamic changes in Schwann cell morphology and membrane structure. Recent studies have demonstrated that autophagy regulates organelle biogenesis and plasma membrane dynamics. In the present study, we investigated the role of autophagy in the development and differentiation of myelinating Schwann cells during sciatic nerve myelination. Electron microscopy and biochemical assays have shown that Schwann cells remove excess cytoplasmic organelles during myelination through macroautophagy. Inhibition of autophagy via Schwann cell-specific removal of ATG7, an essential molecule for macroautophagy, using a conditional knockout strategy, resulted in abnormally enlarged abaxonal cytoplasm in myelinating Schwann cells that contained a large number of ribosomes and an atypically expanded endoplasmic reticulum. Small fiber hypermyelination and minor anomalous peripheral nerve functions are observed in this mutant. Rapamycin-induced suppression of mTOR activity during the early postnatal period enhanced not only autophagy but also developmental reduction of myelinating Schwann cells cytoplasm in vivo. Together, our findings suggest that autophagy is a regulatory mechanism of Schwann cells structural plasticity during myelination.

  3. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  4. Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle.

    Science.gov (United States)

    Macleod, G T; Dickens, P A; Bennett, M R

    2001-04-01

    A study has been made of the formation and regression of synapses with respect to Schwann cells at the ends of motor nerve terminal branches in mature toad (Bufo marinus) muscle. Synapse formation and regression, as inferred from the appearance and loss of N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide (FM1-43)-stained vesicle clusters, occurred at the ends of terminal branches over a 16 hr period. Multiple microelectrodes placed in an array about FM1-43 blobs at the ends of terminal branches detected the electrical signs of neurotransmitter being released onto receptors. Injection of a calcium indicator (Oregon Green 488 BAPTA-1) into the motor nerve with subsequent imaging of the calcium transients, in response to stimulation, often showed a reduced calcium influx in the ends of terminal branches. Injection of a fluorescent dye into motor nerves revealed the full extent of their terminal branches and growing processes. Injection of the terminal Schwann cells (TSCs) often revealed pseudopodial TSC processes up to 10-microm-long. Imaging of these TSC processes over minutes or hours showed that they were highly labile and capable of extending several micrometers in a few minutes. Injection of motor nerve terminals with a different dye to that injected into their TSCs revealed that terminal processes sometimes followed the TSC processes over a few hours. It is suggested that the ends of motor nerve terminals in vivo are in a constant state of remodeling through the formation and regression of processes, that TSC processes guide the remodeling, and that it can occur over a relatively short period of time.

  5. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  6. Schwann cell myelination requires Dynein function

    Directory of Open Access Journals (Sweden)

    Langworthy Melissa M

    2012-11-01

    Full Text Available Abstract Background Interaction of Schwann cells with axons triggers signal transduction that drives expression of Pou3f1 and Egr2 transcription factors, which in turn promote myelination. Signal transduction appears to be mediated, at least in part, by cyclic adenosine monophosphate (cAMP because elevation of cAMP levels can stimulate myelination in the absence of axon contact. The mechanisms by which the myelinating signal is conveyed remain unclear. Results By analyzing mutations that disrupt myelination in zebrafish, we learned that Dynein cytoplasmic 1 heavy chain 1 (Dync1h1, which functions as a motor for intracellular molecular trafficking, is required for peripheral myelination. In dync1h1 mutants, Schwann cell progenitors migrated to peripheral nerves but then failed to express Pou3f1 and Egr2 or make myelin membrane. Genetic mosaic experiments revealed that robust Myelin Basic Protein expression required Dync1h1 function within both Schwann cells and axons. Finally, treatment of dync1h1 mutants with a drug to elevate cAMP levels stimulated myelin gene expression. Conclusion Dync1h1 is required for retrograde transport in axons and mutations of Dync1h1 have been implicated in axon disease. Our data now provide evidence that Dync1h1 is also required for efficient myelination of peripheral axons by Schwann cells, perhaps by facilitating signal transduction necessary for myelination.

  7. La célula de Schwann The Schwann Cell

    OpenAIRE

    Spinel Clara; Perdomo Sandra

    2004-01-01

    Las neuronas son las células del sistema nervioso y están recubiertas y protegidas por células gliales. En el sistema nerviosos periférico las células de Schwann (CS) son la glía de los nervios. Las prolongaciones o neuritas (axón y dendrita) de los cuerpos de las neuronas son recubiertas por las CS y constituyen las fibras nerviosas. La relación íntima entre la CS y la neurita se determina durante el desarrollo embrionario. La CS es esencial en la migración correcta de las neuritas hacia su ...

  8. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves

    NARCIS (Netherlands)

    Gomez-Sanchez, Jose A.; Carty, Lucy; Iruarrizaga-Lejarreta, Marta; Palomo-Irigoyen, Marta; Varela-Rey, Marta; Griffith, Megan; Hantke, Janina; Macias-Camara, Nuria; Azkargorta, Mikel; Aurrekoetxea, Igor; de Juan, Virginia Gutiérrez; Jefferies, Harold B. J.; Aspichueta, Patricia; Elortza, Félix; Aransay, Ana M.; Martínez-Chantar, María L.; Baas, Frank; Mato, José M.; Mirsky, Rhona; Woodhoo, Ashwin; Jessen, Kristján R.

    2015-01-01

    Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that

  9. The beneficial effect of genetically engineered Schwann cells with enhanced motility in peripheral nerve regeneration: review.

    Science.gov (United States)

    Gravvanis, A I; Lavdas, A A; Papalois, A; Tsoutsos, D A; Matsas, R

    2007-01-01

    The importance of Schwann cells in promoting nerve regeneration across a conduit has been extensively reported in the literature, and Schwann cell motility has been acknowledged as a prerequisite for myelination of the peripheral nervous system during regeneration after injury. Review of recent literature and retrospective analysis of our studies with genetically modified Schwann Cells with increased motility in order to identify the underlying mechanism of action and outline the future trends in peripheral nerve repair. Schwann cell transduction with the pREV-retrovirus, for expression of Sialyl-Transferase-X, resulting in conferring Polysialyl-residues (PSA) on NCAM, increases their motility in-vitro and ensures nerve regeneration through silicone tubes after end-to-side neurorraphy in the rat sciatic nerve model, thus significantly promoting fiber maturation and functional outcome. An artificial nerve graft consisting of a type I collagen tube lined with the genetically modified Schwann cells with increased motility, used to bridge a defect in end-to-end fashion in the rat sciatic nerve model, was shown to promote nerve regeneration to a level equal to that of a nerve autograft. The use of genetically engineered Schwann cells with enhanced motility for grafting endoneural tubes promotes axonal regeneration, by virtue of the interaction of the transplanted cells with regenerating axonal growth cones as well as via the recruitment of endogenous Schwann cells. It is envisaged that mixed populations of Schwann cells, expressing PSA and one or more trophic factors, might further enhance the regenerating and remyelinating potential of the lesioned nerves.

  10. Electrically induced release of acetylcholine from denervated Schwann cells.

    Science.gov (United States)

    Dennis, M J; Miledi, R

    1974-03-01

    1. Focal electrical stimulation of Schwann cells at the end-plates of denervated frog muscles elicited slow depolarizations of up to 30 mV in the muscle fibres. This response is referred to as a Schwann-cell end-plate potential (Schwann-e.p.p.).2. Repeated stimulation sometimes evoked further Schwann-e.p.p.s, but they were never sustained for more than 30 pulses. Successive e.p.p.s varied in amplitude and time course independently of the stimulus.3. The Schwann-e.p.p.s were reversibly blocked by curare, suggesting that they result from a release of acetylcholine (ACh) by the Schwann cells.4. ACh release by electrical stimulation did not seem to occur in quantal form and was not dependent on the presence of calcium ions in the external medium; nor was it blocked by tetrodotoxin.5. Stimulation which caused release of ACh also resulted in extensive morphological disruption of the Schwann cells, as seen with both light and electron microscopy.6. It is concluded that electrical stimulation of denervated Schwann cells causes break-down of the cell membrane and releases ACh, presumably in molecular form.

  11. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  12. Adhesion of axolemmal fragments to Schwann cells: a signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis

    International Nuclear Information System (INIS)

    Sobue, G.; Pleasure, D.

    1985-01-01

    Radioiodinated rat CNS axolemmal fragments adhered to cultured rat Schwann cells by a time-, temperature-, and concentration-dependent process independent of extracellular ionized calcium. Adhesion showed target and signal specificity; axolemmal fragments adhered to endoneurial or dermal fibroblasts to a much lesser extent than to Schwann cells, and plasma membrane fragments from skeletal muscle, erythrocytes, or PNS myelin adhered to Schwann cells to a lesser extent than did axolemmal fragments. Brief trypsinization removed 94 to 97% of bound radioactivity from Schwann cells previously incubated with 125 I-axolemmal fragments for up to 24 hr, indicating that adhesion was largely a surface phenomenon rather than the result of rapid internalization of axolemmal fragments by the Schwann cells. When adhesion was compared to the axolemmal mitogenic response of Schwann cells, the concentration of axolemmal fragments yielding half-maximal adhesion was the same as the concentration producing half-maximal stimulation of Schwann cell mitosis. Trypsin digestion, homogenization, or heating of axolemmal fragments before application to cultured Schwann cells diminished adhesion and axolemmal fragment-induced stimulation of Schwann cell mitosis in a parallel fashion. Whereas adhesion of axolemmal fragments to the surfaces of the cultured Schwann cells reached completion within 4 hr in this assay system, induction of Schwann cell mitosis by the fragments required contact with Schwann cells for a minimum of 6 to 8 hr and reached a maximum when the axolemmal fragments had adhered to the Schwann cells for 24 hr or more

  13. Dicer in Schwann cells is required for myelination and axonal integrity

    DEFF Research Database (Denmark)

    Pereira, Jorge A.; Baumann, Reto; Norrmén, Camilla

    2010-01-01

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo re...

  14. Dicer in Schwann cells is required for myelination and axonal integrity

    DEFF Research Database (Denmark)

    Pereira, Jorge A.; Baumann, Reto; Norrmén, Camilla

    2010-01-01

    Dicer is responsible for the generation of mature micro-RNAs (miRNAs) and loading them into RNA-induced silencing complex (RISC). RISC functions as a probe that targets mRNAs leading to translational suppression and mRNA degradation. Schwann cells (SCs) in the peripheral nervous system undergo...

  15. Neuron-glia signaling and the protection of axon function by Schwann cells.

    Science.gov (United States)

    Quintes, Susanne; Goebbels, Sandra; Saher, Gesine; Schwab, Markus H; Nave, Klaus-Armin

    2010-03-01

    The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axonal surface determines the myelination fate of axons and controls myelin sheath thickness. Recent observations suggest that NRG1 regulates myelination via the control of Schwann cell cholesterol biosynthesis. This concept is supported by the finding that high cholesterol levels in Schwann cells are a rate-limiting factor for myelin protein production and transport of the major myelin protein P0 from the endoplasmic reticulum into the growing myelin sheath. NRG1 type III activates ErbB receptors on the Schwann cell, which leads to an increase in intracellular PIP3 levels via the PI3-kinase pathway. Surprisingly, enforced elevation of PIP3 levels by inactivation of the phosphatase PTEN in developing and mature Schwann cells does not entirely mimic NRG1 type III stimulated myelin growth, but predominantly causes focal hypermyelination starting at Schmidt-Lanterman incisures and nodes of Ranvier. This indicates that the glial transduction of pro-myelinating signals has to be under tight and life-long control to preserve integrity of the myelinated axon. Understanding the cross talk between neurons and Schwann cells will help to further define the role of glia in preserving axonal integrity and to develop therapeutic strategies for peripheral neuropathies such as CMT1A.

  16. Axon-Schwann cell interaction in the squid nerve fibre.

    Science.gov (United States)

    Villegas, J

    1972-09-01

    The electrical properties of Schwann cells and the effects of neuronal impulses on their membrane potential have been studied in the giant nerve fibre of the squid.1. The behaviour of the Schwann cell membrane to current injection into the cell was ohmic. No impulse-like responses were observed with displacements of 35 mV in the membrane potential. The resistance of the Schwann cell membrane was found to be approximately 10(3) Omega cm(2).2. A long-lasting hyperpolarization is observed in the Schwann cells following the conduction of impulse trains by the axon. Whereas the propagation of a single impulse had little effect, prolonged stimulation of the fibre at 250 impulses/sec was followed by a hyperpolarization of the Schwann cell that gradually declined over a period of several minutes.3. The prolonged effects of nerve impulse trains on the Schwann cell were similar to those produced by depolarizing current pulses applied to the axon by the voltage-clamp technique. Thus, a series of depolarizing pulses in the axon was followed by a long-lasting hyperpolarization of the Schwann cells. In contrast, the application of a series of hyperpolarizing 100 mV pulses at a frequency of 1/sec had no apparent effects.4. Changes in the external potassium concentration did not reproduce the long-lasting effects of nerve excitation.5. The hyperpolarizing effects of impulse trains were abolished by the incubation of the nerve fibre in a sea-water solution containing trypsin.6. These findings are discussed in relation to the possible mechanisms that might be responsible for the long-lasting hyperpolarizations of the Schwann cells.

  17. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    International Nuclear Information System (INIS)

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang

    2013-01-01

    Highlights: ► ATP-treated sciatic explants shows the decreased expression of p75NGFR. ► Extracellular ATP inhibits the expression of phospho-ERK1/2. ► Lysosomal exocytosis is involved in Schwann cell dedifferentiation. ► Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  18. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.

    Science.gov (United States)

    Jin, Song-Hyo; An, Sung-Kwan; Lee, Seong-Beom

    2017-06-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidated. Lipid droplets (LDs) are found in M.leprae-infected Schwann cells in the nerve biopsies of lepromatous leprosy patients. M.leprae-induced LD formation favors intracellular M.leprae survival in primary Schwann cells and in a myelinating Schwann cell line referred to as ST88-14. In the current study, we initially characterized SW-10 cells and investigated the effects of LDs on M.leprae-infected SW-10 cells, which are non-myelinating Schwann cells. SW-10 cells express S100, a marker for cells from the neural crest, and NGFR p75, a marker for immature or non-myelinating Schwann cells. SW-10 cells, however, do not express myelin basic protein (MBP), a marker for myelinating Schwann cells, and myelin protein zero (MPZ), a marker for precursor, immature, or myelinating Schwann cells, all of which suggests that SW-10 cells are non-myelinating Schwann cells. In addition, SW-10 cells have phagocytic activity and can be infected with M. leprae. Infection with M. leprae induces the formation of LDs. Furthermore, inhibiting the formation of M. leprae-induced LD enhances the maturation of phagosomes containing live M.leprae and decreases the ATP content in the M. leprae found in SW-10 cells. These facts suggest that LD formation by M. leprae favors intracellular M. leprae survival in SW-10 cells, which leads to the logical conclusion that M.leprae-infected SW-10 cells can be a new model for investigating the interaction of M.leprae with non-myelinating Schwann cells.

  19. PAR1 activation affects the neurotrophic properties of Schwann cells.

    Science.gov (United States)

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    International Nuclear Information System (INIS)

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji

    2007-01-01

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS

  1. Proliferation of Schwann cells induced by axolemmal and myelin membranes

    International Nuclear Information System (INIS)

    Dinneen, M.

    1985-01-01

    Purified Schwann Cells were cultured from neonatal rat sciatic nerve using a modification of the method of Brockes. Schwann cells and contaminating fibroblasts were unambiguously identified using fluorescent antibodies of 2'3' cyclic nucleotide 3'-phosphodiesterase and the thy 1.1 antigen respectively. The Schwann cells were quiescent unless challenged with mitogens. They proliferated rapidly in response to the soluble mitogen, cholera toxin, or to membrane fractions from rat CNS or PNS, prepared by the method of DeVries. Mitogenic activity was present in both axolemmal and myelin enriched fractions and promoted a 10-15 fold increase in the rate of 3 H-thymidine uptake. The axolemmal mitogen was sensitive to heat (80 0 C for 10 minutes), trypsin digestion (0.05% x 30 mins) or to treatment with endoglycosidase D, suggesting that it could be a glycoprotein. Fifty percent of the axolemmal mitogenic activity was solubilized in 1% octyl-glucoside. The solubilized material, however, was very unstable and further purification was not possible. The myelin associated mitogenic activity was markedly different. It was resistant to freeze thaw cycles, trypsin digestion of endoglycosidase treatment and the activity was actually enhanced by heating at 100 0 C for two hours. It is proposed that the axolemmal activity is responsible for Schwann cell proliferation during development and that the myelin associated activity promotes Schwann cell proliferation during Wallerian degeneration

  2. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.

    Science.gov (United States)

    Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko

    2009-12-15

    We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.

  3. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    It has been suggested that the BMSCs have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. In this study, we showed that BMSCs can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells by Brdu pulse label technology.

  4. Schwann Cells in Neuromuscular Junction Formation and Maintenance.

    Science.gov (United States)

    Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng; Mei, Lin

    2016-09-21

    The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to investigate the consequences

  5. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  6. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  7. Subversion of Schwann Cell Glucose Metabolism by Mycobacterium leprae*

    Science.gov (United States)

    Medeiros, Rychelle Clayde Affonso; Girardi, Karina do Carmo de Vasconcelos; Cardoso, Fernanda Karlla Luz; Mietto, Bruno de Siqueira; Pinto, Thiago Gomes de Toledo; Gomez, Lilian Sales; Rodrigues, Luciana Silva; Gandini, Mariana; Amaral, Julio Jablonski; Antunes, Sérgio Luiz Gomes; Corte-Real, Suzana; Rosa, Patricia Sammarco; Pessolani, Maria Cristina Vidal; Nery, José Augusto da Costa; Sarno, Euzenir Nunes; Batista-Silva, Leonardo Ribeiro; Sola-Penna, Mauro; Oliveira, Marcus Fernandes; Moraes, Milton Ozório; Lara, Flavio Alves

    2016-01-01

    Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed. PMID:27555322

  8. Nanoparticles carrying neurotrophin-3-modified Schwann cells promote repair of sciatic nerve defects.

    Science.gov (United States)

    Zong, Haibin; Zhao, Hongxing; Zhao, Yilei; Jia, Jingling; Yang, Libin; Ma, Chao; Zhang, Yang; Dong, Yuzhen

    2013-05-15

    Schwann cells and neurotrophin-3 play an important role in neural regeneration, but the secretion of neurotrophin-3 from Schwann cells is limited, and exogenous neurotrophin-3 is inactived easily in vivo. In this study, we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes. Results showed that neurotrophin-3 was successfully transfected into Schwann cells, where it was expressed effectively and steadily. A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects. Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination, promote nerve axonal and myelin regeneration, and delay apoptosis of spinal motor neurons. Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.

  9. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    Science.gov (United States)

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  11. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  12. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  13. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation.

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-07-10

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation*

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127

  15. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  16. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  17. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.

    Science.gov (United States)

    Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R

    2017-09-13

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the

  18. Effects of cholinergic compounds on the axon-Schwann cell relationship in the squid nerve fiber.

    Science.gov (United States)

    Villegas, J

    1975-04-01

    The effects of acetylcholine, carbamylcholine, D-tubocurarine, eserine, and alpha-bungarotoxin on the Schwann cell electrical potential of resting and stimulated squid nerve fibers were studied. Acetylcholine (10-7 M) and barbamylcholine (10-6 M) induce a prolonged hyper polarization in the Schwann cells of the unstimulated nerve fiber. In the presence of carbamylcholine (10-6 M) the behavior of the Schwann cell membrane to changes in the external potassium concentration approximates the behavior of an ideal potassium electrode. D-Tubocurarine (10-9 M) blocks the hyperpolarizing effects of nerve impulse trains and carbamylcholine (10-6 M), whereas at the same concentration eserine prolongs the Schwann cell hyperpolarizations induced by axon stimulation or by acetylcholine (10-7 M). alpha-Bungarotoxin (10-9M) also blocks the hyperpolarizing effect of nerve impulse trains and of carbamylcholine. D-Tubocurarine (10-5M) protects the Schwann cells against the irreversible action of alpha-bungarotoxin. These results show the existence of acetylcholine receptors in the Schwann cell membrane. Preliminary measurements of the binding of 125I-alpha bungarotoxin to the plasma membranes isolated from squid nerves also indicate the presence of acetylcholine receptors. These findings support the involvement of cholinergic mechanisms in the axon-Schwann cell relationship previously described.

  19. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.

  20. Macrophage polarization in nerve injury: do Schwann cells play a role?

    Directory of Open Access Journals (Sweden)

    Jo Anne Stratton

    2016-01-01

    Full Text Available In response to peripheral nerve injury, the inflammatory response is almost entirely comprised of infiltrating macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efficient regeneration. There are several cells within the microenvironment that likely interact with macrophages to support their function - most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  1. Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II.

    Science.gov (United States)

    Hartlehnert, Maike; Derksen, Angelika; Hagenacker, Tim; Kindermann, David; Schäfers, Maria; Pawlak, Mathias; Kieseier, Bernd C; Meyer Zu Horste, Gerd

    2017-10-02

    The activation of T helper cells requires antigens to be exposed on the surface of antigen presenting cells (APCs) via MHC class II (MHC-II) molecules. Expression of MHC-II is generally limited to professional APCs, but other cell types can express MHC-II under inflammatory conditions. However, the importance of these conditional APCs is unknown. We and others have previously shown that Schwann cells are potentially conditional APCs, but the functional relevance of MHC-II expression by Schwann cells has not been studied in vivo. Here, we conditionally deleted the MHC-II β-chain from myelinating Schwann cells in mice and investigated how this influenced post-traumatic intraneural inflammation and neuropathic pain using the chronic constriction injury (CCI) model. We demonstrate that deletion of MHC-II in myelinating Schwann cells reduces thermal hyperalgesia and, to a lesser extent, also diminishes mechanical allodynia in CCI in female mice. This was accompanied by a reduction of intraneural CD4+ T cells and greater preservation of preferentially large-caliber axons. Activation of T helper cells by MHC-II on Schwann cells thus promotes post-traumatic axonal loss and neuropathic pain. Hence, we provide experimental evidence that Schwann cells gain antigen-presenting function in vivo and modulate local immune responses and diseases in the peripheral nerves.

  2. The insulin-like growth factors I and II stimulate proliferation of different types of Schwann cells

    DEFF Research Database (Denmark)

    Sondell, M; Svenningsen, Åsa Fex; Kanje, M

    1997-01-01

    in combination with BrdU immunocytochemistry showed that around 93% of the proliferating cells in the nerve segments were Schwann cells. Immunostaining for BrdU and GFAP (glial fibrillary acid protein) showed that IGF-II enhanced proliferation of Schwann cells surrounding unmyelinated nerve fibres. In contrast......, truncated IGF-I promoted proliferation of Schwann cells of myelinated nerve fibres while insulin increased proliferation of both cell types....

  3. Schwann cell seeded guidance tubes restore erectile function after ablation of cavernous nerves in rats.

    Science.gov (United States)

    May, F; Weidner, N; Matiasek, K; Caspers, C; Mrva, T; Vroemen, M; Henke, J; Lehmer, A; Schwaibold, H; Erhardt, W; Gänsbacher, B; Hartung, R

    2004-07-01

    Dissection of the cavernous nerves eliminates spontaneous erections. We evaluated the ability of Schwann cell seeded nerve guidance tubes to restore erections after bilateral cavernous nerve resection in rats. Sections (5 mm) of the cavernous nerve were excised bilaterally, followed by immediate bilateral microsurgical reconstruction. In 10 animals per group (20 study nerves) reconstruction was performed by genitofemoral nerve interposition, interposition of silicone tubes or interposition of silicone tubes seeded with homologous Schwann cells. As the control 10 animals (20 study nerves) underwent sham operation (positive control) and bilateral nerve ablation (without reconstruction) was performed in a further 10 (negative control). Erectile function was evaluated 3 months postoperatively by relaparotomy, electrical nerve stimulation and intracavernous pressure recording. After 3 months neurostimulation resulted in an intact erectile response in 90% (18 of 20) of Schwann cell grafts, while treatment with autologous nerves (30% or 6 of 20) or tubes only (50% or 10 of 20) was less successful (p Schwann cell grafts compared to results in the other treatment groups (p Schwann cell grafts. Schwann cell seeded guidance tubes restore erectile function after the ablation of cavernous nerves in rats and they are superior to autologous nerve grafts.

  4. Observations on the interactions of Schwann cells and astrocytes following x irradiation of neonatal rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Blakemore, W F; Patterson, R C

    1975-10-01

    Myelination was inhibited in the spinal cord of three day-old rats with 2000 rads of x irradiation. Myelination subsequently occurred as a result of caudal migration of oligodendrocytes and extensive invasion of the cord by Schwann cells. Although oligodendrocytes were present in areas containing Schwann cells, astrocytes were absent. The presence of Schwann cells in the neuropil of the spinal cord did not stimulate production of basement membrane by astrocytes, so no new glial limiting membrane was formed. Evidence is presented which suggests that if astrocytes do not form a glial limiting membrane when opposed by large numbers of Schwann cells they are destroyed by the invading cells. It is suggested that the glial limiting membrane normally inhibits entry of Schwann cells into the central nervous system; if this is destroyed and not reconstituted, Schwann cells can migrate freely into the neuropil.

  5. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells

    OpenAIRE

    Jin, Song-Hyo; An, Sung-Kwan; Lee, Seong-Beom

    2017-01-01

    Leprosy is a chronic infectious disease that is caused by the obligate intracellular pathogen Mycobacterium leprae (M.leprae), which is the leading cause of all non-traumatic peripheral neuropathies worldwide. Although both myelinating and non-myelinating Schwann cells are infected by M.leprae in patients with lepromatous leprosy, M.leprae preferentially invades the non-myelinating Schwann cells. However, the effect of M.leprae infection on non-myelinating Schwann cells has not been elucidate...

  6. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Science.gov (United States)

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  7. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-Seq

    Science.gov (United States)

    Yao, Li; Li, Yongchao; Knapp, Jennifer; Smith, Peter

    2015-01-01

    In peripheral nervous systems, Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. Following spinal cord injury, Schwann cells regenerate and migrate to the lesion and are involved in the spinal cord regeneration process. Transplantation of Schwann cells into injured neural tissue results in enhanced spinal axonal regeneration. Effective directional migration of Schwann cells is critical in the neural regeneration process. In this study, we report that Schwann cells migrate anodally in an applied electric field (EF). The directedness and displacement of anodal migration increased significantly when the strength of the EF increased from 50 mV/mm to 200 mV/mm. The EF did not significantly affect the cell migration speed. To explore the genes and signaling pathways that regulate cell migration in EFs, we performed a comparative analysis of differential gene expression between cells stimulated with an EF (100 mV/mm) and those without using next-generation RNA sequencing, verified by RT-qPCR. Based on the cut-off criteria (FC > 1.2, q cells versus EF-stimulated cells. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that compared to the control group, 21 pathways are down-regulated, while 10 pathways are up-regulated. Differentially expressed genes participate in multiple cellular signaling pathways involved in the regulation of cell migration, including pathways of regulation of actin cytoskeleton, focal adhesion, and PI3K-Akt. PMID:25557037

  9. Biphasic electrical targeting plays a significant role in schwann cell activation.

    Science.gov (United States)

    Kim, In Sook; Song, Yun Mi; Cho, Tae Hyung; Pan, Hui; Lee, Tae Hyung; Kim, Sung June; Hwang, Soon Jung

    2011-05-01

    Electrical stimulation (ES) is a promising technique for axonal regeneration of peripheral nerve injuries. However, long-term, continuous ES in the form of biphasic electric current (BEC) to stimulate axonal regeneration has rarely been attempted and the effects of BEC on Schwann cells are unknown. We hypothesized that long-term, continuous ES would trigger the activation of Schwann cells, and we therefore investigated the effect of BEC on the functional differentiation of primary human mesenchymal stromal cells (hMSCs) into Schwann cells, as well as the activity of primary Schwann cells. Differentiation of hMSCs into Schwann cells was determined by coculture with rat pheochromocytoma cells (PC12 cell line). We also investigated the in vivo effects of long-term ES (4 weeks) on axonal outgrowth of a severed sciatic nerve with a 7-mm gap after retraction of the nerve ends in rats by implanting an electronic device to serve as a neural conduit. PC12 cells cocultured with hMSCs electrically stimulated during culture in Schwann cell differentiation medium (Group I) had longer neurites and a greater percentage of PC12 cells were neurite-sprouting than when cocultured with hMSCs cultured in growth medium (control group) or unstimulated hMSCs in the same culture conditions as used for Group I (Group II). Group I cells showed significant upregulation of Schwann cell-related neurotrophic factors such as nerve growth factor and glial-derived neurotrophic factor compared to Group II cells at both the mRNA and protein levels. Primary Schwann cells responded to continuous BEC with increased proliferation and the induction of nerve growth factor and glial-derived neurotrophic factor, similar to Group I cells, and in addition, induction of brain-derived neurotrophic factor was observed. Immunohistochemical investigation of sciatic nerve regenerates revealed that BEC increased axonal outgrowth significantly. These results demonstrate that BEC enhanced the functional activity of

  10. Ribosomal trafficking is reduced in Schwann cells following induction of myelination

    Directory of Open Access Journals (Sweden)

    James M. Love

    2015-08-01

    Full Text Available Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body, but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following

  11. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  12. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    Science.gov (United States)

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  13. Cthrc1 is a negative regulator of myelination in Schwann cells.

    Science.gov (United States)

    Apra, Caroline; Richard, Laurence; Coulpier, Fanny; Blugeon, Corinne; Gilardi-Hebenstreit, Pascale; Vallat, Jean-michel; Lindner, Volkhard; Charnay, Patrick; Decker, Laurence

    2012-03-01

    The analysis of the molecular mechanisms involved in the initial interaction between neurons and Schwann cells is a key issue in understanding the myelination process. We recently identified Cthrc1 (Collagen triple helix repeat containing 1) as a gene upregulated in Schwann cells upon interaction with the axon. Cthrc1 encodes a secreted protein previously shown to be involved in migration and proliferation in different cell types. We performed a functional analysis of Cthrc1 in Schwann cells by loss-of- and gain-of-function approaches using RNA interference knockdown in cell culture and a transgenic mouse line that overexpresses the gene. This work establishes that Cthrc1 enhances Schwann cell proliferation but prevents myelination. In particular, time-course analysis of myelin formation intransgenic animals reveals that overexpression of Cthrc1 in Schwann cells leads to a delay in myelin formation with cells maintaining a proliferative state. Our data, therefore, demonstrate that Cthrc1 plays a negative regulatory role, fine-tuning the onset of peripheral myelination.

  14. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells

    International Nuclear Information System (INIS)

    Thomas, Stacey L.; Deadwyler, Gail D.; Tang, Jun; Stubbs, Evan B.; Muir, David; Hiatt, Kelly K.; Clapp, D. Wade; De Vries, George H.

    2006-01-01

    Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells

  15. Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors

    Directory of Open Access Journals (Sweden)

    Matthew P. Krause

    2014-07-01

    Full Text Available Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs, a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from neural crest-derived facial and mesodermally derived foreskin dermis and the foreskin SKPs can make myelinating Schwann cells. Thus, nonneural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally defined lineage boundaries are more flexible than widely thought.

  16. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.

    Science.gov (United States)

    Jaegle, Martine; Ghazvini, Mehrnaz; Mandemakers, Wim; Piirsoo, Marko; Driegen, Siska; Levavasseur, Francoise; Raghoenath, Smiriti; Grosveld, Frank; Meijer, Dies

    2003-06-01

    The genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during development and tissue regeneration in adults following damage. In this report we demonstrate the involvement of a third transcription factor, the POU domain factor Brn-2. We show that Schwann cells express Brn-2 in a developmental profile similar to that of Oct-6 and that Brn-2 gene activation does not depend on Oct-6. Overexpression of Brn-2 in Oct-6-deficient Schwann cells, under control of the Oct-6 Schwann cell enhancer (SCE), results in partial rescue of the developmental delay phenotype, whereas compound disruption of both Brn-2 and Oct-6 results in a much more severe phenotype. Together these data strongly indicate that Brn-2 function largely overlaps with that of Oct-6 in driving the transition from promyelinating to myelinating Schwann cells.

  17. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion?

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Limbach, Christoph

    2010-01-01

    During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this ......During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells....... In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG......), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional...

  18. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  19. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  20. Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer.

    Directory of Open Access Journals (Sweden)

    Junichiro En

    2017-08-01

    Full Text Available Buruli ulcer is a chronic painless skin disease caused by Mycobacterium ulcerans. The local nerve damage induced by M. ulcerans invasion is similar to the nerve damage evoked by the injection of mycolactone in a Buruli ulcer mouse model. In order to elucidate the mechanism of this nerve damage, we tested and compared the cytotoxic effect of synthetic mycolactone A/B on cultured Schwann cells, fibroblasts and macrophages. Mycolactone induced much higher cell death and apoptosis in Schwann cell line SW10 than in fibroblast line L929. These results suggest that mycolactone is a key substance in the production of nerve damage of Buruli ulcer.

  1. ATP secretion from nerve trunks and Schwann cells mediated by glutamate.

    Science.gov (United States)

    Liu, Guo Jun; Bennett, Max R

    2003-11-14

    ATP release from rat sciatic nerves and from cultured Schwann cells isolated from the nerves was investigated using an online bioluminescence technique. ATP was released in relatively large amounts from rat sciatic nerve trunks during electrical stimulation. This release was blocked by the sodium channel inhibitor tetrodotoxin and the non-NMDA glutamate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Schwann cells isolated from the nerve trunks did not release ATP when electrically stimulated but did in response to glutamate in a concentration-dependent manner. Glutamate-stimulated ATP release was inhibited by specific non-competitive AMPA receptor antagonist GYKI 52466 and competitive non-NMDA receptor antagonist CNQX. Glutamate-stimulated ATP release was decreased by inhibition of anion transporter inhibitors by furosemide, cystic fibrosis transmembrane conductance regulator by glibenclamide and exocytosis by botulinum toxin A, indicating that anion transporters and exocytosis provide the main secretion mechanisms for ATP release from the Schwann cells.

  2. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves.

    Science.gov (United States)

    May, Florian; Matiasek, Kaspar; Vroemen, Maurice; Caspers, Christiane; Mrva, Thomas; Arndt, Christian; Schlenker, Boris; Gais, Peter; Brill, Thomas; Buchner, Alexander; Blesch, Armin; Hartung, Rudolf; Stief, Christian; Gansbacher, Bernd; Weidner, Norbert

    2008-11-01

    Schwann cell-seeded guidance tubes have been shown to promote cavernous nerve regeneration, and the local delivery of neurotrophic factors may additionally enhance nerve regenerative capacity. The present study evaluates whether the transplantation of GDNF-overexpressing Schwann cells may enhance regeneration of bilaterally transected erectile nerves in rats. Silicon tubes seeded with either GDNF-overexpressing or GFP-expressing Schwann cells were implanted into the gaps between transected cavernous nerve endings. Six (10 study nerves) or 12 wk (20 study nerves) postoperatively, erectile function was evaluated by relaparotomy, electrical nerve stimulation, and intracavernous pressure recording, followed by ultrastructural evaluation of reconstructed nerves employing bright-field and electron microscopy. Additional animals were either sham-operated (positive control; 20 study nerves) or received bilateral nerve transection without nerve reconstruction (negative control; 20 study nerves). The combination of GDNF delivery and Schwann cell application promoted an intact erectile response in 90% (9 of 10) of grafted nerves after 6 wk and in 95% (19 of 20) after 12 wk, versus 50% (5 of 10) and 80% (16 of 20) of GFP-expressing Schwann cell grafts (p=0.02). The functional recovery was paralleled by enhanced axonal regeneration in GDNF-overexpressing Schwann cell grafts, as indicated by larger cross-sectional areas and a significantly higher percentage of neural tissue compared with GFP-transduced controls. These findings demonstrate that the time required to elicit functional recovery of erectile nerves can be reduced by local delivery of GDNF. In terms of clinical application, this enhanced nerve repair might be critical for timely reinnervation of the corpus cavernosum as a prerequisite for functional recovery in men.

  3. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

    Science.gov (United States)

    Clements, Melanie P; Byrne, Elizabeth; Camarillo Guerrero, Luis F; Cattin, Anne-Laure; Zakka, Leila; Ashraf, Azhaar; Burden, Jemima J; Khadayate, Sanjay; Lloyd, Alison C; Marguerat, Samuel; Parrinello, Simona

    2017-09-27

    Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Science.gov (United States)

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Directory of Open Access Journals (Sweden)

    José R Sotelo

    Full Text Available To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells at the site of injury to promote regeneration.

  6. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  7. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair

    NARCIS (Netherlands)

    Shakhbazau, A.; Kawasoe, J.; Hoyng, S.A.; Kumar, R.; van Minnen, J.; Verhaagen, J.; Midha, R.

    2012-01-01

    Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a

  8. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2014-01-01

    Full Text Available In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG and carbon nanotube/polycaprolactone/gelatin (PGC nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.

  9. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner

    International Nuclear Information System (INIS)

    Breugel, H.H.F.I. van; Bar, P.R.

    1993-01-01

    Schwann cell proliferation is considered an essential part of Wallerian degeneration after nerve damage. Laminin, an important component of the extracellular matrix and produced by Schwann cells, provides a preferred substrate for outgrowing axons. To study whether low energy (He-Ne) laser irradiation may exert a positive effect on nerve regeneration through an effect on Schwann cells, its effect was evaluated in vitro. Schwann cells were isolated from sciatic nerves of 4-5-day old Wistar rats and cultures on 96-multiwell plates. The cells were irradiated by a He-Ne laser beam. At three consecutive days, starting either at day 5 or day 8, cells were irradiated each day for 0.5, 1, 2, 5 or 10 min. Both cell number and laminin production were determined for each irradiation condition within one experiment. Schwann cells that were irradiated from day 8 on were hardly affected by laser irradiation. However, the proliferation of cells that were irradiated starting on day 5 was significantly increased after 1, 2 and 5 min of daily irradiation, compared to non-irradiated control cultures. The lamin production per cell of these Schwann cells was not significantly altered. From these results we conclude that He-Ne laser irradiation can modulate proliferation of rat Schwann cells in vitro in a dose-dependent manner. (Author)

  10. Pro-neurogenic effects of andrographolide on RSC96 Schwann cells in vitro

    Science.gov (United States)

    Xu, Fuben; Wu, Huayu; Zhang, Kun; Lv, Peizhen; Zheng, Li; Zhao, Jinmin

    2016-01-01

    Nerve regeneration remains a challenge to the treatment of peripheral nerve injury. Andrographolide (Andro) is the main active constituent of Andrographis paniculata, which has been applied in the treatment of several diseases, including inflammation, in ancient China. Andro has been reported to facilitate the reduction of edema and to exert analgesic effects in the treatment of various diseases. These findings suggest that Andro may be considered a promising anti-inflammatory agent that may suppress destruction and accelerate proliferation of Schwann cells following peripheral nerve injury. In the present study, the effects of Andro on RSC96 cells were investigated in vitro. The RSC96 cell line is a spontaneously immortalized rat Schwann cell line, which was originally derived from a long-term culture of rat primary Schwann cells. RSC96 cells were treated with a range of 0 to 50 µM Andro prior to the MTT assay. Cell proliferation, morphology, synthesis and nerve-specific gene expression were performed to detect the effect of Andro on RSC96 cells. The results of the present study demonstrated that the recommended doses of Andro ranged between 0.78 and 12.5 µM, among which the most obvious response was observed when used at 3.125 µM (P<0.05). DNA content was improved in Andro groups compared with the control group (P<0.05). In addition, Andro was able to promote the gene expression of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, ciliary neurotrophic factor, and the specific Schwann cell marker S100β (P<0.05). The results of a viability assay, hematoxylin-eosin staining, and immunohistochemistry were also improved in Andro groups. These results indicated that Andro may accelerate proliferation of RSC96 cells in vitro, whilst maintaining the Schwann cell phenotype; therefore, the present study may provide valuable evidence for the further exploration of the effects of Andro on peripheral nerves. PMID:27599453

  11. Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells

    International Nuclear Information System (INIS)

    Pereira, Renata M.S.; Calegari-Silva, Teresa Cristina; Hernandez, Maristela O.; Saliba, Alessandra M.; Redner, Paulo; Pessolani, Maria Cristina V.; Sarno, Euzenir N.; Sampaio, Elizabeth P.; Lopes, Ulisses G.

    2005-01-01

    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-κB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-κB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-κB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IκB-α degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-κB-driven transcription induced by TNF-α. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-κB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-κB activation in Schwann cells and thalidomide is able to modulate this activation

  12. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    Science.gov (United States)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  13. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.

    NARCIS (Netherlands)

    M.M. Jaegle (Martine); M. Ghazvini (Mehrnaz); W.J. Mandemakers (Wim); M. Piirsoo (Marko); S. Driegen (Siska); F. Levavasseur (Francoise); S. Raghoenath; F.G. Grosveld (Frank); D. Meijer (Daniëlle)

    2003-01-01

    textabstractThe genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during

  14. Estrogen and progesterone stimulate Schwann cell proliferation in a sex- and age-dependent manner

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Kanje, M

    1999-01-01

    The effects of estrogen and progesterone on Schwann cell proliferation were studied in cultured segments of the rat sciatic nerve from adult male, female, and newborn rats, by measurement of [3H thymidine incorporation or bromo-deoxy-uridine- (BrdU)-labelling and immunocytochemistry. Estrogen (10...

  15. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration.

    Science.gov (United States)

    Juang, Jyuhn-Huarng; Kuo, Chien-Hung; Peng, Shih-Jung; Tang, Shiue-Cheng

    2015-02-01

    The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  16. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  17. Evidence that glutamate mediates axon-to-Schwann cell signaling in the squid.

    Science.gov (United States)

    Lieberman, E M; Abbott, N J; Hassan, S

    1989-01-01

    High-frequency stimulation (100 Hz) of isolated giant axons of the small squid Alloteuthis subulata and the large squid Loligo forbesi caused the periaxonal Schwann cell resting potential (Em = -40 mV) to hyperpolarize up to 11 mV in direct proportion to train duration and action potential amplitude. In both species, the Schwann cell also hyperpolarized up to 17 mV with the application of L-glutamate (10(-9) to 10(-6) M), in a dose-dependent manner. By contrast, in the presence of 10(-8) M d-tubocurarine (d-TC) to block the cholinergic component of the Schwann cell response, Schwann cells depolarized 8-9 mV during electrical stimulation of the axon or application of L-glutamate. In the presence of 10(-5) M 2-amino-4-phosphonobutyrate (2-APB), the hyperpolarization to glutamate and to axon stimulation was blocked, whereas the cholinergic (carbachol-induced) hyperpolarization was unaffected. In experiments with Alloteuthis, L-aspartate (10(-7) M) also caused a Schwann cell hyperpolarization, but this was not blocked by 2-APB. In tests with glutamate receptor agonists and antagonists, quisqualate (10(-5) M) produced a hyperpolarization blocked by 10(-4) M L-glutamic acid diethylester (GDEE), which also blocked the response to axonal stimulation. Kainic acid (10(-4) M) also caused a hyperpolarization, but n-methyl-D-aspartate (NMDA; 10(-4) M), ibotenate (10(-5) M), alpha-amino-3-hydroxy-5-methyl-isoxazole proprionate (AMPA; (10(-4) M), and isethionate (10(-5) M) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  19. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Gnavi, S., E-mail: sara.gnavi@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Fornasari, B.E., E-mail: benedettaelena.fornasari@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Tonda-Turo, C., E-mail: chiara.tondaturo@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); Ciardelli, G., E-mail: gianluca.ciardelli@polito.it [Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10100 (Italy); CNR-IPCF UOS, Pisa 56124 (Italy); Zanetti, M., E-mail: marco.zanetti@unito.it [Nanostructured Interfaces and Surfaces, Department of Chemistry, University of Torino, Torino 10100 (Italy); Geuna, S., E-mail: stefano.geuna@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy); Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, University of Torino, Orbassano 10043 (Italy); Perroteau, I., E-mail: isabelle.perroteau@unito.it [Department of Clinical and Biological Sciences, University of Torino, Orbassano 10043 (Italy)

    2015-03-01

    Fibrous substrates functioning as temporary extracellular matrices can be prepared easily by electrospinning, yielding fibrous matrices suitable as internal fillers for nerve guidance channels. In this study, gelatin micro- or nano-fibres were prepared by electrospinning by tuning the gelatin concentration and solution flow rate. The effect of gelatin fibre diameter on cell adhesion and proliferation was tested in vitro using explant cultures of Schwann cells (SC) and dorsal root ganglia (DRG). Cell adhesion was assessed by quantifying the cell spreading area, actin cytoskeleton organization and focal adhesion complex formation. Nano-fibres promoted cell spreading and actin cytoskeleton organization, increasing cellular adhesion and the proliferation rate. However, both migration rate and motility, quantified by transwell and time lapse assays respectively, were greater in cells cultured on micro-fibres. Finally, there was more DRG axon outgrowth on micro-fibres. These data suggest that the topography of electrospun gelatin fibres can be adjusted to modulate SC and axon organization and that both nano- and micro-fibres are promising fillers for the design of devices for peripheral nerve repair. - Highlights: • Electrospinning used to produce gelatin nano- and micro-fibre matrices. • Nano-fibre matrices promote Schwann cell organization and increase proliferation rate. • Micro-fibre matrices promote Schwann cell migration. • Micro-fibre matrices promote axonal outgrowth.

  20. Development of a Functional Schwann Cell Phenotype from Autologous Porcine Bone Marrow Mononuclear Cells for Nerve Repair

    Directory of Open Access Journals (Sweden)

    Michael J. Rutten

    2012-01-01

    Full Text Available Adult bone marrow mononuclear cells (BM-MNCs are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6–8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF expression. Addition of neuregulin (1–25 nM increased p75(NGF levels at 24–48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca2+]i, with nucleotide potency being UTP=ATP>ADP>AMP>adenosine. Suramin blocked the ATP-induced [Ca2+]i but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca2+]i sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.

  1. Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure

    Science.gov (United States)

    Nguyen, Hieu T.; Wei, Claudia; Chow, Jacqueline K.; Nguy, Lindsey; Nguyen, Hieu K.; Schmidt, Christine E.

    2013-08-01

    Objective. Electric field (EF) stimulation has been used to cue cell growth for tissue engineering applications. In this study, we explore the electrical parameters and extracellular mechanisms that elicit changes in cell behavior when stimulated through the substrate. Approach. Rat Schwann cell morphology was compared when exposed to EF through the media or a conductive indium tin oxide substrate. Ionic and structural effects were then analyzed on Matrigel and collagen I, respectively. Main results. When stimulating through media, cells had greater alignment perpendicular to the EF with higher current densities (106 mA cm-2 at 245 mV mm-1), and reached maximum alignment within 8 h. Stimulation through the substrate with EF (up to 110 mV mm-1) did not affect Schwann cell orientation, however the EF caused extracellular matrix (ECM) coatings on substrates to peel away, suggesting EF can physically change the ECM. Applying alternating current (ac) 2-1000 Hz signals through the media or substrate both caused cells to flatten and protrude many processes, without preferential alignment. Matrigel exposed to a substrate EF of 10 mV mm-1 for 2 h had a greater calcium concentration near the cathode, but quickly dissipated when the EF was removed. Schwann cells seeded 7 d after gels were exposed to substrate EF still aligned perpendicular to the EF direction. Microscopy of collagen I exposed to substrate EF shows alignment and bundling of fibrils. Significance. These findings demonstrate EF exposure can control Schwann cell alignment and morphology, change ECM bulk/surface architecture, and align ECM structures.

  2. MAL Overexpression Leads to Disturbed Expression of Genes That Influence Cytoskeletal Organization and Differentiation of Schwann Cells

    Directory of Open Access Journals (Sweden)

    Daniela Schmid

    2014-09-01

    Full Text Available In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0 and the low-affinity neurotrophin receptor p75NTR . This study shows that MAL overexpression leads to a significant reduction of Mpz and p75NTR expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.

  3. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea.

    Science.gov (United States)

    Zhang, Zhi-Jian; Guan, Hong-Xia; Yang, Kun; Xiao, Bo-Kui; Liao, Hua; Jiang, Yang; Zhou, Tao; Hua, Qing-Quan

    2017-10-01

    This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.

  4. Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity

    International Nuclear Information System (INIS)

    Mobasseri, S A; Downes, S; Terenghi, G

    2014-01-01

    We have developed a biodegradable polymer scaffold made of a polycaprolactone/polylactic acid (PCL/PLA) film. Surface properties such as topography and chemistry have a vital influence on cell–material interactions. Surface modifications of PCL/PLA films were performed using topographical cues and UV–ozone treatment to improve Schwann cell organisation and behaviour. Schwann cell attachment, alignment and proliferation were evaluated on the grooved UV–ozone treated and non-treated films. Solvent casting of the polymer solution on patterned silicon substrates resulted in films with different groove shapes: V (V), sloped (SL) and square (SQ) shapes. Pitted films, with no grooves, were prepared as a negative control. The UV–ozone treatment was performed to increase hydrophilicity. The process specifications for UV–ozone treatment were evaluated and 5 min radiation time and 6 cm distance to the UV source were suggested as the optimal practise. When cultured on grooved films, Schwann cells elongated on the V and SL shape grooves without crossing over, and grew in the direction of the grooves. However, there was less elongation with more crossing over on the SQ shape grooves. The maximum cell length (511 μm) was observed on the treated V-grooved films. The cells cultured on pitted UV–ozone treated surfaces showed random arrangements with no increase in length. We have demonstrated that the synergic effects of physical cues combined with UV–ozone treatment have the potential to enhance Schwann cell morphology and alignment. (paper)

  5. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy.

    Science.gov (United States)

    Bobylev, Ilja; Maru, Helina; Joshi, Abhijeet R; Lehmann, Helmar C

    2016-03-01

    Peripheral neuropathy is a common side effect of prolonged treatment with linezolid. This study aimed to explore injurious effects of linezolid on cells of the peripheral nervous system and to establish in vivo and in vitro models of linezolid-induced peripheral neuropathy. C57BL/6 mice were treated with linezolid or vehicle over a total period of 4 weeks. Animals were monitored by weight, nerve conduction studies and behavioural tests. Neuropathic changes were assessed by morphometry on sciatic nerves and epidermal nerve fibre density in skin sections. Rodent sensory neuron and Schwann cell cultures were exposed to linezolid in vitro and assessed for mitochondrial dysfunction. Prolonged treatment with linezolid induced a mild, predominantly small sensory fibre neuropathy in vivo. Exposure of Schwann cells and sensory neurons to linezolid in vitro caused mitochondrial dysfunction primarily in neurons (and less prominently in Schwann cells). Sensory axonopathy could be partially prevented by co-administration of the Na(+)/Ca(2+) exchanger blocker KB-R7943. Clinical and pathological features of linezolid-induced peripheral neuropathy can be replicated in in vivo and in vitro models. Mitochondrial dysfunction may contribute to the axonal damage to sensory neurons that occurs after linezolid exposure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    OpenAIRE

    Daisuke Ino; Hiroshi Sagara; Junji Suzuki; Kazunori Kanemaru; Yohei Okubo; Masamitsu Iino

    2015-01-01

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulati...

  7. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells

    OpenAIRE

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R. Douglas

    2004-01-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron–glia communication are not known. Recent research shows that adenosine is a neuron–glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility...

  8. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    Science.gov (United States)

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  9. Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP

    Science.gov (United States)

    Verrier, Jonathan D.; Kochanek, Patrick M.

    2015-01-01

    The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have

  10. Neural differentiation of adipose-derived stem cells by indirect co-culture with Schwann cells

    Directory of Open Access Journals (Sweden)

    Li Xiaojie

    2009-01-01

    Full Text Available To investigate whether adipose-derived stem cells (ADSCs could be subject to neural differentiation induced only by Schwann cell (SC factors, we co-cultured ADSCs and SCs in transwell culture dishes. Immunoassaying, Western blot analysis, and RT-PCR were performed (1, 3, 7, 14 d and the co-cultured ADSCs showed gene and protein expression of S-100, Nestin, and GFAP. Further, qRT-PCR disclosed relative quantitative differences in the above three gene expressions. We think ADSCs can undergo induced neural differentiation by being co-cultured with SCs, and such differentia­tions begin 1 day after co-culture, become apparent after 7 days, and thereafter remain stable till the 14th day.

  11. Myelin repair by Schwann cells in the regenerating goldfish visual pathway: regional patterns revealed by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nona, S.N.; Stafford, C.A.; Cronly-Dillon, J.R. (Manchester Univ. (United Kingdom). Inst. of Science and Technology); Duncan, A. (Guy' s Hospital, London (United Kingdom). Dept. of Anatomy); Scholes, J. (University Coll., London (United Kingdom))

    1994-07-01

    In the regenerating goldfish optic nerves, Schwann cells of unknown origin reliably infiltrate the lesion site forming a band of peripheral-type myelinating tissue by 1-2 months, sharply demarcated form the adjacent new CNS myelin. To investigate this effect, we have interfered with cell proliferation by locally X-irradiating the fish visual pathway 24 h after the lesion. As assayed by immunohistochemistry and EM, irradiation retards until 6 months formation of new myelin by Schwann cells at the lesion site, and virtually abolishes oligodendrocyte myelination distally, but has little or no effect on nerve fibre regrowth. Optic nerve astrocyte processes normally fail to re-infiltrate the lesion, but re-occupy it after irradiation, suggesting that they are normally excluded by early cell proliferation at this site. Moreover, scattered myelinating Schwann cells also appear in the oligodendrocyte-depleted distal optic nerve after irradiation, although only as far as the optic tract. (Author).

  12. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord.

    Science.gov (United States)

    Pinzon, A; Calancie, B; Oudega, M; Noga, B R

    2001-06-01

    Central nervous system axons regenerate into a Schwann cell implant placed in the transected thoracic spinal cord of an adult rat. The present study was designed to test whether these regenerated axons are capable of conducting action potentials. Following the transection and removal of a 4- to 5-mm segment of the thoracic spinal cord (T8-T9), a polymer guidance channel filled with a mixture of adult rat Schwann cells and Matrigel was grafted into a 4- to 5-mm-long gap in the transected thoracic spinal cord. The two cut ends of the spinal cord were eased into the guidance channel openings. Transected control animals received a channel containing Matrigel only. Three months after implantation, electrophysiological studies were performed. Tungsten microelectrodes were used for monopolar stimulation of regenerated axons within the Schwann cell graft. Glass microelectrodes were used to record responses in the spinal cord rostral to the stimulation site. Evoked responses to electrical stimulation of the axon cable were found in two out of nine Schwann cell-grafted animals. These responses had approximate latencies in the range of those of myelinated axons. No responses were seen in any of the Matrigel-grafted animals. Histological analysis revealed that the two cases that showed evoked potentials had the largest number of myelinated axons present in the cable. This study demonstrates that axons regenerating through Schwann cell grafts in the complete transected spinal cord can produce measurable evoked responses following electrical stimulation. Copyright 2001 Wiley-Liss, Inc.

  13. Schwann cells promote neuronal differentiation of bone marrow ...

    African Journals Online (AJOL)

    Administrator

    2011-04-25

    Apr 25, 2011 ... Bone marrow stromal cells (BMSCs), a type of multipotent stem cell, can differentiate into various types ... induced to differentiate into neuron-like cells when they are ... axonal regeneration and functional reconstruction do not.

  14. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.

    Directory of Open Access Journals (Sweden)

    Ketty Bacallao

    Full Text Available Isolated Schwann cells (SCs respond to cAMP elevation by adopting a differentiated post-mitotic state that exhibits high levels of Krox-20, a transcriptional enhancer of myelination, and mature SC markers such as the myelin lipid galactocerebroside (O1. To address how cAMP controls myelination, we performed a series of cell culture experiments which compared the differentiating responses of isolated and axon-related SCs to cAMP analogs and ascorbate, a known inducer of axon ensheathment, basal lamina formation and myelination. In axon-related SCs, cAMP induced the expression of Krox-20 and O1 without a concomitant increase in the expression of myelin basic protein (MBP and without promoting axon ensheathment, collagen synthesis or basal lamina assembly. When cAMP was provided together with ascorbate, a dramatic enhancement of MBP expression occurred, indicating that cAMP primes SCs to form myelin only under conditions supportive of basal lamina formation. Experiments using a combination of cell permeable cAMP analogs and type-selective adenylyl cyclase (AC agonists and antagonists revealed that selective transmembrane AC (tmAC activation with forskolin was not sufficient for full SC differentiation and that the attainment of an O1 positive state also relied on the activity of the soluble AC (sAC, a bicarbonate sensor that is insensitive to forskolin and GPCR activation. Pharmacological and immunological evidence indicated that SCs expressed sAC and that sAC activity was required for morphological differentiation and the expression of myelin markers such as O1 and protein zero. To conclude, our data indicates that cAMP did not directly drive myelination but rather the transition into an O1 positive state, which is perhaps the most critical cAMP-dependent rate limiting step for the onset of myelination. The temporally restricted role of cAMP in inducing differentiation independently of basal lamina formation provides a clear example of the

  15. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury.

    Science.gov (United States)

    Dayawansa, Samantha; Wang, Ernest W; Liu, Weimin; Markman, John D; Gelbard, Harris A; Huang, Jason H

    2014-11-01

    In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response.

  16. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves.

    Science.gov (United States)

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M

    2005-12-06

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with beta-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.

  17. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair.

    Science.gov (United States)

    Shakhbazau, Antos; Kawasoe, Jean; Hoyng, Stefan A; Kumar, Ranjan; van Minnen, Jan; Verhaagen, Joost; Midha, Rajiv

    2012-05-01

    Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a lentiviral vector encoding NGF (NGF-SCs). Transplantation of NGF-SCs in a rat sciatic nerve transection/repair model led to significant increase of NGF levels 2weeks after injury and correspondingly to substantial improvement in axonal regeneration. Numbers of NF200, ChAT and CGRP-positive axon profiles, as well as the gastrocnemius muscle weights, were significantly higher in the NGF-Schwann cell group compared to the animals that received control SCs transduced with a lentiviral vector encoding GFP (GFP-SCs). Comparison with other models of NGF application signifies the important role of this neurotrophin during the early stages of regeneration, and supports the importance of developing combined gene and cell therapy for peripheral nerve repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Data in support on the shape of Schwann cells and sympathetic neurons onto microconically structured silicon surfaces

    Directory of Open Access Journals (Sweden)

    C. Simitzi

    2015-09-01

    Full Text Available This article contains data related to the research article entitled “Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth” in the Biomaterials journal [1]. Scanning electron microscopy (SEM analysis is performed to investigate whether Schwann cells and sympathetic neurons alter their morphology according to the underlying topography, comprising arrays of silicon microcones with anisotropic geometrical characteristics [1]. It is observed that although soma of sympathetic neurons always preserves its round shape, this is not the case for Schwann cells that become highly polarized in high roughness microconical substrates.

  19. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    2015-02-01

    Full Text Available The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.

  20. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Science.gov (United States)

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft

  1. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists.

    Science.gov (United States)

    Kim, Esther S; Isoda, Fumiko; Kurland, Irwin; Mobbs, Charles V

    2013-09-01

    A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.

  2. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells.

    Science.gov (United States)

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R Douglas

    2004-02-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron-glia communication are not known. Recent research shows that adenosine is a neuron-glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility that adenosine might have a similar function in communicating between axons and premyelinating SCs. Using a combination of pharmacological and molecular approaches, we found that mouse SCs in culture express functional adenosine receptors and ATP receptors, a far more complex array of purinergic receptors than thought previously. Adenosine, but not ATP, activates ERK/MAPK through stimulation of cAMP-linked A2(A) adenosine receptors. Both ATP and adenosine inhibit proliferation of SCs induced by platelet-derived growth factor (PDGF), via mechanisms that are partly independent. In contrast to ATP, adenosine failed to inhibit the differentiation of SCs to the O4+ stage. This indicates that, in addition to ATP, adenosine is an activity-dependent signaling molecule between axons and premyelinating Schwann cells, but that electrical activity, acting through adenosine, has opposite effects on the differentiation of myelinating glia in the PNS and CNS.

  3. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  4. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Science.gov (United States)

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  5. 3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration

    OpenAIRE

    Juang, Jyuhn-Huarng; Kuo, Chien-Hung; Peng, Shih-Jung; Tang, Shiue-Cheng

    2015-01-01

    The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histolo...

  6. Interactions between intraspinal Schwann cells and the cellular constituents normally occurring in the spinal cord: an ultrastructural study in the irradiated rat

    International Nuclear Information System (INIS)

    Sims, T.J.; Gilmore, S.A.

    1983-01-01

    Relationships between intraspinal Schwann cells and neuroglia, particularly astrocytes, were studied following X-irradiation of the spinal cord in 3-day old rats. Initially, this exposure results in a depletion of the neuroglial population. By 10 days post-irradiation (P-I), gaps occur in the glia limitans, although the overlying basal lamina remains intact. Development of and myelination by intraspinal Schwann cells is well underway by 15 days P-I. These Schwann cell-occupied regions have a paucity of astrocyte processes, a finding which persists throughout the study (60 days P-I), and several types of Schwann cell-neuroglial interfaces are observed. The gaps in the glia limitans widen as the P-I interval increases. At 45 and 60 days P-I, the basal lamina no longer forms a singular, continuous covering over the spinal cord surface, but follows instead a rather tortuous course over the disrupted glia limitans and the intraspinal Schwann cells. Although the mode of initial occurrence of Schwann cells within the spinal cord is not yet understood, the data indicate that the astrocyte population is involved in that process, as well as in limiting the further development of Schwann cells within the substance of the spinal cord. (Auth.)

  7. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    Science.gov (United States)

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions

    Directory of Open Access Journals (Sweden)

    Chrysanthi eSamara

    2013-11-01

    Full Text Available The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs. SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

  9. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  10. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    Science.gov (United States)

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  11. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.

    Science.gov (United States)

    Sánchez, Mario; Ceci, Maria Laura; Gutiérrez, Daniela; Anguita-Salinas, Consuelo; Allende, Miguel L

    2016-04-07

    Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. The potential

  12. Neuronal Regulation of Schwann Cell Mitochondrial Ca2+ Signaling during Myelination

    Directory of Open Access Journals (Sweden)

    Daisuke Ino

    2015-09-01

    Full Text Available Schwann cells (SCs myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca2+ increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.

  13. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Ekaterina E Verdiyan

    Full Text Available In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC acetylcholine receptors (AChRs and the axon excitation (different intervals between action potentials (APs. Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the "axon-SC" interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+-influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization.

  14. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M.; Hoffman, John; Yu, Xiaojun

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  15. Patterns of x-radiation-induced Schwann cell development in spinal cords of immature rats

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Heard, J.K.; Leiting, J.E.

    1983-01-01

    Schwann cells, Schwann cell myelin, and connective tissue components develop in the spinal cord of the immature rat following exposure to x-rays. For the purposes of this paper, these intraspinal peripheral nervous tissue constituents are referred to as IPNT. A series of investigations are in progress to elucidate factors related to the development of IPNT, and the present study is a light microscopic evaluation of the relationship between the amount of radiation administered (1,000-3,000R) to the lumbosacral spinal cord in 3-day-old rats and the incidence and distribution of IPNT at intervals up to 60 days postirradiation (P-I). The results showed that IPNT was present in only 33% of the rats exposed to 1,000R, whereas its presence was observed in 86% or more of those in the 2,000-, 2,500-, and 3,000R groups. The distribution of IPNT was quite limited in the 1,000R group, where it was restricted to the spinal cord-dorsal root junction and was found in only a few sections within the irradiated area. The distribution was more widespread with increasing amounts of radiation, and IPNT occupied substantial portions of the dorsal funiculi and extended into the dorsal gray matter in the 3,000R group. In all aR mals developing IPNT in the groups receiving 2,000R or more, the IPNT was present in essentially all sections from the irradiated area. Further studies will compare in detail spinal cords exposed to 1,000R in which IPNT is an infrequent, limited occurrence with those exposed to higher doses where IPNT occurs in a more widespread fashion in essentially all animals

  16. The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes.

    Science.gov (United States)

    Poitelon, Yannick; Feltri, M Laura

    2018-01-01

    In the peripheral nervous system, axons dictate the differentiation state of Schwann cells. Most of this axonal influence on Schwann cells is due to juxtacrine interactions between axonal transmembrane molecules (e.g., the neuregulin growth factor) and receptors on the Schwann cell (e.g., the ErbB2/ErbB3 receptor). The fleeting nature of this interaction together with the lack of synchronicity in the development of the Schwann cell population limits our capability to study this phenomenon in vivo. Here we present a simple Boyden Chamber-based method to study this important cell-cell interaction event. We isolate the early protrusions of Schwann cells that are generated in response to juxtacrine stimulation by sensory neuronal membranes. This method is compatible with a large array of current biochemical analyses and provides an effective approach to study biomolecules that are differentially localized in Schwann cell protrusions and cell bodies in response to axonal signals. A similar approach can be extended to different kinds of cell-cell interactions.

  17. Cellulose/soy protein isolate composite membranes: evaluations of in vitro cytocompatibility with Schwann cells and in vivo toxicity to animals.

    Science.gov (United States)

    Luo, Lihua; Gong, Wenrong; Zhou, Yi; Yang, Lin; Li, Daokun; Huselstein, Celine; Wang, Xiong; He, Xiaohua; Li, Yinping; Chen, Yun

    2015-01-01

    To evaluate the in vitro cytocompatibility of cellulose/soy protein isolate composite membranes (CSM) with Schwann cells and in vivo toxicity to animals. A series of cellulose/soy protein isolate composite membranes (CSM) were prepared by blending, solution casting and coagulation process. The cytocompatibility of the CSM to Schwann cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by direct cells culture of Schwann cells on the surfaces of the CSM, respectively. The in vivo toxicity of the CSM to animals were also evaluated by acute toxicity testing, skin sensitization testing, pyrogen testing and intracutaneous stimulation testing, respectively, according to the ISO 10993 standard. The MTT assay showed that the cell viability of Schwann cells cultured in extracts from the CSM was higher than that from the neat cellulose membrane without containing SPI component. The direct cells culture indicated that the Schwann cells could attach and grow well on the surface of the CSM and the incorporation of SPI into cellulose contributed to improvement of cell adhesion and proliferation. The evaluations of in vivo biological safety suggested that the CSM showed no acute toxicity, no skin sensitization and no intracutaneous stimulation to the experimental animals. The CSM had in vitro cytocompatibility with Schwann cells and biological safety to animals, suggesting potential for the applications as nerve conduit for the repair of nerve defect.

  18. Hyperglycemia Alters the Schwann Cell Mitochondrial Proteome and Decreases Coupled Respiration in the Absence of Superoxide Production

    OpenAIRE

    Zhang, Liang; Yu, Cuijuan; Vasquez, Francisco E.; Galeva, Nadya; Onyango, Isaac; Swerdlow, Russell H.; Dobrowsky, Rick T.

    2010-01-01

    Hyperglycemia-induced mitochondrial dysfunction contributes to sensory neuron pathology in diabetic neuropathy. Although Schwann cells (SCs) also undergo substantial degeneration in diabetic neuropathy, the effect of hyperglycemia on SC mitochondrial proteome and mitochondrial function has not been examined. Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantify the temporal effect of hyperglycemia on the mitochondrial proteome of primary SCs isolated from neona...

  19. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats.

    Science.gov (United States)

    Wang, Shaomei; Lu, Bin; Wood, Patrick; Lund, Raymond D

    2005-07-01

    To study the distribution of the human retinal pigment epithelium (hRPE) cell line ARPE-19 and human Schwann (hSC) cells grafted to the subretinal space of the Royal College of Surgeon (RCS) rat and the relation of graft cell distribution to photoreceptor rescue. Cell suspensions of both donor types were injected into the subretinal space of 3-week-old dystrophic RCS rats through a transscleral approach, human fibroblast and medium were used as control grafts. All animals were maintained on oral cyclosporine. At 1, 2, 4, 6, 15, 28, and 36 weeks after grafting, animals were killed. Human cell-specific markers were used to localize donor cells. Both donor cell types, as revealed by antibodies survived for a substantial time. Their distribution was very different: hRPE cells formed a large clump early on and, with time, spread along the host RPE in a layer one to two cells deep, whereas hSCs formed many smaller clumps, mainly in the subretinal space. Both cells rescued photoreceptors beyond the area of donor cell distribution. The number of surviving cells declined with time. Both hRPE and hSC grafts can survive and rescue photoreceptors for a substantial time after grafting. The number of both donor cell types declined with time, which could be an immune-related problem and/or due to other factors intrinsic to the host RCS retina. The fact that rescue occurred beyond the area of donor cell distribution suggests that diffusible factors are involved, raising the possibility that the two cell types function in a similar manner to rescue photoreceptors.

  20. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development

    DEFF Research Database (Denmark)

    Benninger, Yves; Thurnherr, Tina; Pereira, Jorge A

    2007-01-01

    During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific......During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue...

  1. Schwann Cell-Mediated Preservation of Vision in Retinal Degenerative Diseases via the Reduction of Oxidative Stress: A Possible Mechanism.

    Science.gov (United States)

    Mahmoudzadeh, Raziyeh; Heidari-Keshel, Saeed; Lashay, Alireza

    2016-01-01

    After injury to the central nervous system (CNS), regeneration is often inadequate, except in the case of remyelination. This remyelination capacity of the CNS is a good example of a stem/precursor cell-mediated renewal process. Schwann cells have been found to act as remyelinating agents in the peripheral nervous system (PNS), but several studies have highlighted their potential role in remyelination in the CNS too. Schwann cells are able to protect and support retinal cells by secreting growth factors such as brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and basic fibroblast growth factor. Retinal degenerative diseases can be highly debilitating, and they are a major concern in countries with an ageing populations. One of the leading causes of permanent loss of vision in the West is a retinal degenerative disease known as age-related macular degeneration (AMD). In the United States, nearly 1.75 million people over the age of 40 have advanced AMD, and it is estimated that this number will increase to approximately 3 million people by 2020. One of the most common pathways involved in the initiation and development of retinal diseases is the oxidative stress pathway. In patients with diabetes, Schwann cells have been shown to be able to secrete large amounts of antioxidant enzymes that protect the PNS from the oxidative stress that results from fluctuations in blood glucose levels. This antioxidant ability may be involved in the mechanism by which Schwann cells are able to promote reconstruction in the CNS, especially in individuals with retinal injuries and degenerative diseases.

  2. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  3. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  4. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells.

    Science.gov (United States)

    Petrilli, Alejandra M; Garcia, Jeanine; Bott, Marga; Klingeman Plati, Stephani; Dinh, Christine T; Bracho, Olena R; Yan, Denise; Zou, Bing; Mittal, Rahul; Telischi, Fred F; Liu, Xue-Zhong; Chang, Long-Sheng; Welling, D Bradley; Copik, Alicja J; Fernández-Valle, Cristina

    2017-05-09

    Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.

  5. Graded Elevation of c-Jun in Schwann Cells In Vivo: Gene Dosage Determines Effects on Development, Remyelination, Tumorigenesis, and Hypomyelination.

    Science.gov (United States)

    Fazal, Shaline V; Gomez-Sanchez, Jose A; Wagstaff, Laura J; Musner, Nicolo; Otto, Georg; Janz, Martin; Mirsky, Rhona; Jessen, Kristján R

    2017-12-13

    Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19 ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury. SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis

  6. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.

    Science.gov (United States)

    Wan, Lidan; Xia, Rong; Ding, Wenlong

    2010-09-01

    Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush-injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 microsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par-3, and brain-derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par-3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20-Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES-treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par-3 in the ES-treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination.

  7. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.

    Science.gov (United States)

    Zhao, Yahong; Gong, Jiahuan; Niu, Changmei; Wei, Ziwei; Shi, Jiaqi; Li, Guohui; Yang, Yumin; Wang, Hongbo

    2017-12-01

    Graphene (Gr) has been made of various forms used for repairing peripheral nerve injury with favorable electroactivity, however, graphene-based scaffolds in peripheral nerve regeneration are still rarely reported due to the difficulty of realizing uniform dispersion of graphene and electroactive materials at nanoscale as well as lacking biocompatibility. In this paper, graphene-silk fibroin (SF) composite nanofiber membranes with different mass ratios were prepared via electrospinning. Microscopic observation revealed that electrospun Gr/SF membranes had a nanofibrous structure. Electrochemical analysis provided electroactivity characterization of the Gr/SF membranes. The physiochemical results showed that the physiochemical properties of electrospun Gr/SF membranes could be changed by varying Gr concentration. Swelling ratio and contact angle measurements confirmed that electrospun Gr/SF membranes possessed large absorption capacity and hydrophilic surface, and the mechanical property was improved with increasing Gr concentration. Additionally, in-vitro cytotoxicity with L929 revealed that all the electrospun Gr/SF membranes are biocompatible. Moreover, the morphology and quantity showed that the membranes supported the survival and growth of the cultured Schwann cells. Collectively, all of the results suggest that the electrospun Gr/SF membranes combine the excellent electrically conductivity and mechanical strength of the graphene with biocompatibility property of silk to mimic the natural neural cell micro-environment for nerve development.

  8. Role of Schwann cells in the regeneration of penile and peripheral nerves

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2015-01-01

    Full Text Available Schwann cells (SCs are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED. Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1 the origin and development of SCs in the peripheral and penile nerve system; (2 Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3 how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4 and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.

  9. Hierarchical thermoplastic rippled nanostructures regulate Schwann cell adhesion, morphology and spatial organization.

    Science.gov (United States)

    Masciullo, Cecilia; Dell'Anna, Rossana; Tonazzini, Ilaria; Böettger, Roman; Pepponi, Giancarlo; Cecchini, Marco

    2017-10-12

    Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.

  10. Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability.

    Science.gov (United States)

    Kraus, Armin; Täger, Joachim; Kohler, Konrad; Haerle, Max; Werdin, Frank; Schaller, Hans-Eberhard; Sinis, Nektarios

    2010-11-01

    To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC). The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined. Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-L-ornithine coated plates was compromised by either method. Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.

  11. Implications of Schwann Cells Biomechanics and Mechanosensitivity for Peripheral Nervous System Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-10-01

    Full Text Available The presence of bones around the central nervous system (CNS provides it with highly effective physiologically crucial mechanical protection. The peripheral nervous system (PNS, in contrast, lacks this barrier. Consequently, the long held belief is that the PNS is mechanically vulnerable. On the other hand, the PNS is exposed to a variety of physiological mechanical stresses during regular daily activities. This fact prompts us to question the dogma of PNS mechanical vulnerability. As a matter of fact, impaired mechanics of PNS nerves is associated with neuropathies with the liability to mechanical stresses paralleled by significant impairment of PNS physiological functions. Our recent biomechanical integrity investigations on nerve fibers from wild-type and neuropathic mice lend strong support in favor of natural mechanical protection of the PNS and demonstrate a key role of Schwann cells (SCs therein. Moreover, recent works point out that SCs can sense mechanical properties of their microenvironment and the evidence is growing that SCs mechanosensitivity is important for PNS development and myelination. Hence, SCs exhibit mechanical strength necessary for PNS mechanoprotection as well as mechanosensitivity necessary for PNS development and myelination. This mini review reflects on the intriguing dual ability of SCs and implications for PNS physiology and pathophysiology.

  12. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination.

    Science.gov (United States)

    Ino, Daisuke; Sagara, Hiroshi; Suzuki, Junji; Kanemaru, Kazunori; Okubo, Yohei; Iino, Masamitsu

    2015-09-29

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  14. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  15. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin

    Science.gov (United States)

    Guo, Li; Moon, Chandra; Niehaus, Karen; Zheng, Yi; Ratner, Nancy

    2013-01-01

    During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knockout (Rac1-CKO) mice. Rac1 knockout abrogated phosphorylation of the effector p21-activated kinase (PAK) and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo, and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cyclic adenosine monophosphate (cAMP) levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, as elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination. PMID:23197717

  16. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops.

    Science.gov (United States)

    Vasil, Indra K

    2008-09-01

    Plant biotechnology is founded on the principles of cellular totipotency and genetic transformation, which can be traced back to the Cell Theory of Matthias Jakob Schleiden and Theodor Schwann, and the discovery of genetic transformation in bacteria by Frederick Griffith, respectively. On the 25th anniversary of the genetic transformation of plants, this review provides a historical account of the evolution of the theoretical concepts and experimental strategies that led to the production and commercialization of biotech (transformed or transgenic) plants expressing many useful genes, and emphasizes the beneficial effects of plant biotechnology on food security, human health, the environment, and conservation of biodiversity. In so doing, it celebrates and pays tribute to the contributions of scores of scientists who laid the foundation of modern plant biotechnology by their bold and unconventional thinking and experimentation. It highlights also the many important lessons to be learnt from the fascinating history of plant biotechnology, the significance of history in science teaching and research, and warns against the danger of the growing trends of ignoring history and historical illiteracy.

  17. Mechanosensitivity of Embryonic Neurites Promotes Their Directional Extension and Schwann Cells Progenitors Migration

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-11-01

    Full Text Available Background/Aims: Migration of Schwann cells (SCs progenitors and neurite outgrowth from embryonic dorsal root ganglions (DRGs are two central events during the development of the peripheral nervous system (PNS. How these two enthralling events preceding myelination are promoted is of great relevance from basic research and clinical aspects alike. Recent evidence demonstrates that biophysical cues (extracellular matrix stiffness and biochemical signaling act in concert to regulate PNS myelination. Microenvironment stiffness of SCs progenitors and embryonic neurites dynamically changes during development. Methods: DRG explants were isolated from day 12.5 to 13.5 mice embryos and plated on laminin-coated substrates with varied stiffness values. After 4 days in culture and immunostaining with specific markers, neurite outgrowth pattern, SCs progenitors migration, and growth cone shape and advance were analyzed with confocal fluorescence microscopy. Results: We found out that growing substrate stiffness promotes directional neurite outgrowth, SCs progenitors migration, growth cone advance and presumably axons fasciculation. Conclusions: DRG explants are in vitro models for the research of PNS development, myelination and regeneration. Consequently, we conclude the following: Our observations point out the importance of mechanosensitivity for the PNS. At the same time, they prompt the investigation of the important yet unclear links between PNS biomechanics and inherited neuropathies with myelination disorders such as Charcot-Marie-Tooth 1A and hereditary neuropathy with liability to pressure palsies. Finally, they encourage the consideration of mechanosensitivity in bioengineering of scaffolds to aid nerve regeneration after injury.

  18. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior.

    Directory of Open Access Journals (Sweden)

    Lauren Sweet

    Full Text Available Numerous studies have demonstrated that Schwann cells (SCs play a role in nerve regeneration; however, their role in innervating a bioceramic scaffold for potential application in bone regeneration is still unknown. Here we report the cell growth and functional behavior of SCs on β-tricalcium phosphate (β-TCP scaffolds arranged in 3D printed-lattice (P-β-TCP and randomly-porous, template-casted (N-β-TCP structures. Our results indicate that SCs proliferated well and expressed the phenotypic markers p75LNGFR and the S100-β subunit of SCs as well as displayed growth morphology on both scaffolds, but SCs showed spindle-shaped morphology with a significant degree of SCs alignment on the P-β-TCP scaffolds, seen to a lesser degree in the N-β-TCP scaffold. The gene expressions of nerve growth factor (β-ngf, neutrophin-3 (nt-3, platelet-derived growth factor (pdgf-bb, and vascular endothelial growth factor (vegf-a were higher at day 7 than at day 14. While no significant differences in protein secretion were measured between these last two time points, the scaffolds promoted the protein secretion at day 3 compared to that on the cell culture plates. These results together imply that the β-TCP scaffolds can support SC cell growth and that the 3D-printed scaffold appeared to significantly promote the alignment of SCs along the struts. Further studies are needed to investigate the early and late stage relationship between gene expression and protein secretion of SCs on the scaffolds with refined characteristics, thus better exploring the potential of SCs to support vascularization and innervation in synthetic bone grafts.

  19. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    Science.gov (United States)

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting

  20. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    Science.gov (United States)

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  2. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jianwei [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052 (China); Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China); Zhang, Yang; Li, Fengbo; Li, Yanjun; Zhao, Zhihu [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050 (China)

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.

  3. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    Science.gov (United States)

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  4. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    Science.gov (United States)

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  6. A guidance channel seeded with autologous Schwann cells for repair of cauda equina injury in a primate model.

    Science.gov (United States)

    Calancie, Blair; Madsen, Parley W; Wood, Patrick; Marcillo, Alexander E; Levi, Allan D; Bunge, Richard P

    2009-01-01

    To evaluate an implantable guidance channel (GC) seeded with autologous Schwann cells to promote regeneration of transected spinal nerve root axons in a primate model. Schwann cells were obtained from sural nerve segments of monkeys (Macaca fascicularis; cynomolgus). Cells were cultured, purified, and seeded into a PAN/PVC GC. Approximately 3 weeks later, monkeys underwent laminectomy and dural opening. Nerve roots of the L4 through L7 segments were identified visually. The threshold voltage needed to elicit hindlimb muscle electromyography (EMG) after stimulation of intact nerve roots was determined. Segments of 2 or 3 nerve roots (each approximately 8-15 mm in length) were excised. The GC containing Schwann cells was implanted between the proximal and distal stumps of these nerve roots and attached to the stumps with suture. Follow-up evaluation was conducted on 3 animals, with survival times of 9 to 14 months. Upon reexposure of the implant site, subdural nerve root adhesions were noted in all 3 animals. Several of the implanted GC had collapsed and were characterized by thin strands of connective tissue attached to either end. In contrast, 3 of the 8 implanted GC were intact and had white, glossy cables entering and exiting the conduits. Electrical stimulation of the tissue cable in each of these 3 cases led to low-threshold evoked EMG responses, suggesting that muscles had been reinnervated by axons regenerating through the repair site and into the distal nerve stump. During harvesting of the GC implant, sharp transection led to spontaneous EMG in the same 3 roots showing a low threshold to electrical stimulation, whereas no EMG was seen when harvesting nerve roots with high thresholds to elicit EMG. Histology confirmed large numbers of myelinated axons at the midpoint of 2 GC judged to have reinnervated target muscles. We found a modest rate of successful regeneration and muscle reinnervation after treatment of nerve root transection with a Schwann cell

  7. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation

    Directory of Open Access Journals (Sweden)

    Nadia eGarcía-Mateo

    2014-11-01

    Full Text Available Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood.Apolipoprotein D (ApoD is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA, also interacts with lysophosphatidylcholine (LPC in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii ApoD controls the basal and injury-triggered levels of LPC and AA; (iv ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation.Regulation of macrophage behaviour by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration

  9. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration.

    Science.gov (United States)

    Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B

    2016-10-15

    Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  11. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    Science.gov (United States)

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  12. Electrical Differentiation of Mesenchymal Stem Cells into Schwann-Cell-Like Phenotypes Using Inkjet-Printed Graphene Circuits.

    Science.gov (United States)

    Das, Suprem R; Uz, Metin; Ding, Shaowei; Lentner, Matthew T; Hondred, John A; Cargill, Allison A; Sakaguchi, Donald S; Mallapragada, Surya; Claussen, Jonathan C

    2017-04-01

    Graphene-based materials (GBMs) have displayed tremendous promise for use as neurointerfacial substrates as they enable favorable adhesion, growth, proliferation, spreading, and migration of immobilized cells. This study reports the first case of the differentiation of mesenchymal stem cells (MSCs) into Schwann cell (SC)-like phenotypes through the application of electrical stimuli from a graphene-based electrode. Electrical differentiation of MSCs into SC-like phenotypes is carried out on a flexible, inkjet-printed graphene interdigitated electrode (IDE) circuit that is made highly conductive (sheet resistance electrically stimulated/treated (etMSCs) display significant enhanced cellular differentiation and paracrine activity above conventional chemical treatment strategies [≈85% of the etMSCs differentiated into SC-like phenotypes with ≈80 ng mL -1 of nerve growth factor (NGF) secretion vs. 75% and ≈55 ng mL -1 for chemically treated MSCs (ctMSCs)]. These results help pave the way for in vivo peripheral nerve regeneration where the flexible graphene electrodes could conform to the injury site and provide intimate electrical simulation for nerve cell regrowth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    2016-05-13

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  14. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    International Nuclear Information System (INIS)

    Wu, Weijie; Liu, Yuxi; Wang, Youhua

    2016-01-01

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  15. Proliferación y expresión de marcadores por células de Schwann de rata adulta en cultivo Schwann cells proliferation and marker expression on adult rat in culture

    Directory of Open Access Journals (Sweden)

    Martínez Constanza

    1999-06-01

    Full Text Available En este trabajo se evalúan diferentes técnicas para obten-ción y cultivo de células de Schwann provenientes del nervio periférico de rata adulta, de las cuales la que evi-dencia mejor respuesta es la que combina una degenera-ción walleriana durante 14 días in vitro, seguida de una disociación enzimática. La adición de mitógenos como la forskolina y extracto de pituitaria no muestra un efecto sobre estas células. Los niveles de enriquecimiento en células de Schwann, defi-nidos de acuerdo con patrones morfológicos y de expre-sión de marcadores tales como la proteína S-100 o la pro-teína acida fíbrilar glial (GFAP, son buenos (del orden de 80-88% hasta los ocho días de cultivo. La detección de bromodeoxiouridina (BrdU incorporada por células en fase S del ciclo celular, demuestra que en términos ge-nerales la tasa de incorporación de BrdU de las células guales del sistema nervioso periférico no cambia.This study evaluated some techniques for culture and growth of Schwann Cells from adult rats peripheral nerves. The best of these methods is a combination of in vitro Wallerian degeneration during 14 days, followed by an enzimatic dissociation with collagenase and dispase Mitogens like forskolin and pituitary extract do not have any effects on these cells. Enrichement of the culture (measure by morphological and inmunocitochemical criteria was about 80-88% until 8 days in culture. Stable Level of BrdU incorporation suggested that the population of cells entering S phase does not change.

  16. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  17. Lysophospholipid Receptors Are Differentially Expressed in Rat Terminal Schwann Cells, As Revealed by a Single Cell RT-PCR and In Situ Hybridization

    International Nuclear Information System (INIS)

    Kobashi, Hiroaki; Yaoi, Takeshi; Oda, Ryo; Okajima, Seiichiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Fushiki, Shinji

    2006-01-01

    Terminal Schwann cells (TSCs) that cover motor neuron terminals, are known to play an important role in maintaining neuromuscular junctions, as well as in the repair process after nerve injury. However, the molecular characteristics of TSCs remain unknown, because of the difficulties in analyzing them due to their paucity. By using our previously reported method of selectively and efficiently collecting TSCs, we have analyzed the difference in expression patterns of lysophospholipid (LPL) receptor genes (LPA 1 , LPA 2 , LPA 3 , S1P 1 , S1P 2 , S1P 3 , S1P 4 , and S1P 5 ) between TSCs and myelinating Schwann cells (MSCs). LPL, which includes lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), is the bioactive lipid that induces a myriad of cellular responses through specific members of G-protein coupled receptors for LPA. It turned out that LPA 3 was expressed only in TSCs, whereas S1P 1 was expressed in TSCs and skeletal muscle, but not in MSCs. Other types of LPL receptor genes, including LPA 1 , S1P 2 , S1P 3 , S1P 4 , were expressed in both types of Schwann cells. None of the LPL receptor gene family showed MSCs-specific expression

  18. Transfer of vesicles from Schwann cell to axon: a novel mechanism of communication in the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    María Alejandra eLopez-Verrilli

    2012-06-01

    Full Text Available Schwann cells (SCs are the glial component of the peripheral nervous system, with essential roles during development and maintenance of axons, as well as during regenerative processes after nerve injury. SCs increase conduction velocities by myelinating axons, regulate synaptic activity at presynaptic nerve terminals and are a source of trophic factors to neurons. Thus, development and maintenance of peripheral nerves are crucially dependent on local signalling between SCs and axons. In addition to the classic mechanisms of intercellular signalling, the possibility of communication through secreted vesicles has been poorly explored to date. Interesting recent findings suggest the occurrence of lateral transfer mediated by vesicles from glial cells to axons that could have important roles in axonal growth and axonal regeneration. Here, we review the role of vesicular transfer from SCs to axons and propose the benefits of this means in supporting neuronal and axonal maintenance and regeneration after nerve damage.

  19. A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field

    Directory of Open Access Journals (Sweden)

    Liu ZY

    2017-10-01

    Full Text Available Zhongyang Liu,1,* Shu Zhu,1,* Liang Liu,2,* Jun Ge,3,4,* Liangliang Huang,1 Zhen Sun,1 Wen Zeng,5 Jinghui Huang,1 Zhuojing Luo1 1Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 2Department of Orthopedics, No 161 Hospital of PLA, Wuhan, Hubei, 3Department of Orthopedics, No 323 Hospital of PLA, Xi’an, Shaanxi, 4Department of Anatomy, Fourth Military Medical University, Xi’an, Shaanxi, 5Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Peripheral nerve repair is still challenging for surgeons. Autologous nerve transplantation is the acknowledged therapy; however, its application is limited by the scarcity of available donor nerves, donor area morbidity, and neuroma formation. Biomaterials for engineering artificial nerves, particularly materials combined with supportive cells, display remarkable promising prospects. Schwann cells (SCs are the absorbing seeding cells in peripheral nerve engineering repair; however, the attenuated biologic activity restricts their application. In this study, a magnetic nanocomposite scaffold fabricated from magnetic nanoparticles and a biodegradable chitosan–glycerophosphate polymer was made. Its structure was evaluated and characterized. The combined effects of magnetic scaffold (MG with an applied magnetic field (MF on the viability of SCs and peripheral nerve injury repair were investigated. The magnetic nanocomposite scaffold showed tunable magnetization and degradation rate. The MGs synergized with the applied MF to enhance the viability of SCs after transplantation. Furthermore, nerve regeneration and functional recovery were promoted by the synergism of SCs-loaded MGs and MF. Based on the current findings, the combined application of MGs and SCs with applied MF is a promising therapy for the engineering of peripheral

  20. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves

    OpenAIRE

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M.

    2005-01-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but ne...

  1. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    Directory of Open Access Journals (Sweden)

    Tim Kornfeld

    2016-11-01

    Full Text Available Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95% throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  2. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field

    Directory of Open Access Journals (Sweden)

    Xia B

    2016-12-01

    Full Text Available Bing Xia,* Liangliang Huang,* Lei Zhu, Zhongyang Liu, Teng Ma, Shu Zhu, Jinghui Huang, Zhuojing Luo Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Schwann cell (SC transplantation is an attractive strategy for spinal cord injury (SCI. However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF. It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 µm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the

  3. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    Science.gov (United States)

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  4. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model.

    Science.gov (United States)

    Namjoo, Zeinab; Moradi, Fateme; Aryanpour, Roya; Piryaei, Abbas; Joghataei, Mohammad Taghi; Abbasi, Yusef; Hosseini, Amir; Hassanzadeh, Sajad; Taklimie, Fatemeh Ranjbar; Beyer, Cordian; Zendedel, Adib

    2018-04-15

    Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17β-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP + cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.

  5. POSTTREATMENT NEUROBLASTOMA MATURATION TO GANGLIONIC CELL TUMOR

    Directory of Open Access Journals (Sweden)

    M. V. Ryzhova

    2012-01-01

    Full Text Available Tumor cells can differentiate into more mature forms in undifferentiated or poorly differentiated tumors, such as medulloblastomas with increased nodularity, as well as neuroblastomas. The authors describe 2 cases of neuroblastoma maturation into ganglioneuroblastoma 5 months after chemotherapy in a 2-year-old girl and 3 years after radiotherapy in a 16-year-old girl.

  6. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    Science.gov (United States)

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  7. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    Science.gov (United States)

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  9. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro.

    Science.gov (United States)

    Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin; Huang, Xijun; He, Caifeng; Jiang, Li; Quan, Daping; Zhou, Xiang; Zhu, Zhaowei

    2016-05-01

    Platelet-rich plasma (PRP) contains various growth factors and appears to have the potential to promote peripheral nerve regeneration, but evidence is lacking regarding its biological effect on Schwann cells (SCs). The present study was designed to investigate the effect of PRP concentration on SCs in order to determine the plausibility of using this plasma-derived therapy for peripheral nerve injury. PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and growth factor concentrations. Primary cultures of rat SCs were exposed to various concentrations of PRP (40%, 20%, 10%, 5% and 2.5%). Cell proliferation assays and flow cytometry were performed to study to assess SC proliferation. Quantitative real-time PCR and ELISA analysis were performed to determine the ability of PRP to induce SCs to produce nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). Microchemotaxis assay was used to analyse the cell migration capacity. The results obtained indicated that the platelet concentration and growth factors in our PRP preparations were significantly higher than in whole blood. Cell culture experiments showed that 2.5-20% PRP significantly stimulated SC proliferation and migration compared to untreated controls in a dose-dependent manner. In addition, the expression and secretion of NGF and GDNF were significantly increased. However, the above effects of SCs were suppressed by high PRP concentrations (40%). In conclusion, the appropriate concentration of PRP had the potency to stimulate cell proliferation, induced the synthesis of neurotrophic factors and significantly increased migration of SCs dose-dependently. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization.

    Science.gov (United States)

    Zhao, Zhiwei; Li, Xiaoling; Li, Qing

    2017-08-01

    Schwann cells (SCs) play an indispensable role in the repair and regeneration of injured peripheral nerve. Curcumin can reduce SCs apoptosis, and promote the regeneration and functional recovery of injured peripheral nerves. However, the corresponding mechanisms are not clear. The article was aimed to explore the effect and corresponding mechanisms of curcumin on the repair of sciatic nerve injury in rats. After surgery induced sciatic nerve injury, the model rats were divided into three groups and treated with curcumin, curcumin+PD98059 and curcumin+IGF-1 respectively for 4days. The phosphorylation of Erk1/2 and Akt, and the expression of LC3-II, Beclin 1 and p62 were measured using western blotting. After treatment for 60days, myelination of the injured sciatic nerve was evaluated by MBP immunohistochemical staining and the expression of PMP22, Fibrin and S100 were determined using qRT-PCR and western blotting. In vitro, RSC96 cells were starved for 12h to induce autophagy, and received DMSO, curcumin, PD98059+curcumin, IGF-1+curcumin and BFA1 respectively. The phosphorylation of Erk1/2、Akt and the expression of LC3-II, Beclin 1, p62, PMP22, Fibrin and S100 were measured using western blotting, and the cell apoptosis was detected by flow cytometry. Curcumin could promote injury-induced cell autophagy, remyelination and axon regeneration in sciatic nerve of rats. In vitro, curcumin could accelerate cell autophagy through regulating autophagy related Erk1/2 and Akt pathway, prevent cell apoptosis and promote expression of PMP22 and S100, and reduced deposition of Fibrin in cultured RSC96 SCs. Curcumin could accelerate injured sciatic nerve repair in rats through reducing SCs apoptosis and promoting myelinization. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins.

    Science.gov (United States)

    Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S

    2017-11-01

    The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments.

    Science.gov (United States)

    Behan, Brenda L; DeWitt, Daniel G; Bogdanowicz, Danielle R; Koppes, Abigail N; Bale, Shyam S; Thompson, Deanna M

    2011-01-01

    Both spinal cord injury (SCI) and large-gap peripheral nerve defects can be debilitating affecting a patient's long-term quality of life and presently, there is no suitable treatment for functional regeneration of these injured tissues. A number of works have suggested the benefits of electrical stimulation to promote both glial migration and neuronal extension. In this work, an electrically conductive hydrogel containing single-walled carbon nanotubes (SWCNT) for neural engineering applications is presented and the Schwann cell (SC) response to SWCNT is examined in both 2D and 3D microenvironments. Results from clonogenic and alamarBlue® assays in 2D indicate that SWCNT (10-50 μg mL(-1)) inhibit SC proliferation but do not affect cell viability. Following SWCNT exposure in 2D, changes in SC morphology can be observed with the nanomaterial attached to the cell membrane at concentrations as low as 10 μg mL(-1). In contrast to the results gathered in 2D, SC embedded within the 3D hydrogel loaded with 10-50 μg mL(-1) of SWCNT exhibited little or no measurable change in cell proliferation, viability, or morphology as assessed using a digestion assay, alamarBlue, and confocal microscopy. Collectively, this highlights that an electrically-conductive SWCNT collagen I-Matrigel™ biomaterial may be suitable for neural tissue engineering and is able to sustain populations of SC. Findings suggest that 2D nanoparticle toxicity assays may not be accurate predictors of the 3D response, further motivating the examination of these materials in a more physiologically relevant environment. Copyright © 2010 Wiley Periodicals, Inc.

  13. Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system Comportamento de oligodendrócitos e células de Schwann em modelo experimental de desmielinização tóxica do sistema nervoso central

    Directory of Open Access Journals (Sweden)

    Dominguita Lühers Graça

    2001-06-01

    Full Text Available Oligodendrocytes and Schwann cells are engaged in myelin production, maintenance and repairing respectively in the central nervous system (CNS and the peripheral nervous system (PNS. Whereas oligodendrocytes act only within the CNS, Schwann cells are able to invade the CNS in order to make new myelin sheaths around demyelinated axons. Both cells have some limitations in their activities, i.e. oligodendrocytes are post-mitotic cells and Schwann cells only get into the CNS in the absence of astrocytes. Ethidium bromide (EB is a gliotoxic chemical that when injected locally within the CNS, induce demyelination. In the EB model of demyelination, glial cells are destroyed early after intoxication and Schwann cells are free to approach the naked central axons. In normal Wistar rats, regeneration of lost myelin sheaths can be achieved as early as thirteen days after intoxication; in Wistar rats immunosuppressed with cyclophosphamide the process is delayed and in rats administered cyclosporine it may be accelerated. Aiming the enlightening of those complex processes, all events concerning the myelinating cells in an experimental model are herein presented and discussed.Oligodendrócitos e células de Schwann realizam a produção e manutenção das bainhas de mielina, respectivamente no sistema nervoso central (SNC e periférico (SNP. As células de Schwann, à diferença dos oligodendrócitos, são capazes de invadir o SNC para remielinizar axônios desmielinizados, sempre que os astrócitos tenham sido destruídos. O brometo de etídio é uma droga gliotóxica usada para induzir desmielinização com o desaparecimento precoce de astrócitos, de modo que as células de Schwann têm liberdade para invadir o SNC. Em ratos Wistar normais, a remielinização é detectada treze dias após desmielinização; em ratos Wistar imunossuprimidos com ciclofosfamida a reparação do tecido é tardia, enquanto que em animais tratados com ciclosporina ela

  14. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  15. Transplantation of bone-marrow-derived cells into a nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration of transected mouse sciatic nerve.

    Science.gov (United States)

    Pereira Lopes, Fátima Rosalina; Frattini, Flávia; Marques, Suelen Adriani; Almeida, Fernanda Martins de; de Moura Campos, Lenira Camargo; Langone, Francesco; Lora, Silvano; Borojevic, Radovan; Martinez, Ana Maria Blanco

    2010-10-01

    Peripheral nerves possess the capacity of self-regeneration after traumatic injury. Nevertheless, the functional outcome after peripheral-nerve regeneration is often poor, especially if the nerve injuries occur far from their targets. Aiming to optimize axon regeneration, we grafted bone-marrow-derived cells (BMDCs) into a collagen-tube nerve guide after transection of the mouse sciatic nerve. The control group received only the culture medium. Motor function was tested at 2, 4, and 6 weeks after surgery, using the sciatic functional index (SFI), and showed that functional recovery was significantly improved in animals that received the cell grafts. After 6 weeks, the mice were anesthetized, perfused transcardially, and the sciatic nerves were dissected and processed for transmission electron microscopy and light microscopy. The proximal and distal segments of the nerves were compared, to address the question of improvement in growth rate; the results revealed a maintenance and increase of nerve regeneration for both myelinated and non-myelinated fibers in distal segments of the experimental group. Also, quantitative analysis of the distal region of the regenerating nerves showed that the numbers of myelinated fibers, Schwann cells (SCs) and g-ratio were significantly increased in the experimental group compared to the control group. The transdifferentiation of BMDCs into Schwann cells was confirmed by double labeling with S100/and Hoechst staining. Our data suggest that BMDCs transplanted into a nerve guide can differentiate into SCs, and improve the growth rate of nerve fibers and motor function in a transected sciatic-nerve model.

  16. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    Science.gov (United States)

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  17. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells.

    Science.gov (United States)

    Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Farzamfar, Saeed; Mansouri, Korosh; Ai, Jafar

    2018-04-01

    The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young's modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 10 4 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin-eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.

  18. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes.

    Directory of Open Access Journals (Sweden)

    Sara Marinelli

    Full Text Available In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25, the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A, could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw's nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC. We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients' quality of life.

  19. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    OpenAIRE

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  20. Combination Therapy with c-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells.

    Science.gov (United States)

    Fuse, Marisa A; Plati, Stephani Klingeman; Burns, Sarah S; Dinh, Christine T; Bracho, Olena; Yan, Denise; Mittal, Rahul; Shen, Rulong; Soulakova, Julia N; Copik, Alicja J; Liu, Xue Zhong; Telischi, Fred F; Chang, Long-Sheng; Franco, Maria Clara; Fernandez-Valle, Cristina

    2017-11-01

    Neurofibromatosis type 2 (NF2) is a nervous system tumor disorder caused by inactivation of the merlin tumor suppressor encoded by the NF2 gene. Bilateral vestibular schwannomas are a diagnostic hallmark of NF2. Mainstream treatment options for NF2-associated tumors have been limited to surgery and radiotherapy; however, off-label uses of targeted molecular therapies are becoming increasingly common. Here, we investigated drugs targeting two kinases activated in NF2-associated schwannomas, c-Met and Src. We demonstrated that merlin-deficient mouse Schwann cells (MD-MSC) treated with the c-Met inhibitor, cabozantinib, or the Src kinase inhibitors, dasatinib and saracatinib, underwent a G 1 cell-cycle arrest. However, when MD-MSCs were treated with a combination of cabozantinib and saracatinib, they exhibited caspase-dependent apoptosis. The combination therapy also significantly reduced growth of MD-MSCs in an orthotopic allograft mouse model by greater than 80% of vehicle. Moreover, human vestibular schwannoma cells with NF2 mutations had a 40% decrease in cell viability when treated with cabozantinib and saracatinib together compared with the vehicle control. This study demonstrates that simultaneous inhibition of c-Met and Src signaling in MD-MSCs triggers apoptosis and reveals vulnerable pathways that could be exploited to develop NF2 therapies. Mol Cancer Ther; 16(11); 2387-98. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    Science.gov (United States)

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.

  2. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  3. Tang-Luo-Ning, a Traditional Chinese Medicine, Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis of Schwann Cells under High Glucose Environment

    Directory of Open Access Journals (Sweden)

    Weijie Yao

    2017-01-01

    Full Text Available Tang-Luo-Ning (TLN has a definite effect in the clinical treatment of diabetic peripheral neuropathy (DPN. Schwann cells (SCs apoptosis induced by endoplasmic reticulum stress (ER stress is one of the main pathogeneses of DPN. This study investigates whether TLN can inhibit SCs apoptosis by inhibiting ER stress-induced apoptosis. Our previous researches have demonstrated that TLN could increase the expression of ER stress marker protein GRP78 and inhibited the expression of apoptosis marker protein CHOP in ER stress. In this study, the results showed that TLN attenuated apoptosis by decreasing Ca2+ level in SCs and maintaining ER morphology. TLN could decrease downstream proteins of CHOP including GADD34 and Ero1α, while it increased P-eIF2α and decreased the upstream proteins of CHOP including P-IRE1α/IRE1α and XBP-1, thereby reducing ER stress-induced apoptosis.

  4. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair.

    Science.gov (United States)

    Wewetzer, Konstantin; Radtke, Christine; Kocsis, Jeffery; Baumgärtner, Wolfgang

    2011-05-01

    Autologous transplantation of olfactory ensheathing cells (OECs) and Schwann cells (SCs) is considered a promising option to promote axonal regrowth and remyelination after spinal cord injury in humans. However, if the experimental data from the rodent model can be directly extrapolated to humans, as widely believed, remains to be established. While limitations of the rodent system have recently been discussed with regard to the distinct organization of the motor systems, the question whether OECs and SCs may display species-specific properties has not been fully addressed. Prompted by recent studies on canine and porcine glia, we performed a detailed analysis of the in vitro and in vivo properties of OECs and SCs and show that rodent but not human, monkey, porcine, and canine glia require mitogens for in vitro expansion, display a complex response to elevated intracellular cAMP, and undergo spontaneous immortalization upon prolonged mitogen stimulation. These data indicate fundamental inter-species differences of the control of cellular proliferation. Whether OECs and SCs from large animals and humans share growth-promoting in vivo properties with their rodent counterpart is not yet clear. Autologous implantation studies in humans did not reveal adverse effects of cell transplantation so far. However, in vivo studies of large animal or human glia and rodent recipients mainly focused on the remyelinating potential of the transplanted cells. Thus, further experimental in vivo studies in large animals are essential to fully define the axonal growth-promoting potential of OECs and SCs. Based on the homology of the in vitro growth control between porcine, canine and human glia, it is concluded that these species may serve as valuable translational models for scaling up human procedures. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair. Copyright © 2010 Elsevier Inc. All rights

  5. S100ß and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury S100ß e fator de crescimento de fibroblasto-2 estão presentes nas células de Schwann cultivadas e exercem ações parácrinas na lesão do nervo

    Directory of Open Access Journals (Sweden)

    Tatiana Duobles

    2008-12-01

    Full Text Available PURPOSE: The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF and Ca++ binding protein S100ß are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG. Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS: Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS: FGF-2 and S100ß are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100ß positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100ß positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION: Reactive peripheral glial cells synthesizing FGF-2 and S100ß may be important in wound repair and restorative events in the lesioned peripheral nerves.OBJETIVO: O fator neurotrófico fator de crescimento de fibroblastos-2 (FGF-2, bFGF e a proteína ligante de Ca++ S100ß são expressos pelas células de Schwann dos nervos e por células satélites do gânglio da raiz dorsal (GRD. Estudos recentes indicam a importância das moléculas nos mecanismos parácrinos relacionados

  6. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  7. Loss-of-Function Mutations in LGI4, a Secreted Ligand Involved in Schwann Cell Myelination, Are Responsible for Arthrogryposis Multiplex Congenita.

    Science.gov (United States)

    Xue, Shifeng; Maluenda, Jérôme; Marguet, Florent; Shboul, Mohammad; Quevarec, Loïc; Bonnard, Carine; Ng, Alvin Yu Jin; Tohari, Sumanty; Tan, Thong Teck; Kong, Mung Kei; Monaghan, Kristin G; Cho, Megan T; Siskind, Carly E; Sampson, Jacinda B; Rocha, Carolina Tesi; Alkazaleh, Fawaz; Gonzales, Marie; Rigonnot, Luc; Whalen, Sandra; Gut, Marta; Gut, Ivo; Bucourt, Martine; Venkatesh, Byrappa; Laquerrière, Annie; Reversade, Bruno; Melki, Judith

    2017-04-06

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...

  9. Evaluation of sexual maturity among adolescent male sickle cell ...

    African Journals Online (AJOL)

    Methods. We conducted a cross-sectional case-control study evaluating sexual maturation of male patients with sickle cell anaemia and those .... statistical location were calculated for continuous data and ..... Butterworth's Medical Dictionary.

  10. Sugar Composition Analysis of Fuzi Polysaccharides by HPLC-MSn and Their Protective Effects on Schwann Cells Exposed to High Glucose

    Directory of Open Access Journals (Sweden)

    Bei-Bei Wang

    2016-11-01

    Full Text Available Fuzi has been used to treat diabetic complications for many years in china. In a previous study, we have shown that Fuzi aqueous extract can attenuate Diabetic peripheral neuropathy (DPN in rats and protect Schwann cells from injury. Thus, the protective effect of Fuzi polysaccharides (FPS on high glucose-induced SCs and the preliminary mechanism were investigated. Firstly, the FPS were obtained and their monose composition was analyzed by the combination of pre-column derivatization and high performance liquid chromatography coupled with electrospray ionization multi-tandem mass spectrometry (HPLC/ESI-MSn. The results witnessed the efficiency of this method and seven monosaccharides were tentatively identified, among which fucose was first reported. Simultaneously, m/z 215 can be considered as diagnostic ions to confirm the number of monosaccharides. Next, high glucose-induced SC model was applied and divided into model group, treated group of FPS, normal and osmotic control group. After treatment for 48 h, the data showed FPS could significantly decrease the intracellular ROS and apoptosis, which were determined by the corresponding fluorescent probes. Then, the expression of oxidative stress-related proteins in SCs were measured by Western blot. Furthermore, the protein tests found that FPS markedly up-regulated superoxide dismutase (SOD, catalase (CAT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α protein level, but down-regulated NADPH oxidase-1 (Nox1 protein level. Moreover, FPS could also increase AMP-activated protein kinase (AMPK activation significantly. Hence, we preliminary deduced that AMPK-PGC-1α pathway may play an important role in the protective effect of FPS against high glucose-induced cell damage.

  11. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  12. Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit.

    Science.gov (United States)

    Salehi, Majid; Naseri-Nosar, Mahdi; Ebrahimi-Barough, Somayeh; Nourani, Mohammdreza; Khojasteh, Arash; Hamidieh, Amir-Ali; Amani, Amir; Farzamfar, Saeed; Ai, Jafar

    2018-05-01

    The current study aimed to enhance the efficacy of peripheral nerve regeneration using an electrically conductive biodegradable porous neural guidance conduit for transplantation of allogeneic Schwann cells (SCs). The conduit was produced from polylactic acid (PLA), multiwalled carbon nanotubes (MWCNTs), and gelatin nanofibrils (GNFs) coated with the recombinant human erythropoietin-loaded chitosan nanoparticles (rhEpo-CNPs). The PLA/MWCNTs/GNFs/rhEpo-CNPs conduit had the porosity of 85.78 ± 0.70%, the contact angle of 77.65 ± 1.91° and the ultimate tensile strength and compressive modulus of 5.51 ± 0.13 MPa and 2.66 ± 0.34 MPa, respectively. The conduit showed the electrical conductivity of 0.32 S cm -1 and lost about 11% of its weight after 60 days in normal saline. The produced conduit was able to release the rhEpo for at least 2 weeks and exhibited favorable cytocompatibility towards SCs. For functional analysis, the conduit was seeded with 1.5 × 10 4 SCs and implanted into a 10 mm sciatic nerve defect of Wistar rat. After 14 weeks, the results of sciatic functional index, hot plate latency, compound muscle action potential amplitude, weight-loss percentage of wet gastrocnemius muscle and Histopathological examination using hematoxylin-eosin and Luxol fast blue staining demonstrated that the produced conduit had comparable nerve regeneration to the autograft, as the gold standard to bridge the nerve gaps. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1463-1476, 2018. © 2017 Wiley Periodicals, Inc.

  13. Squamous cell carcinoma arising in a mature cystic teratoma

    Directory of Open Access Journals (Sweden)

    Gupta Vishwanath

    2009-04-01

    Full Text Available Two cases of squamous cell carcinoma (SCC arising in a mature cystic teratoma (MCT are being discussed for their rarity and pattern of infiltration of tumor cells in the stroma (alpha mode, beta mode and gamma mode, which is a key factor in deciding the prognosis and patient survival.

  14. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  15. Squamous cell carcinoma arising in mature cystic teratoma of ovary

    Directory of Open Access Journals (Sweden)

    Ranu Patni

    2014-01-01

    Full Text Available Squamous cell carcinoma of the ovary is a rare condition and usually arises in mature cystic teratoma (MCT or dermoid cyst of the ovary. The reported incidence of malignant transformation in MCT is approximately 2%. A case of squamous cell carcinoma arising in a dermoid cyst of the ovary presenting at an early stage is presented here. A 53-year-old postmenopausal lady, presented with the complaint of pain in right lower abdomen since one month and a large complex abdomino-pelvic mass on examination and investigations. Final histopathology was reported as squamous cell carcinoma of left ovary arising from dermoid cyst and a benign dermoid cyst in the right ovary. The patient was assigned to squamous cell carcinoma of the ovary arising in a mature cystic teratoma, surgical stage Ic2. In view of the poor prognosis, adjuvant chemotherapy was started.

  16. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    Science.gov (United States)

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  17. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Elena Arellano-Orden

    Full Text Available Conflicting data exist on the role of pulmonary dendritic cells (DCs and their maturation in patients with chronic obstructive pulmonary disease (COPD. Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs, BDCA3-positive mDCs, and plasmacytoid DCs (pDCs-and determine their maturation markers (CD40, CD80, CD83, and CD86 in all participants. We also identified follicular DCs (fDCs, Langerhans DCs (LDCs, and pDCs in 42 patients by immunohistochemistry.COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers, whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers. The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively. Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.

  18. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  19. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  20. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  1. The Influence of Ouabain on Human Dendritic Cells Maturation

    Directory of Open Access Journals (Sweden)

    C. R. Nascimento

    2014-01-01

    Full Text Available Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua. Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days. To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.

  2. Fibroblast and T cells conditioned media induce maturation dendritic cell and promote T helper immune response

    Directory of Open Access Journals (Sweden)

    Masoumeh Asadi

    2012-06-01

    Full Text Available Dendritic cells (DCs induce pathogen-specific T cell responses. We comprehensively studied the effects of addition of maturation stimulus, fibroblasts (fibroblast conditioned medium, PHA activated T cells (T cell conditioned medium, and mixture of fibroblast & PHA activated T cells (FCM-TCCM conditioned media on maturation of DCs. Monocytes were cultured with GM-CSF and IL-4 for five days. Maturation factors included MCM and TNF-α as control group. FCM and TCCM, or FCM-TCCM supernatant were considered as the treatment group. Tumor antigens were added at day five. Matured DCs were harvested at day seven. Phenotypic and functional analyses were carried out using anti (CD14, CD80, CD86, CD83 and HLA-DR monoclonal antibodies. Phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production were also evaluated. At the end of culturing period, significantly fully matured DCs with large amount cytoplasm and copious dendritic projections were found in the presence of MCM, TNF-α with or without FCM, TCCM, FCM as well as TCCM. Flow cytometric analysis revealed that expression of CD14 decreased in particular in treated DCs, at the 5th day and expression of CD80, CD86 and HLA-DR was higher when FCM, TCCM, FCM plus TCCM were added to maturation factor. This study demonstrated that DCs matured with these methods had optimum function in comparison with either factor alone.

  3. Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity.

    Science.gov (United States)

    Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo

    2015-10-01

    The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.

  4. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  5. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  6. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Jespersen, Åse; Lutterodt, Melissa Catherine

    2010-01-01

    The aim of this study was to investigate the spatiotemporal development of autonomic nerve fibers and primordial germ cells (PGCs) along their migratory route from the dorsal mesentery to the gonadal ridges in human embryos using immunohistochemical markers and electron microscopy. Autonomic nerve...... arrive at the gonadal ridge between 29 and 33 days pc. In conclusion, our data suggest that PGCs in human embryos preferentially migrate along autonomic nerve fibers from the dorsal mesentery to the developing gonad where they are delivered via a fine nerve plexus....

  7. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  8. Evaluation of sexual maturity among adolescent male sickle cell ...

    African Journals Online (AJOL)

    Tanner staging and testicular volume assessment were both used as models for evaluating stages of sexual maturation among SCA patients and their normal counterparts matched for age and socioeconomic status. Results. SCA patients showed delayed onset and completion of sexual maturation. TV of subjects was ...

  9. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  11. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    pounded the cell theory with M Schleiden, had diverse interests. ... (Courtesy: Dr. Vanaja Shetty, The Foundation for Medical Research, Mumbai) ... Role of Schwann Cells in Myelination ... arrangement of microvilli extending from the Schwann cell embedded in the gap matrix ... Schwann cells Regulate Nerve Development.

  12. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.

    Science.gov (United States)

    Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I

    2017-06-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular

  13. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  14. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity.

    Science.gov (United States)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte; Abdallah, Basem M; Kassem, Moustapha; Klein-Nulend, Jenneke

    2010-02-01

    For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC-mature exhibited higher osteocalcin and alkaline phosphatase gene expression and activity than PDSC-immature. Pulsating fluid flow (PFF) stimulated nitric oxide production within 5 min by PDSC-mature but not by PDSC-immature. In PDSC-mature, PFF induced prostaglandin E(2) production, and cyclooxygenase 2 gene expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs and produce more bone in vivo. These data suggest that PDSCs with a mature osteogenic phenotype might be preferable for bone tissue engineering to restore, for example, maxillofacial defects, because they might be able to perform mature bone cell-specific functions during bone adaptation to mechanical loading in vivo.

  15. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  16. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    DEFF Research Database (Denmark)

    Svane, I M; Nikolajsen, K; Walter, M R

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required......, maturation with IFN-alpha has only a small effect on induction of autologous T-cell stimulatory capacity of the DC. However, an increase in DC allogeneic T-cell stimulatory capacity was observed. These data suggest that IFN-alpha has a potential as a maturation agent used in DC-based cancer vaccine trials...

  17. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes

    International Nuclear Information System (INIS)

    Ishii, Takamichi; Yasuchika, Kentaro; Fujii, Hideaki; Hoppo, Toshitaka; Baba, Shinji; Naito, Masato; Machimoto, Takafumi; Kamo, Naoko; Suemori, Hirofumi; Nakatsuji, Norio; Ikai, Iwao

    2005-01-01

    It is difficult to induce the maturation of embryonic stem (ES) cells into hepatocytes in vitro. We previously reported that Thy1-positive mesenchymal cells derived from the mouse fetal liver promote the maturation of hepatic progenitor cells. Here, we isolated alpha-fetoprotein (AFP)-producing cells from mouse ES cells for subsequent differentiation into hepatocytes in vitro by coculture with Thy1-positive cells. ES cells expressing green fluorescent protein (GFP) under the control of an AFP promoter were cultured under serum- and feeder layer-free culture conditions. The proportion of GFP-positive cells plateaued at 41.6 ± 12.2% (means ± SD) by day 7. GFP-positive cells, isolated by flow cytometry, were cultured in the presence or absence of Thy1-positive cells as a feeder layer. Isolated GFP-positive cells were stained for AFP, Foxa2, and albumin. The expression of mRNAs encoding tyrosine amino transferase, tryptophan 2,3-dioxygenase, and glucose-6-phosphatase were only detected following coculture with Thy1-positive cells. Following coculture with Thy1-positive cells, the isolated cells produced and stored glycogen. Ammonia clearance activity was also enhanced following coculture. Electron microscopic analysis indicated that the cocultured cells exhibited the morphologic features of mature hepatocytes. In conclusion, coculture with Thy1-positive cells in vitro induced the maturation of AFP-producing cells isolated from ES cell cultures into hepatocytes

  18. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  19. Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells

    OpenAIRE

    Gervois, Pascal; Wolfs, Esther; Dillen, Yörg; Hilkens, Petra; Ratajczak, Jessica; Driesen, Ronald; Vangansewinkel, Tim; Bronckaers, Annelies; Brône, Bert; Struys, Tom; Lambrichts, Ivo

    2017-01-01

    Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC s...

  20. Kidins220/ARMS depletion is associated with the neural-to Schwann-like transition in a human neuroblastoma cell line model.

    Science.gov (United States)

    Rogers, Danny A; Schor, Nina F

    2013-03-10

    Peripheral neuroblastic tumors exist as a heterogeneous mixture of neuroblastic (N-type) cells and Schwannian stromal (S-type) cells. These stromal cells not only represent a differentiated and less aggressive fraction of the tumor, but also have properties that can influence the further differentiation of nearby malignant cells. In vitro neuroblastoma cultures exhibit similar heterogeneity with N-type and S-type cells representing the neuroblastic and stromal portions of the tumor, respectively, in behavior, morphology, and molecular expression patterns. In this study, we deplete kinase D-interacting substrate of 220kD (Kidins220) with an shRNA construct and thereby cause morphologic transition of the human SH-SY5Y neuroblastoma cell line from N-type to S-type. The resulting cells have similar morphology and expression profile to SH-EP1 cells, a native S-type cell line from the same parent cell line, and to SH-SY5Y cells treated with BrdU, a treatment that induces S-type morphology. Specifically, both Kidins220-deficient SH-SY5Y cells and native SH-EP1 cells demonstrate down-regulation of the genes DCX and STMN2, markers for the neuronal lineage. We further show that Kidins220, DCX and STMN2 are co-down-regulated in cells of S-type morphology generated by methods other than Kidins220 depletion. Finally, we report that the association of low Kidins220 expression with S-type morphology and low DCX and STMN2 expression is demonstrated in spontaneously occurring human peripheral neuroblastic tumors. We propose that Kidins220 is critical in N- to S-type transition of neural crest tumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  2. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Smits, K.; Piepers, S.; Abbeel, Van den E.; Woelders, H.; Soom, Van A.

    2016-01-01

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were

  3. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Aimée Bastidas-Ponce

    2017-06-01

    Full Text Available Objective: The transcription factors (TF Foxa2 and Pdx1 are key regulators of beta-cell (β-cell development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY, pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. Methods: In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBFDHom fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF with the newly generated Pdx1-BFP (blue fluorescent protein fusion (PBF mice. Results: Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBFDHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. Conclusions: Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass. Keywords: Foxa2, Pdx1, β-Cell maturation, β-Cell identity, Trans-differentiation

  4. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  5. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  6. Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-12-01

    Full Text Available Summary: A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an “interrupted reprogramming” strategy to generate “induced progenitor-like (iPL cells” using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine. : In this article Waddell, Nagy, and colleagues present an “interrupted reprogramming” strategy to produce highly specified functional “induced progenitor-like cells” from mature quiescent cells. They propose that careful control of the duration of transient expression of iPSC reprogramming factors (OSKM allows controlled expansion yet preservation of parental lineage without traversing the pluripotent state. Keywords: generation of induced progenitor-like cells

  7. 2-Azidoalkoxy-7-hydro-8-oxoadenine derivatives as TLR7 agonists inducing dendritic cell maturation.

    Science.gov (United States)

    Weterings, Jimmy J; Khan, Selina; van der Heden van Noort, Gerbrand J; Melief, Cornelis J M; Overkleeft, Herman S; van der Burg, Sjoerd H; Ossendorp, Ferry; van der Marel, Gijsbert A; Filippov, Dmitri V

    2009-04-15

    The synthesis of an array of 2-azidoalkoxy substituted 7-hydro-8-oxoadenines is described. The relation of the structure of these compounds and their ability to induce maturation of dendritic cells is evaluated.

  8. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  9. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    International Nuclear Information System (INIS)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-01-01

    Highlights: ► The sperm centriole is the progenitor of centrosomes in all somatic cells. ► Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. ► Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. ► Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  10. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes

    Science.gov (United States)

    Suliman, Hagir B.; Zobi, Fabio

    2016-01-01

    Abstract Aims: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Results: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. Innovation: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Conclusion: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as

  11. NKT Cell-TCR Expression Activates Conventional T Cells in Vivo, but Is Largely Dispensable for Mature NKT Cell Biology

    Science.gov (United States)

    Vahl, J. Christoph; Heger, Klaus; Knies, Nathalie; Hein, Marco Y.; Boon, Louis; Yagita, Hideo; Polic, Bojan; Schmidt-Supprian, Marc

    2013-01-01

    Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR. PMID:23853545

  12. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology.

    Directory of Open Access Journals (Sweden)

    J Christoph Vahl

    Full Text Available Natural killer T (NKT cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR.

  13. Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression

    Science.gov (United States)

    Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin

    2012-01-01

    ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400

  14. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    International Nuclear Information System (INIS)

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-01-01

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 μM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion

  15. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles.

    Science.gov (United States)

    Kong, Dong; Farmer, Veronica; Shukla, Anil; James, Jana; Gruskin, Richard; Kiriyama, Shigeo; Loncarek, Jadranka

    2014-09-29

    Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.

  16. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.

    Science.gov (United States)

    Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T

    2013-08-01

    The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).

  17. Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination

    NARCIS (Netherlands)

    M.E. Sheean (Maria); E. McShane (Erik); C. Cheret (Cyril); J. Walcher (Jan); T. Müller (Thomas); A. Wulf-Goldenberg (Annika); S. Hoelper (Soraya); A.N. Garratt (Alistair); M. Krüger (Markus); K. Rajewsky (Klaus); D.N. Meijer (Dies); W. Birchmeier (Walter); G.R. Lewin (Gary); M. Selbach (Matthias); C. Birchmeier (Carmen)

    2014-01-01

    textabstractMyelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin

  18. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  19. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  20. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    Science.gov (United States)

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  1. Factors involved in the maturation of murine dendritic cells transduced with adenoviral vector variants

    International Nuclear Information System (INIS)

    Kanagawa, Naoko; Koretomo, Ryosuke; Murakami, Sayaka; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Fujita, Takuya; Yamamoto, Akira; Okada, Naoki

    2008-01-01

    Adenoviral vector (Ad)-mediated gene transfer is an attractive method for manipulating the immunostimulatory properties of dendritic cells (DCs) for cancer immunotherapy. DCs treated with Ad have phenotype alterations (maturation) that facilitate T cell sensitization. We investigated the mechanisms of DC maturation with Ad transduction. Expression levels of a maturation marker (CD40) on DCs treated with conventional Ad, fiber-modified Ads (AdRGD, AdF35, AdF35ΔRGD), or a different serotype Ad (Ad35) were correlated with their transduction efficacy. The α v -integrin directional Ad, AdRGD, exhibited the most potent ability to enhance both foreign gene expression and CD40 expression, and induced secretion of interleukin-12, tumor necrosis factor-α, and interferon-α in DCs. The presence of a foreign gene expression cassette in AdRGD was not necessary for DC maturation. Maturation of DCs treated with AdRGD was suppressed by destruction of the Ad genome, inhibition of endocytosis, or endosome acidification, whereas proteasome inhibition increased CD40 expression levels on DCs. Moreover, inhibition of α v -integrin signal transduction and blockade of cytokine secretion affected the maturation of DCs treated with AdRGD only slightly or not at all, respectively. Thus, our data provide evidence that Ad-induced DC maturation is due to Ad invasion of the DCs, followed by nuclear transport of the Ad genome, and not to the expression of foreign genes

  2. Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

    OpenAIRE

    Baptiste, Beverly A.; Ananda, Guruprasad; Strubczewski, Noelle; Lutzkanin, Andrew; Khoo, Su Jen; Srikanth, Abhinaya; Kim, Nari; Makova, Kateryna D.; Krasilnikova, Maria M.; Eckert, Kristin A.

    2013-01-01

    Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (?10 units) are present within exonic sequences of >350 genes, re...

  3. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    OpenAIRE

    Lee, Miseon; Rhee, Kunsoo

    2015-01-01

    Background Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. Methods We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. ...

  4. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  5. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  6. La célula de schwann

    OpenAIRE

    Perdomo, Sandra; Spinel, Clara

    2011-01-01

    Las neuronas son las células del sistema nervioso y están recubiertas y protegidas por células gliales. En el sistema nerviosos periférico las células de Schwann (CS) son la glía de los nervios. Las prolongaciones o neuritas (axón y dendrita) de los cuerpos de las neuronas son recubiertas por las CS y constituyen las fibras nerviosas. La relación íntima entre la CS y la neurita se determina durante el desarrollo embrionario. La CS es esencial en la migración correcta de las neuritas hacia su ...

  7. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    Directory of Open Access Journals (Sweden)

    Miseon Lee

    2015-03-01

    Full Text Available BackgroundMutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis.MethodsWe immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles.ResultsNinein signals were significantly impaired in CPAP-depleted cells.ConclusionThe results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.

  8. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco

    2013-01-01

    induction of type 1 effector T cells. Standard matured clinical grade DCs “sDCs” were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs “αDC1s” (TNF-α, IL-1β, IFN-γ, IFN-α, Poly(I:C)) and “mDCs” (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail...... – “mpDCs”, containing MPL, IFN-γ and PGE2. αDC1s and mDCs secreted IL-12 directly and following re-stimulation with CD40L-expressing cells and they mainly secreted the T effector cell attracting chemokines CXCL10 and CCL5 as opposed to sDCs that mainly secreted CCL22, known to attract regulatory T cells...

  9. Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece.

    Science.gov (United States)

    Lundy, David J; Lee, Desy S; Hsieh, Patrick C H

    2017-03-01

    There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al ., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

  10. CD1 and major histocompatibility complex II molecules follow a different course during dendritic cell maturation

    NARCIS (Netherlands)

    van der Wel, Nicole N.; Sugita, Masahiko; Fluitsma, Donna M.; Cao, Xaiochun; Schreibelt, Gerty; Brenner, Michael B.; Peters, Peter J.

    2003-01-01

    The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class IT compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1

  11. Studies on mRNA electroporation of immature and mature dendritic cells

    DEFF Research Database (Denmark)

    Met, Ozcan; Eriksen, Jens; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  12. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    Science.gov (United States)

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  13. Weaning triggers a maturation step of pancreatic β cells

    DEFF Research Database (Denmark)

    Stolovich-Rain, Miri; Enk, Jonatan; Vikesa, Jonas

    2015-01-01

    Because tissue regeneration deteriorates with age, it is generally assumed that the younger the animal, the better it compensates for tissue damage. We have examined the effect of young age on compensatory proliferation of pancreatic β cells in vivo. Surprisingly, β cells in suckling mice fail to...

  14. Cutaneous mast cell maturation does not depend on an intact bone marrow microenvironment

    International Nuclear Information System (INIS)

    Charley, M.R.; Mikhael, A.; Sontheimer, R.D.; Gilliam, J.N.; Bennett, M.

    1984-01-01

    A study was made to determine whether the maturation of murine cutaneous mast cells from stem cells depends on an intact bone marrow microenvironment. Normal bone marrow cells (+/+) were infused into 2 groups of mast cell-deficient mice: WBB6F1-W/Wv mice and 89 Sr-pretreated W/Wv mice. 89 Sr is a long-lived bone-seeking radioisotope which provides continuous irradiation of the marrow and thereby ablates the marrow microenvironment. Skin biopsies revealed that the 89 Sr-pretreated mice and the controls had repopulated their skin with mast cells equally well. Natural killer cell function was significantly depressed in the 89 Sr-treated mice, confirming that the marrow microenvironment had been functionally altered. It appears that, although the precursors for cutaneous mast cells are marrow derived, they do not need an intact marrow microenvironment for maturation

  15. Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts

    NARCIS (Netherlands)

    M. Nethe (Micha); B.J. de Kreuk (Bart-Jan); D.V.F. Tauriello (Daniele); E.C. Anthony (Eloise); B. Snoek (Barbara); T. Stumpel (Thomas); M. Salinas; K. Maurice (Karelle); D. Geerts (Dirk); A.M. Deelder (André); P. Hensbergen (Paul); P.L. Hordijk (Peter )

    2012-01-01

    textabstractThe Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4

  16. Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells

    Science.gov (United States)

    Patzelt, Thomas; Keppler, Selina J.; Gorka, Oliver; Thoene, Silvia; Wartewig, Tim; Reth, Michael; Förster, Irmgard; Lang, Roland; Buchner, Maike; Ruland, Jürgen

    2018-01-01

    The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma. PMID:29507226

  17. T cell maturation stage prior to and during GMP processing informs on CAR T cell expansion in patients

    NARCIS (Netherlands)

    Y. Klaver (Yarne); S.C.L. van Steenbergen; S. Sleijfer (Stefan); J.E.M.A. Debets (Reno); C.H.J. Lamers (Cor)

    2016-01-01

    textabstractAutologous T cells were genetically modified to express a chimeric antigen receptor (CAR) directed toward carboxy-anhydrase-IX (CAIX) and used to treat patients with CAIX-positive metastatic renal cell carcinoma. In this study, we questioned whether the T cell maturation stage in the

  18. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. CARABĂ

    2009-05-01

    Full Text Available During the experiments we have carried out with imature oocyte collected from the ovarian follicles, wefound a variety of oocyte-cumulus complexes. We got the following experiment in order to understand therole of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select theoocyte-cumulus complexes collected both from cows and sows according to the number of cumular celllayers and we watched their development to the blastocyst stade. Thus, we achieved three groups of COC(oocyte-cumulus complexes.One group was made of oocyte without cumular cells, the second group had a layer of cumular cells andthe third group had many layers of cumular cells. we performed an incubation of all these types of COCin TCM-199 enriched with 20% of bovine fetal serum. Because only 1,2 oocyte of the ones who lack thecumular cells layer had maturation signs during cultivation in the thermostat versus 55 and 115,respectively, of the ones that had many cellular layers, presents a solid evidence that cumular cells areindispensable for the maturation and even to the fecundation process. The cumular cells perform adecisive role on the cytoplasma and oocyte nucleus maturation process.

  19. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    Directory of Open Access Journals (Sweden)

    Shuzhen Liu

    Full Text Available Acrylamide (ACR is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  20. Mechanism of Na,K-ATPase decline during sheep red cell maturation

    International Nuclear Information System (INIS)

    Grafova, E.; Blostein, R.

    1987-01-01

    Na,K-ATPase of immature and mature sheep red cells of both the high-K + and low-K + genotypes as well as cells of both types matured in vitro was detected using polyclonal antiserum to sheep kidney Na,K-ATPase. Following SDS-PAGE and immunoblotting, the major reactive component was the ∼ 100 kDa catalytic α subunit. A less prominent band migrating as a sharper, lower molecular weight (50 kDa) component than the kidney Na,K-ATPase β subunit is apparent in reticulocytes but not mature cells. Membranes from both genotypes showed identical immunologically reactive peptides, except for the lower intensity of the α subunit in the mature cells of the low- compared to high-K + sheep. Following culture of both types, moderate reduction in reactivity was apparent. Immunologically reactive α subunit as well as the 50 kDa species were detected in membranous material shed into the culture medium. This material was functionally inactive (lack of both [ 3 H] ouabain binding and Na + -dependent phosphorylation of Na,K-ATPase). The existence in reticulocytes of an intracellular pool of ouabain binding sites is evidenced in appearance of extra sites following rapid ATP depletion and also after addition of chloroquine. Taken together, these findings are consistent with a maturation-associated decrease of sodium pumps by a process of membrane recycling, processing and, to some extent, exocytosis

  1. Mechanism of Na,K-ATPase decline during sheep red cell maturation

    Energy Technology Data Exchange (ETDEWEB)

    Grafova, E.; Blostein, R.

    1987-05-01

    Na,K-ATPase of immature and mature sheep red cells of both the high-K/sup +/ and low-K/sup +/ genotypes as well as cells of both types matured in vitro was detected using polyclonal antiserum to sheep kidney Na,K-ATPase. Following SDS-PAGE and immunoblotting, the major reactive component was the approx. 100 kDa catalytic ..cap alpha.. subunit. A less prominent band migrating as a sharper, lower molecular weight (50 kDa) component than the kidney Na,K-ATPase ..beta.. subunit is apparent in reticulocytes but not mature cells. Membranes from both genotypes showed identical immunologically reactive peptides, except for the lower intensity of the ..cap alpha.. subunit in the mature cells of the low- compared to high-K/sup +/ sheep. Following culture of both types, moderate reduction in reactivity was apparent. Immunologically reactive ..cap alpha.. subunit as well as the 50 kDa species were detected in membranous material shed into the culture medium. This material was functionally inactive (lack of both (/sup 3/H) ouabain binding and Na/sup +/-dependent phosphorylation of Na,K-ATPase). The existence in reticulocytes of an intracellular pool of ouabain binding sites is evidenced in appearance of extra sites following rapid ATP depletion and also after addition of chloroquine. Taken together, these findings are consistent with a maturation-associated decrease of sodium pumps by a process of membrane recycling, processing and, to some extent, exocytosis.

  2. La célula de Schwann

    Directory of Open Access Journals (Sweden)

    Adriana del Pilar López Lombana

    1993-12-01

    Full Text Available La célula de Schwann que constituye la glía del SNP, además de ser el soporte estructural para los axones en dicho sistema, tiene la función de producir la mielina, una organela de gran importancia en los procesos de neuroconducción. De la integridad de esta célula dependen el desarrollo estructural y metabólico del axón, así mismo se ha reconocido desde hace varios anos el papel primordial que juega ella, en los procesos de regeneración del SPN posterior a una injuria, en cuyo caso reinician la proliferación para producir una guía de regeneración del nervio periférico. En esta revisión se contemplarán algunos de los puntos relacionados con su origen, desarrollo, estructura, relación con el axon y el tipo de patologías que pueden alterarla; igualmente se resalta la utilidad de los cultivos de celulas de Schwann para el estudio de los procesos de mielinización, desmielinización, regeneración post-traumatica y respuesta a agentes infecciosos.

  3. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Pantano, Serafino; Jarrossay, David; Saccani, Simona; Bosisio, Daniela; Natoli, Gioacchino

    2006-01-01

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  4. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    Science.gov (United States)

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  5. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs. Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4 and myeloid differentiation primary response 88 (MyD88 signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.

  6. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  7. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells.

    Science.gov (United States)

    Gao, Wen-Xiang; Sun, Yue-Qi; Shi, Jianbo; Li, Cheng-Lin; Fang, Shu-Bin; Wang, Dan; Deng, Xue-Quan; Wen, Weiping; Fu, Qing-Ling

    2017-03-02

    Mesenchymal stem cells (MSCs) have potent immunomodulatory effects on multiple immune cells and have great potential in treating immune disorders. Induced pluripotent stem cells (iPSCs) serve as an unlimited and noninvasive source of MSCs, and iPSC-MSCs have been reported to have more advantages and exhibit immunomodulation on T lymphocytes and natural killer cells. However, the effects of iPSC-MSCs on dendritic cells (DCs) are unclear. The aim of this study is to investigate the effects of iPSC-MSCs on the differentiation, maturation, and function of DCs. Human monocyte-derived DCs were induced and cultured in the presence or absence of iPSC-MSCs. Flow cytometry was used to analyze the phenotype and functions of DCs, and enzyme-linked immunosorbent assay (ELISA) was used to study cytokine production. In this study, we successfully induced MSCs from different clones of human iPSCs. iPSC-MSCs exhibited a higher proliferation rate with less cell senescence than BM-MSCs. iPSC-MSCs inhibited the differentiation of human monocyte-derived DCs by both producing interleukin (IL)-10 and direct cell contact. Furthermore, iPSC-MSCs did not affect immature DCs to become mature DCs, but modulated their functional properties by increasing their phagocytic ability and inhibiting their ability to stimulate proliferation of lymphocytes. More importantly, iPSC-MSCs induced the generation of IL-10-producing regulatory DCs in the process of maturation, which was mostly mediated by a cell-cell contact mechanism. Our results indicate an important role for iPSC-MSCs in the modulation of DC differentiation and function, supporting the clinical application of iPSC-MSCs in DC-mediated immune diseases.

  8. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    Science.gov (United States)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  9. Mature lymphoid malignancies: origin, stem cells, and chronicity

    DEFF Research Database (Denmark)

    Husby, Simon; Grønbæk, Kirsten

    2017-01-01

    after treatment. Lately, the use of next-generation sequencing techniques has revealed essential information on the clonal evolution of lymphoid malignancies. Also, experimental xenograft transplantation point to the possible existence of an ancestral (stem) cell. Such a malignant lymphoid stem cell...... population could potentially evade current therapies and be the cause of chronicity and death in lymphoma patients; however, the evidence is divergent across disease entities and between studies. In this review we present an overview of genetic studies, case reports, and experimental evidence of the source...

  10. Myelination competent conditionally immortalized mouse Schwann cells

    NARCIS (Netherlands)

    Saavedra, José T.; Wolterman, Ruud A.; Baas, Frank; ten Asbroek, Anneloor L. M. A.

    2008-01-01

    Numerous mouse myelin mutants are available to analyze the biology of the peripheral nervous system related to health and disease in vivo. However, robust in vitro biochemical characterizations of players in peripheral nerve processes are still not possible due to the limited growth capacities of

  11. Neural induction from ES cells portrays default commitment but instructive maturation.

    Directory of Open Access Journals (Sweden)

    Nibedita Lenka

    Full Text Available The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.

  12. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  13. Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach

    DEFF Research Database (Denmark)

    Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage

    2008-01-01

    Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expression...... upon maturation. The protein expression profile of immature and mature DCs, derived from CD14+ peripheral blood monocytes was investigated using two pH ranges (pH 4-7 and 6-9) (n = 4). Ninety one differentially expressed spots (p...

  14. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole.

    Science.gov (United States)

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-11-18

    In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  16. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  17. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice

    Directory of Open Access Journals (Sweden)

    Cheng-Jie Zhou

    2016-03-01

    Full Text Available Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes, in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes, and in vitro-matured, denuded oocytes without cumulus cells (DOs. Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  18. Iκb Kinase α Is Essential for Mature B Cell Development and Function

    Science.gov (United States)

    Kaisho, Tsuneyasu; Takeda, Kiyoshi; Tsujimura, Tohru; Kawai, Taro; Nomura, Fumiko; Terada, Nobuyuki; Akira, Shizuo

    2001-01-01

    IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells. PMID:11181694

  19. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  20. The Tec kinase ITK regulates thymic expansion, emigration, and maturation of γδ NKT cells.

    Science.gov (United States)

    Yin, Catherine C; Cho, Ok Hyun; Sylvia, Katelyn E; Narayan, Kavitha; Prince, Amanda L; Evans, John W; Kang, Joonsoo; Berg, Leslie J

    2013-03-15

    The Tec family tyrosine kinase, Itk, regulates signaling downstream of the TCR. The absence of Itk in CD4(+) T cells results in impaired Th2 responses along with defects in maturation, cytokine production, and survival of iNKT cells. Paradoxically, Itk(-/-) mice have spontaneously elevated serum IgE levels, resulting from an expansion of the Vγ1.1(+)Vδ6.3(+) subset of γδ T cells, known as γδ NKT cells. Comparisons between γδ NKT cells and αβ iNKT cells showed convergence in the pattern of cell surface marker expression, cytokine profiles, and gene expression, suggesting that these two subsets of NKT cells undergo similar differentiation programs. Hepatic γδ NKT cells have an invariant TCR and are derived predominantly from fetal progenitors that expand in the thymus during the first weeks of life. The adult thymus contains these invariant γδ NKT cells plus a heterogeneous population of Vγ1.1(+)Vδ6.3(+) T cells with diverse CDR3 sequences. This latter population, normally excluded from the liver, escapes the thymus and homes to the liver when Itk is absent. In addition, Itk(-/-) γδ NKT cells persistently express high levels of Zbtb16 (PLZF) and Il4, genes that are normally downregulated in the most mature subsets of NKT cells. These data indicate that Itk signaling is required to prevent the expansion of γδ NKT cells in the adult thymus, to block their emigration, and to promote terminal NKT cell maturation.

  1. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    Science.gov (United States)

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (pcollections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (pcollections and mature unintended cells harvests (pcollections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  3. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population.

    Science.gov (United States)

    Zhang, Bin; Liu, Rui; Shi, Dan; Liu, Xingxia; Chen, Yuan; Dou, Xiaowei; Zhu, Xishan; Lu, Chunhua; Liang, Wei; Liao, Lianming; Zenke, Martin; Zhao, Robert C H

    2009-01-01

    Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.

  4. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  5. Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen

    International Nuclear Information System (INIS)

    Yum, Min Kyu; Jung, Mi Young; Cho, Daeho; Kim, Tae Sung

    2011-01-01

    Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17β-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, we evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A b ) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-α, whereas it didn't affect IL-10 and IL-1β expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: ► Daidzein inhibited expression of maturation-associated cell surface markers in DCs. ► Daidzein suppressed expression of pro-inflammatory cytokines in LPS-stimulated DCs. ► Daidzein

  6. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, Jutta [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Anderegg, Ulf; Saalbach, Anja [Department for Dermatology, Venerology and Allergology, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Rosin, Britt; Patties, Ina; Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Kamprad, Manja [Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Scholz, Markus [Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstr. 16-18, 04103 Leipzig (Germany); Hildebrandt, Guido, E-mail: Guido.Hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock (Germany); Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany)

    2011-05-10

    Ionizing irradiation could act directly on immune cells and may induce bystander effects mediated by soluble factors that are released by the irradiated cells. This is the first study analyzing both the direct effect of low dose ionizing radiation (LDIR) on the maturation and cytokine release of human dendritic cells (DCs) and the functional consequences for co-cultured T-cells. We showed that irradiation of DC-precursors in vitro does not influence surface marker expression or cytokine profile of immature DCs nor of mature DCs after LPS treatment. There was no difference of single dose irradiation versus fractionated irradiation protocols on the behavior of the mature DCs. Further, the low dose irradiation did not change the capacity of the DCs to stimulate T-cell proliferation. But the irradiation of the co-culture of DCs and T-cells revealed significantly lower proliferation of T-cells with higher doses. Summarizing the data from approx. 50 DC preparations there is no significant effect of low dose ionizing irradiation on the cytokine profile, surface marker expression and maturation of DCs in vitro although functional consequences cannot be excluded.

  7. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Barboni Barbara

    2003-05-01

    Full Text Available Abstract Background The possibility to predict the ability of a germ cell to properly sustain embryo development in vitro or in vivo as early as possible is undoubtedly the main problem of reproductive technologies. To date, only the achievement of nuclear maturation and cumulus expansion is feasible, as all the studies on cytoplasmic maturation are too invasive and have been complicated by the death of the cells analyzed. The authors studied the possibility to test the cytoplasmic quality of pig oocytes by evaluating their ability to produce steroidogenesis enabling factor(s. To this aim, oocytes matured under different culture conditions that allowed to obtain gradable level of cytoplasmic maturation, were used to produce conditioned media (OCM. The secretion of the factor(s in conditioned media was then recorded by evaluating the ability of the spent media to direct granulosa cells (GC steroidogenesis. Methods In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique. Results Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by

  8. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  9. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Csomor, Eszter; Bajtay, Zsuzsa; Sándor, Noémi

    2007-01-01

    Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q...... activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose......-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1...

  10. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  11. Effects of polysaccharides from Pholiota nameko on maturation of murine bone marrow-derived dendritic cells.

    Science.gov (United States)

    Li, Haiping; Liu, Lizeng; Tao, Yongqing; Zhao, Pei; Wang, Fengling; Huai, Lihua; Zhi, Dexian; Liu, Jiangmei; Li, Guoliang; Dang, Chunlan; Xu, Yufeng

    2014-02-01

    This paper studied some structure characters of the Pholiota nameko polysaccharides (PNPS-1), including morphology under SEM and AFM, also the effects of PNPS-1 on the maturation of bone marrow dendritic cells (BMDCs) via concrete changes both inside and outside BMDCs. These impacts on BMDCs were assessed with use of inverted phase contrast microscope for morphology, flow cytometry for key surface molecules, mixed lymphocyte reaction (MLR) for allogeneic T cells proliferation, and bio-assay and enzyme linked immunosorbent assay (ELISA) for cytokine production. We found that PNPS-1 could inhibit phenotypic maturation as evidenced by decreasing expression of CD11c, CD40, CD80, CD83, CD86, and I-A/I-E. Functional maturation inhibition was further confirmed by decreased naive T cell stimulatory activity of BMDCs. Finally, PNPS-1 also stimulated production of more cytokine IL-10 and less IL-12 and TNF-α. These data indicated that PNPS-1 could markedly inhibit the maturation of BMDCs and had potential significant down-regulation immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Chronic alcohol consumption enhances iNKT cell maturation and activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui, E-mail: hzhang@wsu.edu; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  13. Chronic alcohol consumption enhances iNKT cell maturation and activation

    International Nuclear Information System (INIS)

    Zhang, Hui; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-01

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1 − iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1 + CD44 hi mature iNKT cells but does not alter the number of NK1.1 − immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1 − iNKT cells, especially the NK1.1 − CD44 lo Stage I iNKT cells. The percentage of NKG2A + iNKT cells increases in all of the tissues and organs examined; whereas CXCR3 + iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol consumption induces Th1 immune response upon i

  14. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1

    International Nuclear Information System (INIS)

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J.; Goldring, Christopher E.; Park, B. Kevin

    2009-01-01

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p < 0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  15. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1.

    Science.gov (United States)

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J; Goldring, Christopher E; Park, B Kevin

    2009-07-15

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p<0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  16. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272.

    Science.gov (United States)

    Li, Yue; Zeng, Xiaoli; He, Lijuan; Yuan, Hui

    2015-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells for initiating immune responses. DC maturation can be induced by exposing of immature DC to pathogen products or pro-inflammatory factor, which dramatically enhances the ability of DC to activate Ag-specific T cells. In this study, a recombinant calreticulin fragment 39-272 (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed and purified in Escherichia coli. Functional analysis studies revealed that rCRT/39-272 has potent immunostimulatory activities in both activating human monocytes and B cells to secrete cytokines. rCRT/39-272 can drive the activation of bone marrow derived DC in TLR4/CD14 dependent way, as indicated by secretion of cytokines IL-12/IL-23 (p40) and IL-1β. Exposure of DC to rCRT/39-272 induces P-Akt, suggesting that rCRT/39-272 induces maturation of DC through PI3K/Akt signaling pathway. The results suggest that soluble rCRT/39-272 is a potent stimulatory agent to DC maturation in TLR4/CD14 and PI3K/Akt dependent pathway. It may play important roles in initiating cellular immunity in vivo and the T cell response in vitro. Thus it could be used for study of DC-based tumor vaccines.

  17. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  18. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  19. Human dendritic cells sequentially matured with CD4+ T cells as a secondary signal favor CTL and long-term T memory cell responses

    Directory of Open Access Journals (Sweden)

    Thomas Simon

    2012-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  20. Human dendritic cells sequentially matured with CD4(+) T cells as a secondary signal favor CTL and long-term T memory cell responses.

    Science.gov (United States)

    Simon, Thomas; Tanguy-Royer, Séverine; Royer, Pierre-Joseph; Boisgerault, Nicolas; Frikeche, Jihane; Fonteneau, Jean-François; Grégoire, Marc

    2012-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.

  1. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  2. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  3. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?

    Directory of Open Access Journals (Sweden)

    Nuria Izquierdo-Useros

    2010-03-01

    Full Text Available Exosomes are secreted cellular vesicles that can induce specific CD4(+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs. The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4(+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4(+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.

  4. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes

    Science.gov (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  5. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  6. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells.

    Science.gov (United States)

    Hu Frisk, Jun Mei; Kjellén, Lena; Kaler, Stephen G; Pejler, Gunnar; Öhrvik, Helena

    2017-12-15

    Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation

    OpenAIRE

    Deville, Sarah; Bare, Birgit; Piella, Jordi; Tirez, Kristof; Hoet, Peter; Monopoli, Marco P.; Dawson, Kenneth A.; Puntes, Victor F.; Nelissen, Inge

    2016-01-01

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observe...

  8. Successful Treatment of Aggressive Mature B-cell Lymphoma Mimicking Immune Thrombocytopenic Purpura.

    Science.gov (United States)

    Ono, Koya; Onishi, Yasushi; Kobayashi, Masahiro; Ichikawa, Satoshi; Hatta, Shunsuke; Watanabe, Shotaro; Okitsu, Yoko; Fukuhara, Noriko; Ichinohasama, Ryo; Harigae, Hideo

    2018-03-30

    A 55-year-old woman suffered from hemorrhagic tendency. She had severe thrombocytopenia without any hematological or coagulatory abnormalities, and a bone marrow examination revealed an increased number of megakaryocytes without any abnormal cells or blasts. No lymphadenopathy or hepatosplenomegaly was observed on computed tomography. She was initially diagnosed with immune thrombocytopenic purpura (ITP). None of the treatments administered for ITP produced a response. However, abnormal cells were eventually found during the third bone marrow examination. The pathological diagnosis was mature B-cell lymphoma. Rituximab-containing chemotherapy produced a marked increase in the patient's platelet count, and her lymphoma went into complete remission.

  9. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  10. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  11. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells

    OpenAIRE

    Van Handel, Ben; Prashad, Sacha L.; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I.; Mikkola, Hanna K. A.

    2010-01-01

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in fir...

  12. Efficient and Cost-Effective Generation of Mature Neurons From Human Induced Pluripotent Stem Cells

    OpenAIRE

    Badja , Cherif; Maleeva , Galyna; El-Yazidi , Claire; Barruet , Emilie; Lasserre , Manon; Tropel , Philippe; Binetruy , Bernard; Bregestovski , Piotr; Magdinier , Frédérique

    2014-01-01

    The authors describe a feeder-free method of generating induced pluripotent stem cells by relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. This specific and efficient single-step strategy allows the production of mature neurons in 20–40 days with multiple applications, especially for modeling human pathologies.

  13. Efficacy of dendritic cells matured early with OK-432 (Picibanil), prostaglandin E2, and interferon-alpha as a vaccine for a hormone refractory prostate cancer cell line.

    Science.gov (United States)

    Yoo, Changhee; Do, Hyun-Ah; Jeong, In Gab; Park, Hongzoo; Hwang, Jung-Jin; Hong, Jun Hyuk; Cho, Jin Seon; Choo, Myong-Soo; Ahn, Hanjong; Kim, Choung-Soo

    2010-09-01

    Dendritic cells (DCs) are potent antigen-presenting cells. OK432 (Picibanil) was introduced as a potent stimulator of DC maturation in combination with prostaglandin-E(2) and interferon-alpha. We compared the efficacy of a DC-prostate cancer vaccine using early-mature DCs stimulated with OK432, PGE2 and INF-alpha (OPA) with that of vaccines using other methods. On days 3 or 7 of DC culture, TNF-alpha (T), TNF-alpha and LPS (TL) or OPA were employed as maturation stimulators. DU145 cells subjected to heat stress were hybridized with mature DCs using polyethyleneglycol. T cells were sensitized by the hybrids, and their proliferative and cytokine secretion activities and cytotoxicity were measured. The yields of early-mature DCs were higher, compared to yields at the conventional maturation time (P<0.05). In the early maturation setting, the mean fusion ratios, calculated from the fraction of dual-positive cells, were 13.3%, 18.6%, and 39.9%, respectively (P=0.051) in the T only, TL, and OPA-treated groups. The function of cytotoxic T cells, which were sensitized with the hybrids containing DCs matured early with OPA, was superior to that using other methods. The antitumor effects of DC-DU145 hybrids generated with DCs subjected to early maturation with the OPA may be superior to that of the hybrids using conventional maturation methods.

  14. Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells.

    Science.gov (United States)

    Wang, Hui; Yu, Qiang; Nie, Shao-Ping; Xiang, Quan-Dan; Zhao, Ming-Ming; Liu, Shi-Yu; Xie, Ming-Yong; Wang, Shun-Qi

    2017-10-01

    Ganoderma atrum (G. atrum), a member of the genus Ganoderma, is an edible and medicinal fungus. In this study, we investigated the direct and indirect effects of G. atrum polysaccharide (PSG-1) on dendritic cells (DCs). Firstly, flow cytometric and ELISA analysis showed that PSG-1 increased cell surface molecule expression of MHC-II, CD80 and CD86, and enhanced the production of IL-12 p70, IL-6, IL-10, RANTES, MIP-1α and MCP-1 in DCs. PSG-1-treated DCs promoted the proliferation of splenic T lymphocyte of mouse in mixed lymphocyte reaction. The above results demonstrated that PSG-1 induced the maturation of DCs. Secondly, PSG-1 increased the phosphorylation of p38, ERK and JNK determined by western blot. Inhibitors of p38, ERK and JNK decreased PSG-1-induced expression of MHC-II, CD80 and CD86 and production of IL-6 and IL-10 by DCs. These results suggested that PSG-1 induced mitogen-activated protein kinase (MAPK) activation was involved in the regulation of maturation markers and cytokines expression in DCs. Finally, PSG-1 increased expression of MHC-II of DCs in a DCs-Caco-2 co-culture model, suggesting that PSG-1 could indirectly influence DCs. In summary, our data suggested that PSG-1 directly induced DCs maturation via activating MAPK pathways, and indirectly stimulated DCs separated by intestinal epithelial cells. Copyright © 2017. Published by Elsevier Ltd.

  15. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Jiaxian; Cui, Chang; Nan, Haiyan; Yu, Yuanfang; Xiao, Yini; Poon, Ellen; Yang, Gang; Wang, Xijie; Wang, Chenchen; Li, Lingsong; Boheler, Kenneth Richard; Ma, Xu; Cheng, Xin; Ni, Zhenhua; Chen, Minglong

    2017-08-09

    Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca 2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.

  16. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  17. Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Simone P. Sittig

    2015-12-01

    Full Text Available Dendritic cell (DC-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.

  18. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  19. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  20. Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Min Kyu; Jung, Mi Young [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Cho, Daeho [Department of Life Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Tae Sung, E-mail: tskim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-12-15

    Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17{beta}-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, we evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A{sup b}) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-{alpha}, whereas it didn't affect IL-10 and IL-1{beta} expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: Black-Right-Pointing-Pointer Daidzein inhibited expression of maturation-associated cell surface markers in DCs. Black-Right-Pointing-Pointer Daidzein suppressed expression

  1. Endometrial aspiration biopsy: a non-invasive method of obtaining functional lymphoid progenitor cells and mature natural killer cells.

    LENUS (Irish Health Repository)

    McMenamin, Moya

    2012-09-01

    The aim of this study was to compare the efficacy of endometrial aspiration biopsy (EAB) with the more traditional dilatation and curettage (D&C) for the procurement of lymphoid progenitor cells and uterine natural killer (NK) populations in endometrial tissue. This prospective observational study conducted in a tertiary referral university hospital examined endometrium obtained from 32 women admitted for laparoscopic gynaecological procedures. Each participant had endometrium sampled using both EAB and D&C. Both methods were assessed as a source of uterine NK and lymphoid progenitor cells. Similar proportions of mature CD45+CD56+ NK cells (range 25.4-36.2%) and CD45+CD34+ lymphoid progenitors (range 1.2-2.0%) were found in tissue obtained using both EAB and D&C. These cells were adequate for flow cytometric analysis, magnetic bead separation and culture. Colony formation by the CD34+ population demonstrated maturational potential. Tissues obtained via endometrial biopsy and D&C are equivalent, by analysis of uterine NK and lymphoid progenitor cells. The aim of this study was to compare two methods of endometrial sampling - endometrial aspiration biopsy and traditional dilatation and curettage - for the procurement of haematopoietic stem cells and uterine natural killer (NK) populations in endometrial tissue. Thirty-two women who had gynaecological procedures in a tertiary referral hospital participated in this study and had endometrial tissue collected via both methods. Similar populations of mature NK cells and haematopoietic stem cells were found in tissue obtained using both endometrial aspiration biopsy and dilatation and curettage. Tissue obtained via endometrial aspiration biopsy was adequate for the culture and growth of haematopoietic stem cells. We conclude that tissue obtained via endometrial biopsy and dilatation and curettage is equivalent, by analysis of uterine NK and haematopoietic stem cells using flow cytometry. This has implications for further

  2. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.

    Directory of Open Access Journals (Sweden)

    Qingxin Yuan

    Full Text Available Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR, metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita β-cells. We used T antigen-transformed Ins2(+/Akita and control Ins2(+/+ β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.

  3. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  4. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tsao

    2017-01-01

    Full Text Available There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing.

  5. Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Tsao, Yu-Tzu; Huang, Yi-Jeng; Wu, Hao-Hsiang; Liu, Yu-An; Liu, Yi-Shiuan; Lee, Oscar K.

    2017-01-01

    There is a growing interest in cell therapies using mesenchymal stromal cells (MSCs) for repairing bone defects. MSCs have the ability to differentiate into osteoprogenitors and osteoblasts as well as to form calcified bone matrix. However, the molecular mechanisms governing mineralization during osteogenic differentiation remain unclear. Non-collagenous proteins in the extracellular matrix are believed to control different aspects of the mineralization. Since osteocalcin is the most abundant non-collagenous bone matrix protein, the purpose of this study is to investigate the roles of osteocalcin in mineral species production during osteogenesis of MSCs. Using Raman spectroscopy, we found that the maturation of mineral species was affected by osteocalcin expression level. After osteocalcin was knocked down, the mineral species maturation was delayed and total hydroxyapatite was lower than the control group. In addition, the expression of osteogenic marker genes, including RUNX2, alkaline phosphatase, type I collagen, and osteonectin, was downregulated during osteogenic differentiation compared to the control group; whereas gene expression of osterix was upregulated after the knockdown. Together, osteocalcin plays an essential role for the maturation of mineral species and modulates osteogenic differentiation of MSCs. The results offer new insights into the enhancement of new bone formation, such as for the treatments of osteoporosis and fracture healing. PMID:28106724

  6. IL-15 regulates homeostasis and terminal maturation of NKT cells1

    Science.gov (United States)

    Gordy, Laura E.; Bezbradica, Jelena S.; Flyak, Andrew I.; Spencer, Charles T.; Dunkle, Alexis; Sun, Jingchun; Stanic, Aleksandar K.; Boothby, Mark R.; He, You-Wen; Zhao, Zhongming; Van Kaer, Luc; Joyce, Sebastian

    2011-01-01

    Semi-invariant natural killer T (NKT) cells are thymus-derived innate lymphocytes that modulate microbial and tumour immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learnt regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 (ST2) to ST3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic NKT cells. The loss of IL15 also resulted in poor expression of key effector molecules such as IFN-γ, granzyme A and C as well as several NK cell receptors in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is consistent with a role of T-bet in regulating terminal maturation. PMID:22084435

  7. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells.

    Science.gov (United States)

    Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A

    2017-04-18

    Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56.

  8. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    2009-12-01

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d accumulations in the brain and lymphoreticular system (LRS. Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs and tingible body macrophages (TBMs. Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.

  9. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    Science.gov (United States)

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo

  10. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions

    International Nuclear Information System (INIS)

    Lazar, Catalin; Zitzmann, Nicole; Dwek, Raymond A.; Branza-Nichita, Norica

    2003-01-01

    E rns is a pestivirus envelope glycoprotein indispensable for virus attachment and infection of target cells. Unlike the other two envelope proteins E1 and E2, E rns lacks a transmembrane domain and a vast quantity is secreted into the medium of infected cells. The protein is also present in fractions of pure pestivirus virions, raising the important and intriguing question regarding the mechanism of its attachment to the pestivirus envelope. In this study a direct interaction between E rns and E2 glycoproteins was demonstrated in both pestivirus-infected cells and mature virions. By co- and sequential immunoprecipitation we showed that an E rns -E2 heterodimer is assembled very early after translation of the viral polyprotein and before its processing is completed. Our results suggest that E rns is attached to the pestivirus envelope via a direct interaction with E2 and explain the role of E rns in the initial virus-target cell interaction

  11. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Torbjorn O Pedersen

    2012-12-01

    Full Text Available To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.

  12. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages.

    Directory of Open Access Journals (Sweden)

    Anna Pastò

    Full Text Available BACKGROUND AND AIM: Colon crypts are characterized by a hierarchy of cells distributed along the crypt axis. Aim of this paper was to develop an in vitro system for separation of epithelial cell subsets in different maturation stages from normal human colon. METHODOLOGY AND MAJOR FINDINGS: Dissociated colonic epithelial cells were stained with PKH26, which allows identification of distinct populations based on their proliferation rate, and cultured in vitro in the absence of serum. The cytofluorimetric expression of CK20, Msi-1 and Lgr5 was studied. The mRNA levels of several stemness-associated genes were also compared in cultured cell populations and in three colon crypt populations isolated by microdissection. A PKH(pos population survived in culture and formed spheroids; this population included subsets with slow (PKH(high and rapid (PKH(low replicative rates. Molecular analysis revealed higher mRNA levels of both Msi-1 and Lgr-5 in PKH(high cells; by cytofluorimetric analysis, Msi-1(+/Lgr5(+ cells were only found within PKH(high cells, whereas Msi-1(+/Lgr5(- cells were also observed in the PKH(low population. As judged by qRT-PCR analysis, the expression of several stemness-associated markers (Bmi-1, EphB2, EpCAM, ALDH1 was highly enriched in Msi-1(+/Lgr5(+ cells. While CK20 expression was mainly found in PKH(low and PKH(neg cells, a small PKH(high subset co-expressed both CK20 and Msi-1, but not Lgr5; cells with these properties also expressed Mucin, and could be identified in vivo in colon crypts. These results mirrored those found in cells isolated from different crypt portions by microdissection, and based on proliferation rates and marker expression they allowed to define several subsets at different maturation stages: PKH(high/Lgr5(+/Msi-1(+/CK20(-, PKH(high/Lgr5(-/Msi-1(+/CK20(+, PKH(low/Lgr5(-/Msi-1(+/Ck20(-, and PKH(low/Lgr5(-/Msi-1(-/CK20(+ cells. CONCLUSIONS: Our data show the possibility of deriving in vitro, without any

  13. The effect of Propionibacterium acnes on maturation of dendritic cells derived from acne patients' peripherial blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Maria Juszkiewicz-Borowiec

    2009-01-01

    Full Text Available Propionibacterium acnes (P. acnes has been implicated in the pathogenesis of acne vulgaris which is the most common cutaneous disorder. It has a proinflammatory activity and takes part in immune reactions modulating the Th1/Th2 cellular response. The exposure of dendritic cells (DCs to whole bacteria, their components, cytokines or other inflammatory stimuli and infectious agents induces differentiation from immature DCs into antigen-presenting mature DCs. The aim of the study was to evaluate the capability of P. acnes to induce the maturation of DCs. We stimulated monocyte derived dendritic cells (Mo-DCs from acne patients with various concetrations of heat-killed P. acnes (10(6-10(8 bacteria/ml cultured from acne lesions. The results showed an increase in CD80+/CD86+/DR+ and CD83+/CD1a+/DR+ cells percentage depending on the concetration of P. acnes. The expression of CD83 and CD80 (shown as the mean fluorescence intensity - MFI increased with higher concetrations of P. acnes. There were also significant correlations between MFI of CD83, CD80, CD86 and concetration of P. acnes. The study showed that P. acnes in the concetration of 10(8 bacteria/ml is most effective in the induction of Mo-DCs maturation. Futher studies concerning the influence on the function of T cells are needed.

  14. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  15. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Valeria Zampini

    2011-04-01

    Full Text Available Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  16. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Science.gov (United States)

    Zampini, Valeria; Rüttiger, Lukas; Johnson, Stuart L; Franz, Christoph; Furness, David N; Waldhaus, Jörg; Xiong, Hao; Hackney, Carole M; Holley, Matthew C; Offenhauser, Nina; Di Fiore, Pier Paolo; Knipper, Marlies; Masetto, Sergio; Marcotti, Walter

    2011-04-01

    Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  17. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming.

    Science.gov (United States)

    Dalod, Marc; Chelbi, Rabie; Malissen, Bernard; Lawrence, Toby

    2014-05-16

    Dendritic cells (DC) are key regulators of both protective immune responses and tolerance to self-antigens. Soon after their discovery in lymphoid tissues by Steinman and Cohn, as cells with the unique ability to prime naïve antigen-specific T cells, it was realized that DC can exist in at least two distinctive states characterized by morphological, phenotypic and functional changes-this led to the description of DC maturation. It is now well appreciated that there are several subsets of DC in both lymphoid and non-lymphoid tissues of mammals, and these cells show remarkable functional specialization and specificity in their roles in tolerance and immunity. This review will focus on the specific characteristics of DC subsets and how their functional specialization may be regulated by distinctive gene expression programs and signaling responses in both steady-state and in the context of inflammation. In particular, we will highlight the common and distinctive genes and signaling pathways that are associated with the functional maturation of DC subsets. © 2014 The Authors.

  18. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development

    Directory of Open Access Journals (Sweden)

    Coyral-Castel Stéphanie

    2010-03-01

    Full Text Available Abstract Background Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. Methods Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL on proliferation of granulosa cells (GC measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. Results We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8 M-induced GC proliferation (P Conclusions In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.

  19. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng

    2008-01-01

    Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based...... on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of beta-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested. We show now that Cdc42-deficient...... immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null keratinocytes...

  20. FRET microscopy autologous tumor lysate processing in mature dendritic cell vaccine therapy

    Directory of Open Access Journals (Sweden)

    Ridolfi Ruggero

    2010-06-01

    Full Text Available Abstract Background Antigen processing by dendritic cells (DC exposed to specific stimuli has been well characterized in biological studies. Nonetheless, the question of whether autologous whole tumor lysates (as used in clinical trials are similarly processed by these cells has not yet been resolved. Methods In this study, we examined the transfer of peptides from whole tumor lysates to major histocompatibility complex class II molecules (MHC II in mature dendritic cells (mDC from a patient with advanced melanoma. Tumor antigenic peptides-MHC II proximity was revealed by Förster Resonance Energy Transfer (FRET measurements, which effectively extends the application of fluorescence microscopy to the molecular level ( Results We detected significant energy transfer between donor and acceptor-labelled antibodies against HLA-DR at the membrane surface of mDC. FRET data indicated that fluorescent peptide-loaded MHC II molecules start to accumulate on mDC membranes at 16 hr from the maturation stimulus, steeply increasing at 22 hr with sustained higher FRET detected up to 46 hr. Conclusions The results obtained imply that the patient mDC correctly processed the tumor specific antigens and their display on the mDC surface may be effective for several days. These observations support the rationale for immunogenic efficacy of autologous tumor lysates.

  1. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    Science.gov (United States)

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of

  2. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  3. Differential astroglial responses in the spinal cord of rats submitted to a sciatic nerve double crush treated with local injection of cultured Schwann cell suspension or lesioned spinal cord extract: implications on cell therapy for nerve repair Respostas astrocitárias na medula espinal do rato submetido ao esmagamento duplo do nervo ciático e tratado com injeção local de suspensão de células de Schwann cultivadas ou de extrato de medula espinal lesada: implicações na terapia celular para o reparo do nervo

    Directory of Open Access Journals (Sweden)

    João Gabriel Martins Dallo

    2007-12-01

    Full Text Available PURPOSE: Reactive astrocytes are implicated in several mechanisms after central or peripheral nervous system lesion, including neuroprotection, neuronal sprouting, neurotransmission and neuropathic pain. Schwann cells (SC, a peripheral glia, also react after nerve lesion favoring wound/repair, fiber outgrowth and neuronal regeneration. We investigated herein whether cell therapy for repair of lesioned sciatic nerve may change the pattern of astroglial activation in the spinal cord ventral or dorsal horn of the rat. METHODS: Injections of a cultured SC suspension or a lesioned spinal cord homogenized extract were made in a reservoir promoted by a contiguous double crush of the rat sciatic nerve. Local injection of phosphate buffered saline (PBS served as control. One week later, rats were euthanized and spinal cord astrocytes were labeled by immunohistochemistry and quantified by means of quantitative image analysis. RESULTS: In the ipsilateral ventral horn, slight astroglial activations were seen after PBS or SC injections, however, a substantial activation was achieved after cord extract injection in the sciatic nerve reservoir. Moreover, SC suspension and cord extract injections were able to promote astroglial reaction in the spinal cord dorsal horn bilaterally. Conclusion: Spinal cord astrocytes react according to repair processes of axotomized nerve, which may influence the functional outcome. The event should be considered during the neurosurgery strategies.OBJETIVO: Astrócitos reativos participam de vários mecanismos após lesões do sistema nervoso central e periférico, os quais incluem neuroproteção, brotamento neuronal, neurotransmissão e dor neuropática. As células de Schwann (CS, um tipo de glia periférica, também reagem com a lesão do nervo, podendo interferir com o reparo e cicatrização, crescimento de fibras e regeneração neuronais. Investigamos aqui a possibilidade da terapia celular para o reparo do nervo ci

  4. Exploring (novel) gene expression during retinoid-induced maturation and cell death of acute promyelocytic leukemia.

    Science.gov (United States)

    Benoit, G R; Tong, J H; Balajthy, Z; Lanotte, M

    2001-01-01

    During recent years, reports have shown that biological responses of acute promyelocytic leukemia (APL) cells to retinoids are more complex than initially envisioned. PML-RARalpha chimeric protein disturbs various biological processes such as cell proliferation, differentiation, and apoptosis. The distinct biological programs that regulate these processes stem from specific transcriptional activation of distinct (but overlapping) sets of genes. These programs are sometimes mutually exclusive and depend on whether the signals are delivered by RAR or RXR agonists. Furthermore, evidence that retinoid nuclear signaling by retinoid, on its own, is not enough to trigger these cellular responses is rapidly accumulating. Indeed, work with NB4 cells show that the fate of APL cells treated by retinoid depends on complex signaling cross-talk. Elucidation of the sequence of events and cascades of transcriptional regulation necessary for APL cell maturation will be an additional tool with which to further improve therapy by retinoids. In this task, the classical techniques used to analyze gene expression have proved time consuming, and their yield has been limited. Global analyses of the APL cell transcriptome are needed. We review the technical approaches currently available (differential display, complementary DNA microarrays), to identify novel genes involved in the determination of cell fate.

  5. CD11c-targeted Delivery of DNA to Dendritic Cells Leads to cGAS- and STING-dependent Maturation

    DEFF Research Database (Denmark)

    Laursen, Marlene F.; Christensen, Esben; Degn, Laura L.T.

    2018-01-01

    monocyte-derived dendritic cells (moDC) and human monocytic THP-1 cells to targeted and untargeted DNA. We used an anti-CD11c antibody conjugated with double-stranded DNA to analyze the maturation status of human moDCs, as well as maturation using a cGAS KO and STING KO THP-1 cell maturation model. We...... with boosting the existing tumor-specific T-cell response. One way to achieve this could be by increasing the level of maturation of dendritic cells locally and in the draining lymph nodes. When exposed to cancer cells, dendritic cells may spontaneously mature because of dangerassociated molecular patterns...... derived from the tumor cells. Doublestranded DNA play a particularly important role in the activation of the dendritic cells, through engagement of intracellular DNAsensors, and signaling through the adaptor protein STING. In the present study, we have investigated the maturational response of human...

  6. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death.

    Science.gov (United States)

    Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac

    2014-01-01

    This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (phydrostatic pressure-treated follicles compared to controls (pHydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  7. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Directory of Open Access Journals (Sweden)

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  8. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  9. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  10. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    Science.gov (United States)

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  11. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  12. Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2017-07-01

    Full Text Available The establishment of DNA methylation patterns in oocytes is a highly dynamic process marking gene-regulatory events during fertilization, embryonic development, and adulthood. However, after epigenetic reprogramming in primordial germ cells, how and when DNA methylation is re-established in developing human oocytes remains to be characterized. Here, using single-cell whole-genome bisulfite sequencing, we describe DNA methylation patterns in three different maturation stages of human oocytes. We found that while broad-scale patterns of CpG methylation have been largely established by the immature germinal vesicle stage, localized changes continue into later development. Non-CpG methylation, on the other hand, undergoes a large-scale, generalized remodeling through the final stage of maturation, with the net overall result being the accumulation of methylation as oocytes mature. The role of the genome-wide, non-CpG methylation remodeling in the final stage of oocyte maturation deserves further investigation.

  13. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  14. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation.

    Science.gov (United States)

    Deville, Sarah; Baré, Birgit; Piella, Jordi; Tirez, Kristof; Hoet, Peter; Monopoli, Marco P; Dawson, Kenneth A; Puntes, Victor F; Nelissen, Inge

    2016-12-01

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO 4 ) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO 4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO 4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO 4 . An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO 4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV-visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO 4 did not directly interact with each other, the presence of NiSO 4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials.

  15. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Xinna Li

    Full Text Available Smooth virulent Brucella abortus strain 2308 (S2308 causes zoonotic brucellosis in cattle and humans. Rough B. abortus strain RB51, derived from S2308, is a live attenuated cattle vaccine strain licensed in the USA and many other countries. Our previous report indicated that RB51, but not S2308, induces a caspase-2-dependent apoptotic and necrotic macrophage cell death. Dendritic cells (DCs are professional antigen presenting cells critical for bridging innate and adaptive immune responses. In contrast to Brucella-infected macrophages, here we report that S2308 induced higher levels of apoptotic and necrotic cell death in wild type bone marrow-derived DCs (WT BMDCs than RB51. The RB51 and S2308-induced BMDC cell death was regulated by caspase-2, indicated by the minimal cell death in RB51 and S2308-infected BMDCs isolated from caspase-2 knockout mice (Casp2KO BMDCs. More S2308 bacteria were taken up by Casp2KO BMDCs than wild type BMDCs. Higher levels of S2308 and RB51 cells were found in infected Casp2KO BMDCs compared to infected WT BMDCs at different time points. RB51-infected wild type BMDCs were mature and activated as shown by significantly up-regulated expression of CD40, CD80, CD86, MHC-I, and MHC-II. RB51 induced the production of cytokines TNF-α, IL-6, IFN-γ and IL12/IL23p40 in infected BMDCs. RB51-infected WT BMDCs also stimulated the proliferation of CD4(+ and CD8(+ T cells compared to uninfected WT BMDCs. However, the maturation, activation, and cytokine secretion are significantly impaired in Casp2KO BMDCs infected with RB51 or Salmonella (control. S2308-infected WT and Casp2KO BMDCs were not activated and could not induce cytokine production. These results demonstrated that virulent smooth strain S2308 induced more apoptotic and necrotic dendritic cell death than live attenuated rough vaccine strain RB51; however, RB51, but not its parent strain S2308, induced caspase-2-mediated DC maturation, cytokine production, antigen

  16. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Science.gov (United States)

    Huckleberry, Kylie A.; Kane, Gary A.; Mathis, Rita J.; Cook, Sarah G.; Clutton, Jonathan E.; Drew, Michael R.

    2015-01-01

    Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly

  17. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  18. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    Science.gov (United States)

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  19. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production

    DEFF Research Database (Denmark)

    Würtzen, P A; Nissen, Mogens Holst; Claesson, M H

    2001-01-01

    allostimulus or through the presentation of PPD, and influenza M1-peptide specific CTL activity was obtained with nonmaturated (CD83-) and maturated (CD83+) DC. In conclusion, a final maturation of monocyte-derived DC through huCD40LT resulted in a highly homogeneous cell population with enhanced surface...

  20. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    Science.gov (United States)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  1. Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs

    International Nuclear Information System (INIS)

    Lopez, Soledad; Gomez, Enrique; Torres, Maria J.; Pozo, David; Fernandez, Tahia D.; Ariza, Adriana; Sanz, Maria L.; Blanca, Miguel; Mayorga, Cristobalina

    2015-01-01

    The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzed the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKsand activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. - Highlights: • The cell signaling pathways related to drug-mediated DC maturation were tested. • Amoxicillin induces activation of MAPK and NF-κB in DCs from allergic patients. • The inhibition of these pathways prevents the up-regulation of DC surface molecules. • Their allostimulatory and endocytosis capacities depend on JNK and NF-κB activities. • The low involvement of p38-MAPK could be the cause of an incomplete DC maturation.

  2. Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Soledad [CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville (Spain); Department of Medical Biochemistry, Molecular Biology and Immunology, The University of Seville Medical School, Seville (Spain); Gomez, Enrique [Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain); Torres, Maria J. [Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain); Pozo, David [CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville (Spain); Department of Medical Biochemistry, Molecular Biology and Immunology, The University of Seville Medical School, Seville (Spain); Fernandez, Tahia D.; Ariza, Adriana [Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain); Sanz, Maria L. [Department of Allergology and Clinical Immunology, University Clinic of Navarra, Pamplona (Spain); Blanca, Miguel [Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain); Mayorga, Cristobalina, E-mail: lina.mayorga@ibima.eu [Research Laboratory, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain); Allergy Service, IBIMA-Regional University Hospital of Malaga, UMA, Málaga (Spain)

    2015-11-01

    The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzed the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKsand activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. - Highlights: • The cell signaling pathways related to drug-mediated DC maturation were tested. • Amoxicillin induces activation of MAPK and NF-κB in DCs from allergic patients. • The inhibition of these pathways prevents the up-regulation of DC surface molecules. • Their allostimulatory and endocytosis capacities depend on JNK and NF-κB activities. • The low involvement of p38-MAPK could be the cause of an incomplete DC maturation.

  3. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  4. Distinct roles of Eps8 in the maturation of cochlear and vestibular hair cells.

    Science.gov (United States)

    Tavazzani, Elisa; Spaiardi, Paolo; Zampini, Valeria; Contini, Donatella; Manca, Marco; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Masetto, Sergio

    2016-07-22

    Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas

    2006-01-01

    's disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1......Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson......, Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  6. Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo.

    Science.gov (United States)

    Zhou, Zhou; Lin, Jinpiao; Huo, Rongfen; Huang, Wenkang; Zhang, Jian; Wang, Li; Sun, Yue; Shen, Baihua; Li, Ningli

    2012-11-01

    It is well known that dendritic cells (DCs) play a critical role in the initiation and development of an immune response. Inhibitory effect on DC maturation alters immune-mediated inflammatory reaction in vivo. Total glucosides of paeony (TGP) are active compounds extracted from the roots of Paeonia lactiflora and have been widely used to ameliorate inflammation in therapy for autoimmune diseases. However, whether TGP act on DC maturation remains unknown. In this study, we investigated the effect of TGP on DC maturation in ovalbumin (OVA) immunized mice. Ear inflammation was inhibited by TGP (150 mgkg(-1), i.p.×11 days) obviously. The antigen presenting capacity of DC derived from TGP-treated mice was arrested. Meanwhile, OVA specific T cell proliferation was inhibited. In addition, we found that maturation of DCs was decreased by TGP treatment. Furthermore, OVA specific T cell proliferation was rescued by the adoptive transfer of mature DCs (mDCs) into TGP treated OVA-challenged mice. The research on the mechanism showed that TGP significantly inhibited activation of TLR4/5 singling. All these results demonstrated that TGP inhibited DC maturation and function by selectively blocking TLR4/5 activation in vivo, which in turn leads to reduce immune-mediated inflammation in vivo, adding a novel mechanism and therapeutic target of TGP for inflammatory and autoimmune disease treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Altered Distribution of Peripheral Blood Maturation-Associated B-Cell Subsets in Chronic Alcoholism.

    Science.gov (United States)

    Almeida, Julia; Polvorosa, Maria Angeles; Gonzalez-Quintela, Arturo; Madruga, Ignacio; Marcos, Miguel; Pérez-Nieto, Maria Angeles; Hernandez-Cerceño, Maria Luisa; Orfao, Alberto; Laso, Francisco Javier

    2015-08-01

    Although decreased counts of peripheral blood (PB) B cells-associated with an apparently contradictory polyclonal hypergammaglobulinemia-have been reported in chronic alcoholism, no information exists about the specific subsets of circulating B cells altered and their relationship with antibody production. Here, we analyzed for the first time the distribution of multiple maturation-associated subpopulations of PB B cells in alcoholism and its potential relationship with the onset of liver disease. PB samples from 35 male patients-20 had alcoholic hepatitis (AH) and 15 chronic alcoholism without liver disease (AWLD)-were studied, in parallel to 19 male healthy donors (controls). The distribution of PB B-cell subsets (immature/regulatory, naïve, CD27(-) and CD27(+) memory B lymphocytes, and circulating plasmablasts of distinct immunoglobulin-Ig-isotypes) was analyzed by flow cytometry. Patients with AH showed significantly decreased numbers of total PB B lymphocytes (vs. controls and AWLD), at the expense of immature, memory, and, to a lesser extent, also naïve B cells. AWLD showed reduced numbers of immature and naïve B cells (vs. controls), but higher PB counts of plasmablasts (vs. the other 2 groups). Although PB memory B cells were reduced among the patients, the percentage of surface (s)IgA(+) cells (particularly CD27(-) /sIgA(+) cells) was increased in AH, whereas both sIgG(+) and sIgA(+) memory B cells were significantly overrepresented in AWLD versus healthy donors. Regarding circulating plasmablasts, patients with AH only showed significantly reduced counts of sIgG(+) cells versus controls. In contrast, the proportion of both sIgA(+) and sIgG(+) plasmablasts-from all plasmablasts-was reduced in AH and increased in AWLD (vs. the other 2 groups). AH and AWLD patients display a significantly reduced PB B-cell count, at the expense of decreased numbers of recently produced immature/regulatory B cells and naïve B cells, together with an increase in Ig

  8. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Heo, Deok Rim; Shin, Sung Jae; Kim, Woo Sik; Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee; Park, Won Sun; Lee, Min-Goo; Kim, Daejin; Shin, Yong Kyoo; Jung, In Duk; Park, Yeong-Min

    2011-01-01

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4 + T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4 + and CD8 + T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  9. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  10. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    Science.gov (United States)

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  12. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation.

    Science.gov (United States)

    Zhang, W; Kong, C W; Tong, M H; Chooi, W H; Huang, N; Li, R A; Chan, B P

    2017-02-01

    Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study. Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips

  13. Studies on mRNA electroporation of immature and mature dendritic cells: Effects on their immunogenic potential

    DEFF Research Database (Denmark)

    Met, O.; Eriksen, J.; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  14. The FOX and the mutants in mature human B cells and DLBCL: The role of FOXP1 in mature human B cell biology and lymphomagenesis & prevalence of oncogenic MyD88 and CD79B mutations in diffuse large B cell lymphoma

    NARCIS (Netherlands)

    van Keimpema, M.

    2015-01-01

    The transcription factor FOXP1 is prominently expressed in mature B cells and is a potential oncogene in B cell non-Hodgkin lymphomas; however, the functions of FOXP1 in mature B cells and B cell lymphomagenesis have not yet been fully explored. In the first part of this thesis, the roles of FOXP1

  15. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alfred Xuyang Sun

    2016-08-01

    Full Text Available Gamma-aminobutyric acid (GABA-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs into GABAergic neurons (iGNs with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6–8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs. Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.

  16. Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals

    Directory of Open Access Journals (Sweden)

    Nian Shen

    2017-07-01

    Full Text Available Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. Embryonic stem cell-derived cardiomyocytes (ESC-CMs may offer significant advances in creating in vitro cardiac tissues for disease modeling, drug testing, and elucidating developmental processes; however, the induction of ESCs to a more adult-like CM phenotype remains challenging. In this study, we developed a bioreactor system to employ pulsatile flow (1.48 mL/min, cyclic strain (5%, and extended culture time to improve the maturation of murine and human ESC-CMs. Dynamically-cultured ESC-CMs showed an increased expression of cardiac-associated proteins and genes, cardiac ion channel genes, as well as increased SERCA activity and a Raman fingerprint with the presence of maturation-associated peaks similar to primary CMs. We present a bioreactor platform that can serve as a foundation for the development of human-based cardiac in vitro models to verify drug candidates, and facilitates the study of cardiovascular development and disease.

  17. Regulation of Oligodendrocyte Progenitor Cell Maturation by PPARδ: Effects on Bone Morphogenetic Proteins

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Simonini

    2009-12-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  18. Natural Killer Cells Are Activated by Lactic Acid Bacteria-Matured Dendritic Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. Human peripheral blood NK cells were....... In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent or independent way. Hence, the encounter of NK cells...

  19. Impact of HBeAg on the maturation and function of dendritic cells.

    Science.gov (United States)

    Lan, Songsong; Wu, Lecan; Wang, Xiuyan; Wu, Jinming; Lin, Xianfan; Wu, Wenzhi; Huang, Zhiming

    2016-05-01

    HBV infection typically leads to chronic hepatitis in newborns and some adults with weakened immune systems. The mechanisms by which virus escapes immunity remain undefined. Regulatory dendritic cells (DCregs) contributing to immune escape have been described. We wondered whether or not HBeAg as an immunomodulatory protein could induce DCreg which might subsequently result into HBV persistence. The immunophenotyping, T-cell activation and cytokine production were analyzed in HBeAg-treated DCs from normal or cyclophosphamide (Cy)-induced immunocompromised mice. HBeAg tended to promote bone marrow derived DCs (BMDCs) from Cy-treated mice into CD11b(high)PIR-B(+) regulatory DCs exhibiting the lowest T-cell stimulatory capacity and interleukin (IL)-12p70 production compared with controls. Neutralization of IL-10 significantly inhibited the regulatory effect of these DCs on T-cell stimulation of mature DCs. After lipopolysaccharides (LPS) stimulation, marked phosphorylation of Akt was detected in HBeAg treated DCs from immunocompromised mice. Blocking the PI3K-Akt pathway by LY294002 led to an enhancement of IL-12 production. PI3K signalling pathway appears to be involved in the decreased IL-12 secretion by HBeAg treated DCs. These findings suggest that HBeAg may program the generation of a new DC subset with regulatory capacity under the condition of immunosuppression, which may presumably contribute to the persistent HBV infection. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice.

    Directory of Open Access Journals (Sweden)

    Chun Fu

    Full Text Available After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance protein. Fanconi anemia (FA proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2-3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

  1. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity

    DEFF Research Database (Denmark)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte

    2010-01-01

    -mature exhibited higher osteocalcin and alkaline phosphatase gene expression and activity than PDSC-immature. Pulsating fluid flow (PFF) stimulated nitric oxide production within 5 min by PDSC-mature but not by PDSC-immature. In PDSC-mature, PFF induced prostaglandin E(2) production, and cyclooxygenase 2 gene...

  2. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  3. Squamous Cell Carcinoma Arising in Mature Teratoma of the Ovary Masquerading as Abdominal Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreeya Taresh Indulkar

    2018-01-01

    Full Text Available Pure squamous cell carcinoma (SCC of the ovary is rare. SCC can arise in a mature teratoma (MT, ovarian endometriosis or in a Brenner tumor. SCC is the most common malignant transformation arising in MT and comprises 80% of all cases. Such neoplastic transformations are extremely difficult either to predict or detect early. The mechanism of malignant transformation has not been completely understood. Due to the rarity and the aggressive course, diagnosis and treatment constitute a big challenge. We report a case of SCC arising in MT presenting with a huge abdominopelvic mass and abundant peritoneal collections clinically masquerading as abdominal tuberculosis. A review of literature with special emphasis on prognosis and treatment modalities is also presented.

  4. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen

    DEFF Research Database (Denmark)

    Rodrigues, Celso Arrais; Rocha, Vanderson; Dreger, Peter

    2014-01-01

    We have reported encouraging results of unrelated cord blood transplantation for patients with lymphoid malignancies. Whether those outcomes are comparable to matched unrelated donor transplants remains to be defined. We studied 645 adult patients with mature lymphoid malignancies who received...... an allogeneic unrelated donor transplant using umbilical cord blood (n=104) or mobilized peripheral blood stem cells (n=541) after a reduced-intensity conditioning regimen. Unrelated cord blood recipients had more refractory disease. Median follow-up time was 30 months. Neutrophil engraftment (81% vs. 97......%, respectively; Pblood than after matched unrelated donor, whereas no differences were observed in grade II-IV acute graft-versus-host disease (29% vs. 32%), non-relapse mortality (29% vs. 28...

  5. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  6. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-01-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  7. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape.

    Science.gov (United States)

    Kirk, Kaitlyn; Hao, Ergeng; Lahmy, Reyhaneh; Itkin-Ansari, Pamela

    2014-05-01

    There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes. Copyright © 2014. Published by Elsevier B.V.

  8. The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis.

    Science.gov (United States)

    Ahn, Sang-Joon; Burne, Robert A

    2006-10-01

    The Smu0630 protein (AtlA) was recently shown to be involved in cell separation, biofilm formation, and autolysis. Here, transcriptional studies revealed that atlA is part of a multigene operon under the control of at least three promoters. The morphology and biofilm-forming capacity of a nonpolar altA mutant could be restored to that of the wild-type strain by adding purified AtlA protein to the medium. A series of truncated derivatives of AtlA revealed that full activity required the C terminus and repeat regions. AtlA was cell associated and readily extractable from with sodium dodecyl sulfate. Of particular interest, the surface protein profile of AtlA-deficient strains was dramatically altered compared to the wild-type strain, as was the nature of the association of the multifunctional adhesin P1 with the cell wall. In addition, AtlA-deficient strains failed to develop competence as effectively as the parental strain. Mutation of thmA, which can be cotranscribed with atlA and encodes a putative pore-forming protein, resulted in a phenotype very similar to that of the AtlA-deficient strain. ThmA was also shown to be required for efficient processing of AtlA to its mature form, and treatment of the thmA mutant strain with full-length AtlA protein did not restore normal cell separation and biofilm formation. The effects of mutating other genes in the operon on cell division, biofilm formation, or AtlA biogenesis were not as profound. This study reveals that AtlA is a surface-associated protein that plays a critical role in the network connecting cell surface biogenesis, biofilm formation, genetic competence, and autolysis.

  9. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  10. Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures.

    Directory of Open Access Journals (Sweden)

    Rebecca S Lam

    Full Text Available Differentiated neurons can be rapidly acquired, within days, by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons, called iNGNs, which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation, including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2, called CatCh, we could control iNGN activity with blue light stimulation. In combination with optogenetic tools, iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity, and these networks had excitatory glutamatergic synapses, which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings, whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission, along with the ability to scale-up the size of the cultures.

  11. Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Directory of Open Access Journals (Sweden)

    Changyong G

    2010-09-01

    Full Text Available Abstract Dendritic cells (DC are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40 is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4 and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN+ DC were analyzed by flow cytometry (FCM and mixed lymphocyte reaction (MLR. Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.

  12. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  13. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  14. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  15. Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells.

    Science.gov (United States)

    Sillé, Fenna C M; Martin, Constance; Jayaraman, Pushpa; Rothchild, Alissa; Besra, Gurdyal S; Behar, Samuel M; Boes, Marianne

    2011-09-30

    The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  17. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  18. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  19. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  20. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains.

    Science.gov (United States)

    Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F; Gao, Feng; Liao, Hua-Xin; Kepler, Thomas B; Harrison, Stephen C

    2014-07-15

    Rapidly evolving pathogens, such as human immunodeficiency and influenza viruses, escape immune defenses provided by most vaccine-induced antibodies. Proposed strategies to elicit broadly neutralizing antibodies require a deeper understanding of antibody affinity maturation and evolution of the immune response to vaccination or infection. In HIV-infected individuals, viruses and B cells evolve together, creating a virus-antibody "arms race." Analysis of samples from an individual designated CH505 has illustrated the interplay between an antibody lineage, CH103, and autologous viruses at various time points. The CH103 antibodies, relatively broad in their neutralization spectrum, interact with the CD4 binding site of gp120, with a contact dominated by CDRH3. We show by analyzing structures of progenitor and intermediate antibodies and by correlating them with measurements of binding to various gp120s that there was a shift in the relative orientation of the light- and heavy-chain variable domains during evolution of the CH103 lineage. We further show that mutations leading to this conformational shift probably occurred in response to insertions in variable loop 5 (V5) of the HIV envelope. The shift displaced the tips of the light chain away from contact with V5, making room for the inserted residues, which had allowed escape from neutralization by the progenitor antibody. These results, which document the selective mechanism underlying this example of a virus-antibody arms race, illustrate the functional significance of affinity maturation by mutation outside the complementarity determining region surface of the antibody molecule.

  2. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Directory of Open Access Journals (Sweden)

    Kylie A. Huckleberry

    2015-08-01

    Full Text Available Thousands of neurons are born each day in the dentate gyrus (DG, but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in DG. The immediate-early gene (IEG zif268 is an important mediator of these effects, as its expression is induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Veyrac et al., 2013. Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs. In the general granule cell population, zif268 expression peaked 1 hour after novel environment exposure and returned to baseline by 8 hours post-exposure. However, in the doublecortin-positive (DCX+ immature neurons, zif268 expression was suppressed relative to home cage for at least 8 hours post-exposure. We next determined that exposure to water maze training, an enriched environment, or a novel environment caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 in the general DGC population and in 6-week-old adult-born neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. Novel environment exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature DGCs but caused a more long-lasting suppression of zif268 expression in immature, adult-born DGCs. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature DGCs or mediates learning-induced apoptosis of immature adult

  3. Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes.

    Science.gov (United States)

    Ou, Dong-Bo; He, Yong; Chen, Rui; Teng, Ji-Wei; Wang, Hong-Tao; Zeng, Di; Liu, Xiong-Tao; Ding, Lu; Huang, Jin-Yan; Zheng, Qiang-Sun

    2011-12-01

    The cardiomyocyte (CM) differentiation of embryonic stem cells (ESCs) is routinely cultured as two-dimensional (2D) monolayer, which doesn't mimic in vivo physiological environment and may lead to low differentiated level of ESCs. Here, we develop a novel strategy that enhances CM differentiation of ESCs in collagen matrix three-dimensional (3D) culture combined with indirect cardiac fibroblasts co-culture. ESCs were cultured in hanging drops to form embryoid bodies (EBs) and then applied on collagen matrix. The EBs were indirectly co-cultured with cardiac fibroblasts by the hanging cell culture inserts (PET 1 µm). The molecular expressions and ultrastructural characteristics of ESC-derived CMs (ESCMs) were analyzed by real time RT-PCR, immunocytochemistry, and Transmission Electron Microscopy (TEM). We found that the percentage of beating EBs with cardiac fibroblasts co-culture was significantly higher than that without co-culture after differentiation period of 8 days. Type I collagen used as 3D substrates enhanced the late-stage CM differentiation of ESCs and had effect on ultrastructural mature of ESCMs in late-stage development. The combined effects of 3D and co-culture that mimic in vivo physiological environment further improved the efficiency of CM differentiation from ESCs, resulting in fiber-like structures of cardiac cells with organized sarcomeric structure in ESCMs. This novel 3D co-culture system emphasizes the fact that the ESC differentiation is actively responding to cues from their environment and those cues can drive phenotypic control, which provides a useful in vitro model to investigate CM differentiation of stem cells. Copyright © 2011 Wiley Periodicals, Inc.

  4. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells.

    Science.gov (United States)

    Van Handel, Ben; Prashad, Sacha L; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I; Mikkola, Hanna K A

    2010-10-28

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.

  5. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  6. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Science.gov (United States)

    Choi, Jin Woo; Ku, Yunseo; Yoo, Byeong Wook; Kim, Jung-Ah; Lee, Dong Soon; Chai, Young Jun; Kong, Hyoun-Joong; Kim, Hee Chan

    2017-01-01

    The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN). A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of the proposed method

  7. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks

    Science.gov (United States)

    Choi, Jin Woo; Ku, Yunseo; Yoo, Byeong Wook; Kim, Jung-Ah; Lee, Dong Soon; Chai, Young Jun; Kong, Hyoun-Joong

    2017-01-01

    The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN). A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of the proposed method

  8. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    Full Text Available The white blood cell differential count of the bone marrow provides information concerning the distribution of immature and mature cells within maturation stages. The results of such examinations are important for the diagnosis of various diseases and for follow-up care after chemotherapy. However, manual, labor-intensive methods to determine the differential count lead to inter- and intra-variations among the results obtained by hematologists. Therefore, an automated system to conduct the white blood cell differential count is highly desirable, but several difficulties hinder progress. There are variations in the white blood cells of each maturation stage, small inter-class differences within each stage, and variations in images because of the different acquisition and staining processes. Moreover, a large number of classes need to be classified for bone marrow smear analysis, and the high density of touching cells in bone marrow smears renders difficult the segmentation of single cells, which is crucial to traditional image processing and machine learning. Few studies have attempted to discriminate bone marrow cells, and even these have either discriminated only a few classes or yielded insufficient performance. In this study, we propose an automated white blood cell differential counting system from bone marrow smear images using a dual-stage convolutional neural network (CNN. A total of 2,174 patch images were collected for training and testing. The dual-stage CNN classified images into 10 classes of the myeloid and erythroid maturation series, and achieved an accuracy of 97.06%, a precision of 97.13%, a recall of 97.06%, and an F-1 score of 97.1%. The proposed method not only showed high classification performance, but also successfully classified raw images without single cell segmentation and manual feature extraction by implementing CNN. Moreover, it demonstrated rotation and location invariance. These results highlight the promise of

  9. Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Directory of Open Access Journals (Sweden)

    Jane E. Ellis

    2005-01-01

    Full Text Available Dendritic cells (DCs play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12 of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs was significantly reduced (p < 0.001 in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM.

  10. Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash

    2017-06-01

    Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.

  11. Advanced maturation by electrical stimulation : differences in response between C2C12 and primary muscle progenitor cells

    NARCIS (Netherlands)

    Langelaan, M.L.P.; Boonen, K.J.M.; Rosaria-Chak, K.Y.; Schaft, van der D.W.J.; Post, M.J.; Baaijens, F.P.T.

    2011-01-01

    Skeletal muscle tissue engineering still does not result in the desired functional properties and texture as preferred for regenerative medicine and meat production applications. Electrical stimulation has been appropriately used as a tool to advance muscle cell maturation in vitro, thereby

  12. Hematopoietic Cell Transplantation for Systemic Mature T-Cell Non-Hodgkin Lymphoma

    Science.gov (United States)

    Smith, Sonali M.; Burns, Linda J.; van Besien, Koen; LeRademacher, Jennifer; He, Wensheng; Fenske, Timothy S.; Suzuki, Ritsuro; Hsu, Jack W.; Schouten, Harry C.; Hale, Gregory A.; Holmberg, Leona A.; Sureda, Anna; Freytes, Cesar O.; Maziarz, Richard Thomas; Inwards, David J.; Gale, Robert Peter; Gross, Thomas G.; Cairo, Mitchell S.; Costa, Luciano J.; Lazarus, Hillard M.; Wiernik, Peter H.; Maharaj, Dipnarine; Laport, Ginna G.; Montoto, Silvia; Hari, Parameswaran N.

    2013-01-01

    Purpose To analyze outcomes of hematopoietic cell transplantation (HCT) in T-cell non-Hodgkin lymphoma. Patients and Methods Outcomes of 241 patients (112 anaplastic large-cell lymphoma, 102 peripheral T-cell lymphoma not otherwise specified, 27 angioimmunoblastic T-cell lymphoma) undergoing autologous HCT (autoHCT; n = 115; median age, 43 years) or allogeneic HCT (alloHCT; n = 126; median age, 38 years) were analyzed. Primary outcomes were nonrelapse mortality (NRM), relapse/progression, progression-free survival (PFS), and overall survival (OS). Patient, disease, and HCT-related variables were analyzed in multivariate Cox proportional hazard models to determine association with outcomes. Results AutoHCT recipients were more likely in first complete remission (CR1; 35% v 14%; P = .001) and with chemotherapy-sensitive disease (86% v 60%; P < .001), anaplastic large-cell histology (53% v 40%; P = .04), and two or fewer lines of prior therapy (65% v 44%; P < .001) compared with alloHCT recipients. Three-year PFS and OS of autoHCT recipients beyond CR1 were 42% and 53%, respectively. Among alloHCT recipients who received transplantations beyond CR1, 31% remained progression-free at 3 years, despite being more heavily pretreated and with more refractory disease. NRM was 3.5-fold higher (95% CI, 1.80 to 6.99; P < .001) for alloHCT. In multivariate analysis, chemotherapy sensitivity (hazard ratio [HR], 1.8; 95% CI, 1.16 to 2.87) and two or fewer lines of pretransplantation therapy (HR, 5.02; 95% CI, 2.15 to 11.72) were prognostic of survival. Conclusion These data describe the roles of autoHCT and alloHCT in T-cell non-Hodgkin lymphoma and suggest greater effectiveness earlier in the disease course, and limited utility in multiply relapsed disease. Notably, autoHCT at relapse may be a potential option for select patients, particularly those with anaplastic large-cell lymphoma histology. PMID:23897963

  13. The happy destiny of frozen haematopoietic stem cells : from immature stem cells to mature applications

    NARCIS (Netherlands)

    de Vries, EGE; Vellenga, E; Kluin-Nelemans, JC; Mulder, NH

    Forty years ago, van Putten described in the European Journal of Cancer (see this issue) quantitative studies on the optimal storage techniques of mouse and monkey bone marrow suspensions. Survival of the animals after irradiation following injection with stored bone marrow cell suspensions was the

  14. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...

  15. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-09-01

    Full Text Available Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB and acidic TSB (aTSB. The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.

  16. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  17. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Rachel V. Jimenez

    2018-03-01

    Full Text Available C-reactive protein (CRP is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB, but did not require high levels of human CRP. Herein, we sought to determine if CRP’s influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB. We found that CRP (50 µg/ml reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs and CRP (≥5 μg/ml prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.

  18. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    Science.gov (United States)

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  19. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  20. Antigen-specific IL-23/17 pathway activation by murine semi-mature DC-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Shinya; Iwasaki, Takumi; Okano, Tomoko [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan); Chiba, Joe, E-mail: chibaj@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan)

    2009-09-11

    We analyzed the phenotype and function of bone marrow-derived dendritic cells (DCs) induced in vitro without using any serum during the late stage of cultivation. These 'serum-free' DCs (SF-DCs) possessed the ability to induce T cell proliferation as well as antibody responses, indicating that they were functional DCs. Surprisingly, the SF-DCs akin to semi-mature DCs in terms of both phenotypic and functional characteristics. The SF-DCs did not produce IL-12 but produced large amounts of IL-23 following lipopolysaccharide stimulation. The antigen-specific production of IL-17 by CD4{sup +} T cells co-cultured with OVA-loaded SF-DCs was significantly higher than that with OVA-loaded conventional DCs. These results suggest that SF-DCs tend to produce IL-23 and can consequently induce the IL-17 producing CD4{sup +} T cells. The semi-mature DC-like cells reported here will be useful vehicles for DC immunization and might contribute to studies on the possible involvement of semi-mature DCs in Th17 cell differentiation.

  1. Human natural killer cell maturation defect supports in vivo CD56(bright to CD56(dim lineage development.

    Directory of Open Access Journals (Sweden)

    Carolina Inés Domaica

    Full Text Available Two populations of human natural killer (NK cells can be identified in peripheral blood. The majority are CD3(-CD56(dim cells while the minority exhibits a CD3(-CD56(bright phenotype. In vitro evidence indicates that CD56(bright cells are precursors of CD56(dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-CD56(dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-CD56(bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright and CD56(dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-CD56(dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+ cells, and CD56(bright cells did not down-regulate CD62L, suggesting that CD56(dim cells could not acquire a terminally differentiated phenotype and that CD56(bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright NK cells differentiate into CD56(dim NK cells, and contribute to further understand human NK cell ontogeny.

  2. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network

    Directory of Open Access Journals (Sweden)

    Jean-Marc Good

    2017-11-01

    Full Text Available Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF to Purkinje cell (PC network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity.

  3. Nanoparticles prepared from the water extract of Gusuibu (Drynaria fortunei J. Sm. protects osteoblasts against insults and promotes cell maturation

    Directory of Open Access Journals (Sweden)

    Hsu C-K

    2011-07-01

    Full Text Available Chung-King Hsu1,2, Mei-Hsiu Liao3, Yu-Tyng Tai4, Shing-Hwa Liu5, Keng-Liang Ou6, Hsu-Wei Fang7, I-Jung Lee8, Ruei-Ming Chen2,31Institute of Materials Science and Engineering, National Taipei University of Technology, 2Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Medical Center, 3Graduate Institute of Medical Sciences, Taipei Medical University, 4Department of Anesthesiology, Taipei Medical University-Wan Fang Medical Center, 5Institute of Toxicology, College of Medicine, National Taiwan University, 6Graduate Institute of Biomedical Materials and Engineering, Taipei Medical University, 7Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 8Division of Information and Herbarium, National Research Institute of Chinese Medicine, Taipei, TaiwanAbstract: Our previous study showed that Gusuibu (Drynaria fortunei J. Sm. can stimulate osteoblast maturation. This study was further designed to evaluate the effects of nanoparticles prepared from the water extract of Gusuibu (WEG on osteoblast survival and maturation. Primary osteoblasts were exposed to 1, 10, 100, and 1000 µg/mL nanoparticles of WEG (nWEG for 24, 48, and 72 hours did not affect morphologies, viability, or apoptosis of osteoblasts. In comparison, treatment of osteoblasts with 1000 µg/mL WEG for 72 hours decreased cell viability and induced DNA fragmentation and cell apoptosis. nWEG had better antioxidant bioactivity in protecting osteoblasts from oxidative and nitrosative stress-induced apoptosis than WEG. In addition, nWEG stimulated greater osteoblast maturation than did WEG. Therefore, this study shows that WEG nanoparticles are safer to primary osteoblasts than are normal-sized products, and may promote better bone healing by protecting osteoblasts from apoptotic insults, and by promoting osteogenic maturation.Keywords: Gusuibu, nanoparticles, cell protection, osteoblast maturation

  4. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells.

    Science.gov (United States)

    Xu, Cong; Wang, Li; Yu, Yue; Yin, Fangchao; Zhang, Xiaoqing; Jiang, Lei; Qin, Jianhua

    2017-08-22

    Organized cardiomyocyte alignment is critical to maintain the mechanical properties of the heart. In this study, we present a new and simple strategy to fabricate a biomimetic microchip designed with an onion epithelium-like structure and investigate the guided behavior of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) on the substrate. The hiPSC-CMs were observed to be confined by the three dimensional surficial features morphologically, analogous to the in vivo microenvironment, and exhibited an organized anisotropic alignment on the onion epithelium-like structure with good beating function. The calcium imaging of hiPSC-CMs demonstrated a more mature Ca 2+ spark pattern as well. Furthermore, the expression of sarcomere genes (TNNI3, MYH6 and MYH7), potassium channel genes (KCNE1 and KCNH2), and calcium channel genes (RYR2) was significantly up-regulated on the substrate with an onion epithelium-like structure instead of the surface without the structure, indicating a more matured status of cardiomyocytes induced by this structure. It appears that the biomimetic micropatterned structure, analogous to in vivo cellular organization, is an important factor that might promote the maturation of hiPSC-CMs, providing new biological insights to guide hiPSC-CM maturation by biophysical factors. The established approach may offer an effective in vitro model for investigating cardiomyocyte differentiation, maturation and tissue engineering applications.

  5. Immune responses of mature chicken bone-marrow-derived dendritic cells infected with Newcastle disease virus strains with differing pathogenicity.

    Science.gov (United States)

    Xiang, Bin; Zhu, Wenxian; Li, Yaling; Gao, Pei; Liang, Jianpeng; Liu, Di; Ding, Chan; Liao, Ming; Kang, Yinfeng; Ren, Tao

    2018-06-01

    Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain sho