WorldWideScience

Sample records for mature plant tissues

  1. Genetic transformation of mature citrus plants.

    Science.gov (United States)

    Cervera, Magdalena; Juárez, José; Navarro, Luis; Peña, Leandro

    2005-01-01

    Most woody fruit species have long juvenile periods that drastically prolong the time required to analyze mature traits. Evaluation of characteristics related to fruits is a requisite to release any new variety into the market. Because of a decline in regenerative and transformation potential, genetic transformation procedures usually employ juvenile material as the source of plant tissue, therefore resulting in the production of juvenile plants. Direct transformation of mature material could ensure the production of adult transgenic plants, bypassing in this way the juvenile phase. Invigoration of the source adult material, establishment of adequate transformation and regeneration conditions, and acceleration of plant development through grafting allowed us to produce transgenic mature sweet orange trees flowering and bearing fruits in a short time period.

  2. The plant tissue culture

    International Nuclear Information System (INIS)

    Crocomo, O.J.; Sharp, W.R.

    1973-01-01

    Progress in the field of plant tissue culture at the Plant Biochemistry Sector, Centro de Energia na Agricultura (CENA), Piracicaba, S.P., Brazil, pertains to the simplification of development in 'Phaseolus vulgaris' by dividing the organism into its component organs, tissues, and cells and the maintenance of these components on defined culture media 'in vitro'. This achievement has set the stage for probing the basis for the stability of the differentiated states and/or the reentry of mature differentiated cells into the mitotic cell cycle and their subsequent redifferentiation. Data from such studies at the cytological and biochemical level have been invaluable in the elucidation of the control mechanisms responsible for expression of the cellular phenotype. Unlimited possibilities exist for the application of tissue culture in the vegetative propagation of 'Phaseolus' and other important cultivars in providing genocopies or a large scale and/or readily obtaining plantlets from haploid cell lines or from protoplast (wall-less cells) hybridization products following genetic manipulation. These tools are being applied in this laboratory for the development and selection of high protein synthesizing 'Phaseolus' cultivars

  3. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    Full Text Available Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm, and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF, cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we

  4. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  5. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.

  6. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu

    2011-11-09

    Nov 9, 2011 ... Success in genetic engineering of cereals depends on the callus formation and efficient plant regeneration system. Callus formation and plant regeneration of wheat mature embryos ... compiled by modification of methods previously mentioned in ..... of more and readily available nutrition than artificial cul-.

  7. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  8. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  9. PROJECT MANAGEMENT MATURITY: AN ASSESSMENT OF MATURITY FOR DEVELOPING PILOT PLANTS

    Directory of Open Access Journals (Sweden)

    H.K. Mittermaier

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Despite the current economic climate, the South African mining and engineering industry is experiencing a very promising future, with a large number of capital projects in the offing. It is inevitable that pilot plant development will form part of this future as a risk mitigation technique. This study found that, even though the terms ‘pilot plant’ and ‘project management maturity’ are familiar within the industry, no link between these two could be found in the literature. A number of maturity models exist; and one developed by PMSolutions was selected to perform an assessment of the current level of project management maturity within the South African mining and engineering industry pertaining to the development of pilot plants. The Delphi technique was used to determine the views of experts in the South African mining, mineral processing, petrochemical, nuclear, and mechanical sectors regarding this maturity. A significant difference was observed between the current level of maturity and the required level of maturity in all but one of the nine knowledge areas defined by the Project Management Institute. The two knowledge areas of project time and risk management showed significant differences between current and required maturity levels, and were identified as key areas for improvement.

    AFRIKAANSE OPSOMMING: Ten spyte van die huidige ekonomiese klimaat ondervind die Suid-Afrikaanse mynbou- en ingenieursbedryf ’n baie bemoedigende toekoms, met ’n groot aantal kapitaalprojekte in die vooruitsig. Ten einde risiko’s te verlaag, sal die ontwikkeling van loodsaanlegte noodwendig deel van hierdie toekoms uitmaak. Daar is gevind dat, alhoewel die terme ‘loodsaanleg’ en ‘projekbestuur volwassenheid’ in die nywerheid bekend is, geen skakeling van hierdie twee terme in die literatuur opgespoor kon word nie. ’n Aantal volwassenheid modelle bestaan; en een wat deur PMSolutions ontwikkel is, is gekies om

  10. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  11. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue

    DEFF Research Database (Denmark)

    Yin, Huiqun; Jiang, Hong; Kristensen, Stine Gry

    2016-01-01

    PURPOSE: The aim of the study was to investigate the maturation rate of immature oocytes collected from ovarian medulla tissue normally discarded during preparation of ovarian cortical tissue for fertility preservation. Further we evaluated survival of derived MII oocytes following vitrification...... and warming. METHODS: 36 patients aged from 8 to 41 years who had one ovary excised for fertility preservation were included. Oocytes were collected from the medulla tissue and matured in vitro 44-48 h followed by vitrification. Number of oocytes collected, the rates of maturation and post-warming survival...... of cortical tissue may pose a risk of relapse, but the IVM approach is currently too inefficient to be the only method used for fertility preservation....

  12. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  13. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Fernyhough, M.E.; Hausman, G.J.; Guan, L.L.; Okine, E.; Moore, S.S.; Dodson, M.V.

    2008-01-01

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  14. Biotransformations with plant tissue cultures.

    Science.gov (United States)

    Carew, D P; Bainbridge, T

    1976-01-01

    Suspension cultures of Catharanthus roseus, Apocynum cannabinum and Conium maculatum were examined for their capacity to transform aniline, anisole, acetanilide, benzoic acid and coumarin. None of the cultures transformed acetanilide but each produced acetanilide when fed aniline. All three cultures converted benzoic acid to its para-hydroxy derivative. Coumarin was selectively hydroxylated at the 7-position by Catharanthus and Conium and anisole was O-demethylated only by older Catharanthus tissue.

  15. European orchid cultivation – from seed to mature plant

    Directory of Open Access Journals (Sweden)

    Jan Ponert

    2012-02-01

    Full Text Available We describe a method for growing orchids of the genera Dactylorhiza and Ophrys, two European members of the subfamily Orchidoideae, from seeds to mature plants using asymbiotic in vitro cultures and glasshouse pot cultures. Four media were used: two new media 1/4–2 and Mo2 and two modifications of Michl medium (Michl 1988. We also describe a highly efficient technique for seed disinfection using a syringe. We tested the effects of ethanol treatment on Anacmaptis morio (L R. M. Bateman, Pridgeon & M. W. seeds, sugar media composition on Dactylorhiza majalis (Rchb. P. F. Hunt & Summerh., Oeceoclades decaryana (H. Perrier ex Guillaumin & Manguin Garay & Taylor and Ophrys lojaconoi P. Delforge and the effect of kinetin on Dactylorhiza majalis protocorm growth. Sucrose was the best carbon source, while hexose resulted in the inhibition of protocorm development at early stages. The addition of kinetin at 10 mg/l resulted in the formation of the largest protocorms. Ethanol can have positive effect on seed germination when applied for a short time (2 min, while long-time ethanol exposure (60 min can kill the seeds.

  16. Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues.

    Science.gov (United States)

    Qu, Feini; Li, Qing; Wang, Xiao; Cao, Xuan; Zgonis, Miltiadis H; Esterhai, John L; Shenoy, Vivek B; Han, Lin; Mauck, Robert L

    2018-02-19

    Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.

  17. Localization of inorganic ions in plant tissues

    International Nuclear Information System (INIS)

    Iren, F. van.

    1980-01-01

    The author has been unable to devise a generally applicable technique of ion localization in cells and tissues. He concludes that ion localization in living organisms remains difficult. From this study, a rough outline of how ions are transported into, through, and out of plant roots is drawn. (Auth.)

  18. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica.

    Science.gov (United States)

    Oñate, Marta; Munné-Bosch, Sergi

    2009-10-01

    Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, alpha-tocopherol and F(v)/F(m) ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of alpha-tocopherol (up to 2.7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.

  19. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Modeling the eutrophication of two mature planted stormwater ponds for runoff control

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, A.H.; Hvitved-Jacobsen, Thorkild

    2013-01-01

    A model, targeting eutrophication of stormwater detention ponds was developed and applied to sim-ulate pH, dissolved oxygen and the development of algae and plant biomass in two mature plantedwetponds for run off control. The model evaluated algal and plant biomass growth into three groupsnamely;...

  1. Increasing harvest maturity of whole-plant corn silage reduces methane

    NARCIS (Netherlands)

    Hatew, B.; Bannink, A.; Laar, van H.; Jonge, de L.H.; Dijkstra, J.

    2016-01-01

    The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM;

  2. Combining ability for maturity and plant height in brassica rapa (l.) ssp. dichotoma (roxb.) hanelt

    International Nuclear Information System (INIS)

    Nasim, A.; Farhatullah, A.; Khan, N.U.; Azam, S.M.; Nasim, Z.

    2014-01-01

    A 5 * 5 F1 diallel cross hybrids of Brassica rapa (L.) ssp. dichotoma (Roxb.) Hanelt along with parents were evaluated through combining ability for days to flowering (initiation and completion), days to maturity and plant height. Highly significant differences were recorded for all the traits. Mean squares due to general, specific and reciprocal combining ability were significant for all the traits except plant height for which the latter two components were non-significant. Prevalence of additive (plant height), non-additive (days to flowering completion; days to maturity) and reciprocal effects (days to flowering initiation) were detected. Parental line G-403 was best general combiner for all the traits. The F1 hybrids G-902 * G-265 (days to flowering initiation), G-902 * G-403 (days to flowering completion), G-265 * G-1500 (days to maturity) and G-909 * G-265 (plant height) were superior and may be exploited for future breeding programs. (author)

  3. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  4. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  5. High frequency plant regeneration from mature seed- derived callus ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... Ki-Won Lee, Gi Jun Choi, Ki-Yong Kim, Hee Chung Ji, Hyung Soo Park, Sei Hyung Yoon and ... Gramineae family plants (Ha et al., 2001; Dong and Qu, ..... Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, ...

  6. Carbon isotope ratios of epidermal and mesophyll tissues from leaves of C3 and CAM plants

    International Nuclear Information System (INIS)

    Nishida, K.; Roksandic, Z.; Osmond, B.

    1981-01-01

    The δ 13 C values for epidermal and mesophyll tissues of two C 3 plants, Commelina communis and Tulipa gesneriana, and a CAM plant, Kalanchoē daigremontiana, were measured. The values for the tissues of both C 3 plants were similar. In young leaves of Kalanchoē, the epidermis and the mesophyll showed S 13 C values which were nearly identical, and similar to those found in C 3 plants. However, markedly more negative values for epidermal compared to mesophyll tissue, were obtained in the mature Kalanchoē leaf. This is consistent with the facts that the epidermis in a CAM leaf is formed when leaves engage in C 3 photosynthesis and that subsequent dark CO 2 fixation in guard cells or mesophyll cells makes only a small contribution to total epidermal carbon

  7. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  8. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  9. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Body of a Vascular Plant Is Composed of Three Tissue Systems . . . . . . . . . . . . . . . . . . . . . Structurally Stem, Leaf, and Root Differ Primarily...

  10. Prediction equation for lower limbs lean soft tissue in circumpubertal boys using anthropometry and biological maturation.

    Directory of Open Access Journals (Sweden)

    João Valente-dos-Santos

    Full Text Available Lean soft tissue (LST, a surrogate of skeletal muscle mass, is largely limited to appendicular body regions. Simple and accurate methods to estimate lower limbs LST are often used in attempts to partition out the influence of body size on performance outputs. The aim of the current study was to develop and cross-validate a new model to predict lower limbs LST in boys aged 10-13 years, using dual-energy X-ray absorptiometry (DXA as the reference method. Total body and segmental (lower limbs composition were assessed with a Hologic Explorer-W QDR DXA scanner in a cross-sectional sample of 75 Portuguese boys (144.8±6.4 cm; 40.2±9.0 kg. Skinfolds were measured at the anterior and posterior mid-thigh, and medial calf. Circumferences were measured at the proximal, mid and distal thigh. Leg length was estimated as stature minus sitting height. Current stature expressed as a percentage of attained predicted mature stature (PMS was used as an estimate of biological maturity status. Backward proportional allometric models were used to identify the model with the best statistical fit: ln (lower limbs LST  = 0.838× ln (body mass +0.476× ln (leg length - 0.135× ln (mid-thigh circumference - 0.053× ln (anterior mid-thigh skinfold - 0.098× ln (medial calf skinfold - 2.680+0.010× (percentage of attained PMS (R = 0.95. The obtained equation was cross-validated using the predicted residuals sum of squares statistics (PRESS method (R2PRESS = 0.90. Deming repression analysis between predicted and current lower limbs LST showed a standard error of estimation of 0.52 kg (95% limits of agreement: 0.77 to -1.27 kg. The new model accurately predicts lower limbs LST in circumpubertal boys.

  11. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  12. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  13. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  14. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  15. A Proteomics Sample Preparation Method for Mature, Recalcitrant Leaves of Perennial Plants

    Science.gov (United States)

    Na, Zhang; Chengying, Lao; Bo, Wang; Dingxiang, Peng; Lijun, Liu

    2014-01-01

    Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie). An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants. PMID:25028960

  16. A proteomics sample preparation method for mature, recalcitrant leaves of perennial plants.

    Directory of Open Access Journals (Sweden)

    Deng Gang

    Full Text Available Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie. An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants.

  17. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  19. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  20. Methods to Quantify Nickel in Soils and Plant Tissues

    Directory of Open Access Journals (Sweden)

    Bruna Wurr Rodak

    2015-06-01

    Full Text Available In comparison with other micronutrients, the levels of nickel (Ni available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES. There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.

  1. Banana Musa tissue culture plants enhanced by endophytic fungi

    African Journals Online (AJOL)

    Mo

    Merging biotechnology with biological control: Banana Musa tissue culture plants enhanced by endophytic .... While working in the laminar flow cabinet, sterile filter papers were placed in ..... University of Bonn, Bonn, Germany. Niere, B., 2001.

  2. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    the ROS production stems from the mitochondria and peroxisomes as is seen in animal cells. At the Bioimaging Center at KVL we employ different techniques to induce, detect and monitor ROS production, distribution and in and among living plant cells. Both confocal laser scanning microscopy and 2-photon......Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...... the different roles ROS play. On the other hand ROS also cause damage to cellular components at sub-lethal to lethal levels. In photosynthesizing plants the major production of ROS origin from the chloroplast. ROS is a by product from the Photosystem I/II handling of light energy. In nonphotosynthesizing plants...

  3. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  4. Water retention capacity of tissue cultured plants

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Wijnhoven, F.

    2005-01-01

    Leaves rapidly close their stomata after detachment resulting in a strong reduction of water loss. It has been reported that detached leaves of in vitro produced plants show continuous water loss indicating that they are unable to close the stomata properly and/or that their cuticle is

  5. PLANT REGENERATION THROUGH TISSUE CULTURE OF PEAR ...

    African Journals Online (AJOL)

    AISA

    Pennisetum Glaucum (L) R.) K.TIECOURA 1, L. LEDOUX.2 AND M. DINANT.2. 1 Laboratoire de Génétique et amélioration des plantes, UFR de Biosciences, Université de Cocody,. B.P.582 Abidjan 22, Côte d'Ivoire. 2 Laboratoire de Génétique ...

  6. Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish.

    Science.gov (United States)

    Agneta, Rosa; Lelario, Filomena; De Maria, Susanna; Möllers, Christian; Bufo, Sabino Aurelio; Rivelli, Anna Rita

    2014-10-01

    Profile and distribution of glucosinolates (GLS) were detected in plant tissues of horseradish at different developmental stages: beginning of vegetative re-growth, flowering and silique formation. The GLS profile varied widely in the different tissues: we identified 17 GLS in roots and sprouts, one of which was not previously characterized in horseradish, i.e. the 2(S)-hydroxy-2-phenylethyl-GLS (glucobarbarin) and/or 2(R)-hydroxy-2-phenylethyl-GLS (epiglucobarbarin), 11 already found in the roots, including the putative 2-methylsulfonyl-oxo-ethyl-GLS, and 5 previously recognized only in the sprouts. Fifteen of those GLS were also identified in young and cauline leaves, 12 in the mature leaves and 13 in the inflorescences. No difference in GLS profile was observed in plant among the phenological stages. Differences in concentrations of GLS, quantified as desulfated, were found in plant. At the beginning of vegetative re-growth, sprouts while showing the same profile of the roots were much richer in GLS having the highest total GLS concentrations (117.5 and 7.7μmolg(-1) dry weight in sprouts and roots, respectively). During flowering and silique forming stages, the roots still maintained lower amount of total GLS (7.4μmolg(-1) of dry weight, on average) with respect to the epigeous tissues, in which mature and young leaves showed the highest total concentrations (70.5 and 73.8μmolg(-1) of dry weight on average, respectively). Regardless of the phenological stages, the aliphatic GLS were always predominant in all tissues (95%) followed by indolic (2.6%) and benzenic (2.4%) GLS. Sinigrin contributed more than 90% of the total GLS concentration. Aliphatic GLS concentrations were much higher in the epigeous tissues, particularly in the mature and young leaves, while benzenic and indolic GLS concentrations were higher in the roots. Through the phenological stages, GLS concentration increased in young and mature leaves and decreased in cauline leaves and inflorescences

  7. Maturation toward neuronal tissue in a Ewing sarcoma of bone after chemotherapy

    NARCIS (Netherlands)

    Salet, Maria Carolina Wilhelmina; Vogels, Rob; Brons, Paul P. T.; Schreuder, Bart; Flucke, Uta

    2016-01-01

    Background: Ewing sarcoma is the second most common bone tumor, occurring mainly in children and young adults. It shows a typical primitive, small round cell morphology and a characteristic fusion oncogene involving EWSR1 and members of the ETS family in most of the cases. Neuronal maturation after

  8. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    Science.gov (United States)

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.

  9. Epithelial–stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues

    Science.gov (United States)

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj—a gene encoding a transcription factor implicated in Notch signaling—in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. Subject Categories Development & Differentiation; Immunology; Signal Transduction PMID:25378482

  10. Trace element accumulation and distribution in sunflower plants at the stages of flower bud and maturity

    Directory of Open Access Journals (Sweden)

    Susanna De Maria

    2013-02-01

    Full Text Available The aim of this study was to analyze the accumulation and distribution of cadmium (Cd, zinc (Zn and copper (Cu in different portions of plants of sunflower (Helianthus annuus L., cv. Oleko grown in soil with contaminants (5, 300, 400 mg kg–1 of Cd, Zn and Cu, respectively and without (untreated soil as a control from the emergence of cotyledon leaves until to two phenological stages: flower bud (R-1 and maturity (R- 9. Sunflower accumulated considerable amounts of heavy metals in both phenological stages showing slight reductions of dry matter production. At R-1 stage, Cd, Zn and Cu were accumulated mainly in the roots with concentrations respectively up to 5.4, 233 and 160 mg kg–1 of dry matter with a low translocation from roots to the aerial part. Yet at the R-1 stage, the bioconcentration factor (BCF of Cd showed a significantly higher value in the Cd-Zn-Cu treatment (0.27 with respect to the untreated control (0.02, vice versa was observed for Cu, whereas no significant difference between treatments was observed for Zn (0.12 on average. However among metals, Cd showed the highest value of BCF. Referring only to the epigeous portion, differences in the accumulation and distribution of the three metals in the treated plants were found in both phenological stages; indeed passing from flower bud to the maturity stage, Cd, Zn and Cu concentrations increased in the stems and leaves, particularly in the old ones, whereas decreased in the heads. Metal accumulation in the achenes was very low and never exceed the toxicity threshold value considered for livestock. The high storage of heavy metals in roots and the probable re-translocation of the three metals along the plant during the growing cycle could be considered as a strategy of sunflower to preserve young metabolically-active leaves and reproductive organs from toxic metal concentrations.

  11. Effect of Planting Date and Maturity Group on Soybean Yield Response to Injury by Megacopta cribraria (Hemiptera: Plataspidae).

    Science.gov (United States)

    Blount, J L; Buntin, G D; Roberts, P M

    2016-02-01

    The kudzu bug, Megacopta cribraria (F.), is an invasive member of the family Plataspidae originating from Asia. Since its discovery in Georgia in 2009, its distribution has increased to 13 southern and eastern states. In the United States, M. cribraria is bivoltine and has two primary developmental hosts, kudzu and soybean. Here, we evaluated the yield response of soybean to M. cribraria feeding injury in relation to planting date and soybean maturity group. The study contained four replicated trials in Griffin, Tifton, and Midville, GA, in 2012 and 2013. Four planting dates from April to July, served as the whole plot of a split-plot design with maturity group five and seven soybean and insecticide (lambda-cyhalothrin) randomized within planting date. Egg masses, nymphs, and adults were enumerated weekly to biweekly until soybean reached maturity. Two generations were observed in April and May plantings, but only one generation was evident in June and July soybean plantings. Insecticide-protected plots had consistently higher yields than unprotected plots. Grain yield was greatest in the May planting and lowest in the July planting. Season-long feeding by M. cribraria reduced grain yield in April, May, and June plantings but not in the July planting. Maturity group and planting date had significant effects on yield components in most comparisons. This study indicated that early-planted soybean are at greater risk of yield loss from M. cribraria injury compared with later-planted soybean. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  13. Plant Fructokinases: Evolutionary, Developmental, and Metabolic Aspects in Sink Tissues

    Directory of Open Access Journals (Sweden)

    Ofer Stein

    2018-03-01

    Full Text Available Sucrose, a glucose–fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK or hexokinase (HXK. The affinity of FRK to fructose is much higher than that of HXK, making FRKs central for fructose metabolism. An FRK gene family seems to exist in most, if not all plants and usually consists of several cytosolic FRKs and a single plastidic FRK. These genes are expressed mainly in sink tissues such as roots, stems, flowers, fruits, and seeds, with lower levels of expression often seen in leaves. Plant FRK enzymes vary in their biochemical properties such as affinity for fructose, inhibition by their substrate (i.e., fructose, and expression level in different tissues. This review describes recently revealed roles of plant FRKs in plant development, including the combined roles of the plastidic and cytosolic FRKs in vascular tissues and seed development.

  14. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  15. Critical role of tissue kallikrein in vessel formation and maturation : Implications for therapeutic revascularization

    NARCIS (Netherlands)

    Stone, O.A.; Richer, C.; Emanueli, C.; Weel, V. van; Quax, P.H.A.; Katare, R.; Kraenkel, N.; Campagnolo, P.; Barcelos, L.S.; Siragusa, M.; Sala-Newby, G.B.; Baldessari, D.; Mione, M.; Vincent, M.P.; Benest, A.V.; Al Haj Zen, A.; Gonzalez, J.; Bates, D.O.; Alhenc-Gelas, F.; Madeddu, P.

    2009-01-01

    OBJECTIVE : Human Tissue Kallikrein (hKLK1) overexpression promotes an enduring neovascularization of ischemic tissue, yet the cellular mechanisms of hKLK1-induced arteriogenesis remain unknown. Furthermore, no previous study has compared the angiogenic potency of hKLK1, with its loss of function

  16. Environmental processes leading to the presence of organically bound plutonium in plant tissues consumed by animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.

    1979-01-01

    Using a proposed model for Pu behaviour to integrate current knowledge, information is presented on the chemical/biochemical processes governing the form of Pu in soils and plants and the relationship of these phenomena to gut absorption in animals. Regardless of the source term, Pu behaviour in the soil will be governed by the chemistry of Pu(IV), which predominates over Pu(VI) due to reductive reactions in the soil and at the plant root surface. The soil behaviour of Pu(IV) is governed by (1) hydrolysis, which results in insolubilization and sorption on solid phases, and (2) complexation with inorganic and organic ligands, which stabilize Pu(IV) against hydrolysis and increase solubility. These competing processes likely represent the rate-limiting step in the ingestion pathway because plants do not effectively discriminate against the soluble Pu(IV) ion. Following dissociation of soil Pu(IV) complexes at the outer root surface, Pu is transported across the plant root membrane as the Pu(IV) ion and translocated as Pu(IV) complexes with plant organic ligands. Redistribution of Pu occurs as the plant grows, with initial increases in stem tissues followed by accumulation in roots as the plant matures. The Pu concentration decreases up the plant and seeds contain the lowest Pu concentrations. The gastro-intestinal absorption of Pu requires the presence of soluble Pu forms and hydrolysis/complexation reactions in the gut likely govern solubility. The acidity of the gut is not sufficient to retard hydrolysis of Pu(IV). Therefore, the gastro-intestinal absorption of Pu organically bound in plant tissues is increased relative to Pu administered in hydrolysable solutions. (author)

  17. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  18. Distribution of Tributyltin in Tissues of Mature Japanese Whiting, Sillago japonica and Their Eggs

    OpenAIRE

    Shimasaki, Yohei; Oshima, Yuji; Inoue, Yoshiyuki; Shibata, Hisashi; Nakayama, Kei; Inoue, Suguru; Imoto, Hisaya; Kang, Ik Joon; Honjo, Tsuneo

    2008-01-01

    Tributyltin (TBT) has continued to pollute the coastal areas therein following global regulation for its use as an anti-fouling agent. The tissue dynamics of TBT in fish have been extensively documented, but few studies on maternal transfer of TBT have been performed. Previously, we reported that TBT was maternally transferred from parent fish to eggs. The present study examined the distribution of TBT in the tissues and spawned eggs of Japanese whiting, Sillago japonica, after dietary exp...

  19. Determination of Arsenical Herbicide Residues in Plant Tissues

    Science.gov (United States)

    R.M. Sachs; J.L. Michael; F.B. Anastasia; W.A. Wells

    1971-01-01

    Paper chromatographic separation of hydroxydimethylarsine oxide (cacodylic acid), monosodium methanearsonate (MSMA), sodium arsenate, and sodium arsenite was achieved with the aid of four solvent systems. Aqueous extracts of plant tissues removed essentially all the arscnicals applied, but mechanoiic fractionation was required before the extracts could be analyzed by...

  20. Analysis of chemical components from plant tissue samples

    Science.gov (United States)

    Laseter, J. L.

    1972-01-01

    Information is given on the type and concentration of sterols, free fatty acids, and total fatty acids in plant tissue samples. All samples were analyzed by gas chromatography and then by gas chromatography-mass spectrometry combination. In each case the mass spectral data was accumulated as a computer printout and plot. Typical gas chromatograms are included as well as tables describing test results.

  1. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity.

    Science.gov (United States)

    Shahid, Muhammad; Arshad, Muhammad; Kaemmerer, Michel; Pinelli, Eric; Probst, Anne; Baque, David; Pradere, Philippe; Dumat, Camille

    2012-01-01

    The long length of periods required for effective soil remediation via phytoextraction constitutes a weak point that reduces its industrial use. However, these calculated periods are mainly based on short-term and/or hydroponic controlled experiments. Moreover, only a few studies concern more than one metal, although soils are scarcely polluted by only one element. In this scientific context, the phytoextraction of metals and metalloids (Pb, Cd, Zn, Cu, and As) by Pelargonium was measured after a long-term field experiment. Both bulk and rhizosphere soils were analyzed in order to determine the mechanisms involved in soil-root transfer. First, a strong increase in lead phytoextraction was observed with plant maturity, significantly reducing the length of the period required for remediation. Rhizosphere Pb, Zn, Cu, Cd, and As accumulation was observed (compared to bulk soil), indicating metal mobilization by the plant, perhaps in relation to root activity. Moreover, metal phytoextraction and translocation were found to be a function of the metals' nature. These results, taken altogether, suggest that Pelargonium could be used as a multi-metal hyperaccumulator under multi-metal soil contamination conditions, and they also provide an interesting insight for improving field phytoextraction remediation in terms of the length of time required, promoting this biological technique.

  3. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    Science.gov (United States)

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  4. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.

    Science.gov (United States)

    Stindl, Reinhard

    2008-01-01

    Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as

  5. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems.

    Science.gov (United States)

    Abbott, Rosalyn D; Wang, Rebecca Y; Reagan, Michaela R; Chen, Ying; Borowsky, Francis E; Zieba, Adam; Marra, Kacey G; Rubin, J Peter; Ghobrial, Irene M; Kaplan, David L

    2016-07-01

    There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  7. Plant regeneration from cotyledons of mature soybean (Glycine max L.) Wilis cultivar using gamma rays

    International Nuclear Information System (INIS)

    Hutabarat, D.; Ratna, R.

    1999-01-01

    Soybean Wilis cultivar was efficiently regenerated in vitro via somatic embryogenesis. Cotyledonary explants were excised from mature germinating seeds. Seeds were germinated on agar solution and on B5 medium enriched with 5 ppm BA, 0.25 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Cotyledonary nodes from both germinating seeds were excised and cultured on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Age of seedlings had a remarkable influence on shoot regeneration. Cotyledon from seeds germinated on agar solution with light gave better result in shoot regeneration compare with those germinated in darkness. The highest number of regenerants per explants (5 shoots) was produced by cotyledon from seeds germinated on B5 medium enriched with 5 ppm IBA and 500 ppm casein hydrolyzate in darkness. The seeds of soybean were exposed to gamma-rays doses 10 Gy then germinated on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate did not improve the number of plant regeneration. Only 5-day-old seedlings from seeds were exposed to gamma-rays dose 30 Gy could improve the number of shoot regeneration, one of the cotyledonary node treated produced 21 regeneration shoots

  8. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2017-05-01

    Full Text Available Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time.Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems.Availability: Virtual Plant Tissue is available as open source (EUPL license on Bitbucket (https://bitbucket.org/vptissue/vptissue. The project has a website https://vptissue.bitbucket.io.

  9. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    Science.gov (United States)

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  10. IL-10 ameliorates TNF-α induced meniscus degeneration in mature meniscal tissue in vitro.

    Science.gov (United States)

    Behrendt, P; Häfelein, K; Preusse-Prange, A; Bayer, A; Seekamp, A; Kurz, B

    2017-05-16

    Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.

  11. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  12. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  13. Micropropagation of annatto (Bixa orellana L.) from mature tree and assessment of genetic fidelity of micropropagated plants with RAPD markers.

    Science.gov (United States)

    Siril, E A; Joseph, Nisha

    2013-01-01

    An in vitro propagation technique based on axillary bud proliferation was developed for the first time to mature annatto (Bixa orellana L.) tree. Nodal segments cultured on Murashige and Skoog (MS) medium supplemented with 1.0 μM benzyl adenine (BA) and tender coconut water (10 %) showed significantly high (P micropropagated plants. The present protocol in brief, can be used for the clonal propagation of the superior genotype and preservation of germplasm.

  14. Complexity in differentiating the expression of truncated or matured forms of MMP-2 and MMP-9 through zymography in rat brain tissues after acute ischaemic stroke.

    Science.gov (United States)

    Alam, Mustafa; Shuaib, Ashfaq

    2013-05-30

    Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of ischaemic stroke. In particular, the mature forms of MMPs 2 and 9 have similar sizes and share gelatine as a common substrate. Both MMPs are upregulated in ischaemic stroke and play detrimental roles during stroke pathogenesis. Throughout this study, we demonstrated that pro-MMP-2 and pro-MMP-9 from ischaemic rat brain tissue homogenate is detected either through immunoblotting or zymography because of the remarkable size difference between these enzymes (72 versus 95 kDa, respectively). However, the mature MMP-2 and MMP-9 cannot be discriminated through zymography because of the almost identical sizes of these forms (66 and 67 kDa, respectively). The use of gelatine zymography on ischaemic rat brain tissue homogenate revealed a 65-kDa MMP band, corresponding to the heterogeneous band of mature MMP-2 and/or MMP-9. Furthermore, we also detected mature MMPs of 65 kDa generated from both recombinant human MMP-2 and MMP-9. Using a pull down assay in rat brain tissue homogenate with gelatine-agarose beads, we showed increased activities for both the pro and mature forms of MMP-2 and MMP-9. However, we could not determine the origin of the respective mature MMPs from the heterogeneous band. Thus, in this study, we demonstrated that the identification and quantification of mature MMP-2 and MMP-9 could not be achieved using zymography alone. Therefore, the development of a reliable technique to identify and measure the respective MMPs is needed to test new stroke therapies targeting MMP-2 and MMP-9. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections

    Science.gov (United States)

    Rust fungi infect a wide range of plant species making them of particular interest to plant pathologists. In order to study the interactions between these important pathogenic fungi and their host plants it is useful to be able to differentiate fungal tissue from plant tissue. This can be accomplish...

  16. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  17. Study of compost maturity produced in the composting plant in Granollers (Barcelona, Spain); Estudio de la madurez del compost producido en la planta de compostaje de Granollers (Barcelona)

    Energy Technology Data Exchange (ETDEWEB)

    Diez Fontanet, E.; Alba Munoz, G.; Aguilera Riba, F.; Sanchez Ferrer, A.

    2000-07-01

    The following article presents the determination of important parameters, which have been traditionally used in the evaluation of the compost maturity. Compost from a tunnel plant placed in Granollers (Barcelona) has been chosen during the maturation stage. The results showed that self-heating test and organic material content are the most significant maturity indexes, whereas Solvita differed from the rest of analysis. Other important parameters, such as ion exchange capacity, water content, conductivity and pH were also determined. (Author)

  18. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  19. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  20. Extraction of DNA from plant and fungus tissues in situ

    Directory of Open Access Journals (Sweden)

    Abu Almakarem Amal S

    2012-06-01

    Full Text Available Abstract Background When samples are collected in the field and transported to the lab, degradation of the nucleic acids contained in the samples is frequently observed. Immediate extraction and precipitation of the nucleic acids reduces degradation to a minimum, thus preserving accurate sequence information. An extraction method to obtain high quality DNA in field studies is described. Findings DNA extracted immediately after sampling was compared to DNA extracted after allowing the sampled tissues to air dry at 21°C for 48 or 72 hours. While DNA extracted from fresh tissues exhibited little degradation, DNA extracted from all tissues exposed to 21°C air for 48 or 72 hours exhibited varying degrees of degradation. Yield was higher for extractions from fresh tissues in most cases. Four microcentrifuges were compared for DNA yield: one standard electric laboratory microcentrifuge (max rcf = 16,000×g, two battery-operated microcentrifuges (max rcf = 5,000 and 3,000 ×g, and one manually-operated microcentrifuge (max rcf = 120×g. Yields for all centrifuges were similar. DNA extracted under simulated field conditions was similar in yield and quality to DNA extracted in the laboratory using the same equipment. Conclusions This CTAB (cetyltrimethylammonium bromide DNA extraction method employs battery-operated and manually-operated equipment to isolate high quality DNA in the field. The method was tested on plant and fungus tissues, and may be adapted for other types of organisms. The method produced high quality DNA in laboratory tests and under simulated field conditions. The field extraction method should prove useful for working in remote sites, where ice, dry ice, and liquid nitrogen are unavailable; where degradation is likely to occur due to the long distances between the sample site and the laboratory; and in instances where other DNA preservation and transportation methods have been unsuccessful. It may be possible to adapt

  1. The effect of plant growth regulators on optimization of tissue culture ...

    African Journals Online (AJOL)

    Mature seeds of four upland rice cultivars namely Kusan, Lamsan, Selasi and Siam were assessed for callus induction and plant regeneration on different concentrations and combinations of plant growth regulators, incorporated into MS (Murashige and Skoog) basal medium. Callus induction frequency was significantly ...

  2. Effect of supplemented diet with maturation plant extract on reproductive performance of Etroplus suratansis

    Directory of Open Access Journals (Sweden)

    S. Albin Dhas

    2015-11-01

    Full Text Available This study was carried out to understand the effect of herbal maturation diet on reproductive successes in Etroplus suratensis. Three herbal maturation diets (EXD1, EXD2, EXD3 and one control diet (EXD0 were prepared with different combinations of herbal ingredients and normal diet ingredients. The experimental animal were observed for the success in reproductive performance like Gonado Somatic Index (GSI, fecundity, striping response, percentage of fertilization, percentage of hatching, percentage of deformed and formed larvae, volume of milt, number of sperm cell, percentage of sperm motility, sperm survival time, percentage of active sperm. The EXD3 diet combination increased the GSI (3.14, fecundity (1325, striping responds (87.23, percentage of fertilization (96.45 percentage of hatching (91.89, percentage of formed larvae (87.53, volume of milt (287 μl, number of sperm cell per μl (1912 percentage of sperm motility (94.18, time of sperm survival (72′15″ and percentage of active sperm cells (92.27 and reduced deformed larva percentage (4.36. From this observation it is more evident that the combination of EXD3 was the best combination and it could be utilized for the formulation of maturation diets for E. suratensis.

  3. Extraction, separation, and detections of 14C-diazepam and 14C-metabolites from brain tissue of mature and old rats

    International Nuclear Information System (INIS)

    Komiskey, H.L.; Rahman, A.; Weisenburger, W.P.; Hayton, W.L.; Zobrist, R.H.; Silvius, W.

    1985-01-01

    A rapid method for simultaneous determination of brain concentrations of diazepan and each of its three major metabolites in brain tissue by a reverse isotope dilution procedure is presented. Radiolabeled diazepam and metabolites were extracted from brain tissue of mature and senescent rats with ethyl ether. After the ether was evaporated the benzodiazepines were separated from the residue by passing the water soluble portion through C-18 bonded-phase extraction columns. High pressure liquid chromatography (HPLC) was used to separate the benzodiazepines from each other. Reverse isotope dilution analysis was used to quantify diazepam and its metabolites. The percent recovery of diazepam and its metabolites from the brain of mature or senescent rats did not vary significantly

  4. Research progress in plant mutation by combining ion beam irradiations and tissue culture

    International Nuclear Information System (INIS)

    Zhou Linbin; Li Wenjian; Qu Ying; Li Ping

    2007-01-01

    About a new mutation breeding method which combines plant tissue culture technique with heavy ion beam irradiations were discussed in this paper with the principles, operation steps, molecular mechanisms, etc. The mutation method developed a few advantages coming from plant tissue culture, which can produce offspring by asexual ways. Meanwhile, using this method, the study of biological effects of high energy particles with different linear energy transfer values on plant tissues or cells can be explored and optimized in theory or practice. (authors)

  5. Growth and maturational changes in dense fibrous connective tissue following 14 days of rhGH supplementation in the dwarf rat

    Science.gov (United States)

    Kyparos, Antonios; Orth, Michael W.; Vailas, Arthur C.; Martinez, Daniel A.

    2002-01-01

    The purpose of this study was to investigate the impact of recombinant human growth hormone (rhGH) on patella tendon (PT), medial collateral ligament (MCL), and lateral collateral ligament (LCL) on collagen growth and maturational changes in dwarf GH-deficient rats. Twenty male Lewis mutant dwarf rats, 37 days of age, were randomly assigned to Dwarf + rhGH (n = 10) and Dwarf + vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt twice daily for 14 days. rhGH administration stimulated dense fibrous connective tissue growth, as demonstrated by significant increases in hydroxyproline specific activity and significant decreases in the non-reducible hydroxylysylpyridinoline (HP) collagen cross-link contents. The increase in the accumulation of newly accreted collagen was 114, 67, and 117% for PT, MCL, and LCL, respectively, in 72 h. These findings suggest that a short course rhGH treatment can affect the rate of new collagen production. However, the maturation of the tendon and ligament tissues decreased 18-25% during the rapid accumulation of de novo collagen. We conclude that acute rhGH administration in a dwarf rat can up-regulate new collagen accretion in dense fibrous connective tissues, while causing a reduction in collagen maturation. Copyright 2002 Elsevier Science Ltd.

  6. How-To-Do-It: Using Cauliflower to Demonstrate Plant Tissue Culture.

    Science.gov (United States)

    Haldeman, Janice H.; Ellis, Jane P.

    1988-01-01

    Presents techniques used for disinfestation of plant material, preparation of equipment and media, and laboratory procedures for tissue culture using cauliflower. Details methods for preparing solutions and plant propagation by cloning. (CW)

  7. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    Science.gov (United States)

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Planting Methods on Maturity and Yield of Onion (Allium ...

    African Journals Online (AJOL)

    Key words: onion, planting method, sets, transplantings, direct seeding, bulb yield. .... The central four rows of each plot were harvested and ... Means with lower case letters represent values for planting methods effects and means with upper .... Acta Hort. 84: 27-32. Brewster, J.L. 2002. Onions and other vegetable Alliums.

  9. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Juan E. Palomares-Rius

    2017-11-01

    Full Text Available Plant-parasitic nematodes (PPNs interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes, but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.. PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i non-hypertrophied nurse cells; (ii single giant cells; (iii syncytia; and (iv coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites. Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant, and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal

  10. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment.

    Science.gov (United States)

    Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Mátel, L'ubomír; Salaj, Terézia; Pret'ová, Anna; Hajduch, Martin

    2009-06-01

    The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value Chernobyl soil conditions was proposed. Our results suggest that adaptation toward heavy metal stress, protection against radiation damage, and mobilization of seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.

  11. Challenges of adolescent and maturing nuclear plants: a chemistry perspective on maintenance and outages

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G. [Bruce Power, Chemistry Design, Plant Design Engineering, Tiverton, Ontario (Canada)]. E-mail: john.roberts@brucepower.com

    2003-07-01

    In his address to the Canadian Nuclear Society, Bruce Power's Section Manager for Chemistry Design will relate how Designers and Specifiers for Plant and Components have historically limited their approach to that of new plants. As nuclear plants become operational, John G. Roberts will explain how the requirements to protect the assets change as a result of changed capabilities, environments and requirements. John will offer examples to show how challenges were met during construction and commissioning. While plant changes are often necessary following commissioning to prevent serious operational problems, John will also discuss ways in which planners, suppliers and maintenance staff can broaden their views and embrace new work methods to ensure those changes don't unwittingly create new challenges. (author)

  12. Challenges of adolescent and maturing nuclear plants: a chemistry perspective on maintenance and outages

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2003-01-01

    In his address to the Canadian Nuclear Society, Bruce Power's Section Manager for Chemistry Design will relate how Designers and Specifiers for Plant and Components have historically limited their approach to that of new plants. As nuclear plants become operational, John G. Roberts will explain how the requirements to protect the assets change as a result of changed capabilities, environments and requirements. John will offer examples to show how challenges were met during construction and commissioning. While plant changes are often necessary following commissioning to prevent serious operational problems, John will also discuss ways in which planners, suppliers and maintenance staff can broaden their views and embrace new work methods to ensure those changes don't unwittingly create new challenges. (author)

  13. Effect of vanadium on plant growth and its accumulation in plant tissues

    Directory of Open Access Journals (Sweden)

    Narumol Vachirapatama

    2011-06-01

    Full Text Available Hydroponic experiments were conducted to investigate vanadium uptake by Chinese green mustard and tomato plantsand its effect on their growth. Twenty-eight (Chinese green mustard and 79 days (tomato after germination, the plants wereexposed for a further seven days to a solution containing six different concentrations of ammonium metavanadate (0-80 mg/lNH4VO3. The vanadium accumulated in the plant tissues were determined by ion-interaction high performance liquid chromatography,with confirmation by magnetic sector ICP-MS.The results indicated that nutrient solution containing more than 40 mg/l NH4VO3 affected plant growth for bothChinese green mustard and tomato plant. Chinese green mustard grown in the solution containing NH4VO3 at the concentrationsof 40 and 80 mg/l had stem length, number of leaves, dry weight of leaf, stem and root significantly lower than those ofplants grown in the solution containing 0-20 mg/l NH4VO3. Tomato plants were observed to wilt after four days in contactwith the nutrient solutions containing 40 and 80 mg/l NH4VO3. As the vanadium concentrations increased, a resultantdecrease in the stem length, root fresh weight, and fruit fresh weight were noted. The accumulation of vanadium was higher inthe root compared with leaf, stem, or fruit. Measured levels of vanadium, from a nutrient solution containing 40 mg/l NH4VO3,were 328, 340, and 9.66x103 g/g in the leaf, stem and root for Chinese green mustard, and 4.04 and 4.01x103 g/g in the fruitand roots for tomato plants, respectively.

  14. Micropropagation of Prosopis chilensis (Mol.) Stuntz from young and mature plants.

    Science.gov (United States)

    Caro, L A; Polci, P A; Lindström, L I; Echenique, C V; Hernández, L F

    2002-04-01

    Prosopis chilensis (Mol.) Stuntz (Algarrobo de Chile) is an important native tree species that can be grown in arid and semiarid regions for wood and forage production and environmental protection. Developing a simple and reliable in vitro protocol for cloning it would enable to improve it genetically. Explants of P. chilensis were taken from 4 months-old plants grown in the greenhouse or from adult trees grown in a natural environment. Nodal segments 1-2 cm long containing an axillary bud were selected from elongating shoots. These cuttings were aseptically cultured on two agar-solid basal media, MS or BTMm, and treated with 0.05 mg L-1 BA and 3 mg L-1 of either IAA, IBA or NAA. Sucrose (3% w/v) was used as carbon source. The percentage of sprouted cuttings and whole plant regeneration as well as its shoot and root length were recorded. Number, length and dry weight of shoots and roots were also measured. Rooting was successful with cuttings taken from young or adult plants, but explants from young plants showed a better response. Culturing in BTMm resulted in significantly greater shoot and root biomass than culturing in MS. Moreover, this response was higher in young explants when IBA was used as growth regulator. This paper reports a simple and effective method to micropropagate P. chilensis from young and adult plants.

  15. Translocation of radiocesium from stems and leaves of plants and the effect on radiocesium concentrations in newly emerged plant tissues

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi; Kagiya, Shigeo

    2012-01-01

    An accident occurred at the Fukushima Dai-ichi Nuclear Power Plant in March 2011 at which time large amounts of radionuclides were released into the atmosphere and the sea. In early May 2011, it was found that newly emerged tea (Camellia sinensis) leaves contained radiocesium, both 134 Cs and 137 Cs in some areas more than 300 km away from the Fukushima plant. To understand the mechanisms of radiocesium transfer to newly emerged tissues (shoots, leaves and fruits) of other plants in the future, radiocesium concentrations in newly emerged leaves of 14 plant species collected from the sampling areas in and near National Institute of Radiological Sciences in Chiba, Japan. The studied plant types were: (1) herbaceous plants, (2) woody plants with no old leaves at the time of the March accident, and (3) woody plants with old leaves out before the accident. About 40–50 d after the start of the accident, newly emerged leaves from woody plant with old leaves tended to show higher values than other woody or herbaceous plants. Concentrations of radiocesium in newly emerged tissues of trees decreased with time, but they did not decrease to the level of herbaceous plants. The type of the plant and presence of old leaves at the time of the heavy deposition period affected the radiocesium concentrations in newly emerged tissues.

  16. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    Science.gov (United States)

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  17. Determination of an empirical formula for organic composition of mature compost produced in Isfahan-Iran composting plant in 2013

    Directory of Open Access Journals (Sweden)

    Parvin Razmjoo

    2015-01-01

    Full Text Available Aims: The aims of this study were to analyze the carbon, hydrogen, nitrogen, sulfur, and oxygen (CHNS-O content of compost derived from Isfahan-Iran municipal solid waste using thermal elemental analyzer and to develop an approximate empirical chemical formula for the organic fraction of the mature compost as a function of its elemental composition. Materials and Methods: The compost samples (1 kg were collected from different parts of the windrows and thoroughly mixed in accordance with standard methods. After drying and milling, each sample was introduced to an elemental analyzer to measure their CHNS-O contents. The moisture content, temperature, and pH value were also monitored in three different windrows during the process. Results: An approximate chemical empirical formula calculated for the organic fraction of the compost was: C 204 H 325 O 85 N 77 S. Conclusion: According to this formula, it appears that the mature compost produced in the site contains higher value of nondegradable nitrogen, which leads to a lower total C/N ratio. Therefore, improving the primary separation of raw material in the composting plant particularly severance of plastic materials can result in an optimum C/N ratio.

  18. Reduced Position Effect in Mature Transgenic Plants Conferred by the Chicken Lysozyme Matrix-Associated Region

    NARCIS (Netherlands)

    Mlynárová, Ľudmila; Loonen, Annelies; Heldens, Jos; Jansen, Ritsert C.; Keizer, Paul; Stiekema, Willem J.; Nap, Jan-Peter

    1994-01-01

    Matrix-associated regions may be useful for studying the role of chromatin architecture in transgene activity of transformed plants. The chicken lysozyme A element was shown to have specific affinity for tobacco nuclear matrices, and its influence on the variability of transgene expression in

  19. A high-resolution method for the localization of proanthocyanidins in plant tissues

    Directory of Open Access Journals (Sweden)

    Panter Stephen

    2011-05-01

    Full Text Available Abstract Background Histochemical staining of plant tissues with 4-dimethylaminocinnamaldehyde (DMACA or vanillin-HCl is widely used to characterize spatial patterns of proanthocyanidin accumulation in plant tissues. These methods are limited in their ability to allow high-resolution imaging of proanthocyanidin deposits. Results Tissue embedding techniques were used in combination with DMACA staining to analyze the accumulation of proanthocyanidins in Lotus corniculatus (L. and Trifolium repens (L. tissues. Embedding of plant tissues in LR White or paraffin matrices, with or without DMACA staining, preserved the physical integrity of the plant tissues, allowing high-resolution imaging that facilitated cell-specific localization of proanthocyanidins. A brown coloration was seen in proanthocyanidin-producing cells when plant tissues were embedded without DMACA staining and this was likely to have been due to non-enzymatic oxidation of proanthocyanidins and the formation of colored semiquinones and quinones. Conclusions This paper presents a simple, high-resolution method for analysis of proanthocyanidin accumulation in organs, tissues and cells of two plant species with different patterns of proanthocyanidin accumulation, namely Lotus corniculatus (birdsfoot trefoil and Trifolium repens (white clover. This technique was used to characterize cell type-specific patterns of proanthocyanidin accumulation in white clover flowers at different stages of development.

  20. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tuong-Van [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark); Jacyno, Tomasz [Faculty of Mechanical and Power Engineering, Wrocław University of Technology, Building A-1, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Breuhaus, Peter [Department of Energy, International Research Institute of Stavanger, Professor Olav Hanssens vei 15, 4021 Stavanger (Norway); Voldsund, Mari [Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim (Norway); Elmegaard, Brian [Section of Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark, Building 403, Nils Koppels Allé, 2800 Kongens Lyngby (Denmark)

    2014-04-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy analysis. This facility exploits an end-life oilfield and runs at conditions deviating significantly from its optimal operating specifications. Two different operating modes were assessed, and process models were developed using the simulation tools Aspen Plus{sup ®} and Aspen HYSYS{sup ®}, based on measured and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18–26 MW and about 3–4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12%) and production manifold (10%) modules. The separation work performed on this platform is greater than in similar facilities because of higher propane and water fractions of the well-streams. These findings emphasise the differences between peak and end-life productions: they suggest (i) to set focus on processes including gas expansion and compression, (ii) to investigate possibilities for an improved energy integration, and (iii) to consider and evaluate alternative system designs. - Highlights: • The thermodynamic performance of an upstream oil and gas processing plant is assessed. • Energy and exergy analyses are performed, and the plant inefficiencies are depicted. • The effects of end-life field conditions are evaluated.

  1. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Jacyno, Tomasz; Breuhaus, Peter; Voldsund, Mari; Elmegaard, Brian

    2014-01-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy analysis. This facility exploits an end-life oilfield and runs at conditions deviating significantly from its optimal operating specifications. Two different operating modes were assessed, and process models were developed using the simulation tools Aspen Plus ® and Aspen HYSYS ® , based on measured and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18–26 MW and about 3–4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12%) and production manifold (10%) modules. The separation work performed on this platform is greater than in similar facilities because of higher propane and water fractions of the well-streams. These findings emphasise the differences between peak and end-life productions: they suggest (i) to set focus on processes including gas expansion and compression, (ii) to investigate possibilities for an improved energy integration, and (iii) to consider and evaluate alternative system designs. - Highlights: • The thermodynamic performance of an upstream oil and gas processing plant is assessed. • Energy and exergy analyses are performed, and the plant inefficiencies are depicted. • The effects of end-life field conditions are evaluated

  2. Thermodynamic analysis of an upstream petroleum plant operated on a mature field

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Jacyno, Tomasz; Breuhaus, Peter

    2014-01-01

    Oil and gas processing on offshore platforms operates under changing boundary conditions over a field lifespan, as the hydrocarbon production declines and the water extraction increases. In this paper, the processing plant of the Draugen platform is evaluated by performing an energy and exergy...... and reconciliated process data. The total energy demand is moderately sensitive to daily and monthly variations: it ranges between 22 and 30 MW, of which 18-26 MW and about 3-4 MW are in electrical and thermal energy forms. The greatest exergy destruction takes place in the gas treatment (51%), recompression (12...

  3. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    Science.gov (United States)

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Accurately localizing the thyroid tissue in mature cystic teratoma of ovary by single-photon emission computerized tomography/computerized tomography

    International Nuclear Information System (INIS)

    Demir, Yusuf; Üçler, Rıfkı; Alkiş, İsmet; Bulut, Gülay

    2015-01-01

    A 30-year-old woman with hyperthyroidism was admitted to hospital. Although increased thyroid function was found, the gland was normal in ultrasonography (USG). Additionally, thyroid iodine uptake and Tc-99m pertechnetate scintigraphy was normal. Abdomen USG detected a cystic pelvic mass in left ovary. A whole-body scan was performed 48 hours after oral ingestion of 29.6 MBq (0.8 mCi) I-131 (iodine-131) revealed a round structure located to the left lower abdomen. Iodine uptake was detected in this cyst which was compatible with functional thyroid tissue demonstrated by SPECT/CT. The patient was underwent surgical operation and histopathology confirmed mature cystic teratoma. Accurate localization and depiction of thyroid tissue in ovary mass was provided with SPECT/CT

  5. Plant Regeneration Through Tissue Culture Of Pear Millet ...

    African Journals Online (AJOL)

    1. 1. 2,5), MS(5) and N6(1.100.25) culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot ...

  6. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Directory of Open Access Journals (Sweden)

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  7. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  8. The Effects of Planting Distances and Different Stages of Maturity on the Quality of Three Cultivars of Tomatoes (Lycopersicon esculentum Mill

    Directory of Open Access Journals (Sweden)

    Atefeh TABASI

    2013-08-01

    Full Text Available In this investigation the effects of cultivar, row spacing and different stages of maturity on qualitative characteristics of tomato (ascorbic acid, total soluble solids (TSS, β-carotene and lycopene have been evaluated. Experiment was performed by factorial analysis with 3 replicates in completely randomized design (CRD. First treatment was three cultivars of tomato, second treatment was four planting distances and third treatment was different stages of maturity. The results showed that all treatments had significant influence on the levels of ascorbic acid, soluble solids, β-carotene and lycopene. Generally, wider spacing and deep red fruits had the highest quality. Therefore, choosing appropriate cultivars, special planting distances and suitable stage of maturity can increase fruit quality of tomato.

  9. Esau's Plant anatomy: meristems, cells, and tissues of the plant body : their structure, function, and development

    National Research Council Canada - National Science Library

    Evert, Ray Franklin; Esau, Katherine; Eichhorn, Susan E

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Chapter 1 Structure and Development of the Plant Body- An Overview . . . . . . . . . . . . . . . . . . . . . . . . 1 Internal Organization of the Plant Body...

  10. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  11. [Morphological characteristics of kidneys connective tissue of mature fetuses and newborns from mothers, whose pregnancy was complicated by preeclampsia of varying degrees of severity].

    Science.gov (United States)

    Sorokina, Iryna V; Myroshnychenko, Mykhailo S; Kapustnyk, Nataliia V; Khramova, Tetyana O; Dehtiarova, Oksana V; Danylchenko, Svitlana I

    2018-01-01

    Introduction: The kidneys connective tissue condition in the antenatal period affects the formation of tissues and it changes with the development of various general pathological processes in this organ. The aim of the study was to identify the morphological features of kidneys connective tissue of fetuses and newborns from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity. Materials and methods: The material of the study was the tissue of kidneys of mature fetuses and newborns from mothers with physiological pregnancy (28 cases), as well as from mothers whose pregnancy was complicated by preeclampsia of varying degrees of severity (78 cases). Immunohistochemical study was performed by an indirect Coons method according to M. Brosman's technique using monoclonal antibodies to collagen type I, III and IV. Results: The kidneys connective tissue of fetuses and newborns developing under the maternal preeclampsia conditions is characterized by the qualitative and quantitative changes that indicate the development of sclerotic processes in this organ, the severity of which increase with the age and with the increase of the maternal preeclampsia severity. Qualitative changes are characterized by an increase of the fibrous component, thickening of the bundles of connective tissue fibers, and a decrease in the distance between them. Quantitative changes are characterized by a pronounced predominance of collagen fibers over elastic fibers, almost total absence in some field of view elastic fibers and the violation of the content of collagen type I, III and IV. Conclusion: Maternal preeclampsia underlies the development of qualitative and quantitative changes in kidneys connective tissue of fetuses and newborns, which as a result will lead to disruption of the functions of these organs in such children.

  12. Plant tissue culture study on two different races of purslane ...

    African Journals Online (AJOL)

    PRECIOUS

    -mail: Safdari_14@yahoo.com. Abbreviations: BAP, 6-Benzylaminopurine; NAA, naphthalene acetic acid; IBA, indole-3 butyric acid. plant is largely deficit. Therefore, we decided to determi- nate the best hormonal treatment for callus induction.

  13. [The connective tissues, from the origin of the concept to its "Maturation" to extracellular matrix. Application to ocular tissues. Contribution to the history of medical sciences].

    Science.gov (United States)

    Labat-Robert, J; Robert, L; Pouliquen, Y

    2011-06-01

    The "Tissue" concept emerged apparently in the medical literature at about the French revolution, during the second half of the 18(th) century. It was found in the texts written by the physicians of Béarn and Montpellier, the Bordeu-s and also by the famous physician, Felix Vicq d'Azyr, the last attending physician of the queen Marie-Antoinette, "Bordeu et al. (1775) et Pouliquen (2009)". It was elaborated into a coherent doctrine somewhat later by Xavier Bichat, considered as the founder of modern pathological anatomy, Bichat. With the advent of histochemistry, from the beginning of the 20(th) century, several of the principal macromolecular components of connective tissues, collagens, elastin, "acid mucopolysaccharides" (later glycosaminoglycans and proteoglycans) and finally structural glycoproteins were characterized. These constituents of connective tissues were then designated as components of the extracellular matrix (ECM), closely associated to the cellular components of these tissues by adhesive (structural) glycoproteins as fibronectin, several others and cell receptors, "recognising" ECM-components as integrins, the elastin-receptor and others. This molecular arrangement fastens cells to the ECM-components they synthesize and mediates the exchange of informations between the cells to the ECM (inside-out) and also from the ECM-components to the cells (outside-in). This macromolecular arrangement is specific for each tissue as a result of the differentiation of their cellular components. It is also the basis and condition of the fulfillment of the specific functions of differentiated tissues. This is a short description of the passage of the "tissue" concept from its vague origin towards its precise identification at the cellular and molecular level up to the recognition of its functional importance and its establishment as an autonomous science. This can be considered as a new example of the importance of metaphors for the progress of science, Keller

  14. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  15. Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm

    Directory of Open Access Journals (Sweden)

    Sarah M. Zimmerman

    2018-02-01

    Full Text Available The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3, the closely related cartilage-associated protein (CRTAP, and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4, is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT. These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.

  16. Towards the Development of Proteomics Workflows for the Analysis of Samples Derived from Refractory Plant Tissues

    OpenAIRE

    Thannhauser, T.W.

    2011-01-01

    Carrying out proteomic analyses in plant tissues involves dealing with a number of specialized challenges that can make protein extraction and quantification significantly more difficult than in other organisms. In addition to having relatively low protein concentrations, plant tissues are often rich in proteases, protease inhibitors and other materials that impede protein analysis. These compounds include lipids, tannins, polysaccharides, and a large variety of secondary metabolites. The ext...

  17. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    Science.gov (United States)

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  18. Microarray analysis of subcutaneous adipose tissue from mature cows with divergent body weight gain after feed restriction and realimentation

    Science.gov (United States)

    Body weight response to periods of feed restriction and realimentation is critical and relevant to the agricultural industry. The purpose of this study was to evaluate differentially expressed genes identified in subcutaneous adipose tissue collected from cows divergent in body weight (BW) gain afte...

  19. Recovery of Phytophthora ramorum in plant tissue with mixed infections

    Science.gov (United States)

    This study was performed to investigate the frequency with which P. ramorum would be isolated from host tissue co-infected with P. ramorum as well as an indigenous Phytophthora species or P. kernoviae. Three separate experiments were tested in a similar manner using different combinations of pathog...

  20. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  1. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.

  2. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    Science.gov (United States)

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  3. RDX in Plant Tissue: Leading to Humification in Surface Soils

    Science.gov (United States)

    2013-01-01

    distribution, and transfor- mation of TNT in higher plants. Ecotoxicology and Environmental Safety 64(2): 136–145. Amann, R. I., W. Ludwig, and K.-H...Schleifer. 1995. Phyolgenetic identification and in situ detection of individual microbial cells without cultivation . Microbiol. Rev. 59: 143–169

  4. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    Science.gov (United States)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  6. Cloning higher plants from aseptically cultured tissues and cells

    Science.gov (United States)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  7. Beyond maturity

    International Nuclear Information System (INIS)

    Tessmer, W.B.

    1990-01-01

    The Nuclear Power Plant Simulator Industry has undergone to decades of evolution in experience, technology and business practices. Link-Miles Simulation Corporation (LMSC) has been contracted to build 68 Full Scope Nuclear Simulators during the 1970's and 1980's. Traditional approaches to design, development and testing have been used to satisfy specifications for initial customer requirements. However, the Industry has matured. All U.S. Nuclear Utilities own, or have under contract, at least one simulator. Other industrial nations have centralized training facilities to satisfy the simulator training needs. The customer of the future is knowledgeable and experienced in the development and service of nuclear simulators. The role of the simulator vendor is changing in order to alter the traditional approach for development. Covenants between the vendors and their customers solidify new complementary roles. This paper presents examples of current simulator project development with recommendations for future endeavors

  8. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.

    Science.gov (United States)

    Zaky, S H; Lee, K W; Gao, J; Jensen, A; Verdelis, K; Wang, Y; Almarza, A J; Sfeir, C

    2017-05-01

    Mechanical load influences bone structure and mass. Arguing the importance of load-transduction, we investigated the mechanisms inducing bone formation using an elastomeric substrate. We characterized Poly (glycerol sebacate) (PGS) in vitro for its mechanical properties, compatibility with osteoprogenitor cells regarding adhesion, proliferation, differentiation under compression versus static cultures and in vivo for the regeneration of a rabbit ulna critical size defect. The load-transducing properties of PGS were compared in vitro to a stiffer poly lactic-co-glycolic-acid (PLA/PGA) scaffold of similar porosity and interconnectivity. Under cyclic compression for 7days, we report focal adhesion kinase overexpression on the less stiff PGS and upregulation of the transcription factor Runx2 and late osteogenic markers osteocalcin and bone sialoprotein (1.7, 4.0 and 10.0 folds increase respectively). Upon implanting PGS in the rabbit ulna defect, histology and micro-computed tomography analysis showed complete gap bridging with new bone by the PGS elastomer by 8weeks while minimal bone formation was seen in empty controls. Immunohistochemical analysis demonstrated the new bone to be primarily regenerated by recruited osteoprogenitors cells expressing periostin protein during early phase of maturation similar to physiological endochondral bone development. This study confirms PGS to be osteoconductive contributing to bone regeneration by recruiting host progenitor/stem cell populations and as a load-transducing substrate, transmits mechanical signals to the populated cells promoting differentiation and matrix maturation toward proper bone remodeling. We hence conclude that the material properties of PGS being closer to osteoid tissue rather than to mineralized bone, allows bone maturation on a substrate mechanically closer to where osteoprogenitor/stem cells differentiate to develop mature load-bearing bone. The development of effective therapies for bone and

  9. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    tissues in mature Acer saccharum trees. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Experimental investigation of buried tritium in plant and animal tissues

    International Nuclear Information System (INIS)

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-01-01

    Buried exchangeable tritium appears as part of organically bound tritium (OBT) in the traditional experimental determination of OBT. Since buried tritium quickly exchanges with hydrogen atoms in the body following ingestion, assuming that it is part of OBT rather than part of tritiated water (HTO) could result in a significant overestimate of the ingestion dose. This paper documents an experimental investigation into the existence, amount and significance of buried tritium in plant and fish samples. OBT concentrations in the samples were determined in the traditional way and also following denaturing with five chemical solutions that break down large molecules and expose buried tritium to exchange with free hydrogen atoms. A comparison of the OBT concentrations before and after denaturing, together with the concentration of HTO in the supernatant obtained after denaturing, suggests that buried OBT may exist but makes up less than 5% of the OBT concentration in plants and at most 20% of the OBT concentration in fish. The effects of rinse time and rinse water volumes were investigated to optimize the removal of exchangeable OBT from the samples. (authors)

  11. REGULATION OF CHLOROPHY LL DEGRADATION IN PLANT TISSUES

    Directory of Open Access Journals (Sweden)

    Syvash O. O.

    2017-06-01

    Full Text Available The purpose of the review was to analyze the basic biochemical processes leading to the chlorophyll degradation and ways to control this process in plant product storage. First of all, this is a complex of enzymatic reactions starting with the hydrolysis of chlorophyll with the formation of acyclic diterpene phytol and water-soluble chlorophyllide. An alternative primary reaction is the removal of magnesium from the chlorophyll tetrapyrrole ring to form pheophytin with the participation of Mg2+-dechelatase and/or low-molecular Mg2+-dechelating substances. The chlorophyll breakdown can also be caused by free radicals formed in the peroxidase-catalyzed reaction of Н2О2 with phenolic compounds or fatty acids. The unstable product of chlorophyll peroxidation, C132 –hydroxychlorophyll a decomposes to colorless low-molecular compounds. Expression of the genes of chlorophyll catabolism enzymes is controlled by phytohormones. Methods for controlling the pigment decomposition during storage of plant products are associated with the use of activators and inhibitors of chlorophyll decomposition. The best known inductor of the synthesis of catabolic enzymes is ethylene, widely used to accelerate fruit ripening. Gibberellins, cytokinins and nitric oxide, on the contrary, slow down the loss of chlorophyll.

  12. Microarray analysis of subcutaneous adipose tissue from mature cows with divergent body weight gain after feed restriction and realimentation

    Directory of Open Access Journals (Sweden)

    H.C. Cunningham

    2018-02-01

    Full Text Available Body weight response to periods of feed restriction and realimentation is critical and relevant to the agricultural industry. The purpose of this study was to evaluate differentially expressed genes identified in subcutaneous adipose tissue collected from cows divergent in body weight (BW gain after feed restriction and realimentation. We compared adipose samples from cows with greater gain based on average daily gain (ADG during realimentation with samples from cows with lesser gain. Specifically, there were four comparisons including two comparing the high and low gain animals across each feeding period (feed restriction and realimentation and two that compared differences in feed restriction and realimentation across high or low gain classifications. Using microarray analysis, we provide a set of differentially expressed genes identified between the high and low gain at both periods of nutrient restriction and realimentation. These data identify multiple differentially expressed genes between these two phenotypes across both nutritional environments. Keywords: Beef cows, Subcutaneous fat, Transcriptome

  13. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    Science.gov (United States)

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  14. An assay for secologanin in plant tissues based on enzymatic conversion into strictosidine

    DEFF Research Database (Denmark)

    Hallard, Didier; van der Heijden, Robert; Contin, Adriana

    1998-01-01

    strictosidine, a reaction catalysed by the enzyme strictosidine synthase (STR; E.C. 4.3.3.2). Subsequently, the formation of strictosidine is quantified by HPLC. STR was isolated from transgenic Nicotiana tabacum cells expressing a cDNA-derived gene coding for STR from Catharanthus roseus. The high specificity......The secoiridoid glucoside secologanin is the terpenoid building block in the biosynthesis of terpenoid indole alkaloids. A method for its determination in plant tissues and cell suspension cultures has been developed. This assay is based on the condensation of secologanin with tryptamine, yielding...... of STR for secologanin, in combination with a sensitive and selective HPLC system, allows a simple extraction of secologanin from plant tissue. The detection limit of this methos is 15 ng secologanin. Using this assay, secologanin contents were determined in tissues of various plant species; Lonicera...

  15. The basic design and requirement for plant tissue culture laboratory in MINT

    International Nuclear Information System (INIS)

    Azraf Azman; Rosli Darmawan; Rusli Ibrahim; Mohd Nazir Basiran; Azhar Mohamad; Mohamed Najli Mohamed Yasin; Shuhaimi Shamsuddin

    2005-01-01

    The production of multiple species plantlets involves a relatively complex process and it is a highly specialized operation. Tissue culture technology is rapidly becoming a commercialized method for propagating new cultivars, rare species and difficult-to-propagate plant. Not only are skills and knowledge essential but the laboratory itself also plays an important role to ensure the successful growth of the plantlets. To produce quality plantlets, plant tissue culture laboratories should fulfill the basic requirements. The laboratory should have proper building and layout which comprise of media preparation and washing room, sterilization or autoclave room, transfer room and culture or growth room. The scope of this paper is to compare these fundamental requirements with the plant tissue culture laboratory in MINT. All the basic needs and differences will be discussed and the proposal for corrective actions will be presented. (Author)

  16. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    Science.gov (United States)

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  17. Development of a vinasse culture medium for plant tissue culture

    International Nuclear Information System (INIS)

    Silva, A.L.L.D.; Gollo, L.

    2014-01-01

    Vinasse is the main pollutant (effluent) obtained from the distillation of sugarcane in the production of fuel alcohol. However, this residue is rich in nutrients that are required by plants. We developed a new culture medium using vinasse for the In vitro propagation of an orchid. The vinasse was treated (decanted and filtered), and the nutrients were determined and quantified. Different formulations using vinasse were tested for an In vitro culture. The vinasse dilutions demonstrated a good buffering effect. The ideal vinasse dilution for media formulation was 2.5%. The best KC formulations with vinasse were KCV1 and KCV5. Compared to KC medium, these formulations demonstrated similar results for In vitro multiplication, with the exception of protocorm-like body number, which was inferior in the vinasse formulations. Conversely, for In vitro elongation and rooting, these vinasse media were superior to KC medium. KC medium promotes a low rooting rate (8%) compared to 68 and 100% obtained by KCV1 and KCV5, respectively. Moreover, plantlets cultured on KC medium become protocorm-like body clusters, which impeded the acclimatization of these explants. Plantlets elongated and rooted on KCV1 and KCV5 were successfully acclimatized with a 91% survival rate for both KC vinasse formulations. This study shows the great potential of this technology as a rational alternative to vinasse disposal and adds value to what is currently considered a waste product. (author)

  18. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  19. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Baden, Camilla Knudsen; Hansen, Natascha Kristine Krahl

    2013-01-01

    In comparison to the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study we...... demonstrate that Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) of tissue imprints on porous Teflon can be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific ß......-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wildtype Lotus japonicus and a ß-glucosidase mutant plant lacking the ability to hydrolyze certain hydroxynitrile...

  20. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    Science.gov (United States)

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  1. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    International Nuclear Information System (INIS)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction. A significant correlation between the chemical composition of foliage and soil is not a sufficient condition for using the chemical composition of foliage as a biomonitor for the quality of the soil. The chemical composition of foliage can, however, provide additional information to the traditional soil samples. The phytoextraction potential of a plant species cannot solely be evaluated on the basis of the trace metal concentrations in the plant and soil tissue. Data on the depth of the rooting zone, the density of the soil and the harvestable biomass should also be taken into account. Although plant tissue analysis is a useful tool in a wide range of studies and applications, trace metal concentrations in plant tissue cannot be viewed in isolation. Instead it should be analysed and interpreted in relation to other information such as soil concentrations, rooted zone, biomass production, etc. - Plants that accumulate soil metals in their aboveground biomass are often incorrectly considered to be suitable for monitoring soil pollution or for phytoextraction purposes

  2. On the genetic control of planar growth during tissue morphogenesis in plants.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  3. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Directory of Open Access Journals (Sweden)

    Sofia Caretto

    2015-11-01

    Full Text Available Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i the proline redox cycle; (ii the stimulated oxidative pentose phosphate pathway; and, in turn, (iii the reduced growth of plant tissues.

  4. Free flow and capillary isoelectric focusing of bacteria from the tomatoes plant tissues

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Horký, J.; Matoušková, H.; Šlais, Karel

    2009-01-01

    Roč. 1216, č. 6 (2009), s. 1019-1024 ISSN 0021-9673 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : free flow and capillary IEF * isoelectric point of microbes * tomatoes plant tissue suspension Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2009

  5. Comparative distributions of alkaline earths and Pb among tissues of marine plants and animals

    International Nuclear Information System (INIS)

    Burnett, M.W.; Settle, D.M.; Patterson, C.C.

    1978-01-01

    Lead, barium, strontium and calcium were studied by isotope dilution, clean-lab techniques in both a marine and a terrestrial ecosystem. Analyses for Pb and Ba are difficult since their concentrations range down to the ng g -1 level in plant and animal tissue. Experimental details are given. Results are presented and discussed. (U.K.)

  6. Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Faoro, Franco

    2011-11-01

    In the present study, we developed a rapid and efficient fluorescence in situ hybridization assay (FISH) in non-embedded tissues of the model plant Catharanthus roseus for co-localizing phytoplasmas and endophytic bacteria, opening new perspectives for studying the interaction between these microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Prevention of pink-pigmented methylotrophic bacteria (Methylohacterium mesophilicum) contamination of plant tissue cultures.

    Science.gov (United States)

    Chanprame, S; Todd, J J; Widholm, J M

    1996-12-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.

  8. RNA Isolation from Plant Tissues: A Hands-On Laboratory Experimental Experience for Undergraduates

    Science.gov (United States)

    Zhang, Nianhui; Yu, Dong; Zhu, Xiaofeng

    2018-01-01

    The practice of RNA isolation in undergraduate experimental courses is rare because of the existence of robust, ubiquitous and stable ribonucleases. We reported here modifications to our original protocol for RNA isolation from plant tissues, including the recovery of nucleic acids by ethanol precipitation at 0 degrees C for 10 min and the…

  9. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  10. Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2010-04-01

    The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO\\/VAP-1. The present work reports the kinetics of the interaction of L-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since D-lysine, L-lysine ethyl ester and epsilon-acetyl-L-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H(2)O(2), formed during the oxidation of a physiological SSAO substrate, yet to be identified.

  11. Fast method for the detection of transport process in plant tissues by radiotracing

    International Nuclear Information System (INIS)

    Antal, K.; Joo, P.

    1995-01-01

    The efficiency of nutrients, microelements and plant protective agents and additives applied on foliar and various aeriel parts of plants depends on the adsorption of their spray drops and the penetration of agents into tissues, cells and inner caves. The permeability of the cuticular membrane and the mode of entry of above substances through the cuticle and their mobility in other tissues are poorly understood but have been the subject of intensive research. The traditional methods in biological systems are the automicroradiography and sample taking methods. The radioactive tracer method developed by us is suitable for determining the effective diffusion coefficients characterizing the migration process and concentration distributions off these materials in plants by consumption of minimal amount of β-labelled radioactive isotopes in very short time. (author) 9 refs.; 3 figs

  12. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Identification of water storage tissue in the stem of cowpea plant (Vigna unguliculata Walp) by neutron radiography

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Don-Jin, K.; Ishii, R.; Matsubayashi, M.

    1999-01-01

    Cowpea (Vigna unguliculata Walp) is considered one of the most drought resistant species among the pulse crops. It was suggested that in the lower part of the stem, parenchymatous tissue for storing water has been developed for the function of drought resistance. However, such tissue has not been identified yet. In order to identify the water storing tissue in the stem of cowpea plant, the authors performed neutron radiography, which provides a non-destructive image of water distribution pattern in a plant. Common bean plant and soybean plant were used as references. Comparing the neutron radiograph for the stems of the plants, i.e., cowpea, common bean and soybean plants, the parenchymatous tissue with water storing function was distinguished in the intermode between primary leaf and the first trifoliate leaf specifically in cowpea plant. (author)

  14. Preferential campesterol incorporation into various tissues in apolipoprotein E*3-Leiden mice consuming plant sterols or stanols

    NARCIS (Netherlands)

    Plat, J.; Jong, A.de; Volger, O.L.; Princen, H.M.G.; Mensink, R.P.

    2008-01-01

    Intestinal absorption of plant sterols and stanols is much lower as compared with that of cholesterol; and therefore, serum concentrations are low. Circulating plant sterols and stanols are incorporated into tissues. However, hardly any data are available about tissue distributions of individual

  15. Separation and Quantitation of Polyamines in Plant Tissue by High Performance Liquid Chromatography of Their Dansyl Derivatives

    Science.gov (United States)

    Smith, Mary A.; Davies, Peter J.

    1985-01-01

    High performance liquid chromatography in combination with fluorescence spectrophotometry can be used to separate and quantitate polyamines (putrescine, cadaverine, spermidine, spermine), prepared as their dansyl derivatives, from plant tissue. The procedure gives sensitive and consistent results for polyamine determinations in plant tissue. In a standard mixture, the minimal detection level was less than 1 picomole of polyamines. PMID:16664216

  16. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wounding in the plant tissue: the defense of a dangerous passage

    Directory of Open Access Journals (Sweden)

    Daniel Valentin Savatin

    2014-09-01

    Full Text Available Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e. the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e. chitinases and gluganases. Typical examples of DAMPs involved in the response to wounding are the peptide systemin and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response and systemically (systemic response and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid and abscisic acid.

  18. A novel approach for studying programmed cell death in living plant tissues

    DEFF Research Database (Denmark)

    Mark, Christina

    to traditional approaches. Future applications of this type of setup could be used for other types of plant tissues such as leaves or germinating embryos for studying the effects of e.g. biotic and abiotic stresses or for screening of compounds for biological effects. Due to the ease of use and many......Programmed cell death (PCD) is a highly regulated process in which cells are killed as part of developmental programmes or as defence mechanisms against pathogens, but the process is less well understood in plant cells compared to animal cells. Reactive oxygen species (ROS) are involved in PCD...... in plants, but the relationship between and mechanisms behind ROS and PCDhas not yet been fully elucidated due to the involvement of complex signalling networks. Elucidation of these mechanisms and signalling pathways will allow manipulation of cell death in plants, which could help to improve yield...

  19. Influence of chronic internal and acute external irradiations on the critical tissues of plants

    International Nuclear Information System (INIS)

    Kostyuk, O.P.; Ryasnenko, N.A.; Grodzins'kij, D.M.

    1998-01-01

    Peculiarities of chronic internal and acute external irradiations of the critical (as for irradiation influence) plants part, meristem, are studied. In particular, the investigation has aimed to evaluate the level of doses, accumulated by plant tissues, of the chronic internal irradiation from radiocaesium incorporated by them, and to compare its possible effect to one caused by the acute external irradiation. It is shown that the effects of both chronic and acute irradiations have similar features, and it is assumed that they have the very same mechanisms. We think that such a parameter of the plant ability to accumulate radiocaesium as the ratio of its content in a root tip and in the whole root system is a very sensible and useful criterion to estimate the irradiation influence on plants

  20. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  1. Disease Development and Symptom Expression of Xanthomonas axonopodis pv. citri in Various Citrus Plant Tissues.

    Science.gov (United States)

    Vernière, C J; Gottwald, T R; Pruvost, O

    2003-07-01

    ABSTRACT Experimental inoculations of Xanthomonas axonopodis pv. citri in different tissues of Tahiti lime and Pineapple sweet orange were conducted monthly under natural conditions on Réunion Island. The interactions between a set of environmental and epidemic variables associated with disease expression and 184 different factor combinations were investigated to determine the parameters needed to explain Asiatic citrus canker (ACC) disease expression. Area under the disease progress curve (AUDPC), inoculation date (Id), fruit and leaf age ratings (FAR and LAR), and number of days during the first 2 weeks postinoculation for which the temperature was less than 14 degrees C (T(min)) or more than 28 degrees C (T(max)) were retained by principal component analysis and canonical correlation analysis as the most meaningful epidemic and environmental variables, respectively. AUDPC as the strongest dependent variable and combinations of the environmental variables as independent variables were used in multiple regression analyses. Tissue age rating at the time of infection was a good predictor for disease resulting from spray inoculation on fruits and leaves and also on fruits following a wound inoculation. Temperature, as expressed by T(min) or T(max), was also a significant factor in determining disease development described by AUDPC. Mature green stems were highly susceptible after wounding, similarly to leaves, but buds and leaf scars expressed the lowest susceptibility. These variations in disease expression according to the tissues will have different impacts on ACC epidemiology.

  2. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  3. Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells.

    Science.gov (United States)

    Matthysse, A G; Wyman, P M; Holmes, K V

    1978-11-01

    Kinetic, microscopic, and biochemical studies show that virulent Ti (tumor inducing)-plasmid-containing strains of Agrobacterium attach to normal tobacco and carrot tissue culture cells. Kinetic studies showed that virulent strains of A. tumefaciens attach to the plant tissue culture cells in increasing numbers during the first 1 to 2 h of incubation of the bacteria with the plant cells. Five Ti-plasmid-containing virulent Agrobacterium strains showed greater attachment to tobacco cells than did five avirulent strains. Light and scanning electron microscopic observations confirmed that virulent strains showed little attachment. Bacterial attachment was blocked by prior incubation of the plant cells with lipopolysaccharide extracted from A. tumefaciens, but not from A. radiobacter, suggesting that bacterial lipopolysaccharide is one of the components involved in the attachment process. At least one other bacterial product may be required for attachment in tissue culture because the virulent A. tumefaciens NT1, which lacks the Ti plasmid, does not itself attach to tobacco cells, but its lipopolysaccharide does inhibit the attachment of virulent strains.

  4. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  5. Mechanisms and prevention of plant tissue collapse during dehydration: a critical review.

    Science.gov (United States)

    Prothon, Frédéric; Ahrné, Lilia; Sjöholm, Ingegerd

    2003-01-01

    The appearance and functional properties are primordial in the quality assessment of semifinished fruit and vegetable products. These properties are often associated with shrunken, shriveled, darkened materials of poor rehydration ability after been subjected to air-drying--the most used drying method in the food industry. Fruits and vegetables are cellular tissues containing gas-filled pores that tend to collapse when subjected to dehydration. Collapse is an overall term that has different meanings and scale-settings in the literature depending on whether the author is a plant physiologist, a food technologist, a chemical engineer, or a material scientist. Some clarifications are given in this particular but wide field. The purpose of this work was to make a state-of-the-art contribution to the structural and textural effects of different types of dehydration on edible plant products and give a basis for preventing this phenomenon. The plant tissue is described, and the primordial role of the cell wall in keeping the structural integrity is emphasized. Water and its functionality at macro and micro levels of the cellular tissue are reviewed as well as its transport during dehydration. The effects of both dehydration and rehydration are described in detail, and the term "textural collapse" is proposed as an alternative to structural collapse.

  6. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  7. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  8. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  9. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae in a mature Asian temperate forest ecosystem.

    Directory of Open Access Journals (Sweden)

    Yi Zou

    Full Text Available A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  10. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Valous, N. A.; Delgado, A.; Sun, D.-W., E-mail: dawen.sun@ucd.ie [School of Biosystems Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland); Drakakis, K. [Complex and Adaptive Systems Laboratory, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland)

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  11. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    International Nuclear Information System (INIS)

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-01-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena

  12. Northern highbush blueberry cultivars differed in yield and fruit quality in two organic production systems from planting to maturity

    Science.gov (United States)

    ‘Northern highbush blueberry cultivars were evaluated in a certified organic research site. The treatments included cultivar and amendment-mulch and “weed mat”. Plant traits and yield were collected from the 2nd through 8th growing seasons. Adding on-farm compost as a pre-plant amendment and as part...

  13. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  14. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.

  15. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  16. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues

    Directory of Open Access Journals (Sweden)

    Hellmann Hanjo

    2009-04-01

    Full Text Available Abstract Background The concept of metabolite profiling has been around for decades and technical innovations are now enabling it to be carried out on a large scale with respect to the number of both metabolites measured and experiments carried out. However, studies are generally confined to polar compounds alone. Here we describe a simple method for lipophilic compounds analysis in various plant tissues. Results We choose the same preparative and instrumental platform for lipophilic profiling as that we routinely use for polar metabolites measurements. The method was validated in terms of linearity, carryover, reproducibility and recovery rates, as well as using various plant tissues. As a first case study we present metabolic profiling of Arabidopsis root and shoot tissue of wild type (C24 and mutant (rsr4-1 plants deficient on vitamin B6. We found significant alterations in lipid constituent contents, especially in the roots, which were characterised by dramatic increases in several fatty acids, thus providing further hint for the role of pyridoxine in oxidative stress and lipid peroxidation. The second example is the lipophilic profiling of red and green tomato fruit cuticles of wild type (Alisa Craig and the DFD (delayed fruit deterioration mutant, which we compared and contrasted with the more focused wax analysis of these plants reported before. Conclusion We can rapidly and reliably detect and quantify over 40 lipophilic metabolites including fatty acids, fatty alcohols, alkanes, sterols and tocopherols. The method presented here affords a simple and rapid, yet robust complement to previously validated methods of polar metabolite profiling by gas-chromatography mass-spectrometry.

  17. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  18. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  19. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  20. Chemical evaluation of strawberry plants produced by tissue culturing of gamma irradiated seedlings

    International Nuclear Information System (INIS)

    Maraei, R.W.

    2007-01-01

    studies were conducted to evaluate the influence of gamma irradiation as a supplementary factor precedes tissue culture application on strawberry seedlings (c.v.Rosa Linda). the strawberry seedling were irradiated using 8 doses of co 60 gamma rays 50.75.100.125 ,150,250, 350 and 500 gray. tissue culture technique was applied on irradiated and unirradiated strawberry seedling. different characteristics of plantlets, plant and fruit of strawberry produced from the double treatment (irradiation followed by tissue culture) were studied as well as the early, total and exportable fruit yields. data indicated that, low radiation doses 50,75 and 100 gray increased all morphological and chemical characteristics of the plantlets, plant and fruit of strawberry, whereas radiation doses higher than 100 gray decreased them significantly. moreover 350 and gray were lethal doses. radiation dose 50 gray increased the survival percentage and the length of plantlets by 1.5% and 50% respectively more than the unirradiated treatment in all multiplication stages

  1. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  2. Seismomorphogenesis: a novel approach to acclimatization of tissue culture regenerated plants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2014-12-01

    Plantlets under in vitro conditions transferred to ex vivo conditions are exposed to biotic and abiotic stresses. Furthermore, in vitro regenerated plants are typically frail and sometimes difficult to handle subsequently increasing their risk to damage and disease; hence acclimatization of these plantlets is the most important step in tissue culture techniques. An experiment was conducted under in vitro conditions to study the effects of shaking duration (twice daily at 6:00 a.m. and 9:00 p.m. for 2, 4, 8, and 16 min at 250 rpm for 14 days) on Sansevieria trifasciata L. as a model plant. Results showed that shaking improved handling, total plant height, and leaf characteristics of the model plant. Forty-eight hours after 14 days of shaking treatments with increasing shaking time, leaf length decreased but proline content of leaf increased. However, 6 months after starting the experiment different results were observed. In explants that received 16 min of shaking treatment, leaf length and area and photosynthesis rate were increased compared with control plantlets. Six months after starting the experiment, control plantlets had 12.5 % mortality; however, no mortality was observed in other treated explants. The results demonstrated that shaking improved the explants' root length and number and as a simple, cost-effective, and non-chemical novel approach may be substituted for other prevalent acclimatization techniques used for tissue culture regenerated plantlets. Further studies with sensitive plants are needed to establish this hypothesis.

  3. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    Science.gov (United States)

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  4. Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants

    Science.gov (United States)

    Xu, Changcheng; Fan, Jilian; Yan, Chengshi; Shanklin, John

    2017-12-26

    The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.

  5. Closing the sky. The total dismantling of the Jose Cabrera nuclear power plant demonstrates maturity in the nuclear sector

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2015-01-01

    This article aims to put the situation of the decommissioning of nuclear power plants in the world into perspective as an already consolidated activity and with an important future of industrial activity. The decommissioning project that Enresa is currently performing in the old Jose Cabrera plant is being explained in detail, by providing data of the newest and most relevant technical aspects as well as the lessons learned to be reusable in other decommissioning projects. The previous background, the project planning, the activities performed and those still to be done as well as their timing are being explained in detail. (Author)

  6. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  7. Orthodox seeds and resurrection plants

    NARCIS (Netherlands)

    Costa, Maria Cecília Dias; Cooper, Keren; Hilhorst, Henk W.M.; Farrant, Jill M.

    2017-01-01

    Although staple crops do not survive extended periods of drought, their seeds possess desiccation tolerance (DT), as they survive almost complete dehydration (desiccation) during the late maturation phase of development. Resurrection plants are plant species whose seeds and vegetative tissues are

  8. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Onisei, T.; Toth, E.; Tesio, B.; Floria, F.

    1994-01-01

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  9. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    such as redox activity, O2 and H2O2 concentration, pH, cell viability and release of target enzymes such as α-amylase. We have optimised an intracellular, whole-cell redox activity assay[3] that detects changes in redox activity in barley aleurone layer during PCD. The assay uses a double mediator......This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage......-system to electrochemically measure redox activity via changes in the NADP:NADPH ratio. Experiments show that redox activity changes depend on phytohormone activation or inactivation of aleurone layer metabolism and subsequent PCD. We have also successfully detected PCD induced by phytohormones in barley aleurone layer using...

  10. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    Science.gov (United States)

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.

  11. An improved method to quantitate mature plant microRNA in biological matrices using periodate treatment and internal control

    Science.gov (United States)

    MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-k...

  12. Examination of radioactive contamination in the soil-plant system and their transfer to selected animal tissues

    International Nuclear Information System (INIS)

    Chibowski, S.; Gladysz, A.

    1999-01-01

    This paper investigates gamma emitter radioactivity in a system consisting of soil and plants. Some selected sample of tissues of animals fed with the plants from these sites were also measured. In soil and plant samples artificial ( 137 Cs and 134 Cs) and natural (thorium and uranium series) isotopes were detected. Despite the relatively high content of the natural isotopes in plants and their seeds, their accumulation in animal tissues was not detected.The 40 K isotope was transferred in the chain soil-plant-animal in the highest degree. From the group of the natural isotopes, only 212 Pb was detected in examined animal tissue samples. Other natural isotopes were below detection level. In the samples heavy metal content was also examined. In any sample no element concentration was noticed above trade acceptable limit. (author)

  13. Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation

    Directory of Open Access Journals (Sweden)

    Sara eCimini

    2015-02-01

    Full Text Available Wheat kernels contain fructans, fructose based oligosaccharides with prebiotic properties, in levels between 2 and 35 weight % depending on the developmental stage of the kernel. To improve knowledge on the metabolic pathways leading to fructan storage and degradation, carbohydrate fluxes occurring during durum wheat kernel development were analyzed. Kernels were collected at various developmental stages and quali-quantitative analysis of carbohydrates (mono- and di-saccharides, fructans, starch was performed, alongside analysis of the activities and gene expression of the enzymes involved in their biosynthesis and hydrolysis. High resolution HPAEC-PAD of fructan contained in durum wheat kernels revealed that fructan content is higher at the beginning of kernel development, when fructans with higher DP, such as bifurcose and 1,1-nystose, were mainly found. The changes in fructan pool observed during kernel maturation might be part of the signaling pathways influencing carbohydrate metabolism and storage in wheat kernels during development. During the first developmental stages fructan accumulation may contribute to make kernels more effective Suc sinks and to participate in osmotic regulation while the observed decrease in their content may mark the transition to later developmental stages, transition that is also orchestrated by changes in redox balance.

  14. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  15. 3D Reconstruction of Frozen Plant Tissue: a unique histological analysis to image post-freeze responses

    Science.gov (United States)

    Winter hardiness in plants is the result of a complex interaction between genes, the tissue where those genes are expressed and the environment. The light microscope is a valuable tool to understand this complexity which will ultimately help researchers improve the tolerance of plants to freezing st...

  16. How to store plant tissues in the absence of liquid nitrogen? Ethanol preserves the RNA integrity of Cannabis sativa stem tissues

    Directory of Open Access Journals (Sweden)

    Lauralie Mangeot-Peter

    2016-09-01

    Full Text Available The preservation of intact RNA is a limiting step when gene expression profiling is performed using field-collected plant material. The use of liquid nitrogen ensures the optimal preservation of RNA, however it is not always practical, especially if the plant material has to be sampled in remote locations. Ethanol is known to preserve DNA in plant tissues even after a long storage period and here its suitability to preserve the RNA of textile hemp cortical tissues was tested. Hemp (Cannabis sativa L. is an economically important fibre crop because it supplies cellulosic bast fibres used in different industrial sectors. In this study we demonstrate the suitability of ethanol for RNA preservation by analyzing tissues stored at 4 °C for 1, 2, 4 and 8 days. We show that in all the cases the extracted RNA is intact. We finally analyze hemp stem tissues stored in ethanol for 1 month and demonstrate the preservation of the tissue structure, particularly of bast fibres.

  17. Extraction of methylmercury from tissue and plant samples by acid leaching

    Energy Technology Data Exchange (ETDEWEB)

    Hintelmann, Holger; Nguyen, Hong T. [Trent University, Chemistry Department, Peterborough, ON (Canada)

    2005-01-01

    A simple and efficient extraction method based on acidic leaching has been developed for measurement of methylmercury (MeHg) in benthic organisms and plant material. Methylmercury was measured by speciated isotope-dilution mass spectrometry (SIDMS), using gas chromatography interfaced with inductively coupled plasma mass spectrometry (GC-ICP-MS). Reagent concentration and digestion temperature were optimized for several alkaline and acidic extractants. Recovery was evaluated by addition of MeHg enriched with CH{sub 3}{sup 201}Hg{sup +}. Certified reference materials (CRM) were used to evaluate the efficiency of the procedure. The final digestion method used 5 mL of 4 mol L{sup -1} HNO{sub 3} at 55 C to leach MeHg from tissue and plant material. The digest was further processed by aqueous phase ethylation, without interference with the ethylation step, resulting in 96{+-}7% recovery of CH{sub 3}{sup 201}Hg{sup +} from oyster tissue and 93{+-}7% from pine needles. Methylmercury was stable in this solution for at least 1 week and measured concentrations of MeHg in CRM were statistically not different from certified values. The method was applied to real samples of benthic invertebrates and inter-laboratory comparisons were conducted using lyophilized zooplankton, chironomidae, and notonectidae samples. (orig.)

  18. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    Science.gov (United States)

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  19. Comparison Of Cd And Zn Accumulation In Tissues Of Different Vascular Plants: A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Dürešová Zuzana

    2015-12-01

    Full Text Available The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L., celery (Apium graveolens L., maize (Zea mays L., giant reed (Arundo donax L., and alpine pennycress (Noccaea caerulescens L. under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA. According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation

  20. Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan; Vatrapu, Ravi

    2016-01-01

    Recent advancements in set theory and readily available software have enabled social science researchers to bridge the variable-centered quantitative and case-based qualitative methodological paradigms in order to analyze multi-dimensional associations beyond the linearity assumptions, aggregate...... effects, unicausal reduction, and case specificity. Based on the developments in set theoretical thinking in social sciences and employing methods like Qualitative Comparative Analysis (QCA), Necessary Condition Analysis (NCA), and set visualization techniques, in this position paper, we propose...... and demonstrate a new approach to maturity models in the domain of Information Systems. This position paper describes the set-theoretical approach to maturity models, presents current results and outlines future research work....

  1. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  2. Selection and Verification of Candidate Reference Genes for Mature MicroRNA Expression by Quantitative RT-PCR in the Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Song

    2016-05-01

    Full Text Available Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is a rapid and sensitive method for analyzing microRNA (miRNA expression. However, accurate qRT-PCR results depend on the selection of reliable reference genes as internal positive controls. To date, few studies have identified reliable reference genes for differential expression analysis of miRNAs among tissues, and among experimental conditions in plants. In this study, three miRNAs and four non-coding small RNAs (ncRNA were selected as reference candidates, and the stability of their expression was evaluated among different tissues and under different experimental conditions in the tea plant (Camellia sinensis using the geNorm and NormFinder programs. It was shown that miR159a was the best single reference gene in the bud to the fifth leaf, 5S rRNA was the most suitable gene in different organs, miR6149 was the most stable gene when the leaves were attacked by Ectropis oblique and U4, miR5368n and miR159a were the best genes when the leaves were treated by methyl jasmonate (MeJA, salicylic acid (SA and abscisic acid (ABA, respectively. Our results provide suitable reference genes for future investigations on miRNA functions in tea plants.

  3. A workflow to preserve genome-quality tissue samples from plants in botanical gardens and arboreta1

    Science.gov (United States)

    Gostel, Morgan R.; Kelloff, Carol; Wallick, Kyle; Funk, Vicki A.

    2016-01-01

    Premise of the study: Internationally, gardens hold diverse living collections that can be preserved for genomic research. Workflows have been developed for genomic tissue sampling in other taxa (e.g., vertebrates), but are inadequate for plants. We outline a workflow for tissue sampling intended for two audiences: botanists interested in genomics research and garden staff who plan to voucher living collections. Methods and Results: Standard herbarium methods are used to collect vouchers, label information and images are entered into a publicly accessible database, and leaf tissue is preserved in silica and liquid nitrogen. A five-step approach for genomic tissue sampling is presented for sampling from living collections according to current best practices. Conclusions: Collecting genome-quality samples from gardens is an economical and rapid way to make available for scientific research tissue from the diversity of plants on Earth. The Global Genome Initiative will facilitate and lead this endeavor through international partnerships. PMID:27672517

  4. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    International Nuclear Information System (INIS)

    Makambila, C.

    1997-01-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab

  5. Production of Basella plants resistant to rust by irradiation of seeds and vegetative tissue

    Energy Technology Data Exchange (ETDEWEB)

    Makambila, C [Laboratory of Phytopathology, Faculty of Sciences, Univ. of Brazzaville, Brazzaville (Congo)

    1997-12-01

    Basella is classified in the family Chenopodiaceae or Basellaceae. Also known as African spinach, this plant is consumed in Central Africa and several other African countries. There are two types of varieties grown in Congo: i. a local variety characterized by red leaves and stalks in which the principal way of propagation is from cuttings; ii. a group of varieties which have green or purple leaves and stalks. These varieties are called Basella alba and Basella rubra. These varieties have sexual reproduction. Among the two groups of varieties, the local variety is propagated vegetatively but is resistant to rust, while varieties with green leaves or with purple leaves (B. alba and B. rubra) that are propagated from seed are susceptible to rust. Since hybrid cannot be made by conventional crossing, the following procedures have been adopted to produce plants with disease tolerance: 1. production of resistant variants by irradiation of Basella alba seeds with Cesium 137; 2. production of resistant variants by irradiation of vegetative tissues obtained by culture of meristematic cells of B alba; and 3. obtaining resistant plants through somaclonal variation. 1 tab.

  6. Volatile Profiling of Aromatic Traditional Medicinal Plant, Polygonum minus in Different Tissues and Its Biological Activities

    Directory of Open Access Journals (Sweden)

    Rafidah Ahmad

    2014-11-01

    Full Text Available The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS. Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.

  7. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  8. Productivity and water use by rain-fed early maturing Cassava (Manihot esculenta Crantz) varieties grown at different plant densities in a coastal savannah environment

    International Nuclear Information System (INIS)

    Amanor, Emmanuel Nartey

    2016-06-01

    The production of cassava (Manihot esculenta Crantz) under rain-fed conditions at the Kwabenya-Atomic area in the coastal savannah environment is constrained by low and erratic rainfall events. Improving cassava production in the area requires the use of cassava varieties which are efficient in the use of limited soil moisture. The objective of the study was to evaluate the response of two early maturing cassava varieties to three (3) planting densities to TDM, RY, and WUE. The actual evapotranspiration was also partitioned into crop transpiration and soil evaporation using LAI data. The field experiment was conducted at Biotechnology and Nuclear Agriculture Research Institute (BNARI) research farm, Atomic Energy Commission (GAEC), Kwabenya-Atomic in 2015. The split plot design in three replicates was used. The two (2) cassava varieties, Bankye Hemaa and Capevars Bankye, were assigned to the main plots and three (3) planting densities: 10,000, 13,333 and 20,000 plants ha"-1 to the subplots. Plants were sampled each month and moisture in the 120 cm soil profile monitored every two weeks using the neutron probe (CPN 503 Hydroprobe). Soil moisture data were used to estimate actual evapotranspiration (AET) using the water balance approach. Root yield (RY) for Bankye Hemaa and Capevars Bankye, ranged from 2.8 to 15.1 t/ha"-1 for the 10,000 plants ha"-1, 4.2 to 18.1 t/ha"-1 for the 13,333 plants ha"-1 and 5.1 to 21.3 t/ha"-1 for the 20,000 plants ha"-1. Additionally, water use efficiency in term of total dry matter (WUETDM ) for the two cassava varieties ranged from 1.7 to 11.6, 2.3 to 12.8 and 3.7 to 12.4 kg ha"-1 mm"-1 for the 10,000, 13,333 and 20,000 plants ha"-1 planting density, respectively. Bankye Hemaa grown at 20,000 plants ha"-1 produced the highest root yield of 21.3 t/ha"-1 and WUETDM of 12.4 kg ha"-1 mm"-1, because of the comparatively lower soil evaporation which led to increased available soil water for crop use and higher crop transpiration, leading to

  9. Embriogênese somática e regeneração de plantas a partir de embrião maduro de aveia Somatic embryogenesis and plant regeneration derived from mature embryos of oat

    Directory of Open Access Journals (Sweden)

    Caren Regina Cavichioli Lamb

    2002-02-01

    Full Text Available Calo embriogênico tem sido o tecido-alvo mais utilizado para transformação genética de cereais. O objetivo deste trabalho foi investigar o estabelecimento de calos embriogênicos e a regeneração de plantas in vitro a partir de embriões maduros de genótipos de aveia (Avena sativa L.. Embriões maduros foram retirados das sementes e colocados em meio MS (Murashige & Skoog, contendo 30,0 g L-1 de sacarose e 2,0 mg L-1 de ácido 2,4-diclorofenoxiacético (2,4-D. Após o período de indução de calos, agregados embriogênicos foram isolados e subcultivados a cada 21 dias para meio fresco. Os calos embriogênicos foram então transferidos para meio de indução de parte aérea, e, na seqüência, as partes aéreas foram transferidas para meio de indução de raízes. Houve diferenças entre genótipos quanto à capacidade de embriogênese somática e regeneração de plantas in vitro a partir de embrião maduro. Este explante permitiu a indução de calos embriogênicos, que se multiplicaram, e que regeneraram in vitro um grande número de plantas de genótipos como UFRGS 7 e UFRGS 19, o que o faz passível de ser utilizado na transformação genética da aveia.Embryogenic callus has been the most used target tissue for cereal genetic transformation. Therefore, the objective of this study was to investigate the establishment of embryogenic calli and the in vitro plant regeneration from mature embryos of oat genotypes (Avena sativa L.. Mature embryos were taken out of the seeds and placed on a culture medium MS (Murashige & Skoog, containing 30,0 mg L-1 of sucrose and 2,0 mg L-1 of 2,4-dichlorophenoxyacetic acid (2,4-D. From the induction period, embryogenic aggregates were isolated and subcultivated each 21 days into a fresh medium. After this period, embryogenic calli were transferred to a medium for shoot regeneration. Subsequently, the shoot was transferred to a medium for root induction. There was variability among genotypes for somatic

  10. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  11. Naturally Engineered Maturation of Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Gaetano J. Scuderi

    2017-05-01

    Full Text Available Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte

  12. Application of SEM and EDX in studying biomineralization in plant tissues.

    Science.gov (United States)

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  13. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost.

    Science.gov (United States)

    Yashina, Svetlana; Gubin, Stanislav; Maksimovich, Stanislav; Yashina, Alexandra; Gakhova, Edith; Gilichinsky, David

    2012-03-06

    Whole, fertile plants of Silene stenophylla Ledeb. (Caryophyllaceae) have been uniquely regenerated from maternal, immature fruit tissue of Late Pleistocene age using in vitro tissue culture and clonal micropropagation. The fruits were excavated in northeastern Siberia from fossil squirrel burrows buried at a depth of 38 m in undisturbed and never thawed Late Pleistocene permafrost sediments with a temperature of -7 °C. Accelerator mass spectrometry (AMS) radiocarbon dating showed fruits to be 31,800 ± 300 y old. The total γ-radiation dose accumulated by the fruits during this time was calculated as 0.07 kGy; this is the maximal reported dose after which tissues remain viable and seeds still germinate. Regenerated plants were brought to flowering and fruiting and they set viable seeds. At present, plants of S. stenophylla are the most ancient, viable, multicellular, living organisms. Morphophysiological studies comparing regenerated and extant plants obtained from modern seeds of the same species in the same region revealed that they were distinct phenotypes of S. stenophylla. The first generation cultivated from seeds obtained from regenerated plants progressed through all developmental stages and had the same morphological features as parent plants. The investigation showed high cryoresistance of plant placental tissue in permafrost. This natural cryopreservation of plant tissue over many thousands of years demonstrates a role for permafrost as a depository for an ancient gene pool, i.e., preexisting life, which hypothetically has long since vanished from the earth's surface, a potential source of ancient germplasm, and a laboratory for the study of rates of microevolution.

  14. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants.

    Science.gov (United States)

    Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel

    2008-04-01

    Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.

  15. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT- and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).

  16. In vivo monitoring of seeds and plant-tissue water absorption using optical coherence tomography and optical coherence microscopy

    Science.gov (United States)

    Sapozhnikova, Veronika V.; Kutis, Irina S.; Kutis, Sergey D.; Kuranov, Roman V.; Gelikonov, Grigory V.; Shabanov, Dmitry V.; Kamensky, Vladislav A.

    2004-07-01

    First experimental results on OCT imaging of internal structure of plant tissues and in situ OCT monitoring of plant tissue regeneration at different water supply are reported. Experiments for evaluating OCT capabilities were performed on Tradescantia. The investigation of seeds swelling was performed on wheat seeds (Triticum L.), barley seeds (Hordeum L.), long-fibred flax seeds (Linum usitatissimum L.) and cucumber seeds (Cucumis sativus L.). These OCT images correlate with standard microscopy data from the same tissue regions. Seeds were exposed to a low-intensity physical factor-the pulsed gradient magnetic field (GMF) with pulse duration 0.1 s and maximum amplitude 5 mT (4 successive pulses during 0.4 s). OCT and OCM enable effective monitoring of fast reactions in plants and seeds at different water supply.

  17. Effect of x-ray irradiation on maize inbred line B73 tissue cultures and regenerated plants

    International Nuclear Information System (INIS)

    Wang, A.S.; Cheng, D.S.K.; Milcic, J.B.; Yang, T.C.

    1988-01-01

    In order to enhance variation induced by the tissue culture process and to obtain agronomically desirable mutants, friable embryogenic tissue cultures of maize (Zea mays L.) inbred line B73 were x-ray irradiated with 11 doses [0-8.4 kilorads (kR)]. Reductions in callus growth rate and embryogenic callus formation occurred with increasing x-ray doses 20 d and 3 months after irradiation. Callus irradiated with 0.8 kR showed a significant increase in growth rate and a 20% increase in embryogenic callus 9 months after irradiation. A total of 230 R 0 plants were regenerated for evaluation. Pollen fertility and seed set of R 0 plants decreased with increasing x-ray dosage. Days to anthesis and plant height of R 0 plants varied among x-ray treatments but were generally reduced with higher dosages. The number of chromosomal aberrations increased with x-ray dosage. The R 1 seeds taken from R 0 plants were also grown and tested for mutant segregation. Plants regenerated from irradiated calli had a two- to 10-fold increase in mutations over plants regenerated from unirradiated control callus. Germination frequency of seeds from R 0 plants decreased with increasing x-ray dosage. Although chlorophyll mutants were most frequently observed, a number of vigorous plants with earlier anthesis date were also recovered

  18. [Methanotrophs and methylobacteria are found in woody plant tissues within a winter period].

    Science.gov (United States)

    Doronina, N V; Ivanova, E G; Suzina, N F; Trotsenko, Iu A

    2004-01-01

    Samples of tree seeds, buds, and needles collected within a winter period at ambient temperatures from -11 to -17 degrees C were analyzed for the presence of methylotrophic microflora. Thin sections of blue spruce needles were found to contain bacteria morphologically close to pink-pigmented methylobacteria. The methylobacteria that were isolated in pure cultures from samples of linden seeds and buds, pine and blue spruce needles, as well as of lilac, maple, and apple buds, were classified into the genera Methylobacterium and Paracoccus based on the data of morphological studies, enzyme assay, and DNA-DNA hybridization analysis. The methanotrophs that were isolated in pure cultures from samples of linden buds and blue spruce needles were identified into the genus Methylocystis based on the data of morphological studies, enzyme assay, DNA-DNA hybridization, and the phylogenetic analysis of the particulate methane monooxygenase gene pmoA sequences. The inference is made that aerobic methylotrophic bacteria are permanently associated with plants. At the beginning of the vegetative period in spring, the phyllosphere of coniferous and deciduous trees is colonized by the methylotrophic bacteria that have wintered inside plant tissues.

  19. SOIL EXCHANGEABLE ALUMINUM INFLUENCING THE GROWTH AND LEAF TISSUE MACRONUTRIENTS CONTENT OF CASTOR PLANTS

    Directory of Open Access Journals (Sweden)

    ROSIANE DE LOURDES SILVA DE LIMA

    2014-01-01

    Full Text Available Three castor ( Ricinus communis genotypes were studied regarding tolerance to high exchange factorial distribution of five doses of exchangeable aluminum added to the soil (0, 0.15, 0.30, 0.60, and 1.20 cmol c dm - 3 and three castor genotypes (BRS Nordestina, BRS Paraguaçu, and Lyra. The plants were raised in pots in a greenhouse. At 53 days after emergence, data were taken on plant height, leaf area, dry mass of shoot and root, and leaf tissue content of macronutrients. The most sensitive genotype was the cv. BRS Nordestina, in which the shoot and root dry weight in the highest aluminum content were reduced to 12.9% and 16.2% of the control treatment, respectively. The most tolerant genotype was the hybrid Lyra, in which the shoot and root dry weight in the maximum content of aluminum were reduced to 43.5% and 42.7% of the control treatment, respectively.The increased exchangeable aluminum affected the leaf nutrient content, and the intensity of the response was different among cultivars. The aluminum toxicity increased N, Ca, and Mg contents and reduced on P, K, and S contents. The cv. BRS Nordestina had a drastic shoot dry weight reduction associated with an intense increment in the N leaf content. Thus, the N increment was caused by a concentration effect caused by the limited growth.

  20. Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach.

    Science.gov (United States)

    Mridula, Meenu R; Nair, Ashalatha S; Kumar, K Satheesh

    2018-02-01

    In this paper, we compared the efficacy of observation based modeling approach using a genetic algorithm with the regular statistical analysis as an alternative methodology in plant research. Preliminary experimental data on in vitro rooting was taken for this study with an aim to understand the effect of charcoal and naphthalene acetic acid (NAA) on successful rooting and also to optimize the two variables for maximum result. Observation-based modelling, as well as traditional approach, could identify NAA as a critical factor in rooting of the plantlets under the experimental conditions employed. Symbolic regression analysis using the software deployed here optimised the treatments studied and was successful in identifying the complex non-linear interaction among the variables, with minimalistic preliminary data. The presence of charcoal in the culture medium has a significant impact on root generation by reducing basal callus mass formation. Such an approach is advantageous for establishing in vitro culture protocols as these models will have significant potential for saving time and expenditure in plant tissue culture laboratories, and it further reduces the need for specialised background.

  1. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    International Nuclear Information System (INIS)

    Mendes Godinho, R.; Raimundo, J.; Vale, C.; Anes, B.; Brito, P.; Alves, L.C.; Pinheiro, T.

    2013-01-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism

  2. Micro-scale elemental partition in tissues of the aquatic plant Lemna minor L. exposed to highway drainage water

    Science.gov (United States)

    Mendes Godinho, R.; Raimundo, J.; Vale, C.; Anes, B.; Brito, P.; Alves, L. C.; Pinheiro, T.

    2013-07-01

    In the scope of a monitoring program to assess the environmental impact of automobile traffic over one main bridge in Lisbon, both water and duckweed (Lemna minor L.) were sampled from the road drainage tanks and analyzed for chemical elements. Plants uptake Cr, Mn, Cu, and Zn metals from rain water draining the bridge road. Nuclear microprobe elemental maps of cryosections of L. minor tissues showed that incorporated elements were internalized in fronds of the plant. This approach at micrometer level allows a better knowledge of the elemental tissue partitioning in this biomonitor organism.

  3. A dynamic interplay between phytohormones is required for fruit development, maturation and ripening

    Directory of Open Access Journals (Sweden)

    Peter eMcAtee

    2013-04-01

    Full Text Available Plant species that bear fruit often utilise expansion of an ovary (carpel or accessory tissue as a vehicle for seed dispersal. While the seed(s develop, the tissue(s of the fruit follow a common progression of cell division and cell expansion, promoting growth of the fruit. Once the seed is fully developed, the fruit matures and the surrounding tissue either dries or ripens promoting the dissemination of the seed. As with many developmental processes in plants, plant hormones play an important role in the synchronisation of signals between the developing seed and its surrounding fruit tissue(s, regulating each phase of fruit development. Following pollination, fruit set is achieved through a de-repression of growth and an activation of cell division via the action of auxin and/or cytokinin and/or gibberellin. Following fruit set, growth of the fruit is facilitated through a relatively poorly studied period of cell expansion and endoreduplication that is likely regulated by similar hormones as in fruit set. Once the seeds reach maturity, fruit become ready to undergo ripening and during this period there is a major switch in relative hormone levels of the fruit, involving an overall decrease in auxin, gibberellin and cytokinin and a simultaneous increase in abscisic acid and ethylene. While the role of hormones in fruit set and ripening is well documented, the knowledge of the roles of other hormones during growth, maturation and some individual ripening components is sketchy.

  4. GENETIC VARIABILITY OF CULTURED PLANT TISSUES UNDER NORMAL CONDITIONS AND UNDER STRESS

    Directory of Open Access Journals (Sweden)

    Dolgikh Yu.I.

    2012-08-01

    Full Text Available The genetic variability induced by in vitro conditions known as somaclonal variation is of practical interest due to its potential uses in plant breeding but, on the other hand, if clonal propagation or transformation is main goal, it becomes an unwelcome phenomenon. Thus, it is important to know frequency, the genomic distribution, the mechanisms and factors influencing somaclonal variation. We studied variability of PCR-based DNA markers of cultured tissues and regenerated plants of maize and bread wheat. The original A188 line of maize and the somaclones obtained were tested using 38 RAPD and 10 ISSR primers. None of the A188 plants showed variation in the RAPD and ISSR spectra for any of the primers used. However, the PCR spectra obtained from the somaclones demonstrated some variations, i.e., 22 RAPD primers and 6 ISSR primers differentiated at least one somaclonal variant from the progenitor line. Six SCAR markers were developed based on several RAPD and ISSR fragments. The inheritance of these SCAR markers was verified in the selfing progeny of each somaclone in the R1–R4 generations and in the hybrids, with A188 as the parental line in the F1 and F2 generations. These markers were sequenced and bioinformatic searches were performed to understand the molecular events that may underlie the variability observed in the somaclones. All changes were found in noncoding sequences and were induced by different molecular events, such as the insertion of long terminal repeat transposon, precise miniature inverted repeat transposable element (MITE excision, microdeletion, recombination, and a change in the pool of mitochondrial DNA. In two groups of independently produced somaclones, the same features (morphological, molecular were variable, which confirms the theory of ‘hot spots’ occurring in the genome. The presence of the same molecular markers in the somaclones and in different non-somaclonal maize variants suggests that in some cases

  5. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.

    Science.gov (United States)

    MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A

    2017-07-18

    Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in

  6. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation.

    Directory of Open Access Journals (Sweden)

    Francis Fieni

    Full Text Available HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA in the axillary lymph node (6.48 ± 0.50 were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05, epididymis (3.08 ± 1.19; p<0.0001, prostate (3.36 ± 1.30; p<0.01, and seminal vesicle (2.67 ± 1.50; p<0.0001. Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.

  7. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems.

    Science.gov (United States)

    Herranz, Mari Carmen; Navarro, Jose Antonio; Sommen, Evelien; Pallas, Vicente

    2015-02-22

    In plants, RNA silencing plays a fundamental role as defence mechanism against viruses. During last years deep-sequencing technology has allowed to analyze the sRNA profile of a large variety of virus-infected tissues. Nevertheless, the majority of these studies have been restricted to a unique tissue and no comparative analysis between phloem and source/sink tissues has been conducted. In the present work, we compared the sRNA populations of source, sink and conductive (phloem) tissues in two different plant virus pathosystems. We chose two cucurbit species infected with two viruses very different in genome organization and replication strategy; Melon necrotic spot virus (MNSV) and Prunus necrotic ringspot virus (PNRSV). Our findings showed, in both systems, an increase of the 21-nt total sRNAs together with a decrease of those with a size of 24-nt in all the infected tissues, except for the phloem where the ratio of 21/24-nt sRNA species remained constant. Comparing the vsRNAs, both PNRSV- and MNSV-infected plants share the same vsRNA size distribution in all the analyzed tissues. Similar accumulation levels of sense and antisense vsRNAs were observed in both systems except for roots that showed a prevalence of (+) vsRNAs in both pathosystems. Additionally, the presence of overrepresented discrete sites along the viral genome, hot spots, were identified and validated by stem-loop RT-PCR. Despite that in PNRSV-infected plants the presence of vsRNAs was scarce both viruses modulated the host sRNA profile. We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the

  8. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Science.gov (United States)

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  9. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands

    NARCIS (Netherlands)

    Hayes, Matthew A.; Jesse, Amber; Tabet, Basam; Reef, Ruth; Keuskamp, Joost A.; Lovelock, Catherine E.

    2017-01-01

    Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how

  10. Frost resistance of reproductive tissues during various stages of development in high mountain plants.

    Science.gov (United States)

    Neuner, Gilbert; Erler, Agnes; Ladinig, Ursula; Hacker, Jürgen; Wagner, Johanna

    2013-01-01

    Frost resistance of reproductive vs aboveground vegetative structures was determined for six common European high alpine plant species that can be exposed to frosts throughout their whole reproductive cycle. Freezing tests were carried out in the bud, anthesis and fruit stage. Stigma and style, ovary, placenta, ovule, flower stalk/peduncle and, in Ranunculus glacialis, the receptacle were separately investigated. In all species, the vegetative organs tolerated on an average 2-5 K lower freezing temperatures than the most frost-susceptible reproductive structures that differed in their frost resistance. In almost all species, stigma, style and the flower stalk/peduncle were the most frost-susceptible reproductive structures. Initial frost damage (LT₁₀) to the most susceptible reproductive structure usually occurred between -2 and -4°C independent of the reproductive stage. The median LT₅₀ across species for stigma and style ranged between -3.4 and -3.7°C and matched the mean ice nucleation temperature (-3.7 ± 1.4°C). In R. glacialis, the flower stalk was the most frost-susceptible structure (-5.4°C), and was in contrast to the other species ice-tolerant. The ovule and the placenta were usually the most frost-resistant structures. During reproductive development, frost resistance (LT₅₀) of single reproductive structures mostly showed no significant change. However, significant increases or decreases were also observed (2.1 ± 1.2 K). Reproductive tissues of nival species generally tolerated lower temperatures than species occurring in the alpine zone. The low frost resistance of reproductive structures before, during and shortly after anthesis increases the probability of frost damage and thus, may restrict successful sexual plant reproduction with increasing altitude. Copyright © Physiologia Plantarum 2012.

  11. An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods.

    Science.gov (United States)

    Calder, Grant; Hindle, Chris; Chan, Jordi; Shaw, Peter

    2015-01-01

    Recent developments in both microscopy and fluorescent protein technologies have made live imaging a powerful tool for the study of plant cells. However, the complications of keeping plant material alive during a long duration experiment while maintaining maximum resolution has limited the use of these methods. Here, we describe an imaging chamber designed to overcome these limitations, which is flexible enough to support a range of sizes of plant materials. We were able use confocal microscopy to follow growth and development of plant cells and tissues over several days. The chamber design is based on a perfusion system, so that the addition of drugs and other experimental treatments are also possible. In this article we present a design of imaging chamber that makes it possible to image plant material with high resolution for extended periods of time.

  12. Direct DNA extraction method of an obligate parasitic fungus from infected plant tissue.

    Science.gov (United States)

    Liu, L; Wang, C L; Peng, W Y; Yang, J; Lan, M Q; Zhang, B; Li, J B; Zhu, Y Y; Li, C Y

    2015-12-28

    Powdery mildew and rust fungi are obligate parasites that cannot live without host organisms. They are difficult to culture in synthetic medium in the laboratory. Genomic DNA extraction is one of the basic molecular techniques used to study the genetic structure of populations. In this study, 2 different DNA extraction methods, Chelex-100 and cetyltrimethylammonium bromide (CTAB), were used to extract DNA from euonymus powdery mildew and Puccinia striiformis f. sp Tritici. Polymerase chain reaction was carried out with a race-specific-marker rDNA-internal transcribed spacer sequence. Both DNA extraction methods were compared and analyzed. The results showed that both Chelex-100 and CTAB were effective for extracting genomic DNA from infected plant tissue. However, less DNA was required for the Chelex-100 method than for the CTAB method, and the Chelex-100 method involved fewer steps, was simpler and safer, and did not require organic solvents compared to the CTAB method. DNA quality was evaluated by polymerase chain reaction, and the results showed that genomic DNA extracted using the Chelex-100 method was better than that using CTAB method, and was sufficient for studying the genetic structure of population.

  13. Maternal tissue is involved in stimulant reception by seeds of the parasitic plant Orobanche.

    Science.gov (United States)

    Plakhine, Dina; Tadmor, Yaakov; Ziadne, Hammam; Joel, Daniel M

    2012-04-01

    A fundamental element in the evolution of obligate root-parasitic angiosperms is their ability to germinate only in response to chemical stimulation by roots, to ensure contact with a nearby nourishing host. The aim of this study was to explore inheritance of the unique germination control in this group of plants. Analysis was made of the segregation of spontaneous (non-induced) germination that appeared in hybrid progenies derived from crosses between Orobanche cernua and O. cumana, which, like all other Orobanche species, are totally dependent on chemical stimulation for the onset of germination, and show negligible spontaneous germination in their natural seed populations. F(1) and F(2) seeds did not germinate in the absence of chemical stimulation, but significant spontaneous germination was found in some F(3) seed families. This indicates that the prevention of non-induced germination in Orobanche seeds, i.e. dependence on an external chemical stimulation for seed germination, is genetically controlled, that this genetic control is expressed in a seed tissue with maternal origin (presumably the perisperm that originates from the nucellus) and that genetic variation for this trait exists in Orobanche species. Similar segregation results were obtained in reciprocal crosses, suggesting that stimulated germination is controlled by nuclear genes.

  14. Effective half-lives of 137Cs from persimmon tree tissue parts in Japan after Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2015-01-01

    To estimate the radiocesium decreasing rates from persimmon trees during a period of about 3 y following the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), we conducted measurements of tree tissue parts collected in 2011–2013. The sampling was carried out in Chiba, 220 km south of FDNPP; radioactive fallouts discharged from FDNPP had mainly been observed in March–April 2011 on the sampling site. We measured 137 Cs concentrations in the tree tissue parts, i.e., fruits (flesh, skin and seeds), leaves and newly emerged branches, and then the effective half-lives (T eff ) of 137 Cs were calculated. Leaf samples were classified into two types by sampling months according to the growing stages, that is, immature (April–May) and mature (June–November) leaves. All these parts showed exponential declines in 137 Cs concentration with good adjusted contribution ratios of higher than ca. 0.7. The calculated T eff values from all tissue parts were similar with the average of 229 d (range: 216–243 d). From these results, we concluded that each tree tissue was representative for the calculation of T eff . For comparison to these observation results, open source food monitoring data from 2011 to 2013 including 137 Cs data for persimmon fruits collected in Fukushima Prefecture were used to calculate T eff for persimmon trees. Values of T eff were obtained for persimmon fruits grown in each local government area in Fukushima Prefecture and they ranged from 303 to 475 d. - Highlights: • 137 Cs decreased exponentially from persimmon trees in Chiba after the Fukushima accident. • The effective half-lives (T eff ) of 137 Cs from fruit, leaf and new branch tissues were similar. • The Food monitoring data were used to calculate effective half-lives for persimmon trees in Fukushima. • The average of T eff in Chiba was ca. 230 d while that in Fukushima was ca. 400 d

  15. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues

    Directory of Open Access Journals (Sweden)

    Balcke Gerd Ulrich

    2012-11-01

    Full Text Available Abstract Background Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding. These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing. Results Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified. Conclusion The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive tandem mass spectrometry instrumentation.

  16. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    Science.gov (United States)

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Study of the influence of climatic factors on the accumulation of radio-elements in plant tissue (1962)

    International Nuclear Information System (INIS)

    Gagnaire, J.; Gilly-Heuze, C.; Nizia, J.

    1962-01-01

    1. Here is proposed an appropriate treatment of soil able to promote absorption and accumulation of radioisotopes in aerial parts of young trees. 2. Thanks to such treatment, young trees belonging to several species appropriately selected can probably be used to detect possible contamination of soil by a radioisotope during a whole vegetation cycle. The concentration power of tissues of these trees is considerable: after being cultivated on contaminated soil for only 4 weeks, the concentration rate is about 85 in spruce-needles. Activity measurements of samples of plant tissues may become a routine process in control of soil contamination. (authors) [fr

  18. Contrasting Effects of Aqueous Tissue Extracts from an Invasive Plant, Bidens pilosa L. var. radiata, on the Performance of Its Sympatric Plant Species

    Directory of Open Access Journals (Sweden)

    Hsiao-Mei Hsu

    2009-09-01

    Full Text Available Bidens pilosa L. var. radiata Sch. Bip., a common weed in lowland Taiwan, is listed as one of the twenty most noxious invasive plants in Taiwan. In this study, we examined the effect of aqueous extracts of leaves, stems and roots of the invasive plant on germination and growth of seedlings (estimated by measuring the elongation of hypocotyls and radicals of the same species and two other sympatric species, B. bipinnata and Ageraturem conyzoides. The objective of this study was to understand whether the aqueous tissue extracts affected the performance of the target species and whether these effects varied among tissue types and among target species. We found that the germination percentage of seeds of B. bipinnata was significantly reduced by root and leaf extracts, that of B. pilosa var. radiata was also significantly reduced by the application of root extract, while that of A. conyzoides was not affected by any of the three tissue extracts. The application of stem and leaf extracts inhibited the elongation of radicals of B. pilosa var. radiata, consequently, the growth of seedlings of this species was decreased in these two treatments. Though the elongation of hypocotyls was stimulated by leaf extract, the overall growth of seedlings of B. bipinnata was not affected by any tissue extract. In contrast, all three extracts stimulated the elongation of hypocotyls and radicals of A. conyzoides, consequently, the overall growth of seedlings of this plant was promoted by all three extracts. These results revealed that aqueous extracts from tissue of B. pilosa var. radiata had differential effect on the emergence and seedling growth of the three target species. The inhibition effect of its root and leaf extracts on the germination of B. bipinnata may partially explain the overwhelming dominance of B. pilosa var. radiata over B. bipinnata when they are sympatric.

  19. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  20. Plant DNA Detection from Grasshopper Guts: A Step-by-Step Protocol, from Tissue Preparation to Obtaining Plant DNA Sequences

    Directory of Open Access Journals (Sweden)

    Alina Avanesyan

    2014-02-01

    Full Text Available Premise of the study: A PCR-based method of identifying ingested plant DNA in gut contents of Melanoplus grasshoppers was developed. Although previous investigations have focused on a variety of insects, there are no protocols available for plant DNA detection developed for grasshoppers, agricultural pests that significantly influence plant community composition. Methods and Results: The developed protocol successfully used the noncoding region of the chloroplast trnL (UAA gene and was tested in several feeding experiments. Plant DNA was obtained at seven time points post-ingestion from whole guts and separate gut sections, and was detectable up to 12 h post-ingestion in nymphs and 22 h post-ingestion in adult grasshoppers. Conclusions: The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from the grasshopper gut and its different sections. This has important applications, from exploring plant “movement” during food consumption, to detecting plant–insect interactions.

  1. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    Science.gov (United States)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  2. Phenolic compounds in cultures of tissues of tea plants and the effect of light on their synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Koretskaya, T.F.; Zaprometov, M.N.

    1975-01-01

    Stem and leaf calluses of tea plants (Camellia sinensis) retain the capacity for synthesis of phenolic compounds. The content of phenolic compounds comprises 2 to 5 percent of dry weight, the main share (80 to 95 percent) belonging to catechins and leucoanthocyans, including their polymeric forms. The following compounds were detected in callus tissue: (--)-epicatechin, (+)-catechin, two leucoanthocyans, and several unidentified phenolic compounds that fluoresce in UV. (--)-Epicatechin is predominant. In contrast to tissues of an intact plant, the callus does not contain gallocatechins or free gallic acid under the given cultivation conditions. The content of phenolic compounds changes in proportion to callus growth, their greatest amount being formed during the phase of intensive growth. Light stimulates synthesis of phenolic compounds, including the most reduced group of flavonoids, viz., leucoanthocyans and catechins.

  3. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes.

    Science.gov (United States)

    Muhammad, Pir; Liu, Jia; Xing, Rongrong; Wen, Yanrong; Wang, Yijia; Liu, Zhen

    2017-12-01

    Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL -1 ), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  5. Prediction of atmospheric δ13CO2 using fossil plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, A. Hope [Johns Hopkins Univ., Baltimore, MD (United States); Arens, Nan Crystal [Hobart and William Smith Colleges, Geneva, NY (United States); Harbeson, Stephanie A. [Johns Hopkins Univ., Baltimore, MD (United States); Univ. of Virginia, Charlottesville, VA (United States)

    2008-06-30

    To summarize the content: we presented the results of laboratory experiments designed to quantify the relationship between plant tissue δ13C and δ13CO2 values under varying environmental conditions, including differential pCO2 ranging from 1 to 3 times today’s levels. As predicted, plants grown under elevated pCO2 showed increased average biomass compared to controls grown at the same temperature. Across a very large range in δ13Ca (≈ 24 ‰) and pCO2 (≈ 740 ppmv) we observed a consistent correlation between δ13Ca and δ13Cp (p<0.001). We show an average isotopic depletion of -25.4 ‰ for above-ground tissue and -23.2 ‰ for below-ground tissue of Raphanus sativus L. relative to the composition of the atmosphere under which it formed. For both above- and below-ground tissue, grown at both ~23 °C and ~29 °C, correlation was strong and significant (r2 ≥ 0.98, p<0.001); variation in pCO2 level had little or no effect on this relationship.

  6. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard

    Directory of Open Access Journals (Sweden)

    Tomasz ePłociniczak

    2016-02-01

    Full Text Available Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants.The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%, Zn (86% and Cu (39% in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  7. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    Science.gov (United States)

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  8. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Luo, Yiqi; Elser, James; Wang, Ying-ping; Loladze, Irakli; Zhang, Quanfa; Dennis, Sam

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen: phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  9. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  10. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.

    Science.gov (United States)

    Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A

    2015-12-29

    Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.

  11. Radiation induced early maturing mutants in barley

    International Nuclear Information System (INIS)

    Kumar, R.; Chauhan, S.V.S.; Sharma, R.P.

    1978-01-01

    In M 2 generation, two early maturing plants were screened from a single spike progeny of a plant obtained from 20 kR of gamma-ray irradiation of a six-rowed barley (Hordeum vulgare L. var. Jyoti). Their true breeding nature was confirmed in M 3 generation. These mutants flower and mature 38 and 22 days earlier than those of control. (auth.)

  12. Effect of ensiling time and exogenous protease addition to whole-plant corn silage of various hybrids, maturities, and chop lengths on nitrogen fractions and ruminal in vitro starch digestibility.

    Science.gov (United States)

    Ferraretto, L F; Crump, P M; Shaver, R D

    2015-12-01

    The objective of this study was to evaluate the effects of ensiling time and exogenous protease addition on soluble CP (% of CP), ammonia-N (% of N), and ruminal in vitro starch digestibility (ivSD) of whole-plant corn silage (WPCS) from 3 hybrids, 2 maturities, and 2 chop lengths. Samples from 3 nonisogenic hybrids [brown midrib containing the bm3 gene mutation (BM3), dual-purpose (DP), or floury-leafy (LFY)] at 2 harvest maturities [2/3 kernel milk line (early) or 7d later (late)] with 2 theoretical lengths of cut settings (0.64 or 1.95cm) on a forage harvester were collected at harvest, treated with or without exogenous protease, and ensiled in triplicate in vacuum heat-sealed plastic bags for 0, 30, 60, 120, and 240d. Thus, the experiment consisted of 120 treatments (3 hybrids × 2 maturities × 2 chop lengths × 2 protease treatments × 5 time points) and 360 mini-silos (3 replications per treatment). Vitreousness, measured by dissection on unfermented kernels on the day of harvest, averaged 66.8, 65.0, and 59.0% for BM3, DP, and LFY, respectively. A protease × maturity interaction was observed with protease increasing ivSD in late but not early maturity. Ensiling time × hybrid interactions were observed for ammonia-N and soluble CP concentrations with greater values for FLY than other hybrids only after 120d of ensiling. Ensiling time × hybrid or protease × hybrid interactions were not observed for ivSD. Measurements of ivSD were greatest for FLY and lowest for BM3. Length of the ensiling period did not attenuate negative effects of kernel vitreousness or maturity on ivSD in WPCS. Results suggest that the dosage of exogenous protease addition used in the present study may reduce but not overcome the negative effects of maturity on ivSD in WPCS. No interactions between chop length and ensiling time or exogenous protease addition were observed for ivSD. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    highly specific responses to the phytohormones gibberellic acid and abscisic acid. Combined with the increasing usage as a model for studying plant protein secretion, these properties make the aleurone layer ideal for maintenance in a microfluidics system (Fath, Angelika, et al., (2001), Plant Physiol...

  14. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.).

    Science.gov (United States)

    Liu, J R; Cantliffe, D J

    1984-06-01

    Leaf, shoot-tip, stem, and root explants of sweet potato (Ipomea batatas Poir.) gave rise to two kinds of callus on nutrient agar medium containing 0.5 to 2.0 mg/l 2,4-D. One callus, bright- to pale-yellow, was compact and organized, while the other was dull-yellow and friable. The former callus gave rise to numerous globular and heart-shaped embryoids. When transferred onto hormone-free medium, the embryoids readily developed into a torpedo-shape before germination. The plantlets were transplanted to soil where they flowered and formed storage roots at maturity.

  15. The effect of plant growth regulators on optimization of tissue culture ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... ISSN 1684–5315 © 2010 Academic Journals ... tissue culture system in Malaysian upland rice ... Scientists believe that using new cultivars which have potential ..... providing the financial support and to Firouzeh Ashjazadeh ...

  16. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions.

    Science.gov (United States)

    Jia, Hongchang; Jiang, Bingjun; Wu, Cunxiang; Lu, Wencheng; Hou, Wensheng; Sun, Shi; Yan, Hongrui; Han, Tianfu

    2014-01-01

    With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15', E 127°27', H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.

  17. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Svensson, Birte

    Programmed cell death (PCD) in plants can influence the outcome of yield and quality of crops through its important role in seed germination and the defence process against pathogens. The main scope of the project is to apply microfluidic cell culture for the measurement of electrochemically......, since it is known that reactive oxygen species, which are affected by changes in the redox activity of the cells3, are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD is only poorly understood in plant cells4. Recently, it has been shown, using optical detection...

  18. Compartmentation of sucrose during radial transfer in mature sorghum culm

    Directory of Open Access Journals (Sweden)

    Vietor Donald M

    2007-06-01

    Full Text Available Abstract Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L. Moench and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening culm tissue was probably less (about 3/4's than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81% recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis and primarily through a path that includes an

  19. hMSCs Cultured on Plant-Derived Tissue Engineering Extracellular Matrix in a Microgravity Environment

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to fabricate an all plant-derived renewable, biodegradable complete mimic of the bone extracellular matrix (ECM). For the first...

  20. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, Dual-isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Macnicol, P.K.

    1986-10-01

    A method is presented for determining the levels of S-methylmethionine (MeMet) and S-adenosylmethionine (AdoMet) in the same plant tissue sample, utilizing readily available equipment. The bottom limit of sensitivity, ca. 100 pmol, can be lowered if required. A trichloracetic acid homogenate of the tissue is supplemented with (carboxyl-/sup 14/C)MeMet and (carboxyl-/sup 14/C)AdoMet. After separation of MeMet and AdoMet from each other and from endogenous homoserine on a phosphocellulose column, the two fractions are heat treated at appropriate pH values to liberate (/sup 14/C)homoserine. Quantitation is via the /sup 3/H//sup 14/C ratio of (/sup 3/H)dansyl-(/sup 14/C)homoserine isolated by thin-layer chromatography. The method is validated with pea cotyledon, corn root, and cauliflower leaf.

  1. Analysis of S-methylmethionine and S-adenosylmethionine in plant tissue by a dansylation, Dual-isotope method

    International Nuclear Information System (INIS)

    Macnicol, P.K.

    1986-01-01

    A method is presented for determining the levels of S-methylmethionine (MeMet) and S-adenosylmethionine (AdoMet) in the same plant tissue sample, utilizing readily available equipment. The bottom limit of sensitivity, ca. 100 pmol, can be lowered if required. A trichloracetic acid homogenate of the tissue is supplemented with [carboxyl- 14 C]MeMet and [carboxyl- 14 C]AdoMet. After separation of MeMet and AdoMet from each other and from endogenous homoserine on a phosphocellulose column, the two fractions are heat treated at appropriate pH values to liberate [ 14 C]homoserine. Quantitation is via the 3 H/ 14 C ratio of [ 3 H]dansyl-[ 14 C]homoserine isolated by thin-layer chromatography. The method is validated with pea cotyledon, corn root, and cauliflower leaf

  2. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  3. Aplicações da cultura de tecidos em plantas medicinais Applications of tissue culture in medicinal plants

    Directory of Open Access Journals (Sweden)

    T.P. Morais

    2012-01-01

    Full Text Available Esta revisão tem por objetivo levantar dados de literatura sobre o histórico e a situação atual das técnicas de cultura de tecidos em plantas medicinais. Para tanto, foi realizada uma revisão de publicações do período de 1976 a 2009. A cultura de tecidos é muito utilizada em pesquisas envolvendo plantas medicinais, com destaque para a técnica de micropropagação. A aplicação das técnicas de cultura de tecidos em plantas medicinais tem como perspectivas a obtenção de germoplasma competitivo e adaptado a diversos métodos de cultivo, escolha de novas espécies que servirão como fonte de compostos biologicamente ativos e aprimoramento da produção de fitofármacos, a fim de assegurar exploração sustentável destas espécies.The aim of this literature review is to conduct a survey concerning the history and current situation of tissue culture techniques in medicinal plants. Therefore, a review was done considering the period from 1976 to 2009. Tissue culture is widely applied in medicinal plants researches, especially micropropagation. The perspectives of tissue culture techniques in medicinal plants are related to the development of competitive germoplasm adapted to diverse methods of cultivation, the election of new species that will serve as source of biological active composts, and the improvement of phytochemicals production, in order to assure sustainable exploration of these species.

  4. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  5. Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe

    International Nuclear Information System (INIS)

    Vavpetič, P.; Pelicon, P.; Vogel-Mikuš, K.; Grlj, N.; Pongrac, P.; Jeromel, L.; Ogrinc, N.; Regvar, M.

    2013-01-01

    Recently we completed a construction of a cryostat at Jožef Stefan Institute (JSI) nuclear microprobe enabling us to analyze various types of biological samples in frozen hydrated state using micro-PIXE/STIM/RBS. Sample load-lock system was added to our existing setup to enable us to quickly insert a sample holder with frozen hydrated tissue samples onto a cold goniometer head cooled with liquid nitrogen inside the measuring chamber. Cryotome-cut slices of frozen hydrated plant samples were mounted between two thin silicon nitride foils and then attached to the sample holder. Sufficient thermal contact between silicon nitride foils and sample holder must be achieved, as well as between the sample holder and the cold goniometer head inside the measuring chamber to prevent melting of the samples. Matrix composition of frozen hydrated tissue is consisted mostly of ice. Thinning of the sample as well as water evaporation during high vacuum and proton beam exposure was inspected by the measurements with RBS and STIM method simultaneously with micro-PIXE. For first measuring attempts a standard micro-PIXE configuration for tissue mapping was used with proton beam cross section of 1.2 × 1.2 μm 2 and a beam current of 100 pA. The temperature of the cold goniometer head was kept below 130 K throughout the entire proton beam exposure. First measurements of thin plant tissue samples in frozen hydrated state show minute sample degradation during the 10 h period of micro-PIXE measurements

  6. Fitness consequences of cotyledon and mature-leaf damage in the ivyleaf morning glory.

    Science.gov (United States)

    Stinchcombe, John R

    2002-04-01

    To understand the evolutionary and ecological consequences of natural enemy damage to plants, it is essential to determine how the fitness effects of damage differ depending on the tissues damaged and the subsequent pattern of damage. In a field experiment with the ivyleaf morning glory, the direct and indirect effects on fitness of herbivore damage to cotyledons and mature leaves was evaluated. Damage to mature leaves had negligible direct effects on fitness and no indirect effects on fitness through other correlated traits. Damage to cotyledons also did not directly affect fitness, but did so indirectly through its effects on plant size. These findings suggest that increased resistance to cotyledon damage or increased compensatory growth following cotyledon damage could be effective strategies for plants of this species to counteract the negative effects of herbivory.

  7. Maturity and maturity models in lean construction

    Directory of Open Access Journals (Sweden)

    Claus Nesensohn

    2014-03-01

    Full Text Available In recent years there has been an increasing interest in maturity models in management-related disciplines; which reflects a growing recognition that becoming more mature and having a model to guide the route to maturity can help organisations in managing major transformational change. Lean Construction (LC is an increasingly important improvement approach that organisations seek to embed. This study explores how to apply the maturity models to LC. Hence the attitudes, opinions and experiences of key industry informants with high levels of knowledge of LC were investigated. To achieve this, a review of maturity models was conducted, and data for the analysis was collected through a sequential process involving three methods. First a group interview with seven key informants. Second a follow up discussion with the same individuals to investigate some of the issues raised in more depth. Third an online discussion held via LinkedIn in which members shared their views on some of the results. Overall, we found that there is a lack of common understanding as to what maturity means in LC, though there is general agreement that the concept of maturity is a suitable one to reflect the path of evolution for LC within organisations.

  8. Slab replacement maturity guidelines.

    Science.gov (United States)

    2014-04-01

    This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...

  9. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes.

    Science.gov (United States)

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H

    2017-03-01

    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  10. Assay of Plasma Membrane H+-ATPase in Plant Tissues under Abiotic Stresses.

    Science.gov (United States)

    Janicka, Małgorzata; Wdowikowska, Anna; Kłobus, Grażyna

    2018-01-01

    Plasma membrane (PM) H + -ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented. Such great diversity of physiological functions linked to the activity of one enzyme requires a suitable and complex regulation of H + -ATPase. This regulation comprises the transcriptional as well as post-transcriptional levels. Herein, we describe the techniques that can be useful for the analysis of the plasma membrane proton pump modifications at genetic and protein levels under environmental factors.

  11. Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I Ions – Plants as Bioindicators of Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-01-01

    Full Text Available The aim of this work is to investigate sunflower plants response on stressinduced by silver(I ions. The sunflower plants were exposed to silver(I ions (0, 0.1, 0.5,and 1 mM for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such aslignified cell walls, it was possible to determine the changes of important shoot and rootstructures, mainly vascular bungles and development of secondary thickening. Thedifferences in vascular bundles organisation, parenchymatic pith development in the rootcentre and the reduction of phloem part of vascular bundles were well observable.Moreover with increasing silver(I ions concentration the vitality of rhizodermal cellsdeclined; rhizodermal cells early necrosed and were replaced by the cells of exodermis.Further we employed laser induced breakdown spectroscopy for determination of spatialdistribution of silver(I ions in tissues of the treated plants. The Ag is accumulated mainlyin near-root part of the sample. Moreover basic biochemical indicators of environmentalstress were investigated. The total content of proteins expressively decreased withincreasing silver(I ions dose and the time of the treatment. As we compare the resultsobtained by protein analysis – the total protein contents in shoot as well as root parts – wecan assume on the transport of the proteins from the roots to shoots. This phenomenon canbe related with the cascade of processes connecting with photosynthesis. The secondbiochemical parameter, which we investigated, was urease activity. If we compared theactivity in treated plants with control, we found out that presence of silver(I ions markedlyenhanced the activity of urease at all applied doses of this toxic metal. Finally we studiedthe effect of silver(I ions on activity of urease

  12. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.

    Science.gov (United States)

    O’Leary, Brendan; Fedosejevs, Eric T.; Hill, Allyson T.; Bettridge, James; Park, Joonho; Rao, Srinath K.; Leach, Craig A.; Plaxton, William C.

    2011-01-01

    This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism. PMID:21841182

  13. Tissue mineral nutrient content in turions of aquatic plants: does it represent a storage function?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2010-01-01

    Roč. 176, č. 2 (2010), s. 145-151 ISSN 1863-9135 Institutional research plan: CEZ:AV0Z60050516 Keywords : carnivorous and non-carnivorous plants * turion N, P, K, Ca and Mg content * water chemistry Subject RIV: EF - Botanics Impact factor: 1.108, year: 2010

  14. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Napier, R.; Ljung, K.

    2017-01-01

    Roč. 68, č. 2017 (2017), s. 323-348 ISSN 1543-5008 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Biosensor * Cell biology * Mass spectrometry * Phytohormone * Resolution * Sensitivity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 22.808, year: 2016

  15. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Science.gov (United States)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  16. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    NARCIS (Netherlands)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction.

  17. Detecting plant silica fibres in animal tissue by confocal fluorescence microscopy.

    Science.gov (United States)

    Hodson, M J; Smith, R J; van Blaaderen, A; Crafton, T; O'Neill, C H

    1994-04-01

    Silica fibres from the inflorescence bracts of the grass Phalaris canariensis L. cause dermatitis, and have been implicated in the aetiology of oesophageal cancer in northeastern Iran. Here we describe a method for labelling these fibres so that they can be located in mammalian tissue. Fluorescein was covalently linked to isolated, purified fibres with the silane coupling agent 3-aminopropyl triethoxysilane. The labelled hairs were then rubbed into the backs of mice. These were later killed and their skin fixed, stained and sliced at a thickness of 250 microns. A confocal laser scanning microscope gave brilliant images of the fibres at any depth up to 100 microns or more beneath the surface of the slice. Fibres penetrated deeply into the dermis. Several cubic millimetres of tissue could be surveyed in 1 h. The number of fibres present was approximately 2 mm-3 initially, falling to 0.1 mm-3 after 7 days.

  18. Effect of increasing plant maturity in timothy-dominated grass silage on the performance of growing/finishing Norwegian Red bulls

    DEFF Research Database (Denmark)

    Randby, Å T; Nørgaard, P; Weisbjerg, Martin Riis

    2010-01-01

    An investigation was made of the potential for attaining high daily live weight (LW) gain, high feeding efficiency and carcass quality in Norwegian Red (NRF) bulls fed grass silage harvested at early stages of maturity, supplemented with minimal amounts of concentrates. Roundbale silage was produ......An investigation was made of the potential for attaining high daily live weight (LW) gain, high feeding efficiency and carcass quality in Norwegian Red (NRF) bulls fed grass silage harvested at early stages of maturity, supplemented with minimal amounts of concentrates. Roundbale silage...... and a formic acid-based additive applied. All silages were preserved with restricted fermentation. Silage DOMD values were 0·747, 0·708 and 0·647 for harvesting time (H) 1, 2 and 3 respectively. Silages were fed ad libitum as sole feed, or supplemented with 2–4 kg concentrate at increasing LW, to six bulls per...... treatment from age 7 months (288 kg) to slaughter at 575 kg. Daily LW gain for bulls fed unsupplemented silage was 1423, 1262 and 936 g, respectively, for H1, H2 and H3, and 1570, 1567 and 1357 g for supplemented bulls. For concentrate-supplemented bulls, higher energy intake increased proportions...

  19. Postembryonic organogenesis and plant regeneration from tissues:two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Juan ePerianez-Rodriguez

    2014-05-01

    Full Text Available Plants have extraordinary developmental plasticity as they continuously form organs duringpostembryonic development. In addition they may regenerate organs upon in vitro hormonalinduction. Advances in the field of plant regeneration show that the first steps of de novoorganogenesis through in vitro culture in hormone containing media (via formation of aproliferating mass of cells or callus require root postembryonic developmental programs as wellas regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation isdelivered during lateral root initiation and callus formation. Implications in reprograming, cellfate and pluripotency acquisition are discussed. Finally, we analyze the function of cell-cycleregulators and connections with epigenetic regulation. Future work dissecting plantorganogenesis driven by both endogenous and exogenous cues (upon hormonal induction mayreveal new paradigms of common regulation.

  20. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants.

    Science.gov (United States)

    Konnerup, Dennis; Toro, Guillermo; Pedersen, Ole; Colmer, Timothy David

    2018-03-14

    Soil waterlogging adversely impacts most plants. Melilotus siculus is a waterlogging-tolerant annual forage legume, but data were lacking for the effects of root-zone hypoxia on nodulated plants reliant on N2 fixation. The aim was to compare the waterlogging tolerance and physiology of M. siculus reliant on N2 fixation or with access to NO3-. A factorial experiment imposed treatments of water level (drained or waterlogged), rhizobia (nil or inoculated) and mineral N supply (nil or 11 mm NO3-) for 21 d on plants in pots of vermiculite in a glasshouse. Nodulation, shoot and root growth and tissue N were determined. Porosity (gas volume per unit tissue volume) and respiration rates of root tissues and nodules, and O2 microelectrode profiling across nodules, were measured in a second experiment. Plants inoculated with the appropriate rhizobia, Ensifer (syn. Sinorhizobium) medicae, formed nodules. Nodulated plants grew as well as plants fed NO3-, both in drained and waterlogged conditions. The growth and total N content of nodulated plants (without any NO3- supplied) indicated N2 fixation. Respiration rates (mass basis) were highest in nodules and root tips and lowest in basal root tissues. Secondary aerenchyma (phellem) formed along basal root parts and a thin layer of this porous tissue also covered nodules, which together enhanced gas-phase diffusion of O2 to the nodules; O2 was below detection within the infected zone of the nodule interior. Melilotus siculus reliant on N2 fixation grew well both in drained and waterlogged conditions, and had similar tissue N concentrations. In waterlogged conditions the relatively high respiration rates of nodules must rely on O2 movement via the aerenchymatous phellem in hypocotyl, roots and the outer tissue layers of nodules.

  1. Application of a Novel and Automated Branched DNA in Situ Hybridization Method for the Rapid and Sensitive Localization of mRNA Molecules in Plant Tissues

    Directory of Open Access Journals (Sweden)

    Andrew J. Bowling

    2014-04-01

    Full Text Available Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH, originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. Methods and Results: Zea mays leaf tissue was formaldehyde fixed and paraffin embedded (FFPE and then probed with the RNAscope ISH assay for two endogenous genes, phosphoenolpyruvate carboxylase (PEPC and phosphoenolpyruvate carboxykinase (PEPCK. Results from both manual and automated methods showed tissue- and cell-specific mRNA localization patterns expected from these well-studied genes. Conclusions: RNAscope ISH is a sensitive method that generates high-quality, easily interpretable results from FFPE plant tissues. Automation of the RNAscope method on the Ventana Discovery Ultra platform allows significant advantages for repeatability, reduction in variability, and flexibility of workflow processes.

  2. Determining the stages of tillering stage, initiation of primordia, flowering and maturity in the rice plant, with the system S, V and R correlated with the thermal sum at the time

    Directory of Open Access Journals (Sweden)

    Jennifer Velázquez

    2015-11-01

    Full Text Available Temperature is one of the major climatic factors that affect growth, development and yield of the rice crop, and also can reduce the time of change of phenological stages. The beginning stages of tillering, initiation of primordia, flowering and harvest maturity were determined with the S, V and R system recently proposed by Counce et ál. (2000; it consists on counting the number of fully developed leaves; in addition, a correlation was made with accumulated degree days that the plant had at that time, in order to estimate with how many degree days the plant began a phenological stage; this parameter is related to the average daily temperature and a base temperature of 10ºC. For the start of tillering the plant needed 140.9 degree days; for primordium start, 1268.9; for bloom 1746; and completed its cycle with a total of 2333.2 degree days. This allows to conclude that, for a variety of long cycle (130-135 days, when the accumulation of degree days is equal or similar to the previous data, the plant initiates one of the above-mentioned phenological stages; however, each one of the varieties in use by farmers must be calibrated, because there are differences in crop cycle length among them.

  3. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  4. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    , et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors...... such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains...

  5. Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    KAUST Repository

    Goriely, A.

    2010-07-01

    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation. Copyright © EPLA, 2010.

  6. Characterization of viruses associated with garlic plants propagated from different reproductive tissues from Italy and other geographic regions

    Directory of Open Access Journals (Sweden)

    Leonardo PARRANO

    2013-01-01

    Full Text Available Garlic is an important crop cultivated worldwide and several different viruses have been associated with propagative material. Garlic is propagated from bulbs and/or from vegetative topsets of the inflorescences known as bulbils. The effects of the geographic origin and the type of the propagative material on the phylogenetic relationships and genetic variability of the coat protein genes of four allium viruses are presented here. Onion yellow dwarf virus (OYDV, Leek yellow stripe virus (LYSV, Garlic virus X (GVX, and Garlic common latent virus (GCLV were detected in single and mixed infections in plants grown either from bulbils and/or bulbs originating from Italy, China, Argentina, and the U.S.A. OYDV and LYSV fell into five and three well supported clades respectively whereas isolates of GVX and GCLV all clustered into one well-supported clade each. Some of the OYDV and LYSV clades presented evidence of host tissue selection while some phylogenetic structuring based on the geographic origin or host was also observed for some virus clades. Unique haplotypes and novel coat protein amino acid sequence patterns were identified for all viruses. An OYDV coat protein amino acid signature unique to Chenopodium quinoa, an uncommon host of the virus, was of particular interest. The type of propagative material affected the population dynamics of all of the viruses. The virus populations in plants propagated from bulbs were more diverse than in plants propagated from bulbils.

  7. Extraction of carbon 14-labeled compounds from plant tissue during processing for electron microscopy

    International Nuclear Information System (INIS)

    Coetzee, J.; van der Merwe, C.F.

    1989-01-01

    Loss of 14 C-labeled compounds from bean leaf tissue was monitored during all the stages of routine specimen preparation. No significant differences in extraction were associated with the use of acetone, ethanol, or dioxane as dehydration fluids. Fixation at low temperature increased the loss of label. Prolonged fixation in glutaraldehyde increased the loss, but fixation in osmium solutions for periods as long as 4 hr had no influence on extraction. Buffer rinses and dehydration fluids caused appreciable amounts of label to be extracted. The use of propylene oxide as transition fluid resulted in low extraction. Some embedding media caused the loss of small amounts of labeled compounds, but one of the media tested (LR-white) extracted significant amounts of label

  8. Extraction and analysis of fumonisins and compounds indicative of fumonisin exposure in plant and mammalian tissues and cultured cells.

    Science.gov (United States)

    Zitomer, Nicholas C; Riley, Ronald T

    2011-01-01

    Fumonisin mycotoxins are common contaminants in many grains, often at very low levels. Maize is -particularly problematic as one of the organisms that commonly produce fumonisins, the fungus Fusarium verticillioides, often exists as an endophyte of maize. Fumonisin is a potent inhibitor of the enzyme ceramide synthase, and this inhibition results in the accumulation of a variety of upstream compounds, most notably, the sphingoid bases sphingosine, sphinganine, 1-deoxysphinganine and, in plants, phytosphingosine. Fumonisin exposure results in a wide variety of species, sex, and strain-specific responses. This method provides a relatively fast means of extracting fumonisins, sphingoid bases, and sphingoid base 1-phosphates from tissues and cells, as well as the subsequent analyses and quantification of these compounds using liquid chromatography/tandem mass spectrometry.

  9. The use of plant tissue culture system in the mutagenesis of Secale cereale L

    International Nuclear Information System (INIS)

    Rybczynski, J.J.; KozIowska, W.; Turzynski, D.

    1990-01-01

    Full text: Among cereals, Secale cereale L. is the worst species for 'in vitro' mutagenesis. In the case of seed mutagenesis of rye each seed is expected to be a different genotype and only somatic embryogenesis assures propagation towards numerous individuals possessing the same genotype. Therefore, another system of in-vitro mutagenesis is explored. Immature embryos were isolated from spikes of field growing plants. The established cultures were irradiated with 0.5; 1.0 and 1.5 kR gamma rays on the first day of the culture and after 6 weeks in culture. After irradiation all cultures were subcultured. For mutagenesis in general uniformity of the original material is very important. Therefore, in rye, irradiation of regenerated somatic embryos may be a good approach. (author)

  10. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  11. Reduction of negative environmental impact generated by residues of plant tissue culture laboratory

    Directory of Open Access Journals (Sweden)

    Yusleidys Cortés Martínez

    2016-01-01

    Full Text Available The research is based on the activity developed by teaching and research laboratories for biotechnology purposes with an environmental approach to determine potential contamination risk and analyze the residuals generated. The physical - chemical characterization of the residuals was carried out from contamination indicators that can affect the dumping of residual water. In order to identify the environmental risks and sources of microbial contamination of plant material propagated by in vitro culture that generate residuals, all the risk activities were identified, the type of risk involved in each activity was analyzed, as well as whether or not the standards were met of aseptic normative. The dilution and neutralization was proposed for residuals with extreme values of pH. Since the results of the work a set of measures was proposed to reduce the negative environmental impact of the laboratory residuals. Key words: biosafety, environmental management, microbial contamination

  12. ORGANIZATIONAL PROJECT MANAGEMENT MATURITY

    Directory of Open Access Journals (Sweden)

    Yana Derenskaya

    2017-11-01

    Full Text Available The present article is aimed at developing a set of recommendations for achieving a higher level of organizational project maturity at a given enterprise. Methodology. For the purposes of the current research, the available information sources on the components of project management system are analysed; the essence of “organizational maturity” and the existing models of organizational maturity are studied. The method of systemic and structural analysis, as well as the method of logical generalization, are employed in order to study the existing models of organizational maturity, to describe levels of organizational maturity, and finally to develop a set of methodological recommendations for achieving a higher level of organizational project maturity at a given enterprise. The results of the research showed that the core elements of project management system are methodological, organizational, programtechnical, and motivational components. Project management encompasses a wide range of issues connected with organizational structure, project team, communication management, project participants, etc. However, the fundamental basis for developing project management concept within a given enterprise starts with defining its level of organizational maturity. The present paper describes various models of organizational maturity (staged, continuous, petal-shaped and their common types (H. Кеrzner Organizational Maturity Model, Berkeley PM Maturity Model, Organizational Project Management Maturity Model, Portfolio, Program & Project Management Maturity Model. The analysis of available theoretic works showed that the notion “organizational project maturity” refers to the capability of an enterprise to select projects and manage them with the intention of achieving its strategic goals in the most effective way. Importantly, the level of maturity can be improved by means of formalizing the acquired knowledge, regulating project-related activities

  13. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    Science.gov (United States)

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Spatial distribution and contamination assessment of six heavy metals in soils and their transfer into mature tobacco plants in Kushtia District, Bangladesh.

    Science.gov (United States)

    Saha, Narottam; Rahman, M Safiur; Jolly, Yeasmin Nahar; Rahman, Atiqur; Sattar, M Abdus; Hai, M Abdul

    2016-02-01

    Although the tobacco production and consumption rate in Bangladesh is very high and a substantial portion of premature deaths is caused by tobacco smoking, the status of heavy metals in tobacco plants has not yet determined. This study, therefore, investigated the concentrations of Cu, Ni, Cd, Pb, Cr, and Zn in tobacco plants and their surrounding agricultural soils in Kushtia District, Bangladesh. The geochemical maps showed a similar spatial distribution pattern of the analyzed metals and identified Shempur, Kharara, Taragunia, and Shantidanga as metal hot spots. Geoanalytical indexes were applied to assess the extent of soil contamination, and the results depicted that the soils of Shempur, Kharara, Taragunia, and Shantidanga were moderately contaminated where Cd contributed the most to contamination degree (C d) in spite of its relative low content. However, other five areas in Kushtia District were suggested as uncontaminated according to both C d and pollution load index (PLI). The hazard quotient (HQ) and hazard index (HI) showed no possible indication of human health risks via ingestion of agricultural soils. This study also determined that human activities such as excess application of commercial fertilizers, animal manures, and metal-based pesticides were the sources of Cu, Ni, Cd, and Cr enrichment in soils and that the metals into tobacco plants were transported from the soils. The present study conclusively suggested that regulation of improper use of agrochemicals and continuous monitoring of heavy metals in tobacco plants are needed to reduce the tobacco-related detrimental health problems in Bangladesh.

  15. Stimulate The Growth of Rice Using Endophytic Bacteria from Lowland Rice Plant Tissue

    Directory of Open Access Journals (Sweden)

    Nuni Gofar

    2015-07-01

    Full Text Available Exploration and selection of endophytic bacteria from healthy food crops grown in lowland ecosystem is important to be conducted in order to get growth-stimulating endophytic bacteria at soil with low fertility level so that capable to optimize initial growth of food crops and subsequently can increase productivity level of lowland soil.The research objective was to isolate and to test the IAA-producing endophytic bacteria isolate in stimulating the rice crop growth at lowland area. Endophytic bacteria are isolated from tissues of rice, corn and peanut crops which grown at shallow swamp land in Ogan Ilir and Ogan Komering Ilir Districts, South Sumatra, Indonesia. There was nine isolates of nitrogen-fixer endophytic bacteria that capable to contribute IAA phytohormone into their growth media. The P31 isolate from rice crop tisssue of 2 months old produce the best rice sprouts than other isolates. This isolate can contribute of about 10 mg kg-1 IAA to its growth medium and increase the crowns dry weight and the roots dry weight respectively with magnitudes of 133% and 225% compared to control treatment. Concentration and absorbtion of N for rice crops innoculated with P31 isolates had increased by 169% and 400%, recpectively. The P31 isolates had been identified as Burkholderia pseudomallei (also known as Pseudomonas pseudomallei.

  16. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-01-01

    Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants. PMID:15904535

  17. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    Science.gov (United States)

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  18. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues

    Directory of Open Access Journals (Sweden)

    Aveling Terry

    2005-05-01

    Full Text Available Abstract Background Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. Results DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA® Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Conclusion Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  19. Study on the biological effect of radiation-degraded alginate and chitosan on plant in tissue culture

    International Nuclear Information System (INIS)

    Le Quang Luan; Vo Thi Thu Ha; Le Hai; Nguyen Quoc Hien; Nguyen Duy Hang; Nguyen Tuong Ly Lan; Le Huu Tu

    2003-01-01

    The solution of chitosan (10%) and alginate (4%) were irradiated at doses of 10-250 kGy for degradation and the products were used for testing of plant growth promotion effect. The chitosan and alginate irradiated at 100 kGy and 75 kGy, respectively showed the strongest growth-promotion effect for plants namely L. latifolium, E. grandiflorum and C. morifolium in tissue culture. For shoot multiplication, the suitable concentrations are found to be ca. 50-200 mg/l for C. morifolium, 70-100 mg/l for L. latifolium and 30-100 mg/l E. grandiflorum with irradiated chitosan, while with irradiated alginate, it was 30-200 mg/l, 30-50 mg/l and 10-200 mg/l, respectively. The optimum concentrations for C. morifolium, E. grandiflorum, L. latifolium incubated on rooting medium are ca. 100 mg/l, 30 mg/l and 40 mg/l, respectively for irradiated chitosan and 100 mg/l for irradiated alginate. After acclimatizing for 30 days in the greenhouse, the survival ratio of the transferred C. morifolium, E. grandiflorum, L. latifolium plantlets treated with irradiated chitosan was improved 18%, 39% and 13%, respectively. (author)

  20. Regeneration and acclimatization of salt-tolerant arachis hypogaea plants through tissue culture

    International Nuclear Information System (INIS)

    Ghauri, E.G.

    2006-01-01

    Excised embryos of Arachis hypogaea were cultured on Murashige and Skoog's medium (MS medium) supplemented with different combinations of growth hormones. The highest frequency of callus proliferation (80%) was recorded on MS medium mixed with 1.0 mg/1 of 2,4-D and 0.5 mg/1 of BAP. These cultures were treated with 0.65 mg/l of trans-4-hydroxy-L-proline (HyP) a:1d various concentrations (0.1-0.5%) of NaCl. In all cases the presence of salt reduced the fresh mass of callus. Shoot regeneration in the cultures took place when transferred to MS medium supplemented with 1.0 mg/1 of kinetin (Kin) and 0.5 mg/1 of 6-benzyl aminopurine (BAP). Percentage of shoot regeneration decreased with the increase of NaCl (0.1- 0.5%) in the shoot regeneration medium. Root formation in these cultures took place when the cultures were nurtured on MS medium free of growth hormones. Regeneration, hardening and acclimatization of the salt tolerant plants was conducted. (author)

  1. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Kristensen, Jan Bach; Felby, Claus

    2011-01-01

    , after 144 h of enzymatic hydrolysis the cortex had vanished, exposing the heavier lignified vascular tissue. Accumulation of lignin droplets and exposure of residual lignin could be part of the explanation for the decreasing hydrolysis rate. Flattening of macrofibrils after pretreatment together...... with more indentations on the surfaces was also observed, possibly caused by a proposed synergistic effect of cellobiohydrolases and endoglucanases. Keywords: Lignocellulose; Plant tissues; Lignin accumulation; Atomic Force Microscopy; Scanning Electron Microscopy...

  2. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  3. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation.

    Science.gov (United States)

    Prosser, R S; Sibley, P K

    2015-02-01

    Amending soil with biosolids or livestock manure provides essential nutrients in agriculture. Irrigation with wastewater allows for agriculture in regions where water resources are limited. However, biosolids, manure and wastewater have all been shown to contain pharmaceuticals and personal care products (PPCPs). Studies have shown that PPCPs can accumulate in the tissues of plants but the risk that accumulated residues may pose to humans via consumption of edible portions is not well documented. This study reviewed the literature for studies that reported residues of PPCPs in the edible tissue of plants grown in biosolids- or manure-amended soils or irrigated with wastewater. These residues were used to determine the estimated daily intake of PPCPs for an adult and toddler. Estimated daily intake values were compared to acceptable daily intakes to determine whether PPCPs in plant tissue pose a hazard to human health. For all three amendment practices, the majority of reported residues resulted in hazard quotients plants to concentrations of PPCPs that would not be considered relevant based on concentrations reported in biosolids and manure or unrealistic methods of exposure, which lead to artificially elevated plant residues. Our assessment indicates that the majority of individual PPCPs in the edible tissue of plants due to biosolids or manure amendment or wastewater irrigation represent a de minimis risk to human health. Assuming additivity, the mixture of PPCPs could potentially present a hazard. Further work needs to be done to assess the risk of the mixture of PPCPs that may be present in edible tissue of plants grown under these three amendment practices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    Science.gov (United States)

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  5. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry

    International Nuclear Information System (INIS)

    Koelmel, Jeremy; Leland, Thomas; Wang, Huanhua; Amarasiriwardena, Dulasiri; Xing, Baoshan

    2013-01-01

    The tissue level uptake and spatial distribution of gold nanoparticles (AuNPs) in rice (Oryza sativa L.) roots and shoots under hydroponic conditions was investigated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Rice plants were hydroponically exposed to positively, neutrally, and negatively charged AuNPs [AuNP1(+), AuNP2(0), AuNP3(−)] with a core diameter of 2 nm. Plants were exposed to AuNPs having 1.6 mg Au/L for 5 days or 0.14 mg Au/L for 3 months to elucidate how the surface charges of the nanoparticles affects their uptake into living plant tissues. The results demonstrate that terminal functional groups greatly affected the AuNP uptake into plant tissues. Au concentration determined by LA-ICP-MS in 5 day treated rice roots followed this order: AuNP1(+) > AuNP2(0) > AuNP3(−) but this order was reversed for rice shoots, indicating preferential translocation of AuNP3(−). Bioimages revealed distributions of mesophyll and vascular AuNP dependent on organ or AuNP concentration. Highlights: ► LA-ICP-MS technique was effectively used to quantify engineered AuNP in rice plant. ► Uptake and translocation of AuNPs are evident in rice roots and shoots. ► Organ level distribution of AuNPs is affected by their surface charges. ► Bioimaging of AuNP distribution in rice tissues by LA-ICP-MS was demonstrated. -- The tissue level uptake and spatial distribution of engineered gold nanoparticles (AuNP) by rice plants was demonstrated by LA-ICP-MS bioimaging

  6. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Aplicação pré-colheita de reguladores vegetais visando retardar a maturação de ameixas 'Laetitia' Preharvest spraying with plant regulators aiming fruit maturity delay of 'Laetitia' plums

    Directory of Open Access Journals (Sweden)

    Cristiano André Steffens

    2009-08-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de reguladores vegetais e da data de colheita sobre a maturação de ameixas 'Laetitia'. Os tratamentos avaliados foram: controle, aminoetoxivinilglicina (AVG; 125mg L-1, 1-metilciclopropeno (1-MCP; 70µg L-1 e ácido giberélico (GA3; 100mg.L-1, em combinação com duas datas de colheita (11/01/2007 e 25/01/2007. O GA3 foi aplicado 14 dias antes da primeira colheita, enquanto AVG e 1-MCP foram aplicados sete dias antes da primeira colheita. O experimento seguiu o delineamento em blocos ao acaso com quatro repetições. Os reguladores de crescimento, em geral, retardaram as alterações da cor da epiderme e mantiveram a textura dos frutos, com os maiores valores de resistências à compressão e à penetração de polpa. A força necessária para a ruptura da epiderme foi maior no tratamento com 1-MCP. O tratamento controle apresentou os maiores teores de sólidos solúveis (SS. O atraso na colheita reduziu a textura dos frutos, a acidez titulável e o teor de SS, mas proporcionou frutos mais vermelhos. No entanto, nos frutos tratados com os reguladores, a evolução da maturação foi retardada.The objective this research was to evaluate the effects of preharvest spraying with plant regulators and harvest date on the fruit maturity of 'Laetitia' plums. The treatments evaluated were: control (untreated, aminoethoxyvinylglycine [AVG; at 125mg (a.i. L-1], giberellic acid [GA3; at 100mg (a.i. L-1] and 1-Methylcyclopropene [1-MCP; at 70µg (a.i. L-1], combined with two harvest dates (01/11/2007 and 01/25/2007. The GA3 was sprayed 14 days before the first harvest, while AVG and 1-MCP were sprayed 7 days before the first harvest. The experiment followed the randomized block design with four replications. In general, the plant regulators delayed changes in skin color and preserved fruit texture, providing the highest resistances values for flesh compression and fresh penetration. The force for skin

  8. RED DRAGON FRUIT (Hylocereus costaricensis Britt. Et R. PEEL EXTRACT AS A NATURAL DYE ALTERNATIVE IN MICROSCOPIC OBSERVATION OF PLANT TISSUES: THE PRACTICAL GUIDE IN SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Heni Wagiyanti

    2017-11-01

    Full Text Available Prepared slide of plant tissue needs to be staining to facilitate observations under microscope. Laboratorium activities in schools usually use synthetic dyes which expensive and can be damaged the student. Therefore the exploration of alternative dyes need to be established, such as utilizing of red dragon fruit (Hylocereus castaricensis Britt. Et R.. This study aims to (1 find out the best concentration of dragon fruit peel extract for staining plant tissue prepared slide and (2 to develop the practical guide related to plant tissue observation. The qualitative research used different concentration of red dragon fruit peel extract, namely: 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% with 3 repetitions. Data were obtained from observation photos of prepared slide. The result showed that the most contrast prepared slide was used red dragon fruit extract in 60% concentration. The result use to arrange practical guide in observation of plant tissues which is validated by material expert. The validation result showed “very good” criteria (86.01%.

  9. 播期与密度对南方早熟春大豆产量和品质的影响%Effects of Sowing Date,Planting Density on Yield and Quality of Early Maturing Spring Soybeans

    Institute of Scientific and Technical Information of China (English)

    谢运河; 李小红; 王同华; 杨汉民; 王业建

    2011-01-01

    In this study, effects of sowing date and planting density on yield and quality of a national authorized early maturing spring soybean variety, Xiangchundou 26, were studied. The results showed with the delay of sowing date or with the increase of density, the yield showed a trend of first increasing and then decreasing. The content of protein and the total content of protein and fat showed a trend of first increasing and then decreasing with the increase of density, and showed a trend of decreasing with the delay of sowing date. The content of fat decreased with the delay of sowing date or increase of density. The proper period of early seeding and reasonable density was propitious to high yield and protein content and protein and total content of fat of early maturing spring soybeans.%以国审早熟春大豆品种湘春豆26为供试材料,研究了播期和密度对南方早熟春大豆产量和品质的影响.结果表明,南方早熟春大豆产量随播期的延迟、密度的增加呈先增后降趋势;蛋白质含量、蛋脂总含量随密度的增加先增后减,随播期推迟而降低:脂肪含量随密度的增加而降低,随播期的推迟而降低.适期早播,合理密植有利于早熟春大豆高产,同时提高蛋白质含量和蛋脂总含量.

  10. Epiphyte-cover on seagrass (Zostera marina L. leaves impedes plant performance and radial O2 loss from the below-ground tissue

    Directory of Open Access Journals (Sweden)

    Kasper Elgetti Brodersen

    2015-08-01

    Full Text Available The O2 budget of seagrasses is a complex interaction between several sources and sinks, which is strongly regulated by light availability and mass transfer over the diffusive boundary layer (DBL surrounding the plant. Epiphyte growth on leaves may thus strongly affect the O2 availability of the seagrass plant and its capability to aerate its rhizosphere as a defence against plant toxins.We used electrochemical and fiber-optic microsensors to quantify the O2 flux, DBL and light microclimate around leaves with and without filamentous algal epiphytes. We also quantified the below-ground radial O2 loss from roots (~1 mm from the root-apex to elucidate how this below-ground oxic microzone was affected by the presence of epiphytes.Epiphyte-cover on seagrass leaves (~21% areal cover resulted in reduced light quality and quantity for photosynthesis, thus leading to reduced plant fitness. A ~4 times thicker diffusive boundary layer around leaves with epiphyte-cover impeded gas (and nutrient exchange with the surrounding water-column and thus the amount of O2 passively diffusing into the leaves in darkness. During light exposure of the leaves, radial oxygen loss from the below-ground tissue was ~2 times higher from plants without epiphyte-cover. In contrast, no O2 was detectable at the surface of the root-cap tissue of plants with epiphyte-cover during darkness, leaving the plants more susceptible to sulphide intrusion.Epiphyte growth on seagrass leaves thus negatively affects the light climate and O2 uptake in darkness, hampering the plants performance and thereby reducing the oxidation capability of its below-ground tissue.

  11. Maturity of the PWR

    International Nuclear Information System (INIS)

    Bacher, P.; Rapin, M.; Aboudarham, L.; Bitsch, D.

    1983-03-01

    Figures illustrating the predominant position of the PWR system are presented. The question is whether on the basis of these figures the PWR can be considered to have reached maturity. The following analysis, based on the French program experience, is an attempt to pinpoint those areas in which industrial maturity of the PWR has been attained, and in which areas a certain evolution can still be expected to take place

  12. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao

    2016-10-01

    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  13. Deposition of tocopherol and tocotrienol in the tissues of red hybrid tilapia, Oreochromis sp., fed vitamin E-free diets supplemented with different plant oils.

    Science.gov (United States)

    Lee, Kuan-Shern; Yuen, Kah-Hay; Ng, Wing-Keong

    2013-12-01

    Vitamin E, a potent antioxidant consisting of four isomers each (α, β, γ, δ) of tocopherol (T) and tocotrienol (T3), is found naturally in plant oils at different concentrations. In this study, four semi-purified isonitrogenous and isolipidic (10 %) diets containing canola oil, cold-pressed soybean oil, wheat germ oil, or palm fatty acid distillates (PFAD) as the sole vitamin E source were fed to triplicate groups of red hybrid tilapia (Oreochromis sp.) fingerlings (14.82 ± 0.05 g) for 45 days. Vitamin E concentrations and composition were measured in the muscle, liver, skin, and adipose tissue. Deposition of α-T (53.4-93.1 % of total vitamin E) predominated over deposition of other isomers, except in the liver of fish fed the SBO diet, where α-T and γ-T deposition was in the ratio 40:60. T3 deposition (2.6-29.4 %) was only detected in tissues of fish fed the PFAD diet; adipose tissue was the major storage depot. Fish fed the SBO diet contained significantly more (P vitamin E isomers present in plant oils. The type and concentration of endogenous vitamin E and the fatty acid composition of plant oils can affect the oxidative stability of tilapia tissues.

  14. Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon.

    Science.gov (United States)

    Sogutmaz Ozdemir, Bahar; Budak, Hikmet

    2018-01-01

    Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

  15. Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues.

    Science.gov (United States)

    Del Valle, José C; Gallardo-López, Antonio; Buide, Mª Luisa; Whittall, Justen B; Narbona, Eduardo

    2018-03-01

    Anthocyanin pigments have become a model trait for evolutionary ecology as they often provide adaptive benefits for plants. Anthocyanins have been traditionally quantified biochemically or more recently using spectral reflectance. However, both methods require destructive sampling and can be labor intensive and challenging with small samples. Recent advances in digital photography and image processing make it the method of choice for measuring color in the wild. Here, we use digital images as a quick, noninvasive method to estimate relative anthocyanin concentrations in species exhibiting color variation. Using a consumer-level digital camera and a free image processing toolbox, we extracted RGB values from digital images to generate color indices. We tested petals, stems, pedicels, and calyces of six species, which contain different types of anthocyanin pigments and exhibit different pigmentation patterns. Color indices were assessed by their correlation to biochemically determined anthocyanin concentrations. For comparison, we also calculated color indices from spectral reflectance and tested the correlation with anthocyanin concentration. Indices perform differently depending on the nature of the color variation. For both digital images and spectral reflectance, the most accurate estimates of anthocyanin concentration emerge from anthocyanin content-chroma ratio, anthocyanin content-chroma basic, and strength of green indices. Color indices derived from both digital images and spectral reflectance strongly correlate with biochemically determined anthocyanin concentration; however, the estimates from digital images performed better than spectral reflectance in terms of r 2 and normalized root-mean-square error. This was particularly noticeable in a species with striped petals, but in the case of striped calyces, both methods showed a comparable relationship with anthocyanin concentration. Using digital images brings new opportunities to accurately quantify the

  16. Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants

    International Nuclear Information System (INIS)

    Spencer, F.S.

    1984-03-01

    The kinetics of tritiated water (HTO) vapour uptake into tissue-free water tritium (TFWT) and organically bound tritium (OBT) fractions of tomato, Lycopersicon esculentum Mill., cv Vendor, were investigated under controlled growing conditions. Most uptake data fitted a first-order kinetic model, C t = C ∞ (1-e -kt ), where C t is the tritium concentration at time t, Ca the steady-state concentration and k the uptake rate constant. During atmospheric-HTO exposure with clean-water irrigation in open pots the TFWT k values were 0.024 ± 0.023 h -1 for new foliage, 0.104 ± 0.067 h -1 for old foliage and 0.042 ± to 0.136 h -1 for new green fruit. OBT uptake rate constants were 20 percent less for new foliage and 76 percent less for new green fruit. Under steady-state conditions the ratio of tritium specific activities of TWFT to atmospheric HTO were 0.43 in new foliage, 0.46 in old foliage and 0.19 in green fruit. Within the plant, OBT and TFWT ratios were 0.70 for new foliage, 0.63 for old foliage (maximum) and between 0.72 and 1.92 for green fruit. The greater than unity tritium specific activity ratios in green fruit were not attributed to tritium enrichment but rather to the translocation of foliar OBT to the growing fruit which contained lower specific activity TFWT derived from soil water

  17. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Aramendia, M.; Belarra, M.A.

    2007-01-01

    In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied. The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 deg. C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH 4 NO 3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable. Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g -1 ) and reduced risk of analyte losses and contamination

  18. Long Maturity Forward Rates

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2001-01-01

    The paper aims to improve the knowledge of the empirical properties of the long maturity region of the forward rate curve. Firstly, the theoretical negative correlation between the slope at the long end of the forward rate curve and the term structure variance is recovered empirically and found...... to be statistically significant. Secondly, the expectations hypothesis is analyzed for the long maturity region of the forward rate curve using "forward rate" regressions. The expectations hypothesis is numerically close to being accepted but is statistically rejected. The findings provide mixed support...... for the affine term structure model....

  19. Grammar Maturity Model

    NARCIS (Netherlands)

    Zaytsev, V.; Pierantonio, A.; Schätz, B.; Tamzalit, D.

    2014-01-01

    The evolution of a software language (whether modelled by a grammar or a schema or a metamodel) is not limited to development of new versions and dialects. An important dimension of a software language evolution is maturing in the sense of improving the quality of its definition. In this paper, we

  20. Maturing interorganisational information systems

    NARCIS (Netherlands)

    Plomp, M.G.A.|info:eu-repo/dai/nl/313946809

    2012-01-01

    This thesis consists of nine chapters, divided over five parts. PART I is an introduction and the last part contains the conclusions. The remaining, intermediate parts are: PART II: Developing a maturity model for chain digitisation. This part contains two related studies concerning the development

  1. Jealousy and Moral Maturity.

    Science.gov (United States)

    Mathes, Eugene W.; Deuger, Donna J.

    Jealousy may be perceived as either good or bad depending upon the moral maturity of the individual. To investigate this conclusion, a study was conducted testing two hypothesis: a positive relationship exists between conventional moral reasoning (reference to norms and laws) and the endorsement and level of jealousy; and a negative relationship…

  2. early maturing mutants in Indica rice and their traits

    International Nuclear Information System (INIS)

    Chen Xiulan; He Zhentian; Han Yuepeng; Liu Xueyu; Yang Hefeng; Xu Chenwu; Gu Shiliang

    1998-01-01

    The correlation and genetic parameters of eleven agronomic characters of 50 early mature lines induced from late mature cultivar, IR 1529-68-3-2 were studied by morphological classification and correlation and regression analysis. The results showed that: 1. The early mutants could be divided into two ecotype: early mature type and medium mature type of mid-maturity rice. 2. The 1000-grain weight of early mutants negatively correlated with the length of growing period. 3. According to direct path coefficients, the relation with heading period of early mutants was in order of 1000-grain-weight>plant height>seed sterility. 4.The higher heritability in broad sense were found in plant height, 1000 grain weight and heading period of the early mutants

  3. Characterising the proximal patellar tendon attachment and its relationship to skeletal maturity in adolescent ballet dancers

    DEFF Research Database (Denmark)

    Rudavsky, Aliza; Cook, Jillianne; Magnusson, Stig Peter

    2017-01-01

    gain an understanding of how and when the tendon attachment matures. Methods: Sixty adolescent elite ballet students (ages 11-18) and eight mature adults participated. Peak height velocity (PHV) estimated skeletal maturity. Ultrasound tissue characterisation (UTC) scan was taken of the left knee...

  4. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  5. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    Science.gov (United States)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  6. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    Science.gov (United States)

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  8. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    Science.gov (United States)

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods

  9. Contribution to the microchemistry of smoke damage by fluoride. The migration of fluorides in plant tissue. 2. The visible damage

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P

    1953-01-01

    In continuation of former investigations, a theory of damage caused by fluorine compounds on green plants was developed. It is possible to differentiate between acute and chronic damages by use of microanalytical estimation of total fluorine and inorganic and organic fluorine compounds in the plants.

  10. Acetone enhances the direct analysis of total condensed tannins in plant tissues by the butanol-HCl-iron assay

    Science.gov (United States)

    The butanol-HCl spectrophotometric assay is widely used to quantify extractable and insoluble forms of condensed tannin (CT, syn. proanthocyanidin) in foods, feeds, and foliage of herbaceous and woody plants. However, this method underestimates total CT content when applied directly to plant materia...

  11. Plant DNA detection from grasshopper guts: A step-by-step protocol, from tissue preparation to obtaining plant DNA sequences1

    Science.gov (United States)

    Avanesyan, Alina

    2014-01-01

    • Premise of the study: A PCR-based method of identifying ingested plant DNA in gut contents of Melanoplus grasshoppers was developed. Although previous investigations have focused on a variety of insects, there are no protocols available for plant DNA detection developed for grasshoppers, agricultural pests that significantly influence plant community composition. • Methods and Results: The developed protocol successfully used the noncoding region of the chloroplast trnL (UAA) gene and was tested in several feeding experiments. Plant DNA was obtained at seven time points post-ingestion from whole guts and separate gut sections, and was detectable up to 12 h post-ingestion in nymphs and 22 h post-ingestion in adult grasshoppers. • Conclusions: The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from the grasshopper gut and its different sections. This has important applications, from exploring plant “movement” during food consumption, to detecting plant–insect interactions. PMID:25202604

  12. People Capability Maturity Model. SM.

    Science.gov (United States)

    1995-09-01

    tailored so it consumes less time and resources than a traditional software process assessment or CMU/SEI-95-MM-02 People Capability Maturity Model...improved reputation or customer loyalty. CMU/SEI-95-MM-02 People Capability Maturity Model ■ L5-17 Coaching Level 5: Optimizing Activity 1...Maturity Model CMU/SEI-95-MM-62 Carnegie-Mellon University Software Engineering Institute DTIC ELECTE OCT 2 7 1995 People Capability Maturity

  13. Maturity effects in energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos (Calgary Univ., AB (CA). Dept. of Economics)

    1992-04-01

    This paper examines the effects of maturity on future price volatility and trading volume for 129 energy futures contracts recently traded in the NYMEX. The results provide support for the maturity effect hypothesis, that is, energy futures prices to become more volatile and trading volume increases as futures contracts approach maturity. (author).

  14. An unusual mature thyroid teratoma on CT and {sup 99}Tcm scintigraphy imaging in a child

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Zhen; Li, Wen-Hua; Li, Yu-Hua; Gao, Yu [Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Department of Radiology, Shanghai (China); Zhu, Ming-Jie [Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Department of Radiology, Shanghai (China); Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Department of Pathology, Shanghai (China)

    2010-11-15

    We report the imaging findings of a mature thyroid teratoma in a 5-year-old girl. Nuclear imaging showed a decrease in {sup 99}Tcm uptake in the right lobe of the thyroid gland. CT scan showed a slightly lobulated soft-tissue mass without calcification, fat or cystic components. Histological analysis showed that the tumor was composed of mature neural tissue, cartilaginous, and epithelial elements. This case study provides new insights into the CT appearance of mature thyroid teratomas. (orig.)

  15. Conservation strategy for Pelargonium sidoides DC: Phenolic profile and pharmacological activity of acclimatized plants derived from tissue culture

    Czech Academy of Sciences Publication Activity Database

    Moyo, M.; Aremu, A.O.; Grúz, Jiří; Šubrtová, Michaela; Szüčová, Lucie; Doležal, Karel; van Staden, J.

    2013-01-01

    Roč. 149, č. 2 (2013), s. 557-561 ISSN 0378-8741 Institutional research plan: CEZ:AV0Z50380511 Keywords : Antimicrobial * Antioxidant * Medicinal plants Subject RIV: EF - Botanics Impact factor: 2.939, year: 2013

  16. Analytical and Radio-Histo-Chemical Experiments of Plants and Tissue Culture Cells Treated with Lunar and Terrestrial Materials

    Science.gov (United States)

    Halliwell, R. S.

    1973-01-01

    The nature and mechanisms of the apparent simulation of growth originally observed in plants growing in contact with lunar soil during the Apollo project quarantine are examined. Preliminary experiments employing neutron activated lunar soil indicate uptake of a few elements by plants. It was found that while the preliminary neutron activation technique allowed demonstration of uptake of minerals it presented numerous disadvantages for use in critical experiments directed at elucidating possible mechanisms of stimulation.

  17. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...

  18. Effect of single and binary combinations of plant-derived molluscicides on different enzyme activities in the nervous tissue of Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, Amrita; Singh, V K; Singh, D K

    2003-01-01

    Effect of single and binary treatments of plant-derived molluscicides on different enzymes--acetylcholinesterase (AChE), lactic dehydrogenase (LDH) and acid/alkaline phosphatase (ACP/ALP)--in the nervous tissue of the harmful terrestrial snail Achatina fulica were studied. Sublethal in vivo 24-h exposure to 40% and 80% LC(50) of Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, Nerium indicum bark powder and binary combinations of A. sativum (AS) + C. deodara (CD) and CD + A. indica (AI) oils significantly altered the activity of these enzymes in the nervous tissue of Achatina fulica. The binary treatment of AS + CD was more effective against AChE, LDH, and ALP than the single ones. However, binary treatment of AI + CD was more effective against ALP. Copyright 2003 John Wiley & Sons, Ltd.

  19. Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

    Directory of Open Access Journals (Sweden)

    Jokela Anne

    2010-02-01

    Full Text Available Abstract Background In situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information. Results In the present study, expression of the catalase gene (CAT related to the scavenging of reactive oxygen species (ROS and the polyamine metabolism related genes, diamine oxidase (DAO and arginine decarboxylase (ADC, were localized in developing Scots pine (Pinus sylvestris L. seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development. Conclusions In plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues.

  20. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Ignacio I.; Espadas-Gil, Francisco; Talavera-May, Carlos; Fuentes, Gabriela; Santamaría, Jorge M., E-mail: jorgesm@cicy.mx

    2014-10-15

    Highlights: • We document the capacity of an aquatic fern to hyper-accumulate Ni. • Effects of high Ni concentrations uptake on plant performance is documented. • High concentration of Ni in tissues damage photosynthesis. • Damage is related to carboxylation mechanisms than to electron transfer efficiency. • S. minima is a good candidate for remediation of water bodies contaminated with Ni. - Abstract: An experiment was designed to assess the capacity of Salvinia minima Baker to uptake and accumulate nickel in its tissues and to evaluate whether or not this uptake can affect its physiology. Our results suggest that S. minima plants are able to take up high amounts of nickel in its tissues, particularly in roots. In fact, our results support the idea that S. minima might be considered a hyper-accumulator of nickel, as it is able to accumulate 16.3 mg g{sup −1} (whole plant DW basis). Our results also showed a two-steps uptake pattern of nickel, with a fast uptake of nickel at the first 6 to 12 h of being expose to the metal, followed by a slow take up phase until the end of the experiment at 144 h. S. minima thus, may be considered as a fern useful in the phytoremediation of residual water bodies contaminated with this metal. Also from our results, S. minima can tolerate fair concentrations of the metal; however, at concentrations higher than 80 μM Ni (1.5 mg g{sup −1} internal nickel concentration), its physiological performance can be affected. For instance, the integrity of cell membranes was affected as the metal concentration and exposure time increased. The accumulation of high concentrations of internal nickel did also affect photosynthesis, the efficiency of PSII, and the concentration of photosynthetic pigments, although at a lower extent.

  1. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola

    OpenAIRE

    Arias, Jack A.; Peralta-Videa, Jose R.; Ellzey, Joanne T.; Viveros, Marian N.; Ren, Minghua; Mokgalaka-Matlala, Ntebogeng S.; Castillo-Michel, Hiram; Gardea-Torresdey, Jorge L.

    2010-01-01

    Arbuscular mycorrhizal fungi have been known to increase metal uptake in plants. In this study, mesquite (Prosopis juliflora-velutina) inoculated with Glomus deserticola or amended with EDTA were grown for 30 days in soil containing Cr(III) or Cr(VI) at 0, 40, 80, and 160 mg kg−1. Total amylase activity (TAA) was monitored as a stress indicator. Element concentrations and distribution in tissue were determined using ICP-OES, electron scanning microprobe, and TEM. Inoculated Cr(VI) treated pla...

  2. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  3. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  4. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola.

    Science.gov (United States)

    Arias, Jack A; Peralta-Videa, Jose R; Ellzey, Joanne T; Viveros, Marian N; Ren, Minghua; Mokgalaka-Matlala, Ntebogeng S; Castillo-Michel, Hiram; Gardea-Torresdey, Jorge L

    2010-10-01

    Arbuscular mycorrhizal fungi have been known to increase metal uptake in plants. In this study, mesquite (Prosopis juliflora-velutina) inoculated with Glomus deserticola or amended with EDTA were grown for 30 days in soil containing Cr(III) or Cr(VI) at 0, 40, 80, and 160 mg kg(-1). Total amylase activity (TAA) was monitored as a stress indicator. Element concentrations and distribution in tissue were determined using ICP-OES, electron scanning microprobe, and TEM. Inoculated Cr(VI) treated plants had 21% and 30% more Cr than uninoculated and EDTA treated roots, respectively, at 80 mg Cr kg(-1) treatment. In the case of Cr(III), EDTA produced the highest Cr accumulation in roots. TAA was higher in inoculated plants grown with Cr(III) at 80 and 160 mg kg(-1) and Cr(VI) at 40 and 160 mg kg(-1). The X-ray mapping showed higher metal concentrations in the vascular system of inoculated plants and the TEM micrographs demonstrated the presence of G. deserticola in roots.

  5. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  6. Correlation between dental maturity and cervical vertebral maturity.

    Science.gov (United States)

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  7. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    Science.gov (United States)

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  8. Mature Cystic Renal Teratoma

    International Nuclear Information System (INIS)

    Yavuz, Alpaslan; Ceken, Kagan; Alimoglu, Emel; Akkaya, Bahar

    2014-01-01

    Teratomas are rare germline tumors that originate from one or more embryonic germ cell layers. Teratoma of the kidney is extremely rare, and less than 30 cases of primary intrarenal teratomas have been published to date. We report the main radiologic features of an unusual case of mature cystic teratoma arising from the left kidney in a two-year-old boy. A left-sided abdominal mass was detected on physical examination and B-Mod Ultrasound (US) examination revealed a heterogeneous mass with central cystic component. Computed tomography (CT) demonstrated a lobulated, heterogeneous, hypodense mass extending craniocaudally from the splenic hilum to the level of the left iliac fossa. Nephrectomy was performed and a large, fatty mass arising from the left kidney was excised. The final pathologic diagnosis was confirmed as cystic renal teratoma

  9. Host selection by a phytophagous insect: the interplay between feeding, egg maturation, egg load, and oviposition

    Science.gov (United States)

    Understanding movement patterns of phytophagous insects among plants is a primary goal of insect ecology. Adult females may visit plants for the purpose of depositing eggs, feeding, or both. For some species, egg maturation may be dependent on adult feeding. As a result, rates of egg maturation m...

  10. THE EFFECT OF PROBLEM SOLVING LEARNING MODEL BASED JUST IN TIME TEACHING (JiTT ON SCIENCE PROCESS SKILLS (SPS ON STRUCTURE AND FUNCTION OF PLANT TISSUE CONCEPT

    Directory of Open Access Journals (Sweden)

    Resha Maulida

    2017-11-01

    Full Text Available The purpose of this study was to determine the effect of Problem Solving learning model based Just in Time Teaching (JiTT on students' science process skills (SPS on structure and function of plant tissue concept. This research was conducted at State Senior High School in South Tangerang .The research conducted using the quasi-experimental with Nonequivalent pretest-Postest Control Group Design. The samples of this study were 34 students for experimental group and 34 students for the control group. Data was obtained using a process skill test instrument (essai type that has been tested for its validity and reliability. Result of data analysis by ANACOVA, show that there were significant difference of postest between experiment and control group, by controlling the pretest score (F = 4.958; p <0.05. Thus, the problem-solving learning based on JiTT proved to improve students’ SPS. The contribution of this treatment in improving the students’ SPS was 7.2%. This shows that there was effect of problem solving model based JiTT on students’ SPS on the Structure and function of plant tissue concept.

  11. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    Science.gov (United States)

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  12. Developing maturity grids for assessing organisational capabilities

    DEFF Research Database (Denmark)

    Maier, Anja; Moultrie, James; Clarkson, P John

    2009-01-01

    Keyword: Maturity Model,Maturity Grid,Maturity Matrix,Organisational Capabilities,Benchmarking,New Product Development,Perfirmance Assessment......Keyword: Maturity Model,Maturity Grid,Maturity Matrix,Organisational Capabilities,Benchmarking,New Product Development,Perfirmance Assessment...

  13. Modeling non-maturing liabilities

    OpenAIRE

    von Feilitzen, Helena

    2011-01-01

    Non‐maturing liabilities, such as savings accounts, lack both predetermined maturity and reset dates due to the fact that the depositor is free to withdraw funds at any time and that the depository institution is free to change the rate. These attributes complicate the risk management of such products and no standardized solution exists. The problem is important however since non‐maturing liabilities typically make up a considerable part of the funding of a bank. In this report different mode...

  14. Postharvest application of organic and inorganic salts to control potato (Solanum tuberosum L.) storage soft rot: plant tissue-salt physicochemical interactions.

    Science.gov (United States)

    Yaganza, E S; Tweddell, R J; Arul, J

    2014-09-24

    Soft rot caused by Pectobacterium sp. is a devastating disease affecting stored potato tubers, and there is a lack of effective means of controlling this disease. In this study, 21 organic and inorganic salts were tested for their ability to control soft rot in potato tubers. In the preventive treatment, significant control of soft rot was observed with AlCl3 (≥66%) and Na2S2O3 (≥57%) and to a lesser extent with Al lactate and Na benzoate (≥34%) and K sorbate and Na propionate (≥27%). However, only a moderate control was achieved by curative treatment with AlCl3 and Na2S2O3 (42%) and sodium benzoate (≥33%). Overall, the in vitro inhibitory activity of salts was attenuated in the presence of plant tissue (in vivo) to different degrees. The inhibitory action of the salts in the preventive treatment, whether effective or otherwise, showed an inverse linear relationship with water ionization capacity (pK') of the salt ions, whereas in the curative treatment, only the effective salts showed this inverse linear relationship. Salt-plant tissue interactions appear to play a central role in the attenuated inhibitory activity of salts in potato tuber through reduction in the availability of the inhibitory ions for salt-bacteria interactions. This study demonstrates that AlCl3, Na2S2O3, and Na benzoate have potential in controlling potato tuber soft rot and provides a general basis for understanding of specific salt-tissue interactions.

  15. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    Science.gov (United States)

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  16. Developmental "roots" in mature biological knowledge.

    Science.gov (United States)

    Goldberg, Robert F; Thompson-Schill, Sharon L

    2009-04-01

    Young children tend to claim that moving artifacts and nonliving natural kinds are alive, but neglect to ascribe life to plants. This research tested whether adults exhibit similar confusions when verifying life status in a speeded classification task. Experiment 1 showed that undergraduates encounter greater difficulty (reduced accuracy and increased response times) in determining life status for plants, relative to animals, and for natural and moving nonliving things, relative to artifacts and non-moving things. Experiment 2 replicated these effects in university biology professors. The professors showed a significantly reduced effect size for living things, as compared with the students, but still showed greater difficulty for plants than animals, even as no differences from the students were apparent in their responses to nonliving things. These results suggest that mature biological knowledge relies on a developmental foundation that is not radically overwritten or erased with the profound conceptual changes that accompany mastery of the domain.

  17. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  18. Phytomeliorative properties of Cannabis sativa L. plants depending on varietal features of the culture

    Directory of Open Access Journals (Sweden)

    В. М. Кабанець

    2017-12-01

    Full Text Available Purpose. To investigate the varietal characteristics of the hemp plants for improving the quality indices of the soil they grow in, determine the amount of inorganic elements in the soil, level of their accumulation in plant stalkі and seeds. Methods. Field and spectrometric methods were basic. The results were processed using conventional methods in agriculture, crop growing and statistics. Variants of the experiment were as follows: varieties ‘Hliana’, ‘Hlesiia’: 1 soils; 2 stalks; 3 seeds. Schemes of experiments included: a technical maturity of plants, row spacing 45 cm; b tech­nical maturity of plants, row spacing 15 cm; c biological maturity of plants, row spacing 45 cm; d biological maturity of plants, row spacing 15 cm. Results. The amount of the accumulation of alkaline earth metals and their compounds by seeds and stalks of hemp plants depending on their content in vegetation soils was determined. It was found that stalks of the ‘Hlesiia’ plant accumulated strontium (Sr and its compounds far less than that of ‘Hliana’, whereas in the seeds of the ‘Hlesiia’ variety the content of this chemical element was higher comparing with the previous variety by 70 and 78%, respectively. The difference in the accumulation of barium (Ba compounds in seeds of hemp plants was not significant, while the tissues of the plant stalks of the ‘Hlia­na’ variety accumulated its compounds significantly more as compared to the ‘Hlesiia’ variety. The degree of influence of the variety, feeding area and the maturity stage on the processes of magnesium compounds (Mg accumulation by plants was not revealed. Plants of the ‘Hlesiia’ variety accumulated far less calcium (Ca and its compounds in the stalk tissues as compared to the plants of the ‘Hliana’ variety: in variants of the technical maturity stage of plants with row spacing 45 cm (a and d – plants of narrow-row sowing (15 cm in the biological maturity stage 30,94 and 15

  19. Effect of sucrose concentration and gamma irradiation on growth and essential oil composition of spearmint plant through tissue culture

    International Nuclear Information System (INIS)

    El-Sharnouby, M.E.

    2007-01-01

    In vitro culture of spearmint plant (Mentha spicata L) using different sucrose concentrations and different gamma irradiation treatments was investigated. The shoot tips of spearmint plant were cultured on MS medium without hormones and supplemented with different concentrations of sucrose (10, 20, 30 and 40 g/l) then exposed to different gamma irradiation treatments (2,4,6 and 8 Krad) to determine their effects on growth and chemical composition in different sub-culturing media . The data showed that culturing shoots of Mentha spicata on MS medium containing 10 g/l sucrose produced the highest values of callus than other treatments and the maximum number of shoots was produced on MS medium supplemented with 20 g/l sucrose. Irradiation of spearmint shoots at 8 Krad when cultured on MS medium containing 30 or 40 g/l sucrose caused minimum number of shoots, whereas the longest shoots were produced with MS medium containing 20 g/l sucrose after irradiation at 60 Gy gamma dose. Treating shoots of Mentha spicata by gamma irradiation at 8 Krad and culturing on MS medium containing 30 g/l sucrose produced all sub-cultures in shortest length of shoots. Moreover, adding 40 g/l of sucrose in MS medium gave the highest number of leaves than other treatments. Exposing shoots of spearmint plant to gamma irradiation at 8 Krad decreased the number of leaves when culturing on MS medium containing 10 or 30 g/l sucrose. Furthermore, the selected samples showed many differences on spearmint oil composition and proline content regarding sucrose levels and gamma irradiation doses

  20. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  1. Whose Maturity is it Anyway?

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan; Vatrapu, Ravi; Mukkamala, Raghava Rao

    2017-01-01

    This paper presents results from an ongoing empirical study that seeks to understand the influence of different quantitative methods on the design and assessment of maturity models. Although there have been many academic publications on maturity models, there exists a significant lack of understa...

  2. Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils.

    Science.gov (United States)

    Kloss, Stefanie; Zehetner, Franz; Oburger, Eva; Buecker, Jannis; Kitzler, Barbara; Wenzel, Walter W; Wimmer, Bernhard; Soja, Gerhard

    2014-05-15

    Biochar application to agricultural soils has been increasingly promoted worldwide. However, this may be accompanied by unexpected side effects in terms of trace element (TE) behavior. We used a greenhouse pot experiment to study the influence of woodchip-derived biochar (wcBC) on leaching and plant concentration of various TEs (Al, Cd, Cu, Pb, Mn, As, B, Mo, Se). Three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) were treated with wcBC at application rates of 1 and 3% (w/w) and subsequently planted with mustard (Sinapis alba L.). Soil samples were taken 0 and 7 months after the start of the pot experiment, and leachate water was collected twice (days 0 and 54). The extractability (with NH4NO3) of cationic TEs was decreased in the (acidic) Planosol and Cambisol after wcBC application, whereas in the (neutral) Chernozem it hardly changed. In contrast, anionic TEs were mobilized in all three soils, which resulted in higher anion concentrations in the leachates. The application of wcBC had no effect on Al and Pb in the mustard plants, but increased their B and Mo concentrations and decreased their Cd, Cu and Mn concentrations. A two-way analysis of variance showed significant interactions between wcBC application rate and soil type for most TEs, which indicates that different soil types may react differently upon wcBC application. Correlation and partial correlation analyses revealed that TE behavior was primarily related to soil pH, whereas the involvement of other factors such as electrical conductivity (EC), organic carbon (OC) content and dissolved organic carbon (DOC) was found to be more soil and TE-specific. The application of wcBC may be a useful strategy for the remediation of soils with elevated levels of cationic TEs, but could lead to deficiencies of cationic micronutrients and enhance short-term translocation of anionic TEs towards the groundwater at high leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cocklebur toxicosis in cattle associated with the consumption of mature Xanthium strumarium.

    Science.gov (United States)

    Witte, S T; Osweiler, G D; Stahr, H M; Mobley, G

    1990-10-01

    Cockleburs (Xanthium spp.) are herbaceous annuals with worldwide distribution. Toxicoses are usually associated with the consumption of the seedlings in the cotyledon stage, which contain a high concentration of the toxic principle, carboxyatractyloside. The seeds are also known to contain the toxin, but it has long been assumed that the spiny capsule would deter their consumption. Six of 70 yearling calves died while being fed round bale hay composed predominantly of foxtail and mature cocklebur plants with burs. Clinical signs ranged from acute death to hyperexcitability, blindness, tense musculature, and spastic gaits with heads held high and ears erect. Some symptomatic calves would stumble, fall to lateral recumbency, convulse, and later recover. Overall, the herd was very uneasy. Prominent gross lesions were ascites and a firm, pale liver with a mottled hemorrhagic pattern on cut surface. The rumen contained numerous intact burs and well-ruminated grass. Histological examination of the liver revealed marked centrolobular degeneration and necrosis with associated hemorrhage and congestion. Brain lesions were present. Plant and tissue samples were analyzed for carboxyatractyloside with various results. Samples of rumen contents, urine, and burs contained 100-200 ppm, 0.1-0.05 ppm, and 0.1 ppm, respectively. Based on the history, clinical signs, pathological lesions, and chemical analyses, cocklebur toxicosis associated with consumption of mature Xanthium strumarium in hay was confirmed.

  4. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    Science.gov (United States)

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  5. Gamma spectrometry analysis for simultaneous detection of 54Mn, 65Zn and 59Fe in aqueous solutions and plant tissues

    International Nuclear Information System (INIS)

    Montanheiro, M.N.S.

    1975-01-01

    A methodology to detect the activities of 54 Mn, 65 Zn and 59 Fe in the same sample, with a single channel spectrometer coupled to a scintilation detector of NaI(tl), 3'' x 3'', well type has been developed. Initially a selection of the energy channel was made based on the criteria of maximizing the signal-background ratio and consequently, the minimization of the variation coefficient. In the channels, a study of minimal detectable activities was conducted for each radioisotopes. Secondly, samples containing diferent combinations of these radioisotopes were prepared and their activities were calculated using simultaneous equations. As a mean of demonstrating the pratical utility of this methodology, an experiment was developed in which the roots, isolated from beam plants (Phaseolus vulgaris, L.) were examined to determine levels of ionic absorption interference among micronutrients (Mn, Zn and Fe)

  6. Environmental interaction, additive and non-additive genetic variability is involved in the expression of tissue and whole-plant heat tolerance in upland cotton (Gossypium hirsutum. L

    Directory of Open Access Journals (Sweden)

    Hafeez-ur-Rahman

    2006-01-01

    Full Text Available Heat tolerance is measured at tissue level by cellular membrane thermostability (CMT and at the whole plant level by the heat tolerance index (HTI. Eight upland cotton cultivars and 15 crosses were used to determine the type and extent of genetic variability associated with the expression of these traits between and within environments. Heat stress and non-stress conditions were used as the CMT environments and years for HTI. The wide variation in heterotic expression and combining ability effects observed for CMT and HTI suggest multigenic inheritance of these traits. Significant genetic variability across environments was evident but the traits were not highly heritable because of substantial environmental interaction. The available genetic variability included both additive and non-additive components, but the proportion of additive genetic variability was high for HTI. The parental cultivars CRIS-19 and CIM-448 were good donor parents for high CMT under heat-stressed conditions, and MNH-552 and N-Karishma under non-stressed conditions. Cultivar FH-634 was a good donor parent for HTI. The results show two types of general combining ability (GCA inheritance among high CMT parents: positive GCA inheritance expressed by CRIS-19 in the presence of heat stress and MNH-552 and N-Karishma in the absence of heat stress; and negative GCA inheritance expressed by FH-900 in the presence of heat stress. It was also evident that genes controlling high CMT in cultivar CRIS-19 were different from those present in the MNH-552, N-Karishma and FH-900 cultivars. Similarly, among high HTI parents, FH-634 showed positive and CIM-443 negative GCA inheritance. No significant relationship due to genetic causes existed between tissue and whole plant heat tolerance, diminishing the likelihood of simultaneous improvement and selection of the two traits.

  7. Effect of cysteine supplementation on in vitro maturation of bovine ...

    African Journals Online (AJOL)

    Parham

    2011-11-09

    Nov 9, 2011 ... or more layer of cumulus cells and homogeneous granular ooplasm were selected for IVM procedures (Badr, 2009). In vitro maturation of oocytes. The basic medium for IVM was HEPES-buffered tissue culture medium 199 supplemented with 0.2 mM sodium pyruvate, 1 µg/ml. 17-β-estradiol, 10% fetal calf ...

  8. Development and function of membrane systems in plant tissue. Annual technical progress report, 15 September 1981-15 August 1982

    International Nuclear Information System (INIS)

    Hanson, J.B.

    1982-01-01

    Over the past 11 months we have continued investigation of ion transport mechanisms in corn roots and mitochondria. In mitochondria we find that only citrate and isocitrate are transported by the H + /citrate symporter. However, the in vivo function of this carrier remains in doubt because citrate does not appear to be an effective substrate for corn mitochondria. Studies with roots have been directed to why various types of injury or shock all result in temporary blockage of the H + -efflux pump in the plasmamembrane. It appears this may be due to an injury-mediated Ca 2 + influx into the tissue, which by raising free Ca 2 + in the cytosal activates calmodulin (CaM). In turn, the Ca.CaM complex appears to activate protein kinase, phosphorylating membrane proteins. It is possible that one of these phosphorylated proteins is responsible for inactivation of the H + -ATPase. Future work is planned around the consequences of Ca 2 + influx into the root cell subsequent to injury, investigating the recovery of the H + -ATPase and the initiation of the biosyntheses which lead to augmented ion transport

  9. Effects of nitrogen infiltration into plant tissue on the metabolism of carbon, with special reference to Themeda triandra Forssk

    Energy Technology Data Exchange (ETDEWEB)

    Amory, A M

    1983-01-01

    The infiltration of nitrate and ammonia into Themeda triandra and Zea mays leaf tissue influenced the carbon dioxide gas exchange characteristics: 1) the carbon dioxide compensation point increased, 2) the net photosynthetic rate was increased by the nitrate ion and decreased by the ammonium ion, and 3) dark respiration was unaffected. /sup 14/CO/sub 2/ assimilation and the partitioning of /sup 14/C by Themeda triandra leaves were influenced by the infiltration of both forms of nitrogen; the amino acid fraction changed in both composition and concentration. Nitrogen infiltration increased the activities of the following enzymes: aspartate amino-transferase, PEP carboxylase and RuBP carboxylase. Methionine sulphoximine (inhibitor of glutamate synthetase) increased the carbon dioxide compensation point and formate pool size. Infiltration of nitrate and ammonia enhanced the /sup 14/C uptake from labelled glycolate, glyoxylate and formate into the water soluble fraction of Themeda triandra leaves. The activities of RuBP carboxylase and RuBP oxygenase (to a greater extent) were increased by the addition of nitrate and ammonia in vitro.

  10. Comparative enzymology of the adenosine triphosphate sulfurylases from leaf tissue of selenium-accumulator and non-accumulator plants

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, W H; Anderson, J W

    1974-01-01

    ATP sulfurylases were partially purified (20-40-fold) from leaf tissue of Astragalus bisulcatus, Astragalus racemosus (selenium-accumulator species) and Astragalus hamosus and Astragalus sinicus (non-accumulator species). Activity was measured by sulfate-dependent PP/sub 1/-ATP exchange. The enzymes were separated from pyrophosphatase and adenosine triphosphatase activities. The properties of the Astragalus ATP sulfurylases were similar to the spinach enzyme. The ATP sulfurylases from both selenium-accumulator and non-accumulator species catalyzed selenate-dependent PP/sub 1/-ATP exchange; selenate competed with sulfate. The ratio of V(selenate)/V(sulfate) and K/sub m/ (selenate)/K/sub m/(sulfate) was approximately the same for the enzyme from each species. Sulfate-dependent PP/sub 1/-ATP exchange was inhibited by ADP, chlorate and nitrate. The kinetics of the inhibition for each enzyme were consistent with an ordered reaction mechanisms, in which ATP is the first substrate to react with the enzyme and PP/sub 1/ is the first product released. Synthesis of adenosine 5'-(/sup 35/S)sulfatophosphate from (/sup 35/S)sulfate was demonstrated by coupling the Astrgalus ATP sulfurylases with Mg/sup 2 +/-dependent pyrophosphatase; the reaction was inhibited by selenate. An analogous reaction using (/sup 75/Se)selenate as substrate could not be demonstrated.

  11. Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients.

    Science.gov (United States)

    Betancor, Monica B; Dam, Thi M C; Walton, James; Morken, Thea; Campbell, Patrick J; Tocher, Douglas R

    2016-04-01

    Increased substitution of marine ingredients by terrestrial plant products in aquafeeds has been proven to be suitable for Atlantic salmon farming. However, a reduction in n-3 long-chain PUFA is a consequence of this substitution. In contrast, relatively little attention has been paid to the effects of fishmeal and oil substitution on levels of micronutrients such as Se, considering fish are major sources of this mineral for human consumers. To evaluate the effects of dietary marine ingredient substitution on tissue Se distribution and the expression of Se metabolism and antioxidant enzyme genes, Atlantic salmons were fed three feeds based on commercial formulations with increasing levels of plant proteins (PP) and vegetable oil. Lipid content in flesh did not vary at any sampling point, but it was higher in the liver of 1 kg of fish fed higher PP. Fatty acid content reflected dietary input and was related to oxidation levels (thiobarbituric acid-reactive substances). Liver had the highest Se levels, followed by head kidney, whereas the lowest contents were found in brain and gill. The Se concentration of flesh decreased considerably with high levels of substitution, reducing the added value of fish consumption. Only the brain showed significant differences in glutathione peroxidase, transfer RNA selenocysteine 1-associated protein 1b and superoxide dismutase expression, whereas no significant regulation of Se-related genes was found in liver. Although Se levels in the diets satisfied the essential requirements of salmon, high PP levels led to a reduction in the supply of this essential micronutrient.

  12. Application of mutation breeding technique for producing NaCl tolerant plants of banana in tissue culture and greenhouse conditions

    International Nuclear Information System (INIS)

    Vedadi, C.; Rahimi, M.; Naserian, B.; Rahmani, E.; Neshan, N.

    2005-01-01

    Full text: To study of possibility to induce salt tolerant clones in banana by using mutation technique, an experiment was conducted with factorial (gamma irradiation and salt concentration factors) in a CRD design. In this research, plantlets of banana cv. Dwarf Cavendish were produced by subculture of irradiated shoot tips. It deserves to mention that consequent subculturing was aimed at getting rid of chimera. Next, these explants were transferred to MS medium containing 2.5 mg. l- 1 BAP and NaCl concentrations of 0, 6, 7, 8, 9 g.l -1 for 2 months .Then, living buds were transferred to medium without salt. After one month, we repeated the first stage. All living buds rooted and were transferred to potted soil. Acclimatized plants were irrigated weekly with above NaCl solution. Other irrigation was done with salt-free water. There was also a negative relation between salt concentration and survival - proliferation. In second salinity stress, salt had no significant difference on survival percentage. No-significant difference of effect salt on survival in second salinity stress was observed. (author)

  13. Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of ca. 24 min

    Science.gov (United States)

    Morre, D. James; Ternes, Philipp; Morre, Dorothy M.

    2002-01-01

    Rate of plant cell enlargement, measured at intervals of 3 min using a sensitive linear transducer, oscillates with a minimum period of about 24 min that parallels the 24-min periodicity observed with the oxidation of NADH by the external plasma membrane NADH oxidase and of single cells measured previously by video-enhanced light microscopy. Also exhibiting 24-min oscillations is the steady-state rate of cell enlargement induced by the addition of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges. The length of the 24-min period is temperature compensated and remains constant at 24 min when measured at 15, 25 or 35 degrees C, despite the fact that the rate of cell enlargement approximately doubles for each 10 degree C rise over this same range of temperatures.

  14. The Interrelationship of pCO2, Soil Moisture Content, and Biomass Fertilization Expressed in the Carbon Isotope Signature of C3 Plant Tissue

    Science.gov (United States)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.

  15. Diversity and abundance of Beauveria bassiana in soils, stink bugs and plant tissues of common bean from organic and conventional fields.

    Science.gov (United States)

    Ramos, Yordanys; Portal, Orelvis; Lysøe, Erik; Meyling, Nicolai V; Klingen, Ingeborg

    2017-11-01

    The aim of this study was to evaluate the natural occurrence of Beauveria spp. in soil, from infections in the stink bug Piezodorus guildinii, an important pest of common bean (Phaseolus vulgaris) and as endophytes in bean plant tissue. Twelve conventional and 12 organic common bean fields in the Villa Clara province, Cuba were sampled from September 2014 to April 2015. One hundred and fifty Beauveria isolates were obtained from soil samples, bean plant parts and stink bugs. The overall frequency of occurrence of Beauveria isolates in conventional fields (8.4%) was significantly lower than that in organic fields (23.6%). Beauveria were also obtained significantly more frequently from bean roots in organic fields (15.0%) compared to bean roots in conventional fields (3.3%). DNA sequencing of the intergenic Bloc region was performed for Beauveria species identification. All isolates where characterized as Beauveria bassiana (Balsamo-Crivelli) Vuillemin, and clustered with isolates of neotropical origin previously described as AFNEO_1. The Cuban B. bassiana isolates formed five clusters in the phylogeny. Isolates of two clusters originated from all four locations, organic and conventional fields, as well as soil, plants and stink bugs. Organic fields contained isolates of all five clusters while conventional fields only harbored isolates of the two most frequent ones. Mating type PCR assays revealed that mating type distribution was skewed, with MAT1/MAT2 proportion of 146/4, indicating limited potential for recombination. The present study is the first to report of B. bassiana as a naturally occurring endophyte in common bean. Further, it shows that B. bassiana occurs naturally in diverse environments of common bean fields, and constitutes a potential reservoir of natural enemies against pest insects particularly in organic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Methylation changes associated with early maturation stages in the Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Pérez-Figueroa Andrés

    2011-10-01

    Full Text Available Abstract Background Early maturation in the Atlantic salmon is an interesting subject for numerous research lines. Prior to sea migration, parr can reach sexual maturation and successfully fertilize adult female eggs during the reproductive season. These individuals are known as precocious parr, mature parr or "sneakers". Reasons for early maturation are unknown and this transitory stage is usually considered to be a threshold trait. Here, we compare methylation patterns between mature and immature salmon parr from two different rivers in order to infer if such methylation differences may be related to their maturation condition. First we analyzed genetic differences between rivers by means of AFLPs. Then, we compared the DNA methylation differences between mature and immature parrs, using a Methylation-Sensitive Amplified Polymorphism (MSAP, which is a modification of the AFLPs method by making use of the differential sensitivity of a pair of restriction enzymes isoschizomeres to cytosine methylation. The tissues essayed included brain, liver and gonads. Results AFLPs statistical analysis showed that there was no significant differentiation between rivers or a significant differentiation between maturation states in each river. MSAP statistical analysis showed that among the three tissues sampled, the gonads had the highest number of significant single-locus variation among populations with 74 loci followed by brain with 70 and finally liver with only 12. Principal components analysis (PCA of the MSAP profiles revealed different profiles among different tissues (liver, brain and testis clearly separating maturation states in the testis tissue when compared to the liver. Conclusions Our results reveal that genetically-similar mature and immature salmon parr present high levels of DNA methylation variation in two of the three analyzed tissues. We hypothesize that early maturation may be mostly mediated by epigenetic processes rather than by

  17. Slab replacement maturity guidelines : [summary].

    Science.gov (United States)

    2014-04-01

    Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...

  18. SOUL System Maturation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to advance the maturity of an innovative Spacecraft on Umbilical Line (SOUL) System suitable for a wide variety of applications of interest...

  19. SOUL System Maturation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to advance the maturity of an innovative Spacecraft on Umbilical Line (SOUL) System suitable for a wide variety of applications of interest...

  20. Changes in the endopolyploidy pattern of different tissues in diploid and tetraploid Phalaenopsis aphrodite subsp. formosana (Orchidaceae).

    Science.gov (United States)

    Chen, Wen-Huei; Tang, Ching-Yan; Lin, Tsai-Yun; Weng, Yuan-Chen; Kao, Yu-Lin

    2011-07-01

    Endopolyploidy is frequently observed during development in plant species. Patterns of endopolyploidy are diverse in the various organs of different plant species. However, little is known about the role of endopolyploidization and its significance in orchids. This study was undertaken to determine the extent of endopolyploidy in different tissues of the diploid and tetraploid genotypes of Phalaenopsis aphrodite subsp. formosana and to examine the factors that contribute to increased ploidy levels. Endopolyploidy occurs in various tissues of diploid and tetraploid orchids, at different developmental stages and under different culture conditions, as determined by flow cytometry. In this study, different patterns of endopolyploidy were observed in parts of the protocorms, leaves, roots and flowers. Endopolyploidy was found in all tissues studied except the pollinia and the tetraploid ovaries. A higher degree of endopolyploidy was observed in mature tissues compared to young tissues, greenhouse-grown plants compared to in vitro plants and diploid plants compared to tetraploid plants. We discuss the relationships between endopolyploidization and several factors related to plant growth, as well as some practical considerations of these findings. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Potential of high isostatic pressure and pulsed electric fields for the processing of potato and pea proteins:structural and techno-functional characterization in model solutions and plant tissue

    OpenAIRE

    Baier, Anne Kathrin

    2016-01-01

    The aim of this thesis was to evaluate the potential of high isostatic pressure and pulsed electric fields for the production of high quality plant proteins. Induced changes in protein solutions and plant tissue of potato and pea were analyzed by means of structural and techno-functional characterization as well as by investigation of diffusion and extractions procedures. The application of high isostatic pressure provides a gentle alternative to conventional heat preservation. Especially ...

  2. Maturation of sugar maple seed

    Science.gov (United States)

    Clayton M., Jr. Carl; Albert G., Jr. Snow; Albert G. Snow

    1971-01-01

    The seeds of a sugar maple tree (Acer saccharum Marsh.) do not mature at the same time every year. And different trees mature their seeds at different times. So time of year is not a reliable measure of when seeds are ripe. Better criteria are needed. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple...

  3. Fundamental aspects of bovine oocyte maturation : the role of estradiol, VIP and GHRH

    NARCIS (Netherlands)

    Beker van Woudenberg, A.R.C.L. (Anna Rita Costa Lage)

    2004-01-01

    Chapter 1 presents an overview on the aspects of oocyte maturation. Growth hormone (GH), released from the pituitary by the stimulus of GHRH, increases cumulus expansion and improves cytoplasmic maturation in bovine oocytes. GHRH is also expressed in extraneural tissues suggesting that GHRH also

  4. Formation and maturation of the murine meniscus.

    Science.gov (United States)

    Gamer, Laura W; Xiang, Lin; Rosen, Vicki

    2017-08-01

    Meniscal injuries are commonplace, but current surgical repair procedures do not prevent degenerative joint changes that occur after meniscal injury and often lead to osteoarthritis. Successful tissue regeneration in adults often recapitulates events that occur during embryogenesis, suggesting that understanding the regulatory pathways controlling these early processes may provide clues for developing strategies for tissue repair. While the mouse is now widely used to study joint diseases, detailed knowledge of the basic biology of murine meniscus is not readily available. Here, we examine meniscal morphogenesis in mice from embryonic day 13.5 (E13.5) to 6 months of age using histology, in situ hybridization, and immunohistochemistry. We find that the meniscus is a morphologically distinct structure at E16 when it begins to regionalize. At birth, the meniscus has a distinguishable inner, avascular, round chondrocyte cell region, an outer, vascularized, fibroblast cell region, and a surface superficial zone. Maturation begins at 2 weeks of age when the meniscus expresses type I collagen, type II collagen, type X collagen, and MMP-13 in specific patterns. By 4 weeks of age, small areas of ossification are detected in the anterior meniscal horn, a common feature seen in rodents. Maturation appears complete at 8 weeks of age, when the meniscus resembles the adult structure complete with ossifying tissue that contains bone marrow like areas. Our results provide, the first systematic study of mouse meniscal development and will be a valuable tool for analyzing murine models of knee joint formation and disease. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1683-1689, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery.

    Science.gov (United States)

    Bansal, Sheel; Hallsby, Göran; Löfvenius, Mikael O; Nilsson, Marie-Charlotte

    2013-05-01

    Forests typically experience a mix of anthropogenic, natural and climate-induced stressors of different intensities, creating a mosaic of stressor combinations across the landscape. When multiple stressors co-occur, their combined impact on plant growth is often greater than expected based on single-factor studies (i.e., synergistic), potentially causing catastrophic dysfunction of physiological processes from an otherwise recoverable situation. Drought and herbivory are two stressors that commonly co-occur in forested ecosystems, and have the potential to 'overlap' in their impacts on various plant traits and processes. However, the combined impacts from these two stressors may not be predictable based on additive models from single-stressor studies. Moreover, the impacts and subsequent recovery may be strongly influenced by the relative intensities of each stressor. Here, we applied drought stress and simulated bark-feeding herbivory at three levels of intensity (control, moderate and severe) in a full factorial design on young Pinus sylvestris L. seedlings. We assessed if the combined effects from two stressors were additive (responses were equal to the sum of the single-factor effects), synergistic (greater than expected) or antagonistic (less than expected) on a suite of morphological and physiological traits at the leaf-, tissue- and whole-plant level. We additionally investigated whether recovery from herbivory was dependent on relief from drought. The two stressors had synergistic impacts on specific leaf area and water-use efficiency, additive effects on height and root-to-shoot ratios, but antagonistic effects on photosynthesis, conductance and, most notably, on root, shoot and whole-plant biomass. Nevertheless, the magnitude and direction of the combined impacts were often dependent on the relative intensities of each stressor, leading to many additive or synergistic responses from specific stressor combinations. Also, seedling recovery was far more

  6. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  7. Differential responses between mature and young leaves of sunflower plants to oxidative stress caused by water deficit Diferentes respostas entre folhas adultas e jovens de plantas de girassol ao estresse oxidativo causado pelo déficit hídrico

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2010-06-01

    Full Text Available The effects of water stress and rehydration on leaf gas exchange characteristics along with changes in lipid peroxidation and pirogalol peroxidase (PG-POD were studied in mature and in young leaves of sunflower (Helianthus annuus L., which were grown in a greenhouse. Water stress reduced photosynthesis (Pn, stomatal conductance (g s, and transpiration (E in both young and mature leaves. However, the amplitude of the reduction was dependent on leaf age. The intercellular CO2 concentration (Ci was increased in mature leaves but it was not altered in young leaves. Instantaneous water use efficiency (WUE in mature stressed leaves was reduced when compared to control leaves while in young stressed leaves it was maintained to the same level as the control. After 24h of rehydration, most of the parameters related to gas exchange recovered to the same level as the unstressed plants except gs and E in mature leaves. Water stress did not activated PG-POD independently of leaf age. However, after rehydration the enzyme activity was increased in mature leaves and remained to the same as the control in young leaves. Malondialdehyde (MDA content was increased by water stress in both mature and young leaves. The results suggest that young leaves are more susceptible to water stress in terms of gas exchange characteristics than mature leaves although both went through oxidative estresse.Os efeitos do estresse hídrico e da reidratação nas trocas gasosas juntamente com alterações na lipoperoxidação e atividade da pirogalol peroxidase (PG-POD foram estudados em folhas adultas e jovens de plantas de girassol (Helianthus annuus L. cultivadas em casa de vegetação. O estresse hídrico reduziu a fotossíntese (P N, a condutância estomática (g s e a transpiração (E nas folhas adultas e jovens. No entanto, a amplitude da redução foi dependente da idade da folha. A concentração intercelular de CO2 (Ci aumentou nas folhas adultas, mas não apresentou

  8. Grapevine tissues and phenology differentially affect soluble carbohydrates determination by capillary electrophoresis.

    Science.gov (United States)

    Moreno, Daniela; Berli, Federico; Bottini, Rubén; Piccoli, Patricia N; Silva, María F

    2017-09-01

    Soluble carbohydrates distribution depends on plant physiology and, among other important factors, determines fruit yield and quality. In plant biology, the analysis of sugars is useful for many purposes, including metabolic studies. Capillary electrophoresis (CE) proved to be a powerful green separation technique with minimal sample preparation, even in complex plant tissues, that can provide high-resolution efficiency. Matrix effect refers to alterations in the analytical response caused by components of a sample other than the analyte of interest. Thus, the assessment and reduction of the matrix factor is fundamental for metabolic studies in different matrices. The present study evaluated the source and levels of matrix effects in the determination of most abundant sugars in grapevine tissues (mature and young leaves, berries and roots) at two phenological growth stages. Sucrose was the sugar that showed the least matrix effects, while fructose was the most affected analyte. Based on plant tissues, young leaves presented the smaller matrix effects, irrespectively of the phenology. These changes may be attributed to considerable differences at chemical composition of grapevine tissues with plant development. Therefore, matrix effect should be an important concern for plant metabolomics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Simulating the Probability of Grain Sorghum Maturity before the First Frost in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Gregory S. McMaster

    2016-09-01

    Full Text Available Expanding grain sorghum [Sorghum bicolor (L. Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS to estimate the probability of reaching physiological maturity before the first fall frost for a variety of agronomic practices in northeastern Colorado. Physiological maturity for seven planting dates (1 May to 12 June, four seedbed moisture conditions affecting seedling emergence (from Optimum to Planted in Dust, and three maturity classes (Early, Medium, and Late were simulated using historical weather data from nine locations for both irrigated and dryland phenological parameters. The probability of reaching maturity before the first frost was slightly higher under dryland conditions, decreased as latitude, longitude, and elevation increased, planting date was delayed, and for later maturity classes. The results provide producers with estimates of the reliability of growing grain sorghum in northeastern Colorado.

  10. Quercetin Efficacy on in vitro Maturation of Porcine Oocytes

    Directory of Open Access Journals (Sweden)

    Delia Orlovschi

    2014-05-01

    Full Text Available The present study proposed to examine the effects of a polyphenol (quercetin on in vitro maturated parameters. Quercetin it has been extensively studied by researchers on animals over the 35 years. It is a plant derived flavonoid from fruits and vegetables that has antioxidant action as a free radical scavenger. Immature porcine oocytes were untreated and treated with 5, 15, 25, 35 µg/ml quercetin during in vitro maturation. After then the mature oocytes were fertilized. It was observed that cumulus cell expansion of COCs cultured in maturation media supplemented with 5 µg/ml quercetin in grad 3 could be very significantly increased (p<0.001. In grad 4 could be significantly between different levels of quercetin (5 vs. 25, 5 vs. 35, p<0.001. The rates of embryos cultured in medium supplemented with different levels of quercetin did not presented significantly statistically different. The presence of 25 µg/ml quercetin in the maturation medium increased the percentage of embryos in the morula stage compared with the control. In the morula stage all the concentrations of quercetin resulted percentages increased to control. This results shows that quercetin added during in vitro maturation has a positive effect on future embryos development.

  11. Sustaining Exploration in Mature Basins

    International Nuclear Information System (INIS)

    Bayo, A.

    2002-01-01

    Exploration is a business like any other business driven by opportunity, resources and expectation of profit. Therefore, exploration will thrive anywhere the opportunities are significant, the resources are available and the outlook for profit (or value creation) is good. To sustain exploration activities anywhere, irrespective of the environment, there must be good understanding of the drivers of these key investment criteria. This paper will examine these investment criteria as they relate to exploration business and address the peculiarity of exploration in mature basin. Mature basins are unique environment that lends themselves a mix of fears, paradigms and realities, particularly with respect to the perception of value. To sustain exploration activities in a mature basin, we need to understand these perceptions relative to the true drivers of profitability. Exploration in the mature basins can be as profitable as exploration in emerging basins if the dynamics of value definition-strategic and fiscal values are understood by operators, regulators and co ventures alike. Some suggestions are made in this presentation on what needs to be done in addressing these dynamic investment parameters and sustaining exploration activities in mature basins

  12. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route

    Directory of Open Access Journals (Sweden)

    Björn eKrenz

    2012-12-01

    Full Text Available Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the cell has yet to be unraveled. Several viruses cause a remodulation of plastid structures and stromule biogenesis within their host plants. For RNA-viruses these interactions were demonstrated to be relevant to the infection process. An involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their functional role needs to be determined. Recent findings support a participation of heat shock cognate 70 kDa protein (cpHSC70-1-containing stromules induced by a DNA-virus infection (Abutilon mosaic virus, AbMV, Geminiviridae in intra- and intercellular molecule exchange. The chaperone cpHSC70-1 was shown to interact with the AbMV movement protein (MP. Bimolecular fluorescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed a homo-oligomerization of either protein in planta. The complexes were detected at the cellular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers occurred in distinct spots at chloroplasts and in small filaments extending from plastids to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70-gene revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement, but not viral DNA accumulation. Based on these data, a model is suggested in which these stromules function in molecule exchange between plastids and other organelles and perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stromules into a neighboring cell or from plastids into the nucleus. Experimental approaches to investigate this hypothesis are discussed.

  13. Public Sector IS Maturity Models

    DEFF Research Database (Denmark)

    Zinner Henriksen, Helle; Andersen, Kim Normann; Medaglia, Rony

    2011-01-01

    Online applications and processing of tax forms, driver licenses, and construction permits are examples of where policy attention and research have been united in efforts aiming to categorize the maturity level of e-services. Less attention has been attributed to policy areas with continuous online...... citizenpublic interaction, such as in public education. In this paper we use a revised version of the Public Sector Process Rebuilding (PPR) maturity model for mapping 200 websites of public primary schools in Denmark. Findings reveal a much less favorable picture of the digitization of the Danish public sector...... compared to the high ranking it has received in the international benchmark studies. This paper aims at closing the gap between the predominant scope of maturity models and the frequency of citizen-public sector interaction, and calls for increased attention to the activities of government where the scale...

  14. The effects of total mass of seed on distribution of lead in different tissues of bean plant (Phaseolus vulgaris L. Experimentally treated by lead

    Directory of Open Access Journals (Sweden)

    Ilić Zoran

    2003-01-01

    Full Text Available In order to establish distribution of lead in different tissues of bean seed (seed coat, endo­sperm, embryo depending on seed mass, treated samples (seed by different concentration of Pb-acetate: 1O-5 M, 10-3M i 2x 10-2M. Depending on seed weight the samples derived in three groups: large (715g, middle (465g and small (280g. Each sample contained the same number of seeds. Concentration was determined by atomic absorber (Unicam 929. At highest Pb-acetate concentration (2x10-2M in seed with small total mass content of Pb was 1139μg/g, white in seed of 1052μg/g; in endosperm 580,6μg/g, middle 290,2μg/g and in second group 79,4μg/g. Similar pattern shows embryo but at die lower level of accumulation. On die basis of above presented results it could be concluded that concentration of Pb-acetate solution. Largest mass seed accumulate respectively less content of Pb in endosperm and embryo. Seed coat accumulated significant die larger amount of land probably embryo, in that way protects embryo. Therefore, larger bean seed are more convenient for planting in cases of potentially contamination by 1, but probably by other metals. .

  15. Bicarbonate Transport During Enamel Maturation.

    Science.gov (United States)

    Yin, Kaifeng; Paine, Michael L

    2017-11-01

    Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

  16. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity.

    Science.gov (United States)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte; Abdallah, Basem M; Kassem, Moustapha; Klein-Nulend, Jenneke

    2010-02-01

    For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC-mature exhibited higher osteocalcin and alkaline phosphatase gene expression and activity than PDSC-immature. Pulsating fluid flow (PFF) stimulated nitric oxide production within 5 min by PDSC-mature but not by PDSC-immature. In PDSC-mature, PFF induced prostaglandin E(2) production, and cyclooxygenase 2 gene expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs and produce more bone in vivo. These data suggest that PDSCs with a mature osteogenic phenotype might be preferable for bone tissue engineering to restore, for example, maxillofacial defects, because they might be able to perform mature bone cell-specific functions during bone adaptation to mechanical loading in vivo.

  17. Seed maturation in Arabidopsis is characterised by nuclear size reduction and increased chromatin condensation

    NARCIS (Netherlands)

    Zanten, van M.; Koini, M.A.; Geyer, R.; Liu, Y.; Brambilla, V.; Bartels, D.; Koornneef, M.; Fransz, P.; Soppe, W.J.J.

    2011-01-01

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become

  18. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation

    NARCIS (Netherlands)

    van Zanten, M.; Koini, M. A.; Geyer, R.; Liu, Y.; Brambilla, V.; Bartels, D.; Koornneef, M.; Fransz, P.; Soppe, W. J.

    2011-01-01

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become

  19. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.

    Science.gov (United States)

    Becker, D; Brettschneider, R; Lörz, H

    1994-02-01

    A reproducible transformation system for hexaploid wheat was developed based on particle bombardment of scutellar tissue of immature embryos. Particle bombardment was carried out using a PDS 1000/He gun. Plant material was bombarded with the plasmid pDB1 containing the beta-glucuronidase gene (uidA) under the control of the actin-1 promoter of rice, and the selectable marker gene bar (phosphinothricin acetyltransferase) under the control of the CaMV 35S promoter. Selection was carried out using the herbicide Basta (Glufosinate-ammonium). From a total number of 1050 bombarded immature embryos, in seven independent transformation experiments, 59 plants could be regenerated. Putative transformants were screened for enzyme activity by the histochemical GUS assay using cut leaf material and by spraying the whole plants with an aqueous solution of the herbicide Basta. Twelve regenerants survived Basta spraying and showed GUS-activity. Southern-blot analysis indicated the presence of introduced foreign genes in the genomic DNA of the transformants and both marker genes were present in all plants analysed. To date, four plants have been grown to maturity and set seed. Histochemically stained pollen grains showed a 1:1 segregation of the uidA gene in all plants tested. A 3:1 segregation of the introduced genes was demonstrated by enzyme activity tests and Southern blot analysis of R1 plants.

  20. Motivational Maturity and Helping Behavior

    Science.gov (United States)

    Haymes, Michael; Green, Logan

    1977-01-01

    Maturity in conative development (type of motivation included in Maslow's needs hierarchy) was found to be predictive of helping behavior in middle class white male college students. The effects of safety and esteem needs were compared, and the acceptance of responsibility was also investigated. (GDC)

  1. Regulators of growth plate maturation

    NARCIS (Netherlands)

    Emons, Joyce Adriana Mathilde

    2010-01-01

    Estrogen is known to play an important role in longitudinal bone growth and growth plate maturation, but the mechanism by which estrogens exert their effect is not fully understood. In this thesis this role is further explored. Chapter 1 contains a general introduction to longitudinal bone growth

  2. Nuclear magnetic resonance studies on maturation of skeletal muscle

    International Nuclear Information System (INIS)

    Yuasa, Tatsuhiko; Kuwahara, Takeo; Ohno, Takao; Miyatake, Tadashi.

    1982-01-01

    The water proton relaxation time ( 1 H-T 1 ) of the maturing chick pectoral muscle and the 23 Na concentration in the muscular tissue were determined by NMR spectrometry. 1 H-T 1 was determined on 12-day-old chick embryos, 19- and 20-day-old embryos and chicks aged 8, 15 and 22 days. 23 Na concentration was determined on 12-14 day-old chick embryos, 19-day-old embryos and 4-6 day-old and 20-day-old chicks. 1 H-T 1 gradually decreased with maturation; 2.082 +- 0.091 sec, 1.605 +- 0.106 sec, 1.321 +- 0.107 sec, 1.108 +- 0.038 sec and 1.087 +- 0.053 sec. The 23 Na level showed similar decreases; 59.5 +- 3.51 μEq/gm, 49.0 +- 4.95 μEq/gm, 47.5 +- 3.87 μEq/gm and 10.3 +- 2.13 μEq/gm. The water content in the skeletal muscle decreased with maturation, and 1 H-T 1 and the water content showed an exponential relationship. Comparison between the 23 Na concentration of muscle tissues determined by NMR and the Na + concentration by flame photometry revealed a decrease of the detection rate of 23 Na by NMR from 81.9 % to 54.7 % with maturation. It was conjectured that as well as the mode of existence of water proton, that of 23 Na in the tissue was subject to changes occurring with maturation of the skeletal muscle. (Chiba, N.)

  3. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix.

    Science.gov (United States)

    Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa

    2008-12-15

    Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.

  4. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hafidh Said

    2009-12-01

    Full Text Available Abstract Background New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana. Results In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen. Conclusions Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.

  5. Plant Age Affects Wound-Induced Senescense in Lactuca Sativa L

    OpenAIRE

    Witkowska, I.M.; Woltering, E.J.

    2014-01-01

    In the present study we investigated the performance of dark-stored wounded leaf discs and pieces (to some extent mimicking fresh-cut product) of Lactuca sativa L. in relation to the physiological maturity at harvest. We used two related genotypes, i.e. a green (cv. Troubadour) and a red butterhead (cv. Teodore) differing in their pigment levels. For both genotypes, senescence of the wounded (fresh-cut) tissue prepared from leaves of younger plants was significantly delayed compared to wounde...

  6. Comparison of Sensitivity to Photoinhibition and UV-B Stress between Developing and Mature Leaves of Red Pepper (Capsicum annuum L.) Plants from Control and Gamma-Irradiated Seeds

    International Nuclear Information System (INIS)

    Kim, J.H.; Baek, M.H.; Chung, B.Y.; Kim, J.S.; Lee, Y.B.

    2004-01-01

    The stress-resistance of red pepper (Capsicum annuum L. cv. Yeomyung and Joheung) plants from the seeds irradiated with low doses of gamma-radiation (2, 4, 8, and 16 Gy) was examined under the conditions of photoinhibition and UV-B stress. To induce photoinhibition, the leaves acclimated overnight with a dim light were exposed to a photon flux density (PFD) of 200 μmol · m-² · s-¹ at 25℃ for 1 h. Then, they were further exposed to the same PFD with supplementary UV-B irradiance at 25℃ for 3 h (UV-B stress). The gamma-irradiation stimulated the early growth of the plants in both cultivars at 2, 4, and 8 Gy

  7. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production.

    Science.gov (United States)

    Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra

    2016-03-01

    In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Assessment of skeletal maturation using mandibular second molar maturation stages.

    Science.gov (United States)

    Goyal, S; Goyal, S; Gugnani, N

    2014-01-01

    To investigate the relationship between cervical vertebrae maturation and mandibular second molar calcification stages. The study was designed as a retrospective, descriptive and crosssectional research project. Pre-treatment lateral cephalograms and panoramic radiographs of 99 males and 110 females in the age range of 7 to 18 years 7 months were evaluated with Demirjian Index (DI) and cervical vertebrae maturation indicators (CVMI) of Hassel and Farman. A null hypothesis was proposed that there is no relation between CVMI and DI. A highly significant association (Pearson's contingency coefficient 0.713 for males and 0.863 for females) was found between DI and CVMI. In males, the DI stage E corresponded to stage 2 of CVMI (pre-peak of pubertal growth spurt) and DI stages F and G corresponded to stages 3 and 4 of CVMI (peak of pubertal growth spurt). DI stage H was associated with stages 5 and 6 of CVMI (end of pubertal growth spurt). In females, the DI stages C, D corresponded to CVMI stages 1, 2; DI stages E, F with CVMI stages 3, 4; DI stages G, H with CVMI stages 5, 6. Mandibular second molar calcification stages can be used as indicators for assessment of skeletal maturity.

  9. Cervical vertebral maturation as a biologic indicator of skeletal maturity.

    Science.gov (United States)

    Santiago, Rodrigo César; de Miranda Costa, Luiz Felipe; Vitral, Robert Willer Farinazzo; Fraga, Marcelo Reis; Bolognese, Ana Maria; Maia, Lucianne Cople

    2012-11-01

    To identify and review the literature regarding the reliability of cervical vertebrae maturation (CVM) staging to predict the pubertal spurt. The selection criteria included cross-sectional and longitudinal descriptive studies in humans that evaluated qualitatively or quantitatively the accuracy and reproducibility of the CVM method on lateral cephalometric radiographs, as well as the correlation with a standard method established by hand-wrist radiographs. The searches retrieved 343 unique citations. Twenty-three studies met the inclusion criteria. Six articles had moderate to high scores, while 17 of 23 had low scores. Analysis also showed a moderate to high statistically significant correlation between CVM and hand-wrist maturation methods. There was a moderate to high reproducibility of the CVM method, and only one specific study investigated the accuracy of the CVM index in detecting peak pubertal growth. This systematic review has shown that the studies on CVM method for radiographic assessment of skeletal maturation stages suffer from serious methodological failures. Better-designed studies with adequate accuracy, reproducibility, and correlation analysis, including studies with appropriate sensitivity-specificity analysis, should be performed.

  10. Effect of Kaempferol on in vitro Maturation of Porcine Oocytes

    Directory of Open Access Journals (Sweden)

    Delia Orlovschi

    2014-10-01

    Full Text Available We investigated the effects of kaempferol on porcine oocytes in vitro maturation. Kaempferol is one the most studied flavonoids and is in research attention on animal cells until 1979. Flavonoids are known as polyphenolic compounds synthesized by the plants. Cumulus-oocyte complexes aspirated from the ovaries were maturated in vitro, fertilized and embryos were cultured in a defined conditioned medium with 5, 15, 25, 35 µg/ml or without kaempferol supplementation. During in vitro maturation with highest kaempferol concentration (35 µg/ml distinct significantly increase the rate of cumulus cell expansion in grad 4 (42.74 vs. 50.96%, p<0.01. The same, addition of 5 µg/ml kaempferol to the in vitro maturation medium increase significantly the rate of expansion compared to 25 µg/ml (42.20 vs. 48.67%, p<0.05 and increase distinct significantly the rate of expansion compared to 35 µg/ml (42.20 vs. 50.96%, p<0.01. Kaempferol supplementation (15 µg/ml vs. 35 µg/ml of the in vitro fertilization medium led to a significant increase in the rate of 4-8 cells formation (0.69 vs. 4.96%, p<0.05. In conclusion, these results demonstrate that supplementation with kaempferol during in vitro maturation improved the developmental competence of porcine oocytes.

  11. Effect of fertilization on the physiological maturation of sesame seeds

    Directory of Open Access Journals (Sweden)

    Erivan Isídio Ferreira

    2017-06-01

    Full Text Available Fertilization and harvest time may influence the formation and maturation processes, as well as the physiological quality of seeds. This study aimed at evaluating the effect of fertilization on the physiological maturation of sesame seeds. The following variables were evaluated: fruit color, dry mass and water content of fruits and seeds, germination, first germination count, germination speed, emergence and emergence speed. No significant fertilization effect was observed on fruit maturation for water content or dry mass. However, there was significance for these variables in the seeds. The harvest time had a significant effect on water content and dry mass of fruits and seeds. For the variables that evaluated the seed viability and vigor, both the fertilization and harvest time influenced the physiological maturation. The physiological maturity of the sesame seeds, whose plants were grown with and without fertilization, was reached between 52 and 54 days after anthesis, when the fruits were classified as yellow-greenish 7.5 Y 8/6 and yellow to yellow-red 10.R 4/6.

  12. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 1.3±0.3; 3) wet gas window--1.3±0.3 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  13. Maturation of the adolescent brain

    Directory of Open Access Journals (Sweden)

    Arain M

    2013-04-01

    Full Text Available Mariam Arain, Maliha Haque, Lina Johal, Puja Mathur, Wynand Nel, Afsha Rais, Ranbir Sandhu, Sushil Sharma Saint James School of Medicine, Kralendijk, Bonaire, The Netherlands Abstract: Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain's region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone, which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also

  14. Coffee seeds isotopic composition as a potential proxy to evaluate Minas Gerais, Brazil seasonal variations during seed maturation

    Science.gov (United States)

    Rodrigues, Carla; Maia, Rodrigo; Brunner, Marion; Carvalho, Eduardo; Prohaska, Thomas; Máguas, Cristina

    2010-05-01

    Plant seeds incorporate the prevailing climate conditions and the physiological response to those conditions (Rodrigues et al., 2009; Rodrigues et al., submitted). During coffee seed maturation the biochemical compounds may either result from accumulated material in other organs such as leafs and/or from new synthesis. Accordingly, plant seeds develop in different stages along a particular part of the year, integrating the plant physiology and seasonal climatic conditions. Coffee bean is an extremely complex matrix, rich in many products derived from both primary and secondary metabolism during bean maturation. Other studies (De Castro and Marraccini, 2006) have revealed the importance of different coffee plant organs during coffee bean development as transfer tissues able to provide compounds (i.e. sugars, organic acids, etc) to the endosperm where several enzymatic activities and expressed genes have been reported. Moreover, it has been proved earlier on that green coffee bean is a particularly suitable case-study (Rodrigues et al., 2009; Rodrigues et al., submitted), not only due to the large southern hemispheric distribution but also because of this product high economic interest. The aim of our work was to evaluate the potential use of green coffee seeds as a proxy to seasonal climatic conditions during coffee bean maturation, through an array of isotopic composition determinations. We have determined carbon, nitrogen, oxygen and sulfur isotopic composition (by IRMS - Isotope Ratio Mass Spectrometry) as well as strontium isotope abundance (by MC-ICP-MS; Multicollector Inductively Coupled Plasma Mass Spectrometry), of green coffee beans harvested at different times at Minas Gerais, Brazil. The isotopic composition data were combined with air temperature and relative humidity data registered during the coffee bean developmental period, and with the parent rock strontium isotopic composition. Results indicate that coffee seeds indeed integrate the interactions

  15. Biomechanics and mechanobiology in functional tissue engineering

    NARCIS (Netherlands)

    Guilak, F.; Butler, D.L.; Goldstein, S.A.; Baaijens, F.P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical

  16. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Elena Arellano-Orden

    Full Text Available Conflicting data exist on the role of pulmonary dendritic cells (DCs and their maturation in patients with chronic obstructive pulmonary disease (COPD. Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs, BDCA3-positive mDCs, and plasmacytoid DCs (pDCs-and determine their maturation markers (CD40, CD80, CD83, and CD86 in all participants. We also identified follicular DCs (fDCs, Langerhans DCs (LDCs, and pDCs in 42 patients by immunohistochemistry.COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers, whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers. The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively. Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.

  17. 7 CFR 51.1904 - Maturity classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Maturity classification. 51.1904 Section 51.1904... STANDARDS) United States Consumer Standards for Fresh Tomatoes Size and Maturity Classification § 51.1904 Maturity classification. Tomatoes which are characteristically red when ripe, but are not overripe or soft...

  18. Composição química do feijoeiro e absorção de elementos nutritivos, do florescimento à maturação Chemical composition of garden bean plant and the uptake of nutrients from the stage of blooming to maturity

    Directory of Open Access Journals (Sweden)

    J. Romano Gallo

    1961-01-01

    Full Text Available Procedeu-se a um estudo das curvas de produção de matéria sêca, concentração e absorção de elementos minerais, no feijoeiro. Plantas da variedade Chumbinho opaco, crescendo nas condições de campo, com e sem adubação, foram colhidas em diferentes estádios do ciclo, a partir do florescimento. Dividiram-se as amostras em raiz, haste, fôlha e fruto, submetendo-as à análise quantitativa de N, P, K, Ca, Mg e S. Na planta madura, as sementes foram colhidas e analisadas separadamente da vagem. São também discutidos os efeitos provocados pela adubação sôbre aquelas características e a extração de nutrientes do solo pelo feijoeiro, na colheita, levando-se em conta o retôrno ou não dos resíduos de cultura. Os dados oferecem, ainda, indicações quanto à aplicação tardia de nitrogênio no feijoeiro, com base no fato de que uma absorção ativa de nitrogênio pela planta ocorre durante o período critico de crescimento das sementes, quando se intensifica a produção de carbohidratos. Nesta fase, a demanda da planta poderia não ser satisfeita à custa exclusiva do N fixado pelo processo simbiótico.The purpose of this investigation was to gain information on the rate of dry matter production and nutrient absorption of bean plants. Samples of fertilized and unfertilized bean plants, grown on «terra-roxa-misturada» type of soil at Campinas and under field conditions, were taken at various stages of growth. They were divided in roots, stems, leaves and fruits and have been analyzed for N, P, K, Ca, Mg, and S. At maturity the seeds were separated from the pods and analyzed separately. With the exception of calcium in the leaves, the percentage of all mineral elements tended to reach a maximum in the various plant parts at about blooming and pod-forming stage. The total seeds and pods contained more nitrogen and phosphorus, and less calcium, magnesium and sulphur throughout the season. The percentages of potassium, calcium and

  19. Citrus tissue culture employing vegetative explants.

    Science.gov (United States)

    Chaturvedi, H C; Singh, S K; Sharma, A K; Agnihotri, S

    2001-11-01

    Citrus being a number one fruit of the world due to its high nutritional value, huge production of fruits and fruit products, the citrus industry may be considered a major fruit industry. Though citrus orchard area in India is comparable to USA, the produce is far less, while its export is nil. Biotechnology has played an outstanding role in boosting the citrus industry, e.g., in Spain, which is now the biggest exporter of citrus fruit with the application of micrografting. Amongst the fruit trees, perhaps the maximum tissue culture research has been done in citrus during the past four decades, however, the results of practical value are meagre. The shortfalls in citrus tissue culture research and some advancements made in this direction along with bright prospects are highlighted, restricting the review to vegetative explants only. Whilst utilization of nucellar embryogenesis is limited to rootstocks, the other aspects, like, regeneration and proliferation of shoot meristems measuring 200 microm in length--a global breakthrough--of two commercially important scion species, Citrus aurantifolia and C. sinensis and an important rootstock, C. limonia, improvement of micrografting technique, cloning of the same two scion species as well as some Indian rootstock species, employing nodal stem segments of mature trees, of immense practical value have been elaborated. A rare phenomenon of shift in the morphogenetic pattern of differentiation from shoot bud differentiation to embryoid formation occurred during the long-term culture of stem callus of C. grandis. Stem callus-regenerated plants of C. aurantifolia, C. sinensis and C. grandis showed variation in their ploidy levels and a somaclonal variant of C. sinensis, which produced seedless fruits was isolated. Tailoring of rooting in microshoots to a tap root-like system by changing the inorganic salt composition of the rooting medium, resulting in 100% transplant success, and germplasm preservation through normal growth

  20. Maturing safety in the UK

    International Nuclear Information System (INIS)

    Debenham, A.; Kovan, D.

    1994-01-01

    AEA Technology provides UK nuclear industry with technical services and R+D support, concentrating on plant performance, safety and environmental issues. Today, safety has a new set of priorities, reflected by a more demanding regulatory regime which takes account of concerns such as human factors, severe accidents, risks during plant outages, the need for improving safety culture, etc

  1. Academic Achievement of High School Students in Relation to Their Anxiety, Emotional Maturity and Social Maturity

    Science.gov (United States)

    Puar, Surjit Singh

    2013-01-01

    The present study has been designed to investigate the non-cognitive variables like anxiety, emotional maturity and social maturity and their relationship with academic achievement and also to see the locale-wise differences on the basis of their anxiety, emotional maturity and social maturity. The study was conducted over a sample of 400 (200…

  2. Maturity models in supply chain sustainability

    DEFF Research Database (Denmark)

    Correia, Elisabete; Carvalho, Helena; Azevedo, Susana G.

    2017-01-01

    A systematic literature review of supply chain maturity models with sustainability concerns is presented. The objective is to give insights into methodological issues related to maturity models, namely the research objectives; the research methods used to develop, validate and test them; the scope...... of maturity levels. The comprehensive review, analysis, and synthesis of the maturity model literature represent an important contribution to the organization of this research area, making possible to clarify some confusion that exists about concepts, approaches and components of maturity models...

  3. Within-plant distribution of Aulacorthum solani (Hemiptera: Aphididae), on various greenhouse plants with implications for control.

    Science.gov (United States)

    Jandricic, S E; Mattson, N S; Wraight, S P; Sanderson, J P

    2014-04-01

    Foxglove aphid, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), has recently undergone a status change from an occasional pest to a serious pest in greenhouses of North America and the United Kingdom. Little nonanecdotal information exists on the ecology of this insect in greenhouse crops. To help improve integrated pest management decisions for A. solani, the within-plant distribution of this pest was explored on a variety of common greenhouse plants in both the vegetative and flowering stage. This aphid generally was found on lower leaves of vegetative plants, but was found higher in the canopy on reproductive plants (on flowers, flower buds, or upper leaves). Aphid numbers were not consistently positively correlated with total leaf surface areas within plant strata across plant species. Thus, the observed differences in preferred feeding sites on vegetative versus flowering plants are possibly a response to differences in nutritional quality of the various host-plant tissues. Despite being anecdotally described as a "stem-feeding aphid," A. solani was rarely found feeding on stems at the population densities established in our tests, with the exception of racemes of scarlet sage (Salvia splendans). Although some previous reports suggested that A. solani prefers to feed on new growth of plants, our results indicate that mature leaves are preferred over growing tips and young leaves. The implications of the within-plant feeding preferences of A. solani populations with respect to both biological and chemical control are discussed.

  4. MR imaging of a mature teratoma in third ventricle: case report

    International Nuclear Information System (INIS)

    Kim, Myung Soon; Sung, Ki Joon; Cho, Mee Yon

    1994-01-01

    Teratoma is very rarely developed in the third ventricle. We report a case of third ventricular mature teratoma in 12-year old boy with headache and precocious puberty. In T1WI and Gd-DTPA enhanced T1WI, the mass in the third ventricle showed mixed signal intensities with signal void and partial contrast enhancement. The tumor was confirmed as a mature teratoma including teeth and fatty tissue

  5. MR imaging of a mature teratoma in third ventricle: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soon; Sung, Ki Joon; Cho, Mee Yon [Wonju College of Medicine, Yonsei University, Wonju (Korea, Republic of)

    1994-01-15

    Teratoma is very rarely developed in the third ventricle. We report a case of third ventricular mature teratoma in 12-year old boy with headache and precocious puberty. In T1WI and Gd-DTPA enhanced T1WI, the mass in the third ventricle showed mixed signal intensities with signal void and partial contrast enhancement. The tumor was confirmed as a mature teratoma including teeth and fatty tissue.

  6. Maturity Models Development in IS Research

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan; Vatrapu, Ravi; Andersen, Kim Normann

    2015-01-01

    Maturity models are widespread in IS research and in particular, IT practitioner communities. However, theoretically sound, methodologically rigorous and empirically validated maturity models are quite rare. This literature review paper focuses on the challenges faced during the development...... literature reveals that researchers have primarily focused on developing new maturity models pertaining to domain-specific problems and/or new enterprise technologies. We find rampant re-use of the design structure of widely adopted models such as Nolan’s Stage of Growth Model, Crosby’s Grid, and Capability...... Maturity Model (CMM). Only recently have there been some research efforts to standardize maturity model development. We also identify three dominant views of maturity models and provide guidelines for various approaches of constructing maturity models with a standard vocabulary. We finally propose using...

  7. Tissue culture of black pepper (piper nigrum l.) in Pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Naz, S.; Nazir, H.; Shinwari, Z.K.

    2011-01-01

    Black pepper (Piper nigrum L.) the 'King of Spices' is a universal table condiment. It is extensively used in Pakistani cuisines and herbal medicines and imported in bulk from neighboring countries. The black pepper vine is generally cultivated by seed because other vegetative propagation methods are slow and time consuming. Therefore the tissue culture technique is considered more efficient and reliable method for rapid and mass propagation of this economically important plant. The present study was initiated to develop protocol for micro-propagation of black pepper vine. The stem, leaf and shoot tip explants from mature vine were cultured on MS medium supplemented with different concentrations of plant growth regulators (2,4-D, BA, IBA). Best callus was produced on MS medium with 1.5 mg/l BA by shoot tip explant. Shoot regeneration was excellent on MS medium with 0.5 mg/l BA. The plantlets formed were rooted best on 1.5 mg/l IBA. The rooted plants were transplanted in soil medium and acclimatized in growth room. The plants raised were test planted under the local conditions of Hattar. (author)

  8. Transuranic behavior in soils and plants

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.; Cataldo, D.A.; Rogers, J.E.; McFadden, K.M.; Jenne, E.A.; Schreckhise, R.G.

    1981-01-01

    The principal objective of this study is to gather information about soil, plant, and foliar interaction factors that influence the availability of transuranics to agricultural plants and animals. This paper discusses plant processes which influence transport across the plant root membrane and foliar surfaces, and the form and sites of deposition of transuranic elements in mature plants

  9. Dehydrin expression in seeds and maturation drying: a paradigm change.

    Science.gov (United States)

    Radwan, A; Hara, M; Kleinwächter, M; Selmar, D

    2014-09-01

    Dehydrins are well known for being expressed in leaves during the course of developmental processes as well as under drought stress, being part of the protective machinery. Moreover, in seed physiology, dehydrins are classified as late embryogenesis-related proteins (LEA protein), where they are thought to be responsible for persistence and longevity of seeds. Although both topics are a focus of modern plant biology, a direct linkage between these both areas is generally lacking. Based on an alignment of the chain of events, this paper will help to generate understanding that the occurrence of dehydrins in maturing seeds and leaves suffering drought stress is part of the same basic principle: basic principle: dehydrins are expressed in response to water shortage. Unfortunately, the related developmental process in seeds, i.e. maturation drying, has not been adequately considered as a part of this process. As a corresponding implication, the chain of events must be adjusted: the differences in dehydrin expression in orthodox, intermediate and recalcitrant seeds could be directly attributed to the occurrence or absence of maturation drying. The differences in dehydrin expression in orthodox, intermediate and recalcitrant seeds, and thus the differences in longevity, could be attributed to the occurrence or absence of a maturation drying. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Early evaluation and on field conditions of resistance to Mycosphaerella fijiensis Morelet of plants from Grande naine (AAA cultivar, obtained through out tissue culture and mutations induction

    Directory of Open Access Journals (Sweden)

    Lourdes R. García

    2003-04-01

    Full Text Available The present work was carried out in the Plants Biotechnology Institute of the Central University of Las Villas. The plant material from the cv. Grande Naine (AAA was treated with physical mutagenic agents(gamma radiation 60Co source to induce genetic variability. The behaviour of the population to the black Sigatoka was evaluated. A somaclone was selected by its disease resistance and was in vitro multiplied and the plants were acclimatized to evaluate its behaviour facing the disease on greenhouse conditions and in a second cycle of multiplication in the field. The results showed that in the majority of the plants were not found differences respect cv Grande Naine, just one presented similar reaction to cv. ‘FHIA 18’ (AAAB (partially resistant as for the variable evaluated, being obtained a frequency of 0.018% for this character. This plant was named IBP 446. After 60 days of application of the mycelial homogenized of M. fijiensis in micropropagated plants of this somaclone, differences in the respect affectation states were found at susceptible witness in greenhouse conditions. When plants of the IBP 446 were evaluated in a second cycle of multiplication differences were found with the susceptible control only at flowering, while they behaved similar at susceptible control in the crop. Key words: early detection, breeding, mutation, Black Sigatoka

  11. Use of Tissue Culture Techniques for Producing Virus-Free Plant in Garlic and Their Identification through Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Hatıra Taşkın

    2013-01-01

    Full Text Available This study was performed for comparison of meristem culture technique with shoot tip culture technique for obtaining virus-free plant, comparison of micropropagation success of two different nutrient media, and determination of effectiveness of real-time PCR assay for the detection of viruses. Two different garlic species (Allium sativum and Allium tuncelianum and two different nutrient media were used in this experiment. Results showed that Medium 2 was more successful compared to Medium 1 for both A. tuncelianum and A. sativum (Kastamonu garlic clone. In vitro plants obtained via meristem and shoot tip cultures were tested for determination of onion yellow dwarf virus (OYDV and leek yellow stripe virus (LYSV through real-time PCR assay. In garlic plants propagated via meristem culture, we could not detect any virus. OYDV and LYSV viruses were detected in plants obtained via shoot tip culture. OYDV virus was observed in amount of 80% and 73% of tested plants for A. tuncelianum and A. sativum, respectively. LYSV virus was found in amount of 67% of tested plants of A. tuncelianum and in amount of 87% of tested plants of A. sativum in this study.

  12. Regenerative Endodontic Treatment of a Maxillary Mature Premolar

    Directory of Open Access Journals (Sweden)

    Qingan Xu

    2018-01-01

    Full Text Available Regenerative endodontic treatment was performed on a mature maxillary premolar diagnosed as chronic pulpitis. The root canals were chemomechanically prepared and placed intracanal medicaments at the first appointment. Then 2 weeks later, a blood clot was created in the canals, over which mineral trioxide aggregate was placed. At 6-month follow-up, cementum-like tissue seemed to be formed in the root canal along with nearly recovered pulp vitality. At 12-month recall, the radiographic results revealed evidence of root wall thickening. At 30-month recall, no periapical lesion was found. This case report indicates that regenerative endodontic treatment for the mature premolar is feasible. More cases are needed for further validation.

  13. Trade-Offs of Flowering and Maturity Synchronisation for Pineapple Quality.

    Directory of Open Access Journals (Sweden)

    V Nicodème Fassinou Hotegni

    Full Text Available In the pineapple sector of Benin, poor fruit quality prevents pineapple producers to enter the European market. We investigated effects of common cultural practices, flowering and maturity synchronisation, (1 to quantify the trade-offs of flowering and maturity synchronisation for pineapple quality and the proportion of fruits exportable to European markets, and (2 to determine the effect of harvesting practice on quality attributes. Four on-farm experiments were conducted during three years using cultivars Sugarloaf and Smooth Cayenne. A split-split plot design was used in each experiment, with flowering induction practice as main factor (artificial or natural flowering induction, maturity induction practice as split factor (artificial or natural maturity induction and harvesting practice as the split-split factor (farmers' harvest practice or individual fruit harvesting at optimum maturity. Artificial flowering induction gave fruits with lower infructescence weight, higher ratio crown: infructescence length, and a lower proportion of fruits exportable to European markets than natural flowering induction. The costs of the improvements by natural flowering induction were huge: the longer durations from planting to flowering induction and harvesting, the higher number of harvestings of the fruits increasing the labour cost and the lower proportion of plants producing fruits compared with crops from artificially flowering-induced plants. Artificial maturity induction decreased the total soluble solids concentration in the fruits compared with natural maturity induction thus decreasing the proportion of fruits exportable to European markets, at a benefit of only a slightly shorter time from flowering induction to harvesting. Harvesting individual fruits at optimum maturity gave fruits with higher total soluble solids in naturally maturity induced fruits compared with the farmers' harvest practice. Given the huge costs of natural flowering induction

  14. PedonnanceofE3rly MatUring MutantS Derived from ''SuPa'~ Rice ...

    African Journals Online (AJOL)

    Vienna, Austria in 1994. The dry seeds were in-adiated with gamma rays using three doses (170, 210. --iifid 24OC;Y).frOm C.obalt 60 (lCO) in order shorten the plant height and maturity period. From the resulting mutant. PoPulations ortgindtiriifroni modified single seed descent method, five Jery early maturing lines plus the ...

  15. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut, Juglans nigra

    Directory of Open Access Journals (Sweden)

    Paul Merten

    2013-11-01

    Full Text Available Black walnut, a valuable economic and environmentally important species, is threatened by thousand cankers disease. Systemic imidacloprid and dinotefuran applications were made to mature black walnut trees to evaluate their translocation and concentration levels in various tissue types including leaf, twig, trunk core, nutmeat, and walnut husk. The metabolism of imidacloprid in plants produces a metabolite, olefin-imidacloprid, which has been documented to have insecticidal properties in other systems. Trunk CoreTect (imidacloprid soil pellets and a trunk spray of dinotefuran were applied to mature black walnuts in spring 2011. Imidacloprid concentrations were detected in both the lower and upper strata in all tissue types tested and progressively increased through month 12 post-treatment in twig and leaf tissue. Olefin-imidacloprid was detected in the nutmeat and walnut husk. Dinotefuran was only detected in the first sampling period and was found in low concentration levels in leaf and twig tissue types, and was not detected in the trunk, nutmeat or the walnut husk.

  16. The maturity of Nuclear Law

    International Nuclear Information System (INIS)

    Martinez Favini, J.A.

    1985-01-01

    The ever-increasing use of atomic energy since 1950 has generated a set of rules called for practical reasons Nuclear Law. This branch of law covers a wide scope of related activities and, specialized studies have apparently foreseen all conceivable hypotheses. The international character of Nuclear Law explains the basic harmony of international legislation. The methods of comparative Law and International Private Law as well as the joint, indepth work of scientists and jurists will bring about steady progress towards legislative unity and prompt solution to conflicts. The expectable revitalization of nuclear-electric programs early in the 21st. century will give rise to a Nuclear juridical community which can already be perceived through the maturity Nuclear Law has reached. (Author) [es

  17. Early retention of 237Pu + 239Pu in mature beagles

    International Nuclear Information System (INIS)

    Lloyd, R.D.; McFarland, S.S.; Atherton, D.R.; Bruenger, F.W.; Taylor, G.N.; Mays, C.W.

    1978-01-01

    Five mature beagles, ranging in age from 57 to 84 months, were injected intravenously with about 0.05-0.1 μCi/kg of 239 Pu(IV) citrate to which tracer amounts of the photon-emitter 237 Pu had been added. Plutonium retention in liver and in non-liver tissue (mainly skeleton) was measured periodically in the living dogs for nearly 4 months after injection by a combination of total-body and partial-body counting. All excreta were collected during the first 21 days and analysed for their Pu content. One dog was sacrificed at 14 days and another at 118 days for distribution studies. About 17% (14-20%) of the injected Pu was excreted in the urine and feces in the first 3 weeks, about the same as that excreted in a corresponding time by beagles injected as young adults (14%), but substantially more than beagles injected as juveniles (11%). In contrasts to juvenile beagles injected at 3 months of age, in which early retention was about 12% in liver and 68% in the skeleton, mature beagles retained about 30% in liver and 50% in the skeleton. Retention in young adult beagles injected at 17 months of age was similar to that of mature dogs. Relative distribution of skeletal plutonium among various bones was similar in the mature animals to that seen previously in young adults, but quite different from that of juveniles. A notable exception was the humerus for which there was no significant difference (P>0.2) in the % of retained skeletal Pu represented by the humerus among the juvenile, young adult and mature dogs. (author)

  18. From Definitive Endoderm to Gut-a Process of Growth and Maturation

    DEFF Research Database (Denmark)

    Guiu, Jordi; Jensen, Kim B

    2015-01-01

    . In contrast, very little is known about the molecular mechanisms that trigger tissue maturation during development. With this review, our aim is to carefully provide a critical appraisal of the literature to give a state-of-the-art view of intestinal development. Starting from definitive endoderm...... at gastrulation to the emergence of a structure with mature properties, the tissue undergoes complex morphogenetic processes that rely on both biophysical changes and secreted signaling molecules. We will also discuss how new and exciting developments using in vitro models are likely to provide new insights...

  19. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    Science.gov (United States)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  20. A maturity model for blockchain adoption

    OpenAIRE

    Wang, Huaiqing; Chen, Kun; Xu, Dongming

    2016-01-01

    Background: The rapid development of the blockchain technology and its various applications has rendered it important to understand the guidelines for adopting it. Methods: The comparative analysis method is used to analyze different dimensions of the maturity model, which is mainly based on the commonly used capability maturity model. Results: The blockchain maturity model and its adoption process have been discussed and presented. Conclusions: This study serves as a guide to institutions to...

  1. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Science.gov (United States)

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  2. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  3. A Set Theoretical Approach to Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester; Vatrapu, Ravi; Andersen, Kim Normann

    2016-01-01

    characterized by equifinality, multiple conjunctural causation, and case diversity. We prescribe methodological guidelines consisting of a six-step procedure to systematically apply set theoretic methods to conceptualize, develop, and empirically derive maturity models and provide a demonstration......Maturity Model research in IS has been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. To address these criticisms, this paper proposes a novel set-theoretical approach to maturity models...

  4. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  5. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    Science.gov (United States)

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  6. Partial Purification and Characterization of RNase P from Arabidopsis Thaliana Tissue

    National Research Council Canada - National Science Library

    2000-01-01

    ...) molecules to give mature 5, ends has been isolated from Arabidopsis thaliana tissue. The RNase P activity was isolated by ammonium sulfate precipitation of a tissue homogenate and further purified by anion exchange chromatography...

  7. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  8. Indirect organogenesis in milkweed ( Calotropis procera from mature zygotic embryo explants

    Directory of Open Access Journals (Sweden)

    Hojatollah Abbasi

    2018-01-01

    Full Text Available Milkweed ( Calotropis procera is a valuable medicinal plant which grows in many regions of Iran. Its significant medicinal properties have made it an important crop which is cultivated commercially. This plant is propagated from seeds as well as root and shoot cuttings. Due to problems in the usage of these reproduction methods, new propagation methods such as tissue culturing should be developed. This study was aimed at obtaining appropriate concentrations of plant hormones for indirect organogenesis of milkweed. The experiment was arranged in a completely randomized design (CRD with 3 replications. The effects of various concentrations of (2,4-dichlorophenoxyacetic acid 2,4-D (0.1, 0.5, 1, 2 and 3 mg/l were studied in terms of callus induction and shoot regeneration on an MS based medium supplemented with BA (benzyl amino purine and NAA (naphthalene acetic acid at the same concentration. Mature embryos were used as explants and morphological traits such as embryo size, callus size, number and size of shoots and roots were recorded. The results showed that 2,4-D significantly increased the size of cultured embryos (P < 0.05. The largest embryo volume was observed in cultures treated with 3 mg/l 2,4-D. The highest callusing was recorded in 2 mg/l 2,4-D. The effects of BA and NAA concentrations on shoot regeneration were significant and the highest values were observed for a combination of 1 mg/l BA and 2 mg/l NAA. 1 mg/l IBA (Indole 3-butyric acid was able to induce the highest number of better quality roots and shoots.

  9. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  10. Motivational maturity and helping behavior.

    Science.gov (United States)

    Haymes, M; Green, L

    1977-12-01

    This study was undertaken to examine the independent influences of conative development (the Maslow needs hierarchy) upon behavioral aspects of prosocial orientations. It provides a behavioral demonstration of conative effects in a helping paradigm, among college-age men. A comparison of the conative data across the ages of 15-22 provided a cross-sectional view of conative development itself. Conative maturity was found to be predictive of greater helping among college-age men. Situational demands were demonstrated which tended to mask, but not override, these predispositional influences on helping. The cross-sectional data on conative development point to probable movement to early esteem concerns among high school men who have reached the conative level of love and belonging. On the other hand, the stability across the years of 15-22 of proportion of safety concerns suggests fixation of such concerns in those exhibiting them in high school. Results are discussed in terms of conative growth for development of prosocial orientations.

  11. Smart Grid Interoperability Maturity Model

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  12. Antenatal assessment of fetal maturity

    International Nuclear Information System (INIS)

    Gerstner, G.; Reinold, E.; Wolf, G.

    1979-01-01

    334 ultrasound-cephalometries and 231 X-ray fetographies were performed for antenatal assessment of fetal maturity as well as for exact estimation of gestational age in women with unknown date of confinement. The accuracy of the predictions was compared. Ultrasound-cephalometry gave best results when performed until the 20th week of gestation. A correct prediction was obtained in 80.4% of cases. After the 20th week of gestation, the accuracy of prediction decreased. Radiology on the contrary gave optimal results at the end of pregnancy. A correct prediction of the date of confinement was obtained in 73.8% of cases, when the X-ray fetography was performed between the 37th and 40th week of gestation. At the end of gestation radiography should be performed, if there is a discrepancy between ultrasound and clinical estimation or if ultrasound-cephalometry was not carried out in early pregnancy - especially if induction of labour is necessary. (author)

  13. Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains

    DEFF Research Database (Denmark)

    Holme, Inger; Dionisio, Giuseppe; Madsen, Claus Krogh

    2017-01-01

    The phytase purple acid phosphatase (HvPAPhy_a) expressed during barley seed development was evaluated as transgene for overexpression in barley. The phytase was expressed constitutively driven by the cauliflower mosaic virus 35S-promoter, and the phytase activity was measured in the mature grains......, the green leaves and in the dry mature vegetative plant parts left after harvest of the grains. The T2-generation of HvPAPhy_a transformed barley showed phytase activity increases up to 19-fold (29 000 phytase units (FTU) per kg in mature grains). Moreover, also in green leaves and mature dry straw, phytase...... activities were increased significantly by 110-fold (52 000 FTU/kg) and 57-fold (51 000 FTU/kg), respectively. The HvPAPhy_a-transformed barley plants with high phytase activities possess triple potential utilities for the improvement of phosphate bioavailability. First of all, the utilization of the mature...

  14. Digital Maturity of the Firm's Business Model

    DEFF Research Database (Denmark)

    Groskovs, Sergejs; Vemula, Sreekanth

    We propose a digital maturity assessment model as an instrument for researchers and a strategic tool for managers. Existing literature lacks a conceptually clear way to measure the construct of digital maturity at the level of the firms business model. Our proposed instrument thus opens avenues f...

  15. A maturity model for industrial supply chains

    NARCIS (Netherlands)

    Hameri, A.P.; McKay, K.N.; Wiers, V.C.S.

    2013-01-01

    This article takes an evolutionary view of supply chains to suggest a series of distinct, contextual phases for supply chain execution and what maturity might mean at each phase. For example, what is best practice in a mature industry might not be best practice in a pioneering situation.Three

  16. 7 CFR 1421.101 - Maturity dates.

    Science.gov (United States)

    2010-01-01

    ... filed and disbursed except, for transferred marketing assistance loan collateral. The maturity date for transferred marketing assistance loan collateral will be the maturity date applicable to the original loan... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS GRAINS AND SIMILARLY HANDLED COMMODITIES-MARKETING...

  17. Cone and Seed Maturation of Southern Pines

    Science.gov (United States)

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  18. POSTTREATMENT NEUROBLASTOMA MATURATION TO GANGLIONIC CELL TUMOR

    Directory of Open Access Journals (Sweden)

    M. V. Ryzhova

    2012-01-01

    Full Text Available Tumor cells can differentiate into more mature forms in undifferentiated or poorly differentiated tumors, such as medulloblastomas with increased nodularity, as well as neuroblastomas. The authors describe 2 cases of neuroblastoma maturation into ganglioneuroblastoma 5 months after chemotherapy in a 2-year-old girl and 3 years after radiotherapy in a 16-year-old girl.

  19. Moving towards maturity in business model definitions

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Bukh, Per Nikolaj

    2014-01-01

    The field of business models has, as is the case with all emerging fields of practice, slowly matured through the development of frameworks, models, concepts and ideas over the last 15 years. New concepts, theories and models typically transcend a series of maturity phases. For the concept of Bus...

  20. Assessing the Harvest Maturity of Brazilian Mangoes

    NARCIS (Netherlands)

    Pereira, T.; Tijskens, L.M.M.; Vanoli, M.; Rizzolo, A.; Eccher Zerbini, P.C.; Torricelli, A.; Filgueiras, H.; Spinelli, L.

    2010-01-01

    No clear criterion exists to determine the optimum time to harvest mango. Some empirical relations are used to assess maturity, such as shoulder development. Moreover, as a result of the typical growing conditions in tropical climates, a huge variation in maturity and ripeness exists, seriously

  1. Decision-Making Style and Vocational Maturity.

    Science.gov (United States)

    Phillips, Susan D.; Strohmer, Douglas C.

    1982-01-01

    Examined the relationship between decision-making style, scholastic achievement, and vocational maturity for college students (N=64). Results did not support the hypothesized relationship between rationality and attitudinal and cognitive maturity. Scholastic achievement and lack of dependent decision style were found to be moderately predictive of…

  2. Bicarbonate as tracer for plant assimilated C and homogeneity of 14C and 15N distribution in ryegrass and white clover tissue by alternative labeling approaches

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Kusliene, Gedrime; Jacobsen, Ole Stig

    2013-01-01

    that 15N also had a heterogeneous distribution (up to two orders of magnitude). Conclusion Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even......Aims: Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated...... if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches. Methods Perennial ryegrass and white clover were...

  3. Correlation of Improved Version of Cervical Vertebral Maturation Indicator with Other Growth Maturity Indicators

    Directory of Open Access Journals (Sweden)

    Tripti Tikku

    2013-01-01

    Conclusion: The correlation between middle phalanx of 3rd finger (MP3 and cervical vertebral maturation method (CVMI and CVMS was higher as compared to the correlation of either of the cervical vertebral maturation method or MP3 with dental maturation indicator.

  4. Assessing healthcare process maturity: challenges of using a business process maturity model

    NARCIS (Netherlands)

    Tarhan, A.; Turetken, O.; van den Biggelaar, F.J.H.M.

    2015-01-01

    Doi: 10.4108/icst.pervasivehealth.2015.259105 The quality of healthcare services is influenced by the maturity of healthcare processes used to develop it. A maturity model is an instrument to assess and continually improve organizational processes. In the last decade, a number of maturity models

  5. Microcracks induce osteoblast alignment and maturation on hydroxyapatite scaffolds

    Science.gov (United States)

    Shu, Yutian

    Physiological bone tissue is a mineral/collagen composite with a hierarchical structure. The features in bone, such as mineral crystals, fibers, and pores can range from the nanometer to the centimeter in size. Currently available bone tissue scaffolds primarily address the chemical composition, pore size, and pore size distribution. While these design parameters are extensively investigated for mimicking bone function and inducing bone regeneration, little is known about microcracks, which is a prevalent feature found in fractured bone in vivo and associated with fracture healing and repair. Since the purpose of bone tissue engineering scaffold is to enhance bone regeneration, the coincidence of microcracks and bone densification should not be neglected but rather be considered as a potential parameter in bone tissue engineering scaffold design. The purpose of this study is to test the hypothesis that microcracks enhance bone healing. In vitro studies were designed to investigate the osteoblast (bone forming cells) response to microcracks in dense (94%) hydroxyapatite substrates. Microcracks were introduced using a well-established Vickers indentation technique. The results of our study showed that microcracks induced osteoblast alignment, enhanced osteoblast attachment and more rapid maturation. These findings may provide insight into fracture healing mechanism(s) as well as improve the design of bone tissue engineering orthopedic scaffolds for more rapid bone regeneration.

  6. Study of the comparative dynamics of the incorporation of tissue free-water tritium (TFWT) in bulrushes (Typha latifolia) and carp (Cyprinus carpio) in the Almaraz nuclear power plant cooling reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, A. [Department of Applied Physics, Faculty of Veterinary, University of Extremadura, Avda de la Universidad s/n, 10071 Caceres (Spain)], E-mail: ymiralle@unex.es; Garcia, E. [Department of Applied Physics, Technical Forest Engineering School, University of Extremadura, 10600 (Plasencia) Caceres (Spain); Paniagua, J.M. [Department of Applied Physics, Polytechnic School, University of Extremadura, Avda de la Universidad s/n, 10071 Caceres (Spain); Rodriguez, A. [Department of Applied Physics, Faculty of Veterinary, University of Extremadura, Avda de la Universidad s/n, 10071 Caceres (Spain)

    2009-03-15

    The Almaraz nuclear power plant (Spain) uses the water of Arrocampo reservoir for cooling, and consequently raises the radioactive levels of the aquatic ecosystem of this reservoir. From July 2002 to June 2005, monthly samples of surface water, bulrushes (Typha latifolia) and carp (Cyprinus carpio) were collected from this reservoir. They were analyzed to determine the temporal evolution of the levels of {sup 3}H in surface water and of its transfer from the surface water to free-water in the tissues (TFWT) of the aforementioned two organisms. The tritium levels in the surface water oscillate with a biannual period, with their values in the study period ranging between 53 and 433 Bq/L. The incorporation of tritium to bulrushes and carp was fairly similar, the respective mean concentration factors being 0.74 and 0.8 (unitless, as Bq/L tissue water per Bq/L reservoir water). The temporal evolution of the levels fairly closely followed that observed for the surface water tritium, although detailed analysis showed the dominant periodicity for the bulrushes to be annual. This difference reflects the influence on the incorporation of tritium to bulrushes of diverse environmental and metabolic factors, especially evapotranspiration and the seasonal growth of this plant.

  7. Study of the comparative dynamics of the incorporation of tissue free-water tritium (TFWT) in bulrushes (Typha latifolia) and carp (Cyprinus carpio) in the Almaraz nuclear power plant cooling reservoir

    International Nuclear Information System (INIS)

    Baeza, A.; Garcia, E.; Paniagua, J.M.; Rodriguez, A.

    2009-01-01

    The Almaraz nuclear power plant (Spain) uses the water of Arrocampo reservoir for cooling, and consequently raises the radioactive levels of the aquatic ecosystem of this reservoir. From July 2002 to June 2005, monthly samples of surface water, bulrushes (Typha latifolia) and carp (Cyprinus carpio) were collected from this reservoir. They were analyzed to determine the temporal evolution of the levels of 3 H in surface water and of its transfer from the surface water to free-water in the tissues (TFWT) of the aforementioned two organisms. The tritium levels in the surface water oscillate with a biannual period, with their values in the study period ranging between 53 and 433 Bq/L. The incorporation of tritium to bulrushes and carp was fairly similar, the respective mean concentration factors being 0.74 and 0.8 (unitless, as Bq/L tissue water per Bq/L reservoir water). The temporal evolution of the levels fairly closely followed that observed for the surface water tritium, although detailed analysis showed the dominant periodicity for the bulrushes to be annual. This difference reflects the influence on the incorporation of tritium to bulrushes of diverse environmental and metabolic factors, especially evapotranspiration and the seasonal growth of this plant

  8. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil

    OpenAIRE

    H?lscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by N...

  9. Set-Theoretic Approach to Maturity Models

    DEFF Research Database (Denmark)

    Lasrado, Lester Allan

    Despite being widely accepted and applied, maturity models in Information Systems (IS) have been criticized for the lack of theoretical grounding, methodological rigor, empirical validations, and ignorance of multiple and non-linear paths to maturity. This PhD thesis focuses on addressing...... these criticisms by incorporating recent developments in configuration theory, in particular application of set-theoretic approaches. The aim is to show the potential of employing a set-theoretic approach for maturity model research and empirically demonstrating equifinal paths to maturity. Specifically...... methodological guidelines consisting of detailed procedures to systematically apply set theoretic approaches for maturity model research and provides demonstrations of it application on three datasets. The thesis is a collection of six research papers that are written in a sequential manner. The first paper...

  10. Induction of Biomolecules in Mature Leaves of Terminalia arjuna Due to Feeding of Antheraea mylitta Drury

    Directory of Open Access Journals (Sweden)

    G. Abraham

    2004-01-01

    Full Text Available Terminalia arjuna is an important food plant of the tasar silkworm, Antheraea mylitta Drury. In this study, we investigated the induction of biomolecules in mature leaves of these plants subjected to insect feeding. Increase in total tannin content, lipid peroxidation, and trypsin inhibitor activity have been observed in mature leaves damaged by the insects. The growth rate of Vth instar larvae of A. mylitta fed on previously damaged foliage reduced by 87.1%. Induction of biomolecules for defense mechanisms in relation to herbivore damage has been discussed.

  11. Periostin in Mature Stage Localized Scleroderma.

    Science.gov (United States)

    Kim, Min-Woo; Park, Jung Tae; Kim, Jung Ho; Koh, Seong-Joon; Yoon, Hyun-Sun; Cho, Soyun; Park, Hyun-Sun

    2017-06-01

    Periostin is a novel matricellular protein expressed in many tissues, including bone, periodontal ligament, and skin. Although its expression is prominent in various fibrotic conditions, studies of periostin in localized scleroderma are rare. To investigate the expression of periostin and other molecules in localized scleroderma. A retrospective study of 14 patients with confirmed mature stage localized scleroderma was undertaken. Fourteen age-matched and biopsy site-matched subjects with normal skin were included as controls. Collagen fiber deposition, periostin, procollagen, transforming growth factor-β, and matrix metalloproteinase (MMP)-1 expression were assessed and compared between the two groups. Co-localization of α-smooth muscle actin and periostin was evaluated using confocal microscopy. Periostin was predominantly expressed along the dermo-epidermal junction in the controls. Conversely, patients with localized scleroderma demonstrated increased collagen fiber deposition and periostin expression that was more widely distributed along the entire dermis. MMP-1 staining showed increased expression in the epidermis and dermis of patients compared to scanty expression in the controls. A semi-quantitative evaluation showed a higher proportion of excessive collagen bundle deposition (57.1% vs. 7.1%, p =0.013), diffuse periostin positivity (42.9% vs. 0%, p =0.016), and moderate MMP-1 positivity (71.4% vs. 7.1%, p =0.001) in patients than in the controls. Compared to the controls, patients with localized scleroderma had enhanced periostin expression corresponding to increased collagen fiber deposition and unexpected overexpression of MMP-1. The results of this human in vivo study may implicate the pathogenesis of localized scleroderma.

  12. Transformation and mass hyperplasia technique of the garden plant (lily) by radiation and so forth. Mass hyperplasia of the lily using tissue culture

    International Nuclear Information System (INIS)

    Shigematsu, Koji; Hamada, Yutaka

    1997-01-01

    For an aim of more uniform child bulb production and good quality kind conservation using tissue culture of the lily, some hyperplasia from organs over ground of the lily were tried. In particular, optimum culture media with higher hyperplasia rate of the child bulb, redifferentiation due to difference among kinds of the lilies, and difference of hyperplasia of the child bulbs were investigated. As a result, it was found that pollution due to various germs attached to used materials often occurs, that efficiency obtainable for initial child bulb by redifferentiation from the organs was low at 20%, and that pollution due to various germs was often found at 25degC of cultivation temperature, which was inferior to that at 20degC. And, when conducting mass hyperplasia of the lily using tissue culture, an optimum culture medium of formation and hyperplasia of child bulb could be obtained for its each kind. As a result of conducting some investigations on configuration of the lily nourished from its child bulb and flowered by the tissue culture, it was also found that cultured bulb had the same character as its parent bulb had. (G.K.)

  13. The plant Extracts of Momordica Charantia and Trigonella Foenum Graecum Have Antioxidant and Anti-Hyperglycemic Properties for Cardiac Tissue During Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Uma Nath Tripathi

    2009-01-01

    Full Text Available Oxidative stress is currently suggested to play a major role in the development of diabetes mellitus. There is an increasing demand of natural anti-diabetic agents, as continuous administration of existing drugs and insulin are associated with many side effects and toxicity. The present study was aimed to investigate the effect of Momordica charantia (MC and Trigonella foenum graecum (TFG extracts (aqueous on antioxidant status and lipid peroxidation in heart tissue of normal and alloxan induced diabetic rats. In a 30 days treatment, rats were divided into six groups (I-VI of five animals in each, experiments were repeated thrice. Administration of MC (13.33 g pulp/kg body weight/day and TFG (9 g seeds powder/kg body weight/day extracts in diabetic rats has remarkably improved the elevated levels of fasting blood glucose. A significant decrease in lipid peroxidation (p<0.001 and significant increase in the activities of key antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, glutathione-s-transferase (GST and reduced glutathione (GSH contents in heart tissue of diabetic rats were observed (group V and VI upon MC and TFG treatment. Our studies demonstrate the anti-hyperglycemic and anti-oxidative potential of Momordica charantia and Trigonella foenum graecum, which could exert beneficial effects against the diabetes and associated free radicals complications in heart tissue.

  14. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  15. Avaliação por RAPD de plantas de abacaxizeiro cultivar Smooth Cayenne derivadas do seccionamento do talo e cultura de tecidos Evaluation of pineapple plants cultivar Smooth Cayenne from peduncle division and tissue culture by RAPD

    Directory of Open Access Journals (Sweden)

    MARIA VITÓRIA CECCHETTI GOTTARDI

    2002-04-01

    Full Text Available Foram coletadas, em área comercial da fazenda Córrego dos Bois, município de Canápolis -- MG, plantas de abacaxizeiro cultivar Smooth Cayenne, para serem avaliadas quanto à propagação pelo método do seccionamento do talo e cultura de tecidos, bem como análise por RAPD das mudas decorrentes destes dois processos de propagação. A propagação pelo seccionamento do talo foi eficiente na produção de mudas, tanto em quantidade como em qualidade, em um curto espaço de tempo, além de apresentar a mesma característica genotípica (análise por RAPD das plantas-matrizes de origem. Já no processo de produção de mudas por cultura de tecidos, não foi obtida uma quantidade suficiente de mudas que comprovasse a utilização de uma metodologia mais sofisticada. Além da perda por contaminação em laboratório de 70% do material em estudo, foi necessária a utilização de um longo período, aproximadamente 18 meses, para a obtenção das mudas. Na análise por RAPD das plantas decorrentes deste processo de propagação, foram observados padrões de bandas diferentes em algumas amostras, as quais podem estar relacionadas com uma possível variação somaclonal.Plants of pineapple Smooth Cayenne cultivar were collected from a commercial area, Córrego dos Bois farm, in Canápolis, state of Minas Gerais, to evaluate two different processes of propagation, peduncle division and tissue culture. These same plants were characterized by RAPD analysis. According to the two propagation method, the peduncle division was efficient in seedlings propagation, in quantity as well as in quality, at a short period of time, resulting the same phenotype and genetic characteristics (RAPD analysis from the matrix descent plants. In the tissue culture method, the quantity of seedlings obtained were not good enough that could prove the use of a sophisticated methodology. Besides loosing 70% of the material, it was necessary to expend a long period of time, at

  16. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  17. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, Pkale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone. PMID:25084454

  18. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  19. Comparison of vitrified and unvitrified Eocene woody tissues by TMAH thermochemolysis – implications for the early stages of the formation of vitrinite

    Directory of Open Access Journals (Sweden)

    Huggett William W

    2006-10-01

    Full Text Available Abstract Samples of vitrified and unvitrified Eocene woody plant tissues collected from the Fossil Forest site, Geodetic Hills, Axel Heiberg Island, have been characterized by TMAH thermochemolysis. All samples are gymnosperm-derived, are of very low maturity and all share the same post-depositional geologic history. Differences in the distributions of products observed from vitrified and unvitrified samples suggest that vitrification of woody tissue is associated with modification of the lignin C3 side chain, following loss of all or most of the carbohydrate present in the precursor woody tissues. The key driver of vitrification appears to be physical compression of the tissue following biological removal of cellulosic materials.

  20. The improvement of cotton plant in mutation breeding dry climate areas at NTB

    International Nuclear Information System (INIS)

    Lilik Harsanti

    2015-01-01

    The opportunity of cotton plant to become a major crop in Indonesia is widely opened due to its extensive adaptability, productivity, efficiency of nutrient intake, and relatively resistant against pests and plant diseases. Generally, cotton plant is an important industrial crop in textile manufacture. Cotton plant has been known and planted for a long time ago by the local farmer, especially at Java, NTB and NTT. Plant mutation breeding have the mutant lines genetic for plant. The mutant lines of cotton plant, which originally come from embryogenic tissue culture (embryo axis, NIAB-999), were irradiated with dose of 20 Gy. Gamma Chamber 4000-A with source of 60 Cobalt was used for the irradiation treatment. The experiments were done at Citayam by designed by randomized Block design with five replications. Both of mutant lines were planted in the plot with size of 8 × 7 m 2 and 10 × 100 cm of spacing. Kanesia 15 variety was used as a control. The parameters observed were the days of maturity, plant height, number of generative branches, number of fruit/plant, weight of 100 cotton boll per plot. As the results, CN 2A has the biggest productivity, shown by the weight of the cotton fiber per plot, which is 447.510 kg compared to Kanesia 15 and NIAB 999 is control national and control mother. (author)

  1. Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa

    DEFF Research Database (Denmark)

    Schmidt, Marianne Molander; Nielsen, Line Hagner; Søgaard, Søren Vinter

    2014-01-01

    ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite envenomation, every year, causes estimated 5-10,000 mortalities and results in more than 5-15,000 amputations in sub-Saharan Africa alone. Antiserum is not easily accessible in these regions or doctors are simply not available, thus more than 80% of all p...... patients seek traditional practitioners as first-choice. Therefore it is important to investigate whether the plants used in traditional medicine systems contain compounds against the necrosis-inducing enzymes of snake venom....

  2. Thallium speciation in plant tissues-Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals.

    Science.gov (United States)

    Krasnodębska-Ostręga, Beata; Sadowska, Monika; Ostrowska, Sylwia

    2012-05-15

    Besides the dominant species in plants-Tl(I), noticeable amounts of Tl(III) (about 10% of total Tl content) were found in extracts of plants cultivated in the presence of tailing sediments, which are the main source of anthropogenic thallium already present in the environment. It is an important step of gaining knowledge about the detoxification mechanisms developed by Sinapis alba. This plant species is highly tolerant to Tl and it is able to cumulate high amounts of Tl and transport it into the above-ground organs. For more adequate estimation of accumulating abilities of S. alba, the elements' bioavailability was taken into consideration. The obtained bioconcentration factors of Cd (AF=0.6) and Zn (AF=1-2) were significantly lower than of Tl (AF=100-200). The biomass production was similar to the biomass of control cultivation. The results were based on ICP MS measurements of total elements' content and HPLC ICP MS for speciation analysis. The quality of obtained results was evaluated based on the intermethod comparison with voltammetry as a reference method. Comparison of data obtained using ICP MS and electrochemical methods (after a proper chemical treatment) was also used for indication of Tl(III) presence and for proving that Tl(I) was not transferred into Tl(III) during analytical procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Are temperate mature forests buffered from invasive lianas?

    Science.gov (United States)

    Pavlovic, Noel B.; Leicht-Young, Stacey A.

    2011-01-01

    Mature and old-growth forests are often thought to be buffered against invasive species due to low levels of light and infrequent disturbance. Lianas (woody vines) and other climbing plants are also known to exhibit lower densities in older forests. As part of a larger survey of the lianas of the southern Lake Michigan region in mature and old-growth forests, the level of infestation by invasive lianas was evaluated. The only invasive liana detected in these surveys was Celastrus orbiculatus Thunb. (Celastraceae). Although this species had only attached to trees and reached the canopy in a few instances, it was present in 30% of transects surveyed, mostly as a component of the ground layer. Transects with C. orbiculatus had higher levels of soil potassium and higher liana richness than transects without. In contrast, transects with the native C. scandens had higher pH, sand content, and soil magnesium and lower organic matter compared to transects where it was absent. Celastrus orbiculatus appears to be a generalist liana since it often occurs with native lianas. Celastrus orbiculatus poses a substantial threat to mature forests as it will persist in the understory until a canopy gap or other disturbance provides the light and supports necessary for it to ascend to the canopy and damage tree species. As a result, these forests should be monitored by land managers so that C. orbiculatus eradication can occur while invasions are at low densities and restricted to the ground layer.

  4. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  5. Aboveground dry biomass partitioning and nitrogen accumulation in early maturing soybean ‘Merlin’

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2017-12-01

    Full Text Available The aim of the study was to determine the biomass and nitrogen accumulation in early maturing soybean plants experiencing contrasting weather conditions. Soybean (Glycine max is a species of agricultural crop plant that is widely described in scientific publications. During 2014–2016, a field experiment with early maturing soybean ‘Merlin’ was carried out at Grodziec Śląski, Poland (49°48'01" N, 18°52'04" E. Results showed that the morphological traits of the plants, the yield of individual plants, and the soybean crop were all closely related to the climatic conditions. A high amount of precipitation stimulated seed development, resulting in a high production potential. The harvest index calculated for soybean ‘Merlin’ was high and exceeded 0.5 g g−1. The nitrogen content of the aboveground biomass increased during ontogenesis. The maximum yield of dry matter was noted at the green maturity phase, which subsequently decreased at the full maturity phase because of the loss of the leaf fraction. The variation in the effectiveness of nitrogen accumulation in seeds between 2015 and 2016 was 30%. The nitrogen harvest index values were high in each year of the experiment and exceeded 0.92 g−1. For the production of 1 ton of seeds with an adequate amount of soybean straw, plants needed, on average, 68 kg of nitrogen.

  6. Westinghouse AP1000 licensing maturity

    International Nuclear Information System (INIS)

    Schulz, T.; Vijuk, R.P.

    2005-01-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up rated version of the AP600. The AP1000 uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 35 years of operating PWR experience. The AP1000 received Final Design Approval by the United States Nuclear Regulatory Commission (U.S. NRC) in September 2004. The AP1000 meets the US utility requirements. The AP1000 and its sister plant the AP600 have gone through a very through and complete licensing review. This paper describes the U.S. NRC review efforts of both the AP600 and the AP1000. The detail of the review and the independent calculations, evaluations and testing is discussed. The AP600 licensing documentation was submitted in 1992. The U.S. NRC granted Final Design Approval in 1999. During the intervening 7 years, the U.S. NRC asked thousands of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. For the AP1000 Westinghouse first engaged the U.S. NRC in pre-certification discussions to define the extent of the review required, since the design is so similar to the AP600. The AP1000 licensing documentation was submitted in March 2002. The U.S. NRC granted Final Design Approval in September 2004. During the intervening 2 1/2 years, the U.S. NRC asked hundreds of questions, performed independent safety analysis, audited Westinghouse calculations and analysis, and performed independent testing. The more significant areas of discussion will be described. The implications of this review and approval on AP1000 applications in

  7. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    Science.gov (United States)

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-08-25

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils.

  8. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil

    Directory of Open Access Journals (Sweden)

    Dirk Hölscher

    2016-08-01

    Full Text Available Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ. (Coleoptera: Curculionidae and the banana stem weevil (Odoiporus longicollis (Oliver (Coleoptera: Curculionidae. The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils.

  9. Mass photosynthesis and distribution of photo assimilates of winter wheat varieties with different maturity feature

    International Nuclear Information System (INIS)

    Wang Fahong; Zhao Junshi

    1996-01-01

    The mass photosynthesis rate and distribution of photoassimilates of winter wheat varieties with different maturity feature were studied using GXH-305 portable CO 2 infrared ray analyzer. The mass photosynthesis rate of winter wheat varieties with better maturity feature showed little difference from the varieties with general maturity feature during the early stage of grain filling phase. However, the mass photosynthesis rate of the former was significantly higher than that of the later during the middle and late stage of grain filling. The study with 14 CO 2 -tracing method showed that the relative activity in different organs of varieties with better maturity feature was significantly higher than that of varieties with worse maturity feature during the later growth stage of winter wheat. The rate of photoassimilates distribution in stalk and root system of winter wheat varieties with better maturity was higher than that in the others organs. The physiological mechanism of difference of grain yield and plant decay in varieties with different maturity feature were also discussed

  10. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    Science.gov (United States)

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. PLANT BIOPRINTING: NOVEL PERSPECTIVE FOR PLANT BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Adhityo WICAKSONO

    2015-12-01

    Full Text Available Bioprinting is a technical innovation that has revolutionized tissue engineering. Using conventional printer cartridges filled with cells as well as a suitable scaffold, major advances have been made in the biomedical field, and it is now possible to print skin, bones, blood vessels, and even organs. Unlike animal systems, the application of bioprinting in simple plant tissue cells is still in a nascent phase and has yet to be studied. One major advantage of plants is that all living parts are reprogrammable in the form of totipotent cells. Plant bioprinting may improve scientists’understanding of plant shape and morphogenesis, and could serve for the mass production of desired tissues or plants, or even the production of plant-based biomaterial for industrial uses. This perspectives paper explores these possibilities using knowledge on what is known about bioprinting in other biosystems.

  12. Gamma rays role in the improvement of yield and early maturity in soybean

    International Nuclear Information System (INIS)

    Moualla, M.Y.; Ali, N.M.

    1995-01-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs

  13. Gamma rays role in the improvement of yield and early maturity in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Moualla, M Y; Ali, N M [Atomic Energy Commission, P.O.Box 6091, Damascus (Syrian Arab Republic)

    1995-10-01

    Seeds from soybean variety glycine max (L) Merr., were irradiated with three doses of gamma rays: 100, 150 and 200 Gray in order to obtain high yielding and early maturity mutants to grown after wheat in a two crop rotation. All the three doses induced morphological and physiological variation and malformation that increased with increasing the dose. Coefficient of variation values were higher in M2 than in their respective values of M3. The results showed no selection efficiency under the non optimal environmental growing conditions with this lack of efficiency being more evident for yield than for early maturity. Using FTAB statistical programme 20 M2 and M3 plant were selected for each character and when evaluated in the following generation, it was clear that selection efficiency was higher for early maturity than for yield; the latter being high yielding and 4 early maturing m 4 mutants were obtained. 3 tabs.

  14. The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus

    Science.gov (United States)

    Tripathi, Uma Nath

    2009-01-01

    Oxidative stress is currently suggested to play a major role in the development of diabetes mellitus. There is an increasing demand of natural anti-diabetic agents, as continuous administration of existing drugs and insulin are associated with many side effects and toxicity. The present study was aimed to investigate the effect of Momordica charantia (MC) and Trigonella foenum graecum (TFG) extracts (aqueous) on antioxidant status and lipid peroxidation in heart tissue of normal and alloxan induced diabetic rats. In a 30 days treatment, rats were divided into six groups (I-VI) of five animals in each, experiments were repeated thrice. Administration of MC (13.33 g pulp/kg body weight/day) and TFG (9 g seeds powder/kg body weight/day) extracts in diabetic rats has remarkably improved the elevated levels of fasting blood glucose. A significant decrease in lipid peroxidation (pMomordica charantia and Trigonella foenum graecum, which could exert beneficial effects against the diabetes and associated free radicals complications in heart tissue. PMID:20716916

  15. Game Maturity Model for Health Care.

    Science.gov (United States)

    de Boer, Jan C; Adriani, Paul; van Houwelingen, Jan Willem; Geerts, A

    2016-04-01

    This article introduces the Game Maturity Model for the healthcare industry as an extension to the general Game Maturity Model and describes the usage by two case studies of applied health games. The Game Maturity Model for healthcare provides a practical and value-adding method to assess existing games and to determine strategic considerations for application of applied health games. Our forecast is that within 5 years the use and development of applied games will have a role in our daily lives and the way we organize health care that will be similar to the role social media has today.

  16. Service Quality and Process Maturity Assessment

    Directory of Open Access Journals (Sweden)

    Serek Radomir

    2013-12-01

    Full Text Available This article deals with service quality and the methods for its measurement and improvements to reach the so called service excellence. Besides older methods such as SERVQUAL and SERPERF, there are also shortly described capability maturity models based on which the own methodology is developed and used for process maturity assessment in organizations providing technical services. This method is equally described and accompanied by examples on pictures. The verification of method functionality is explored on finding a correlation between service employee satisfaction and average process maturity in a service organization. The results seem to be quite promising and open an arena for further studies.

  17. Maturity grids as tools for change management

    DEFF Research Database (Denmark)

    Maier, Anja; Moultrie, James; Clarkson, P John

    2011-01-01

    A maturity grid is a change management tool. Levels of maturity are assigned against aspects of an area under study, thus creating a grid. Text descriptions at the resulting intersections describe the typical behaviour exhibited by a firm for each area under study and from the basis...... for the assessment scale. It is a flexible assessment technique that is used by practitioners in industry, consultants and researchers in academia for diagnostic, reflective and improvement purposes. A large number of maturity grids have been proposed to assess a range of capabilities including quality management...

  18. Climatic signals registered as Carbon isotopic values in Metasequoia leaf tissues: A statistical analysis

    Science.gov (United States)

    Yang, H.; Blais, B.; Perez, G.; Pagani, M.

    2006-12-01

    To examine climatic signals registered as carbon isotopic values in leaf tissues of C3 plants, we collected mature leaf tissues from sun and shade leaves of Metasequoia trees germinated from the 1947 batch of seeds from China and planted along a latitudinal gradient of the United States. Samples from 40 individual trees, along with fossilized material from the early Tertiary of the Canadian Arctic, were analyzed for C and concentration and isotopic values using EA-IRMS after the removal of free lipids. The generated datasets were then merged with climate data compiled from each tree site recorded as average values over the past thirty years (1971-2002, NOAA database). When the isotope data were cross plotted against each geographic and climatic indicator, Latitude, Mean Annual Temperature (MAT), Average Summer Mean Temperature (ASMT)(June-August), Mean Annual Precipitation (MAP), and Average Summer Mean Precipitation (ASMP) respectively correlation patterns were revealed. The best correlating trend was obtained between temperature parameters and C isotopic values, and this correlation is stronger in the northern leaf samples than the southern samples. We discovered a strong positive correlation between latitude and the offset of C isotopic values between shade and sun leaves. This investigation represents a comprehensive examination on climatic signals registered as C isotopic values on a single species that is marked by single genetic source. The results bear implications on paleoclimatic interpretations of C isotopic signals obtained from fossil plant tissues.

  19. SIGNIFICANCE OF GALACTINOL AND RAFFINOSE FAMILY OLIGOSACCHARIDE SYNTHESIS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Sonali eSengupta

    2015-08-01

    Full Text Available Abiotic stress induces differential expression of genes responsible for the synthesis of Raffinose series of Oligosaccharides (RFOs in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of Galactinol synthase (GolS; EC 2.4.1.123, a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose and Ajugose are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g. RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrate in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debateand their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

  20. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...