Integrated coherent matter wave circuits
International Nuclear Information System (INIS)
Ryu, C.; Boshier, M. G.
2015-01-01
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry
DEFF Research Database (Denmark)
Gorlach, Alexey A.; Gorlach, Maxim A.; Lavrinenko, Andrei
2017-01-01
Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave tractor beam and utilize the de Broglie waves of nonrelativistic matter particles...... are compared, and the matter-wave pulling force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale quantum objects....
What's the Matter with Waves?; An introduction to techniques and applications of quantum mechanics
Parkinson, William
2017-12-01
Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in the hope to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. Part of Series on wave phenomena in the physical sciences
Waves in periodic medium. Atomic matter waves in light crystals
International Nuclear Information System (INIS)
Oberthaler, M. K.
1997-07-01
This work deals with the propagation of matter waves inside a periodic potential. In analogy to photon optics a potential can be described by a refractive index for matter waves. A real potential leads to a refractive spatial structure while an imaginary potential leads to an absorptive structure. A general theoretical description is given in the framework of Floquet theory. The equivalent approach of dynamical diffraction theory will be treated in detail. The analytic solution for weak potentials are given in a general form so that they are applicable for every kind of wave and medium. For our experiments an open two level atom (metastable Argon) propagating inside a standing light wave was used. Detuning the frequency of the light wave from the atomic resonance leads to a real (refractive) periodic potential. Tuning the laser exact on resonance gives rise to a pure imaginary (absorptive) periodic potential. In analogy to solid state crystals in X-ray and neutron optics we call a standing light wave a light crystal. Tuning the standing light field on resonance we demonstrated experimentally the Borrmann effect. This effect describes the increase of the total transmission through a crystal for Bragg incidence. Furthermore, we confirmed that this effect is coherent and that a sinusoidal wave field is formed inside the crystal. The nodes of the wave field were found to coincide with the maxima of absorption. For a detuned standing light field a refractive crystal was realized, for which the expected Pendelloesung effect was demonstrated. In this case the maximum of the wave field inside the crystal was found at the steepest gradient of the potential as predicted by dynamical diffraction theory. Superposing an absorptive and a refractive light crystal a complex light crystal was realized. With such a crystal the violation of Friedel's law was demonstrated in a very clear way. (author)
Waves in magnetized quark matter
Fogaça, D. A.; Sanches, S. M.; Navarra, F. S.
2018-05-01
We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant magnetic field. Starting from the Euler equation we derive linear wave equations and investigate their stability and causality. We use a generic form for the equation of state, the EOS derived from the MIT bag model and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis may be relevant for perturbations propagating through the quark matter phase in the core of compact stars and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy heavy ion collisions, to be carried out at FAIR and NICA.
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Generating gravity waves with matter and electromagnetic waves
International Nuclear Information System (INIS)
Barrabes, C.; Hogan, P A.
2008-01-01
If a homogeneous plane lightlike shell collides head on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision
Coherent matter wave optics on an atom chip
DEFF Research Database (Denmark)
Krüger, Peter; Hofferberth, S.; Schumm, Thorsten
2006-01-01
Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip.......Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip....
Gravitational waves in cold dark matter
Flauger, Raphael; Weinberg, Steven
2018-06-01
We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.
Schroedinger's Wave Structure of Matter (WSM)
Wolff, Milo; Haselhurst, Geoff
2009-10-01
The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com
Focus on modern frontiers of matter wave optics and interferometry
International Nuclear Information System (INIS)
Arndt, Markus; Ekers, Aigars; Klitzing, Wolf von; Ulbricht, Hendrik
2012-01-01
The level of experimental control and the detailed theoretical understanding of matter wave physics have led to a renaissance of experiments testing the very foundations of quantum mechanics and general relativity, as well as to applications in metrology. A variety of interferometric quantum sensors surpasses, or will surpass, the limits of their classical counterparts, for instance in the measurement of frequency and time or forces such as accelerations due to rotation and gravity with applications in basic science, navigation and the search for natural resources. The collection of original articles published in this focus issue of New Journal of Physics is intended as a snapshot of the current research pursued by a number of leading teams working on the development of new matter wave physics, devices and techniques. A number of contributions also stress the close relation between the historic roots of quantum mechanics and aspects of modern quantum information science which are relevant for matter wave physics. (editorial)
Gravitational waves from supernova matter
International Nuclear Information System (INIS)
Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M
2010-01-01
We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.
Coordinate transformations and matter waves cloaking
International Nuclear Information System (INIS)
Mohammadi, G.R.; Moghaddam, A.G.; Mohammadkhani, R.
2016-01-01
Transformation method provides an efficient tool to control wave propagation inside the materials. Using the coordinate transformation approach, we study invisibility cloaks with sphere, cylinder and ellipsoid structures for electronic waves propagation. The underlying physics behind this investigation is the fact that Schrödinger equation with position dependent mass tensor and potentials has a covariant form which follows the coordinate transformation. Using this technique we obtain the exact spatial form of the mass tensor and potentials for a variety of cloaks with different shapes. - Highlights: • Invisibility cloaks for matter waves with three different geometries. • Exact analytical form of the effective mass tensor and potential. • Analogy between cloaking for quantum mechanical waves with classical electromagnetic waves. • Possible experimental realization in engineered semiconducting structures.
Sound waves in hadronic matter
Wilk, Grzegorz; Włodarczyk, Zbigniew
2018-01-01
We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pT spectra and visible in the measured ratios R = σdata(pT) / σfit (pT). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index n and scale parameter T (usually identified with temperature T), the observed logperiodic behaviour of the ratios R can originate either from suitable modifications of n or T (or both, but such a possibility is not discussed). In the first case n becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter T exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.
Wave-particle dualism in matter wave interferometry
International Nuclear Information System (INIS)
Rauch, H.
1984-01-01
Neutron interferometry is a unique tool for investigations in the field of particle-wave dualism because massive elementary particles behave like waves within the interferometer. The invention of perfect crystal neutron interferometers providing widely separated coherent beams stimulated a great variety of experiments with matter waves in the field of basic quantum mechanics. The phase of the spatial and spinor wave function become a measurable quantity and can be influenced individually. High degrees of coherence and high order interferences have been observed by this technique. The 4π-symmetry of a spinor wave function and the mutual modulation of nuclear and magnetic phase shifts have been measured in the past. Recent experiments dealt with polarized neutron beams, which are handled to realize the spin-superposition of two oppositionally polarized subbeams resulting in final polarization perpendicular to both initial beam polarizations. The different action on the coherent beams of static and dynamic flippers have been visualized. Monolithic multicrystal arrangements in Laue position can also be used to achieve an extremely high energy (10 -9 eV) or angular resolution (0.001 sec of arc). This feature is based on the Pendelloesung interference within the perfect crystal. A transverse coherence length up to 6.5 mm is deduced from single slit diffraction experiments. (Auth.)
Matter-Wave Optics of Diatomic Molecules
2012-10-23
81.013802 10/11/2012 32.00 Swati Singh , Pierre Meystre. Atomic probe Wigner tomography of a nanomechanical system, Physical Review A, (04 2010): 41804...PhysRevA.78.041801 10/11/2012 3.00 S. Singh , M. Bhattacharya, O. Dutta, P. Meystre. Coupling Nanomechanical Cantilevers to Dipolar Molecules...degenerate matter waves, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023622 10/11/2012 10.00 M. Bhattacharya, S. Singh , P. -L. Giscard
Matter-Wave Solitons In Optical Superlattices
International Nuclear Information System (INIS)
Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.
2006-01-01
In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton
Uniform shock waves in disordered granular matter.
Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo
2012-10-01
The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.
Matter-wave interferometry with complex nanoparticles
International Nuclear Information System (INIS)
Geyer, P.
2015-01-01
Quantum Mechanics is one of the most thoroughly tested theories in physics; however the quantum phenomena that appear on the microscopic scale are incompatible with the behavior of the macroscopic world. Whether the transition between quantum and classical behavior is virtual or real is still an open question. During my thesis I have built, together with my colleagues, a Talbot-Lau interferometer with light gratings that is capable of handling very large and complex particles. With this device it will be possible to test some of the hypotheses that postulate mechanisms for the quantum to classic transition. During my thesis I have designed the experimental setup using CAD and we assembled the apparatus. I have designed and implemented the data acquisition and experiment control software system MOPS (Molecular Optics Programming System). Furthermore, I have implemented and tested various particle sources for the experiment to bring neutral particles into the gas phase at a velocity and with a beam flux that meets the requirements of the experiment. The Optical Time-domain Interferometer for Matter-waves (OTIMA) is made up of 3 retro-reflected, ⁓7 ns short excimer laser pulses with a wavelength of 157.6 nm, i.e. a grating period of 78.8 nm. The purely optical and pulsed diffraction elements avoid all dispersive interactions that would reduce the interference contrast. Therefore, we expect a high fringe contrast even for large particles; under realistic conditions on earth this type of interferometer is conceptually capable of exploring the wave-particle duality with particles up to 106 amu or even beyond. During my PhD thesis we successfully showed interference for single-photon ionizable molecular clusters up to 2300 amu. Furthermore, we have demonstrated that single-photon fragmentation gratings enable interference experiments with a new class of weakly bound particles and provided interesting perspectives for biomolecules. (author) [de
An atomically thin matter-wave beamsplitter.
Brand, Christian; Sclafani, Michele; Knobloch, Christian; Lilach, Yigal; Juffmann, Thomas; Kotakoski, Jani; Mangler, Clemens; Winter, Andreas; Turchanin, Andrey; Meyer, Jannik; Cheshnovsky, Ori; Arndt, Markus
2015-10-01
Matter-wave interferometry has become an essential tool in studies on the foundations of quantum physics and for precision measurements. Mechanical gratings have played an important role as coherent beamsplitters for atoms, molecules and clusters, because the basic diffraction mechanism is the same for all particles. However, polarizable objects may experience van der Waals shifts when they pass the grating walls, and the undesired dephasing may prevent interferometry with massive objects. Here, we explore how to minimize this perturbation by reducing the thickness of the diffraction mask to its ultimate physical limit, that is, the thickness of a single atom. We have fabricated diffraction masks in single-layer and bilayer graphene as well as in a 1 nm thin carbonaceous biphenyl membrane. We identify conditions to transform an array of single-layer graphene nanoribbons into a grating of carbon nanoscrolls. We show that all these ultrathin nanomasks can be used for high-contrast quantum diffraction of massive molecules. They can be seen as a nanomechanical answer to the question debated by Bohr and Einstein of whether a softly suspended double slit would destroy quantum interference. In agreement with Bohr's reasoning we show that quantum coherence prevails, even in the limit of atomically thin gratings.
Reduced time delay for gravitational waves with dark matter emulators
International Nuclear Information System (INIS)
Desai, S.; Kahya, E. O.; Woodard, R. P.
2008-01-01
We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles
Czech Academy of Sciences Publication Activity Database
Pekárek, Viktor
2002-01-01
Roč. 47, č. 2 (2002), s. 139-149 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z2057903 Keywords : Matter waves * interference and surges of matter waves Subject RIV: BM - Solid Matter Physics ; Magnetism
Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.
2008-08-01
Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts
Matter-wave dark solitons in optical lattices
International Nuclear Information System (INIS)
Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S
2004-01-01
We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices
Laser control of electron matter waves
Jones, E.; Becker, M.; Luiten, O.J.; Batelaan, H.
2016-01-01
In recent years laser light has been used to control the motion of electron waves. Electrons can now be diffracted by standing waves of light. Laser light in the vicinity of nanostructures is used to affect free electrons, for example, femto-second and atto-second laser-induced electrons are emitted
Matter-wave scattering and guiding by atomic arrays
International Nuclear Information System (INIS)
Vaishnav, J. Y.; Walls, J. D.; Apratim, M.; Heller, E. J.
2007-01-01
We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering phenomena with bands and conduction along the array. We discuss the conditions under which a straight or curved array of atoms can guide a beam focused at one end of the array
Matter-wave interferometry in a double well on an atom chip
DEFF Research Database (Denmark)
Schumm, Thorsten; Hofferberth, S.; Andersson, L. M.
2005-01-01
Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements...... that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we...... demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 μm, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single...
On wave dark matter in spiral and barred galaxies
International Nuclear Information System (INIS)
Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.
2015-01-01
We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter
Matter wave interferometry in the light of Schroedinger's wave mechanics
International Nuclear Information System (INIS)
1987-01-01
This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)
Coherent patterning of matter waves with subwavelength localization
International Nuclear Information System (INIS)
Mompart, J.; Ahufinger, V.; Birkl, G.
2009-01-01
We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.
Shock waves in relativistic nuclear matter, I
International Nuclear Information System (INIS)
Gleeson, A.M.; Raha, S.
1979-02-01
The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references
Uniform shock waves in disordered granular matter
Gómez, L.R.; Turner, A.M.; Vitelli, V.
2012-01-01
The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates
Strong CMB constraint on P-wave annihilating dark matter
Directory of Open Access Journals (Sweden)
Haipeng An
2017-10-01
Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.
Self-consistent construction of virialized wave dark matter halos
Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong
2018-05-01
Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both ...
Matter wave interference pattern in the collision of bright solitons
International Nuclear Information System (INIS)
Kumar, V. Ramesh; Radha, R.; Panigrahi, Prasanta K.
2009-01-01
We investigate the dynamics of Bose-Einstein condensates in a quasi one-dimensional regime in a time-dependent trap and show analytically that it is possible to observe matter wave interference patterns in the intra-trap collision of two bright solitons by selectively tuning the trap frequency and scattering length.
Scattering of matter waves in spatially inhomogeneous environments
International Nuclear Information System (INIS)
Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.
2015-01-01
In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed
The wave properties of matter and the zeropoint radiation field
International Nuclear Information System (INIS)
Pena, L. de la; Cetto, A.M.
1994-01-01
The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a changed particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc 2 /h. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schroedinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis applied to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schroedinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated wave and the ensemble of particles
Chiral gravitational waves and baryon superfluid dark matter
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
Quantum superchemistry in an output coupler of coherent matter waves
International Nuclear Information System (INIS)
Jing, H.; Cheng, J.
2006-01-01
We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam
A universal matter-wave interferometer with optical gratings
International Nuclear Information System (INIS)
Haslinger, P.
2013-01-01
Quantum mechanics was initially developed to describe microscopic processes but scientists quickly came to far-reaching predictions, such as the wave-particle dualism of matter [1,2] or the entanglement of particles [3,4], which often contradict our classical intuition. However, not even a single experiment could falsify any theoretical prediction of quantum mechanics. Today it is the most tested theory in physics. The question of the range and limits of its validity arises. To which extend can systems be macroscopic, complex and massive while retaining their quantum features? Is there a spatial and temporal restriction to the separation of wave functions? Which decoherence mechanisms force systems at macroscopic scales to appear classical? During my thesis I focused theoretically as well as experimentally on matter-wave interferometry with atoms, molecules and molecular clusters. During my 3 month exchange stay in the group of Prof. Müller at the University of California at Berkeley we have carried out an experiment to show the largest space-time area interferometer at that time [5]. Here, matter waves of caesium atoms have been coherently split and recombined up to 8.8 mm and for 500 ms. Key to run this experiment was to compensate for earth´s rotation. Without this compensation the Coriolis force would have prevented the split matter-waves from a precise recombination. The main subject of my thesis at the University of Vienna was the experimental realization of the (first) all Optical Time-domain Ionizing Matter-wave (OTIMA) interferometer [6,7]. It consists of three pulsed nanosecond standing light waves which act on the particles with a well-defined timing sequence. Interference in the time-domain is independent of the particles’ velocities and of their de Broglie wavelengths. This has been demonstrated earlier for atoms by addressing laser light to certain atomic levels [8]. In contrast to that, the OTIMA interferometer uses optical ionization gratings [9
Water Waves The Mathematical Theory with Applications
Stoker, J J
2011-01-01
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.
Dark matter structures and emission of very long gravitational waves
International Nuclear Information System (INIS)
Bisnovatyi-Kogan, G.S.
2005-01-01
Formation of large structure in the Universe as a result of gravitational instability in cold dark matter is investigated in a simple analytical model. Collapse of the rotating spheroid is approximated by a system of ordinary differential equations describing its dynamics. The gravitational potential is approximated by the one of the uniform Maclaurin spheroid. Development of gravitational instability and collapse in the dark matter medium do not lead to any shock formation or radiation, but is characterized by non-collisional relaxation, which is accompanied by the mass and angular momentum losses. Phenomenological account of these processes is done in this model. Formation of the equilibrium configuration dynamics of collapse is investigated. A very long gravitational wave emission during the collapse is estimated, and their possible connection with the observed gravitational lenses is discussed
Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin
2014-05-01
The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal trap with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter wave Bessel beams, which are of interest because perfect Bessel beams (plane waves with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter wave circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide traps, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.
Coherent transport of matter waves in disordered optical potentials
Energy Technology Data Exchange (ETDEWEB)
Kuhn, Robert
2007-07-01
The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)
Coherent transport of matter waves in disordered optical potentials
International Nuclear Information System (INIS)
Kuhn, Robert
2007-01-01
The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Energy Technology Data Exchange (ETDEWEB)
Keresztes, Zoltán; Gergely, László Á. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Forsberg, Mats; Bradley, Michael [Department of Physics, UmeåUniversity (Sweden); Dunsby, Peter K.S., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: forsberg.mats.a.b@gmail.com, E-mail: michael.bradley@physics.umu.se, E-mail: peter.dunsby@uct.ac.za, E-mail: gergely@physx.u-szeged.hu [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
Spin waves theory and applications
Stancil, Daniel D
2009-01-01
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions
Millimeter-wave antennas configurations and applications
du Preez, Jaco
2016-01-01
This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...
Fundamentals and Applications of Ultrasonic Waves
Cheeke, J David N
2012-01-01
Designed specifically for newcomers to the field, this fully updated second edition begins with fundamentals and quickly advances beyond general wave concepts into an in-depth treatment of ultrasonic waves in isotropic media. Focusing on the physics of acoustic waves, their propagation, technology, and applications, this accessible overview of ultrasonics includes accounts of viscoelasticity and multiple scattering. It examines new technologies, including atomic force acoustic microscopy, lasers, micro-acoustics, and nanotechnology. In addition, it highlights both direct and indirect applicati
Testing the quantum superposition principle: matter waves and beyond
Ulbricht, Hendrik
2015-05-01
New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).
Falsification of Leggett's model using neutron matter waves
International Nuclear Information System (INIS)
Hasegawa, Yuji; Sponar, Stephan; Durstberger-Rennhofer, Katharina; Badurek, Gerald; Schmitzer, Claus; Bartosik, Hannes; Klepp, Jürgen
2012-01-01
According to Bell's theorem, no theory based on the joint assumption of realism and locality can reproduce certain predictions of quantum mechanics. Another class of realistic models, proposed by Leggett, that demands realism but abandons reliance on locality, is predicted to be in conflict with quantum mechanics. In this paper, we report on an experimental test of a contextual realistic model analogous to the model of Leggett performed with matter waves, more precisely with neutrons. Correlation measurements of the spin-energy entangled single-particle system show violation of a Leggett-type inequality by more than 7.6 standard deviations. Our experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics. (paper)
Medical and biomedical applications of shock waves
Loske, Achim M
2017-01-01
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...
Anitproton-matter interactions in antiproton applications
Morgan, David L., Jr.
1990-01-01
By virtue of the highly energetic particles released when they annihilate in matter, antiprotons have a variety of potentially important applications. Among others, these include remote 3-D density and composition imaging of the human body and also of thick, dense materials, cancer therapy, and spacecraft propulsion. Except for spacecraft propulsion, the required numbers of low energy antiprotons can be produced, stored, and transported through reliance on current or near term technology. Paramount to these applications and to fundamental research involving antiprotons is knowledge of how antiprotons interact with matter. The basic annihilation process is fairly well understood, but the antiproton annihilation and energy loss rates in matter depend in complex ways on a number of atomic processes. The rates, and the corresponding cross sections, were measured or are accurately predictable only for limited combinations of antiproton kinetic energy and material species.
Wave model downscaling for coastal applications
Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya
2010-05-01
Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
Energy Technology Data Exchange (ETDEWEB)
Domcke, Valerie
2013-09-15
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1){sub B-L} symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
International Nuclear Information System (INIS)
Domcke, Valerie
2013-09-01
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1) B-L symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Coupled matter-wave solitons in optical lattices
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution
Coupled matter-wave solitons in optical lattices
International Nuclear Information System (INIS)
Golam Ali, Sk; Talukdar, B.
2009-01-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V eff (NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V eff (LOL). But these effective potentials have opposite k dependence in the sense that the depth of V eff (LOL) increases as k increases and that of V eff (NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during
Gravitational wave as probe of superfluid dark matter
Cai, Rong-Gen; Liu, Tong-Bo; Wang, Shao-Jiang
2018-02-01
In recent years, superfluid dark matter (SfDM) has become a competitive model of emergent modified Newtonian dynamics (MOND) scenario: MOND phenomenons naturally emerge as a derived concept due to an extra force mediated between baryons by phonons as a result of axionlike particles condensed as superfluid at galactic scales; Beyond galactic scales, these axionlike particles behave as normal fluid without phonon-mediated MOND-like force between baryons, therefore SfDM also maintains the usual success of Λ CDM at cosmological scales. In this paper, we use gravitational waves (GWs) to probe the relevant parameter space of SfDM. GWs through Bose-Einstein condensate (BEC) could propagate with a speed slightly deviation from the speed-of-light due to the change in the effective refractive index, which depends on the SfDM parameters and GW-source properties. We find that Five hundred meter Aperture Spherical Telescope (FAST), Square Kilometre Array (SKA) and International Pulsar Timing Array (IPTA) are the most promising means as GW probe of relevant parameter space of SfDM. Future space-based GW detectors are also capable of probing SfDM if a multimessenger approach is adopted.
Diaphragmless shock wave generators for industrial applications of shock waves
Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.
2011-06-01
The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.
Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves
Westbrook, C; David, F; Coherent Atomic Matter Waves
2001-01-01
Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...
Benefits of up-wave measurements in linear short-term wave forecasting for wave energy applications
Paparella, Francesco; Monk, Kieran; Winands, Victor; Lopes, Miguel; Conley, Daniel; Ringwood, John
2014-01-01
The real-time control of wave energy converters requires the prediction of the wave elevation at the location of the device in order to maximize the power extracted from the waves. One possibility is to predict the future wave elevation by combining its past history with the spatial information coming from a sensor which measures the free surface elevation upwave of the wave energy converter. As an application example, the paper focuses on the prediction of the wave eleva...
Topics in nonlinear wave theory with applications
International Nuclear Information System (INIS)
Tracy, E.R.
1984-01-01
Selected topics in nonlinear wave theory are discussed, and applications to the study of modulational instabilities are presented. A historical survey is given of topics relating to solitons and modulational problems. A method is then presented for generating exact periodic and quasi-periodic solutions to several nonlinear wave equations, which have important physical applications. The method is then specialized for the purposes of studying the modulational instability of a plane wave solution of the nonlinear Schroedinger equation, an equation with general applicability in one-dimensional modulational problems. Some numerical results obtained in conjunction with the analytic study are presented. The analytic approach explains the recurrence phenomena seen in the numerical studies, and the numerical work of other authors. The method of solution (related to the inverse scattering method) is then analyzed within the context of Hamiltonian dynamics where it is shown that the method can be viewed as simply a pair of canonical transformations. The Abel Transformation, which appears here and in the work of other authors, is shown to be a special form of Liouville's transformation to action-angle variables. The construction of closed form solutions of these nonlinear wave equations, via the solution of Jacobi's inversion problem, is surveyed briefly
Coherent properties of a tunable low-energy electron-matter-wave source
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
Zero-order filter for diffractive focusing of de Broglie matter waves
DEFF Research Database (Denmark)
Eder, S. D.; Ravn, A. K.; Samelin, B.
2017-01-01
The manipulation of neutral atoms and molecules via their de Broglie wave properties, also referred to asde Broglie matter wave optics, is relevant for several fields ranging from fundamental quantum mechanics testsand quantum metrology to measurements of interaction potentials and new imaging...... Broglie matter wave diffractive focusing elements. The zero-order filter makes it possible to measure even at low beam intensities. We present measurements of zero-order filtered, focused, neutral helium beams generated at source stagnation pressures between 11 and 81 bars. We show that for certain...
Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates
International Nuclear Information System (INIS)
Yong Wenmei; Xue Jukui
2008-01-01
The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained
Fundamentals and applications of ultrasonic waves
Cheeke, J David N
2002-01-01
Ultrasonics. A subject with applications across all the basic sciences, engineering, medicine, and oceanography, yet even the broader topic of acoustics is now rarely offered at undergraduate levels. Ultrasonics is addressed primarily at the doctoral level, and texts appropriate for beginning graduate students or newcomers to the field are virtually nonexistent.Fundamentals and Applications of Ultrasonic Waves fills that void. Designed specifically for senior undergraduates, beginning graduate students, and those just entering the field, it begins with the fundamentals, but goes well beyond th
P-wave holographic superconductor/insulator phase transitions affected by dark matter sector
International Nuclear Information System (INIS)
Rogatko, Marek; Wysokinski, Karol I.
2016-01-01
The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ_D. For ρ_D>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ_c for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ_D and for μ_D=0 is a decreasing function of α.
International Nuclear Information System (INIS)
Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.
2010-01-01
We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.
S-wave pairing of Λ hyperons in dense matter
International Nuclear Information System (INIS)
Balberg, S.; Barnea, N.; Barnea, N.
1998-01-01
In this work we calculate the 1 S 0 gap energies of Λ hyperons in neutron star matter. The calculation is based on a solution of the BCS gap equation for an effective G-matrix parametrization of the Λ-Λ interaction with a nuclear matter background, presented recently by Lanskoy and Yamamoto. We find that a gap energy of a few tenths of a MeV is expected for Λ Fermi momenta up to about 1.3fm -1 . Implications for neutron star matter are examined, and suggest the existence of a Λ 1 S 0 superfluid between the threshold baryon density for Λ formation and the baryon density where the Λ fraction reaches 15 endash 20%. copyright 1998 The American Physical Society
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, T.; Kaminski, M.L.
2016-01-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated
Multiple-scale structures: from Faraday waves to soft-matter quasicrystals
Directory of Open Access Journals (Sweden)
Samuel Savitz
2018-05-01
Full Text Available For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.
Multiple-scale structures: from Faraday waves to soft-matter quasicrystals.
Savitz, Samuel; Babadi, Mehrtash; Lifshitz, Ron
2018-05-01
For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.
Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics
Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies
1997-01-01
We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...
Bright matter wave solitons and their collision in Bose-Einstein condensates
International Nuclear Information System (INIS)
Radha, R.; Ramesh Kumar, V.
2007-01-01
We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates
Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps
International Nuclear Information System (INIS)
Lesanovsky, Igor; Klitzing, Wolf von
2007-01-01
We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers
A smartphone application for earthquakes that matter!
Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert
2014-05-01
Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected
Concept of an ionizing time-domain matter-wave interferometer
Nimmrichter, Stefan; Haslinger, Philipp; Hornberger, Klaus; Arndt, Markus
2011-01-01
We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as ...
Probing Primordial Black Hole Dark Matter with Gravitational Waves.
Kovetz, Ely D
2017-09-29
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_{⊙}≲M_{PBH}≲100 M_{⊙} mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ∼30 M_{⊙} by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ∼5 yr of aLIGO data can be used to detect a contribution of >20 M_{⊙} PBHs to dark matter down to f_{PBH}99.9% confidence level. Combined with other probes that already suggest tension with f_{PBH}=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
Collective emission of matter-wave jets from driven Bose-Einstein condensates.
Clark, Logan W; Gaj, Anita; Feng, Lei; Chin, Cheng
2017-11-16
Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.
DEFF Research Database (Denmark)
Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak
2012-01-01
We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...
Semi-classical description of matter wave interferometers and hybrid quantum systems
Energy Technology Data Exchange (ETDEWEB)
Schneider, Mathias
2015-02-16
This work considers the semi-classical description of two applications involving cold atoms. This is, on one hand, the behavior of a BOSE-EINSTEIN condensate in hybrid systems, i.e. in contact with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution of phase space distributions in matter wave interferometers utilizing ray tracing methods was discussed. For describing condensates in hybrid systems, one can map the GROSS-PITAEVSKII equation, a differential equation in the complex-valued macroscopic wave function, onto a system of two differential equations in density and phase. Neglecting quantum dispersion, one obtains a semiclassical description which is easily modified to incorporate interactions between condensate and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-POLDER forces) and loss of condensed atoms due to inelastic collisions at the surface of the object. Our model exhibited the excitation of sound waves that are triggered by the object's rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads to a shrinking of the bulk condensate. We showed that the total number of condensed particles is decreasing potentially in the beginning (large condensate, strong mean field interaction), while it decays exponentially in the long-time limit (small condensate, mean field inetraction negligible). For representing the physics of matter wave interferometers in phase space, we utilized the WIGNER function. In semi-classical approximation, which again consists in ignoring the quantum dispersion, this representation is subject to the same equation of motion as classical phase space distributions, i.e. the LIOUVILLE equation. This implies that time evolution of theWIGNER function follows a phase space flow that consists of classical trajectories (classical transport). This means, for calculating a time-evolved distribution, one has know the initial
Surface flute waves in plasmas theory and applications
Girka, Volodymyr; Thumm, Manfred
2014-01-01
The book presents results of a comprehensive study of various features of eigen electromagnetic waves propagating across the axis of plasma filled metal waveguides with cylindrical geometry. The authors collected in one book material on various features of surface flute waves, i. e. impact of waveguide design on wave dispersion, wave damping influenced by various reasons, impact of plasma density and external magnetic field inhomogeneity on the wave, and impact of waveguide corrugation and electric current on the wave. A variety of present surface waves applications and possible future applications is also included. Using the method of successive approximations it is shown how one can solve problems, which concern real experimental devices, starting from simple models. The book applies to both professionals dealing with problems of confined plasmas and to graduate and post-graduate students specializing in the field of plasma physics and related applications.
Problems of application of wave energy
International Nuclear Information System (INIS)
D'yakov, A.F.; Morozkina, M.V.
1993-01-01
Technical solutions of using the energy both sea waves and lake ones are analyzed. Mathematical description of wave processes and phenomena as well as techniques of selection and conversion of the wave energy are given. Wave energy electromechanical converters are considered. Great attention is paid to linear generators of electromechanical converters eddy currents in massive sections of these generators and features of their calculation. Techniques for optimization of the linear generator parameters are shown. 60 refs
Mismatch management for optical and matter-wave quadratic solitons
International Nuclear Information System (INIS)
Driben, R.; Oz, Y.; Malomed, B. A.; Gubeskys, A.; Yurovsky, V. A.
2007-01-01
We propose a way to control solitons in χ (2) (quadratically nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ('mismatch management', MM). It may be realized in the cotransmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. In an altogether different physical setting, the MM may also be implemented by dint of the Feshbach resonance in a harmonically modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. Accordingly, the problem is analyzed in two different ways. First, in the optical model, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially inhomogeneous configurations. In particular, an instability enclave is found inside the stability area. The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of the power. Interactions between stable solitons are virtually unaffected by the MM. The second method (parametric approximation), going beyond the MF description, is developed for spatially homogeneous states in the BEC model. It demonstrates that the MF description is valid for large modulation periods, while, at smaller periods, non-MF components acquire gain, which implies destruction of the MF under the action of the high-frequency MM
Applications of holography to condensed matter physics
Ross, Simon F.
2012-10-01
Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity
Matter waves from localized sources in homogeneous force fields
Kramer, Tobias
2010-01-01
We derive a scattering theory in constant potentials based on the energy-dependent Green function. This approach enables us to formulate modern experiments in terms of Green function. One application discussed is the photodetachment of electrons in external electromagnetic fields. In this case an intricate currentdensity distributions exists, that can be explained in terms of interfering classical trajectories. We also derive analytically the two-dimensional Green function in perpendicular el...
A Novel Particulate Matter 2.5 Sensor Based on Surface Acoustic Wave Technology
Directory of Open Access Journals (Sweden)
Jiuling Liu
2018-01-01
Full Text Available Design, fabrication and experiments of a miniature particulate matter (PM 2.5 sensor based on the surface acoustic wave (SAW technology were proposed. The sensor contains a virtual impactor (VI for particle separation, a thermophoretic precipitator (TP for PM2.5 capture and a SAW sensor chip for PM2.5 mass detection. The separation performance of the VI was evaluated by using the finite element method (FEM model and the PM2.5 deposition characteristic in the TP was obtained by analyzing the thermophoretic theory. Employing the coupling-of-modes (COM model, a low loss and high-quality SAW resonator was designed. By virtue of the micro electro mechanical system (MEMS technology and semiconductor technology, the SAW based PM2.5 sensor detecting probe was fabricated. Then, combining a dual-port SAW oscillator and an air sampler, the experimental platform was set up. Exposing the PM2.5 sensor to the polystyrene latex (PSL particles in a chamber, the sensor performance was evaluated. The results show that by detecting the PSL particles with a certain diameter of 2 μm, the response of the SAW based PM2.5 sensor is linear, and in accordance with the response of the light scattering based PM2.5 monitor. The developed SAW based PM2.5 sensor has great potential for the application of airborne particle detection.
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
The effects of increased phosphorus application on shoot dry matter ...
African Journals Online (AJOL)
The effects of increased phosphorus application on shoot dry matter, shoot P and Zn concentrations in wheat ( Triticum durum L.) and maize ( Zea mays L.)wheat ( Triticum durum L.) and maize ( Zea mays L.) grown in a calcareous soil.
Gravitational waves from the asymmetric-dark-matter generating phase transition
International Nuclear Information System (INIS)
Baldes, Iason
2017-02-01
The baryon asymmetry, together with a dark matter asymmetry, may be produced during a first order phase transition in a generative sector. We study the possibility of a gravitational wave signal in a model realising such a scenario. We identify areas of parameter space with strong phase transitions which can be probed by future, space based, gravitational wave detectors. Other signals of this scenario include collider signatures of a Z"', DM self interactions, a contribution to ΔN_e_f_f and nuclear recoils at direct detection experiments.
Directory of Open Access Journals (Sweden)
Canuel B.
2014-01-01
Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.
Dynamic ultraslow optical-matter wave analog of an event horizon.
Zhu, C J; Deng, L; Hagley, E W; Ge, Mo-Lin
2014-08-29
We investigate theoretically the effects of a dynamically increasing medium index on optical-wave propagation in a rubidium condensate. A long pulsed pump laser coupling a D2 line transition produces a rapidly growing internally generated field. This results in a significant optical self-focusing effect and creates a dynamically growing medium index anomaly that propagates ultraslowly with the internally generated field. When a fast probe pulse injected after a delay catches up with the dynamically increasing index anomaly, it is forced to slow down and is prohibited from crossing the anomaly, thereby realizing an ultraslow optical-matter wave analog of a dynamic white-hole event horizon.
Self-induced dipole force and filamentation instability of a matter wave
DEFF Research Database (Denmark)
Saffman, M.
1998-01-01
The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....
Application of MM wave therapy in radiology
Energy Technology Data Exchange (ETDEWEB)
Avakian, R.S. [Inst. of Radio Physics & Electronics, Ashtarack (Argentina); Gasparyan, L.V. [Republican Medical Centre Armenia, Yerevan (Argentina)
1995-12-31
The authors studied the effects of MM wave electromagnetic radiation influence on patients, affected by X-ray radiation during the reparation works after Chernobyl nuclear power plant exposure. They compared results of treatment of two groups of patients: (1) control group patients received only basis therapy; (2) testing group, 10 patients received basis therapy and MM wave influence. The authors used the wide band noise generator `Artsakh - 2` for local irradiation on the acupuncture points. Their data proved that low intensity MM waves have immunocorrective, antioxidant effects, and MM wave therapy is a perspective method for treatment of patients with radiological pathology.
A new method for building an atomic matter-wave interferometry
International Nuclear Information System (INIS)
Gao Hongyi; Chen Jianwen; Xie Honglan; Chen Min; Xu Zhizhan; Xiao Tiqiao; Zhu Peiping
2002-01-01
A new method for building an atomic matter-wave interferometry is proposed. A Fresnel zone-plate is used for restricting the linewidth of atomic beams, then a quasi-monochromatic atomic beam is obtained to illuminate four slits on a copper foil. The phenomenon of atomic interference and holograph can be observed, which is used to measure the coherent length of atomic beams
Localization of Matter Waves in Two-Dimensional Disordered Optical Potentials
International Nuclear Information System (INIS)
Kuhn, R.C.; Miniatura, C.; Delande, D.; Sigwarth, O.; Mueller, C.A.
2005-01-01
We consider ultracold atoms in 2D disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the noninteracting regime. We derive the diffusion constant as a function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length
Gravitational waves in Fully Constrained Formulation in a dynamical spacetime with matter content
Energy Technology Data Exchange (ETDEWEB)
Cordero-Carrion, Isabel; Cerda-Duran, Pablo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Ibanez, Jose MarIa, E-mail: chabela@mpa-garching.mpg.de, E-mail: cerda@mpa-garching.mpg.de, E-mail: jose.m.ibanez@uv.es [Departamento de AstronomIa y Astrofisica, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain)
2011-09-22
We analyze numerically the behaviour of the hyperbolic sector of the Fully Constrained Formulation (FCF) (Bonazzola et al. 2004). The numerical experiments allow us to be confident in the performances of the upgraded version of the CoCoNuT code (Dimmelmeier et al. 2005) by replacing the Conformally Flat Condition (CFC), an approximation of Einstein equations, by FCF. First gravitational waves in FCF in a dynamical spacetime with matter content will be shown.
Bounds on quantum collapse models from matter-wave interferometry: calculational details
Toroš, Marko; Bassi, Angelo
2018-03-01
We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.
Constraining dark matter late-time energy injection: decays and p-wave annihilations
Energy Technology Data Exchange (ETDEWEB)
Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C. [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lopez-Honorez, Laura, E-mail: R.Diamanti@uva.nl, E-mail: llopezho@vub.ac.be, E-mail: omena@ific.uv.es, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: vincent@ific.uv.es [Theoretische Natuurkunde Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)
2014-02-01
We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.
Gravitational wave signals of electroweak phase transition triggered by dark matter
Energy Technology Data Exchange (ETDEWEB)
Chao, Wei [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875 (China); Guo, Huai-Ke; Shu, Jing, E-mail: chaowei@bnu.edu.cn, E-mail: ghk@itp.ac.cn, E-mail: jshu@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2017-09-01
We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgs boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.
Gravitational wave generation by interaction of high power lasers with matter using shock waves
Czech Academy of Sciences Publication Activity Database
Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan A.; Korn, Georg
2017-01-01
Roč. 71, č. 4 (2017), 1-10, č. článku 89. ISSN 1434-6060 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : plasma physics * gravitational wave generation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.288, year: 2016
Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter
Shock Waves in Condensed Matter
1986-01-01
The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...
Dissipative phenomena in condensed matter some applications
Dattagupta, Sushanta
2004-01-01
From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.
Prospects and applicability of wave energy for South Africa
Lavidas, George; Venugopal, Vengatesan
2018-03-01
Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.
Femtosecond laser-matter interaction theory, experiments and applications
Gamaly, Eugene G
2011-01-01
Basics of Ultra-Short Laser-Solid InteractionsSubtle Atomic Motion Preceding a Phase Transition: Birth, Life and Death of PhononsUltra-Fast Disordering by fs-Lasers: Superheating Prior to Entropy CatastropheAblation of SolidsUltra-Short Laser-Matter Interaction Confined Inside a Bulk of Transparent SolidApplications of Ultra-Short Laser-Matter InteractionsConclusion Remarks.
Directory of Open Access Journals (Sweden)
Meryem Gorecek Baybars
2018-04-01
Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.
Statistical mechanics and applications in condensed matter
Di Castro, Carlo
2015-01-01
This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...
Statistical physics including applications to condensed matter
Hermann, Claudine
2005-01-01
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
Application of Planar Broadband Slow-Wave Systems
Directory of Open Access Journals (Sweden)
Edvardas Metlevskis
2012-04-01
Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian
Lower hybrid parametric instabilities nonuniform pump waves and tokamak applications
International Nuclear Information System (INIS)
Berger, R.L.; Chen, L.; Kaw, P.K.; Perkins, F.W.
1976-11-01
Electrostatic lower hybrid ''pump'' waves often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasimode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a travelling or standing wave pump model is used; travelling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded
Chaotic transport of a matter-wave soliton in a biperiodically driven optical superlattice
International Nuclear Information System (INIS)
Zhou Zheng; Hai Wenhua; Deng Yan; Xie Qiongtao
2012-01-01
Under the effective particle approximation, we study the temporal ratchet effect for chaotic transport of a matter-wave soliton consisting of an attractive Bose–Einstein condensate held in a quasi-one-dimensional symmetric optical superlattice with biperiodic driving. It is known that chaos can substitute for disorder in Anderson’s scenario [Wimberger S, Krug A, Buchleitner A. Phys Rev Lett 2002;89:263601] and only a higher level of disorder can induce Anderson localization for some special systems [Schwartz T, Bartal G, Fishman S, Segev M. Nature 2007;46:52], and a matter-wave soliton can transit to chaos with high or low probability in a high- or low-chaoticity region [Zhu Q, Hai W, Rong S. Phys Rev E 2009;80:016203]. Here we demonstrate that varying the driving phase to break the time reversal symmetry of the system can increase the size of the high-chaoticity region for low- and moderate-frequency regions. Consequently, the parameter region of the exponential spatial localization increases to the same size, and the low-chaoticity and delocalization region, which includes subregions of the ratchet effect and its inverse effect, correspondingly decreases. The positive dependence of the localization on the driving frequency is also revealed. The results indicate that a high-chaoticity region could replace higher disorder and assists in Anderson localization. From the results we suggest a method for controlling directed motion of a matter-wave soliton by adjusting the driving frequency and amplitude to strengthen or suppress, or even reverse, the temporal ratchet effect.
Millimeter Wave Technology for Armament Applications .
A. S. Bains; Deepak Singh; R. P. Dixit
1997-01-01
Use of millimeter wave (MMW) technology in armament systems imposes many restrictions on the size, volume and compactness of these systems in addition to ruggedness and reliable functioning in battlefield environment. This paper discusses the related design and technological issues, particularly in, the context of the sensors developed for smart ammunition and active armour protection systems.
Energy Technology Data Exchange (ETDEWEB)
Radice, David [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Bernuzzi, Sebastiano [Department of Mathematical, Physical and Computer Sciences, University of Parma, I-43124 Parma (Italy); Pozzo, Walter Del [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa I-56127 (Italy); Roberts, Luke F. [NSCL/FRIB and Department of Physics and Astronomy, Michigan State University, 640 S Shaw Lane, East Lansing, MI 48824 (United States); Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States)
2017-06-20
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
International Nuclear Information System (INIS)
Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del; Roberts, Luke F.; Ott, Christian D.
2017-01-01
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites
Bassan, M; D'Antonio, S.; Fafone, V.; Giordano, G.; Marini, A.; Minenkov, Y.; Modena, I.; Pallottino, G.V.; Pizzella, G.; Rocchi, A.; Ronga, F.; Visco, M.
2016-01-01
Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 $\\rm m^2$ sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than $10^{-5}$ g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another examp...
Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter
Directory of Open Access Journals (Sweden)
P.S. Bhupal Dev
2017-10-01
Full Text Available There exists a class of ultralight Dark Matter (DM models which could give rise to a Bose–Einstein condensate (BEC in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.
International Nuclear Information System (INIS)
Chala, Mikael; Nardini, Germano; Sobolev, Ivan; Moscow State Univ.
2016-05-01
A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this paper we work out a composite Higgs version of this scenario, based on the coset SO(7)/SO(6). We show that by embedding the elementary fermions in appropriate representations of SO(7), all dominant interactions are described by only three free effective parameters. Within the model dependencies of the embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter abundance. At the same time, the second singlet introduces new CP-violation phases and triggers a strong first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles. The tight predictions of the model will be accessible at the forthcoming dark matter direct detection and gravitational wave experiments.
Takayama, Kazuyoshi
1993-05-01
This paper describes a summary of a research project for the development of extracorporeal shock wave lithotripsy (ESWL), which has been carried out, under close collaboration between the Shock Wave Research Center of Tohoku University and the School of Medicine, Tohoku University. The ESWL is a noninvasive clinical treatment of disintegrating human calculi and one of the most peaceful applications of shock waves. Underwater spherical shock waves were generated by explosion of microexplosives. Characteristics of the underwater shock waves and of ultrasound focusing were studied by means of holographic interferometric flow visualization and polyvinyliden-difluoride (PVDF) pressure transducers. These focused pressures, when applied to clinical treatments, could effectively and noninvasively disintegrate urinary tract stones or gallbladder stones. However, despite clincal success, tissue damage occurs during ESWL treatments, and the possible mechanism of tissue damage is briefly described.
Laser shock wave and its applications
Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin
2007-12-01
The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.
International Nuclear Information System (INIS)
Piraud, M; Pezzé, L; Sanchez-Palencia, L
2013-01-01
The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)
Construction of Bethe Salpeter wave functions and applications in QCD
International Nuclear Information System (INIS)
Gromes, D.
1993-01-01
We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Wide-band slow-wave systems simulation and applications
Staras, Stanislovas
2012-01-01
The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut
Generalized calculus with applications to matter and forces
Campos, L M B C
2014-01-01
Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: •Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of ...
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es
2016-08-10
We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.
arXiv Gravitational-wave constraints on the neutron-star-matter Equation of State
Annala, Eemeli; Kurkela, Aleksi; Vuorinen, Aleksi
The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger, GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter Equations of State (EoSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that smallest allowed tidal deformability of a similar-mass star is $\\Lambda(1.4 M_\\odot) = 120$.
Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State
Annala, Eemeli; Gorda, Tyler; Kurkela, Aleksi; Vuorinen, Aleksi
2018-04-01
The detection of gravitational waves originating from a neutron-star merger, GW170817, by the LIGO and Virgo Collaborations has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter equations of state (EOSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EOSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that the smallest allowed tidal deformability of a similar-mass star is Λ (1.4 M⊙)=120 .
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
International Nuclear Information System (INIS)
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-01-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Principles of space-time-matter cosmology, particles and waves in five dimensions
Overduin, James
2018-01-01
This book is a summing up of the prospects for unification between relativity and particle physics based on the extension of Einstein's theory of General Relativity to five dimensions. This subject was first established by Paul Wesson in his previous best-seller, Space-Time-Matter, and discussed from a different perspective in Five-Dimensional Physics, both published by World Scientific in 1999 and 2006 respectively. This third book brings the field up to date and details many new developments and connections to particle theory and wave mechanics in particular. It was in largely finished form at the time of Paul Wesson's untimely death in 2015, and has been completed and expanded by his former student and longtime collaborator, James Overduin.
arXiv Gravitational-wave constraints on the neutron-star-matter Equation of State
Annala, Eemeli; Kurkela, Aleksi; Vuorinen, Aleksi
2018-04-26
The detection of gravitational waves originating from a neutron-star merger, GW170817, by the LIGO and Virgo Collaborations has recently provided new stringent limits on the tidal deformabilities of the stars involved in the collision. Combining this measurement with the existence of two-solar-mass stars, we generate a generic family of neutron-star-matter equations of state (EOSs) that interpolate between state-of-the-art theoretical results at low and high baryon density. Comparing the results to ones obtained without the tidal-deformability constraint, we witness a dramatic reduction in the family of allowed EOSs. Based on our analysis, we conclude that the maximal radius of a 1.4-solar-mass neutron star is 13.6 km, and that the smallest allowed tidal deformability of a similar-mass star is Λ(1.4 M⊙)=120.
Propagation of a shock wave in a radiating spherically symmetric distribution of matter
International Nuclear Information System (INIS)
Herrera, L.; Nunez, L.; Universidad de Los Andes, Merida, Venezuela)
1987-01-01
A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere and a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references
Electromagnetic Lead Screw for Potential Wave Energy Application
DEFF Research Database (Denmark)
Lu, Kaiyuan; Wu, Weimin
2014-01-01
This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...
Dromion solutions for an electron acoustic wave and its application ...
Indian Academy of Sciences (India)
Davey–Stewartson equation; electron acoustic wave; space plasma. ... Its potential application in different physical fields are also well .... bi-linear method. .... One of the authors, S S Ghosh, would like to thank CSIR for its financial assistance ...
Changing the Window of Shock Wave Application. How it improves ...
African Journals Online (AJOL)
Objectives: The aim of this work is to study the impact of using multiple windows of shock wave application on the results of ESWL therapy for renal calculi. Patients and Methods: Between January 1996 and October 2002, 676 patients with single pelvic stones ≤ 2.5 cm and either no or mild back pressure changes were ...
De Broglie's matter-waves are based on a logical bug
Energy Technology Data Exchange (ETDEWEB)
Giese, Albrecht
2016-07-01
The postulation of matter waves by Louis de Broglie in 1923 was one of the basic starting points in the development of quantum mechanics. However, his deduction contains a serious logical error. De Broglie deduced his central formula from considerations about the relativistic behaviour of a particle. He saw a conflict in the fact that a particle set into motion increases its internal frequency, f, according to E=h.f, whereas on the other hand its frequency has to decrease due to dilation. To solve this, he assigned a new ''de Broglie wave'' to a particle, which is related to the momentum of the particle. Scattering experiments seemed to confirm this approach. However, if such a scattering process is observed from a moving system, it turns out that the relationship between the wavelength and the momentum yields nonsensical results. - De Broglie's deduction is based on an incorrect understanding of relativity with respect to dilation. We show which results are achieved if a correct understanding is applied. And we show why, in a normal scattering experiment, de Broglie's incorrect formula nevertheless yields the expected results. We will further explain some of the impacts of this error on the equations of Schroedinger and Dirac, who used de Broglie's formula as a starting point. Heisenberg's uncertainty principle is also affected.
The role of the wave function in the GRW matter density theory
Energy Technology Data Exchange (ETDEWEB)
Egg, Matthias [University of Lausanne (Switzerland)
2014-07-01
Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.
THz wave sensing for petroleum industrial applications
Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.
2006-04-01
We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.
2012-02-10
...) 150 to 680 Wave Energy Converters (WEC) (Pelamis or OPT) units having a total installed capacity of... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14291-000] Green Wave..., Motions To Intervene, and Competing Applications On September 23, 2011, Green Wave Energy Solutions, LLC...
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
Czech Academy of Sciences Publication Activity Database
Yulin, A.V.; Bludov, Yu.V.; Konotop, V. V.; Kuzmiak, Vladimír; Salerno, M.
2013-01-01
Roč. 87, č. 3 (2013) ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Superfluidity * Bose-Einstein condensates * Matter Waves Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.991, year: 2013
Gorecek Baybars, Meryem; Kucukozer, Huseyin
2018-01-01
The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…
Microwave and millimeter-wave remote sensing for security applications
Nanzer, Jeffrey
2012-01-01
Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,
International Nuclear Information System (INIS)
Ryu, C; Henderson, K C; Boshier, M G
2014-01-01
Bessel beams are plane waves with amplitude profiles described by Bessel functions. They are important because they propagate ‘diffraction-free’ and because they can carry orbital angular momentum. Here we report the creation of a Bessel beam of de Broglie matter waves. The Bessel beam is produced by the free evolution of a thin toroidal atomic Bose–Einstein condensate (BEC) which has been set into rotational motion. By attempting to stir it at different rotation rates, we show that the toroidal BEC can only be made to rotate at discrete, equally spaced frequencies, demonstrating that circulation is quantized in atomic BECs. The method used here can be viewed as a form of wavefunction engineering which might be developed to implement cold atom matter wave holography. (paper)
Repeated application of organic waste affects soil organic matter composition
DEFF Research Database (Denmark)
Peltre, Clément; Gregorich, Edward G.; Bruun, Sander
2017-01-01
Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...
Application of Ultrasonic Waves on Maintaining Freshness of Tilapia Fillet
Directory of Open Access Journals (Sweden)
Ruddy Suwandi
2015-06-01
Full Text Available ish fillet is one of fisheries products that easily deteriorated; hence handling techniques are needed to maintain the freshness. Ultrasonic wave have been widely applied to some of food products for maintaining freshness through microbial inactivation, however the ultrasonic application to fisheries products has not been reported. The purpose of this study was to analyze the effect of ultrasonic wave on fish freshness. The stages of the study were sample preparation, sonication, freshness parameters examination and histology observation. Ultrasonic wave did not affectthe organoleptic value and the TVB, but affected the pH value and the TPC. The sample in which the TPC value was found significantly different, were further observed after 48 and 96 hours storage. The result showed that the TPC value of sonicated sample for 9 minutes was lower to that of without sonication. Histology analysis showed, however, sonication made the structure of muscle fiber less compact and deformation of myomer was found.
Aquatic Organic Matter Fluorescence - from phenomenon to application
Reynolds, Darren
2014-05-01
The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology
Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment
Directory of Open Access Journals (Sweden)
Anja Engel
2018-06-01
Full Text Available The surface microlayer (SML is the uppermost thin layer of the ocean and influencing interactions between the air and sea, such as gas exchange, atmospheric deposition and aerosol emission. Organic matter (OM plays a key role in air-sea exchange processes, but studying how the accumulation of organic compounds in the SML relates to biological processes is impeded in the field by a changing physical environment, in particular wind speed and wave breaking. Here, we studied OM dynamics in the SML under controlled physical conditions in a large annular wind wave channel, filled with natural seawater, over a period of 26 days. Biology in both SML and bulk water was dominated by bacterioneuston and -plankton, respectively, while autotrophic biomass in the two compartments was very low. In general, SML thickness was related to the concentration of dissolved organic carbon (DOC but not to enrichment of DOC or of specific OM components in the SML. Pronounced changes in OM enrichment and molecular composition were observed in the course of the study and correlated significantly to bacterial abundance. Thereby, hydrolysable amino acids, in particular arginine, were more enriched in the SML than combined carbohydrates. Amino acid composition indicated that less degraded OM accumulated preferentially in the SML. A strong correlation was established between the amount of surfactants coverage and γ-aminobutric acid, suggesting that microbial cycling of amino acids can control physiochemical traits of the SML. Our study shows that accumulation and cycling of OM in the SML can occur independently of recent autotrophic production, indicating a widespread biogenic control of process across the air-sea exchange.
Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter
Energy Technology Data Exchange (ETDEWEB)
García-Bellido, Juan [Instituto de Física Teórica UAM-CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, 28049 Spain (Spain); Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, and Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota, 55455 (United States)
2017-09-01
Primordial Black Holes (PBH) could be the cold dark matter of the universe. They could have arisen from large (order one) curvature fluctuations produced during inflation that reentered the horizon in the radiation era. At reentry, these fluctuations source gravitational waves (GW) via second order anisotropic stresses. These GW, together with those (possibly) sourced during inflation by the same mechanism responsible for the large curvature fluctuations, constitute a primordial stochastic GW background (SGWB) that unavoidably accompanies the PBH formation. We study how the amplitude and the range of frequencies of this signal depend on the statistics (Gaussian versus χ{sup 2}) of the primordial curvature fluctuations, and on the evolution of the PBH mass function due to accretion and merging. We then compare this signal with the sensitivity of present and future detectors, at PTA and LISA scales. We find that this SGWB will help to probe, or strongly constrain, the early universe mechanism of PBH production. The comparison between the peak mass of the PBH distribution and the peak frequency of this SGWB will provide important information on the merging and accretion evolution of the PBH mass distribution from their formation to the present era. Different assumptions on the statistics and on the PBH evolution also result in different amounts of CMB μ-distortions. Therefore the above results can be complemented by the detection (or the absence) of μ-distortions with an experiment such as PIXIE.
All-optoelectronic continuous wave THz imaging for biomedical applications
International Nuclear Information System (INIS)
Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G
2002-01-01
We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed
DEFF Research Database (Denmark)
Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke
This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...
Controllable azimuthons of four-wave mixing and their applications
International Nuclear Information System (INIS)
Wang, R M; Che, J L; Wang, X P; Lan, H Y; Wu, Z K; Zhang, Y Q; Zhang, Y P
2014-01-01
We report controllable azimuthons of four-wave mixing (FWM), which can be modulated by several parameters in experiment. The spot number, splitting depth, rotation angular velocity and direction of such azimuthons can be controlled by the frequency and intensity of the FWM signal or the dressing field through the cross-phase modulation due to atomic coherence. The intensity gain of the azimuthons can be modulated by frequency detuning through quantum parametric amplification. The quantum correlated FWM vortex is observed in experiment. We also discuss the applications of such controllable azimuthons in all-optical circulators, multiplexers (demultiplexers), routers, cross-connects and optical amplifiers. (paper)
Application of electromagnetic and sound waves in nutritional assessment
International Nuclear Information System (INIS)
Heymsfield, S.B.; Rolandelli, R.; Casper, K.; Settle, R.G.; Koruda, M.
1987-01-01
Four relatively new techniques that apply electromagnetic or sound waves promise to play a major role in the study of human body composition and in clinical nutritional assessment. Computerized axial tomography, nuclear magnetic resonance, infrared interactance, and ultrasonography provide capabilities for measuring the following: total body and regional fat volume; regional skeletal muscle volume; brain, liver, kidney, heart, spleen, and tumor volume; lean tissue content of triglyceride, iron, and high-energy intermediates; bone density; and cardiac function. Each method is reviewed with regard to basic principles, research and clinical applications, strengths, and limitations.33 references
Photonic-crystal diplexers for terahertz-wave applications.
Yata, Masahiro; Fujita, Masayuki; Nagatsuma, Tadao
2016-04-04
A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
ULF wave index and its possible applications in space physics
International Nuclear Information System (INIS)
Romanova, N.; Pilipenko, V.; Khabarova, O.; Crosby, N.
2007-01-01
The solar wind-magnetosphere interaction has a turbulent character, which is not accounted for by commonly used geomagnetic indices and OMNI parameters. To quantify the level of low-frequency turbulence/variability of the geomagnetic field, IMP, and solar wind plasma, we have introduced ULP wave power indices. These simple hourly indices are based on the integrated spectral power in the band 2-7 mHz or wavelet power with time scales∼10-100 min. The ground wave index has been produced from the data of global magnetometer arrays in the Northern Hemisphere. The interplanetary and geostationary wave indices have been calculated using magnetometer and plasma data from interplanetary and geosynchronous satellites. These indices have turned out to be useful for statistical analysis of various space weather problems. These indices enable one to examine easily the statistical correspondence between the ULP activity and interplanetary conditions. For example, the enhancements of relativistic electrons at the geosynchronous orbit were not directly related to the intensity of magnetic storms, but they correlated well with intervals of elevated ground ULP wave index. This fact confirmed the importance of magnetospheric ULP turbulence in energising electrons up to relativistic energies. The interplanetary index has revealed statistically the role of the interplanetary turbulence in driving the magnetosphere by the IMP/solar wind. The application of this index to the analysis of conditions in the solar wind before magnetic storm onsets has shown that a weak irregular increase of the solar wind density is observed on average 2 days prior to storm commencement. The ULP index database for the period since 1991 is freely available via anonymous FTP for all interested researchers for further validation and statistical studies. (authors)
Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.
2010-09-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
International Nuclear Information System (INIS)
Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.
2010-01-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.
2010-01-01
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...
Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph
2013-05-31
An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.
Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves?
Mattsson, Mats-Olof; Zeni, Olga; Simkó, Myrtill
2018-03-01
Millimetre wave (MMW) and THz wave (THz) applications are already employed in certain industrial and medical environments for non-destructive quality control, and medical imaging, diagnosis, and therapy, respectively. The aim of the present study is to investigate if published experimental studies (in vivo and in vitro) provide evidence for "non-thermal" biological effects of MMW and THz. Such effects would occur in absence of tissue heating and associated damage and are the ones that can be exploited for therapeutic medical use. The investigated studies provide some evidence for both MMW and THz that can influence biological systems in a manner that is not obviously driven by tissue heating. However, the number of relevant studies is very limited which severely limits the drawing of any far-reaching conclusions. Furthermore, the studies have not addressed specific interaction mechanisms and do not provide hints for future mechanistic studies. Also, the studies do not indicate any specific importance regarding power density levels, frequencies, or exposure duration. It is also unclear if any specific biological endpoints are especially sensitive. Any therapeutic potential of MMW or THz has to be evaluated based on future high-quality studies dealing with physical, bio-physical, and biological aspects that have specific health-related perspectives in mind.
Effective equations for matter-wave gap solitons in higher-order transversal states.
Mateo, A Muñoz; Delgado, V
2013-10-01
We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.
Condensed matter applications of AdS/CFT (I)
CERN. Geneva
2009-01-01
These lectures will discuss the application of ads/cft techniques to condensed matter systems. After motivating this endeavor, I will review the basic features of the ads/cft correspondence that will be used. I will review the physics of spectral functions and how they can be computed via AdS/CFT. Holographic superconductors will be discussed. The lectures will conclude with a discussion of open questions and future directions. References: - Holographic Superconductors. Sean A. Hartnoll, Christopher P. Herzog, Gary T. Horowitz, JHEP 0812:015,2008, arXiv:0810.1563 [hep-th] - Ohm's Law at strong coupling: S duality and the cyclotron resonance, Sean A. Hartnoll, Christopher P. Herzog, Phys.Rev.D76:106012,2007, arXiv:0706.3228 [hep-th] - Gravity duals for non-relativistic CFTs. Koushik Balasubramanian, John McGreevy, Phys.Rev.Lett.101:061601,2008, arXiv:0804.4053 [hep-th] - Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. D.T. Son, Phys.Rev.D78:0...
Applications of Density Functional Theory in Soft Condensed Matter
Löwen, Hartmut
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.
Mineral surface–organic matter interactions: basics and applications
International Nuclear Information System (INIS)
Valdrè, G; Moro, D; Ulian, G
2012-01-01
The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted–Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.
Application of CFD based wave loads in aeroelastic calculations
DEFF Research Database (Denmark)
Schløer, Signe; Paulsen, Bo Terp; Bredmose, Henrik
2014-01-01
Two fully nonlinear irregular wave realizations with different significant wave heights are considered. The wave realizations are both calculated in the potential flow solver Ocean-Wave3D and in a coupled domain decomposed potential-flow CFD solver. The surface elevations of the calculated wave...... domain decomposed potentialflow CFD solver result in different dynamic forces in the tower and monopile, despite that the static forces on a fixed monopile are similar. The changes are due to differences in the force profiles and wave steepness in the two solvers. The results indicate that an accurate...
International Nuclear Information System (INIS)
Ogawa, T.; Hoshino, K.; Kanazawa, S.
2001-01-01
Several innovative applications of a travelling wave (combline) antenna designed for fast wave current drive have been demonstrated for the first time in the JFT-2M tokamak. High energy electrons of at least 10 keV were produced in the plasma core by highly directional fast waves in electron cyclotron heated plasmas. The ponderomotive potential of the beat wave, produced by fast waves at two different frequencies, was directly measured for the first time by a heavy ion beam probe. Plasma production was demonstrated using the wave fields excited by the combline antenna over a wide range of toroidal magnetic fields (0.5-2.2 T). (author)
Chang, C.; Szlavecz, K. A.; Bernard, M.; Pitz, S.
2013-12-01
Through transformation of plant litter into soil organic matter (SOM) and translocation of ingested organic material among different soil depths, soil organisms, especially earthworms, are one of the major factors affecting SOM dynamics. In North America temperate soil, historical human activity has lead to invasion of European earthworms into habitats that were previously earthworm-free or inhabited only by native species. By consuming leaf litter and SOM, burrowing, and casting, invasive earthworms have been known for reducing the understory vegetation and leaf litter layer while increasing the thickness of organic soil, causing changes in the soil habitat and the distribution of SOM. Recently, another group of invasive earthworm, namely Amynthas from Asia, has been reported invading habitats already dominated by European species, causing a 'second wave of invasion' where the soil ecosystem, already modified by European species, is going through another transition. The mechanisms through which these functionally (ecologically) different species affect C and N transformation could be better understood by tracing the carbon and nitrogen derived from 13C- and 15N-labeled leaf litter into earthworm tissues and SOM. The objective of this study is to understand how earthworm species that differ ecologically, including the Asian Amynthas, interact with each other and how these interactions affect SOM dynamics. We hypothesized that 1) species feeding on different food resources will have different isotopic signature and their tissue 13C and 15N values will change due to facilitation or interspecific competition on food resources, and 2) the short-term fate of litter-derived carbon differs depending on the presence or absence of different earthworm species. These hypotheses were tested by field sampling and lab mesocosm experiments using 13C and 15N double-enriched Tulip Poplar leaf litter (mean 13C = 124‰, mean 15N = 1667‰) produced from tree saplings growing in an
The effects of increased phosphorus application on shoot dry matter ...
African Journals Online (AJOL)
ONOS
2010-09-06
Sep 6, 2010 ... important to understand how crops with different root architecture would ... while in soils rich in organic matter, it is present as organic ... Plants take up most of the required nutrient elements ... MATERIALS AND METHODS.
Design of compact piezoelectric transducers for shock wave applications
Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer E.; Ginter, Siegfried
2003-10-01
The application of focused intense sound pulses to treat several orthopedic diseases has gained in importance during the past years. Self-focusing piezoelectric transducers known from ESWL are not well suited for this purpose due to their size. Therefore compact transducers have to be designed. This implies an increase of the pressure pulse amplitude generated at the radiating surface. A stacked placement of two piezoelectric layers driven by two high-voltage pulses with an adjustable delay accomplishes this. Several designs are presented here representing transducers of different sizes. In principle piezoelectric transducers have the ability to vary the pressure pulse shape to a wider extent than other shock wave sources. Based on FEM simulations of the transducer the influence of some driving parameters, like a variation of the interpulse delay or shape of the driving voltage, on the resulting focal pressure signal is demonstrated. The results show the feasibility to control some parameters of the signal, for example the peak negative pressure amplitude. This possibility could provide new aspects in basic research as well as in clinical applications.
International Nuclear Information System (INIS)
Sefkow, Adam B.; Davidson, Ronald C.; Kaganovich, Igor D.; Gilson, Erik P.; Roy, Prabir K.; Seidl, Peter A.; Yu, Simon S.; Welch, Dale R.; Rose, David V.; Barnard, John J.
2007-01-01
Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10 5 with peak beam density in excess of 10 14 cm -3 . The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n beam >n plasma . Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed
Applicability of FTIR-spectroscopy for characterizing waste organic matter
International Nuclear Information System (INIS)
Smidt, E.
2001-12-01
State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)
Electron non-linearities in Langmuir waves with application to beat-wave experiments
International Nuclear Information System (INIS)
Bell, A.R.; Gibbon, P.
1988-01-01
Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)
Extended wave-packet model to calculate energy-loss moments of protons in matter
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
The pump-probe coupling of matter wave packets to remote lattice states
DEFF Research Database (Denmark)
Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm
2012-01-01
containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...... selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....
Fornaro, L
2000-01-01
When the ionizing radiation interact with the matter different effects happen on the radiations and on the matter. Many of these effects have been used with very different ends giving place to applications in several fields, among those that stand out the applications in medicine and industry. Basically, two different dispositions exist: one in that the radiation crosses or retrodisperse in the material and another in that the radiation acts on and it modifies the material.
International Nuclear Information System (INIS)
Fornaro, Laura
2000-01-01
When the ionizing radiation interact with the matter different effects happen on the radiations and on the matter. Many of these effects have been used with very different ends giving place to applications in several fields, among those that stand out the applications in medicine and industry. Basically, two different dispositions exist: one in that the radiation crosses or retrodisperse in the material and another in that the radiation acts on and it modifies the material
Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions
Opatrný, T.; Kurizki, G.
2001-04-01
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Matter-wave entanglement and teleportation by molecular dissociation and collisions.
Opatrný, T; Kurizki, G
2001-04-02
We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.
Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants
Campbell, Brian
2010-01-01
Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…
Engineering light-matter interaction for emerging optical manipulation applications
DEFF Research Database (Denmark)
Qiu, Cheng-Wei; Palima, Darwin; Novitsky, Andrey
2014-01-01
In this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads...
Wave Simulation in Truncated Domains for Offshore Applications
Wellens, P.R.
2012-01-01
Guided-wave acousto-optics interactions, devices, and applications
1990-01-01
The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...
Understanding the core-halo relation of quantum wave dark matter from 3D simulations.
Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy
2014-12-31
We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22) eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60 pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.
Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves
Chang, Yu-Hsuan; Lin, De-Hone
2014-01-01
Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.
The cosmic QCD phase transition with dense matter and its gravitational waves from holography
Ahmadvand, M.; Bitaghsir Fadafan, K.
2018-04-01
Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.
Ultrasonic spectroscopy applications in condensed matter physics and materials science
Leisure, Robert G
2017-01-01
Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.
International Nuclear Information System (INIS)
Adhikari, Sadhan K.
2004-01-01
Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate
Energy Technology Data Exchange (ETDEWEB)
Shin, Sung Woo [Dept. of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)
2016-12-15
In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.
Energy Technology Data Exchange (ETDEWEB)
Shim, Sung Woo [Dept. of of Safety Engineering, Pukyong National University, Busan (Korea, Republic of)
2014-12-15
In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
Cleveland, Robin O; Sapozhnikov, Oleg A
2005-10-01
A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.
Application of holographic interferometric studies of underwater shock-wave focusing to medicine
Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.
1993-01-01
Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.
Forward and backward waves: three definitions and their interrelation and applicability
International Nuclear Information System (INIS)
Shevchenko, Viktor V
2007-01-01
The three known property-specific definitions for forward and backward waves propagating through various media and waveguides are reviewed. Criteria by which these waves can be identified according to their definitions are introduced. It is shown that in some cases using these criteria simultaneously can yield inconsistent or even opposite results. Usability conditions and ranges of applicability of these criteria and the above definitions are specified by employing the example of electromagnetic waves and waveguides. (methodological notes)
Energy Technology Data Exchange (ETDEWEB)
Mohamadou, Alidou [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); Abdus Salam International Centre for Theoretical Physics, P.O. Box 538, Strada Costiera 11, I-34014 Trieste (Italy); Wamba, Etienne; Kofane, Timoleon C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); Doka, Serge Y. [Higher Teacher Training College, University of Maroua, P.O. Box 55, Maroua (Cameroon); Ekogo, Thierry B. [Departement de Physique, Universite des Sciences et Techniques de Masuku, B.P. 943, Franceville (Gabonese Republic)
2011-08-15
We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.
Resonant trapping in the transport of a matter-wave soliton through a quantum well
International Nuclear Information System (INIS)
Ernst, Thomas; Brand, Joachim
2010-01-01
We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schroedinger equation are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is found to rely both on resonant interaction between the soliton and bound states in the potential well and on the radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are not accessible through scattering with single atoms.
International Nuclear Information System (INIS)
Talebi, S.M.
1997-01-01
The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)
Investigation of matter-antimatter interaction for possible propulsion applications
Morgan, D. L., Jr.
1974-01-01
Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.
Model of superdense matter and its application to neutron stars
International Nuclear Information System (INIS)
Pedico, R.D.
1976-01-01
A phenomenological model of superdense baryonic matter at zero temperature is developed and the resulting equation of state is employed in the calculation of neutron star masses and moments of inertia. The strong interactions between the baryons are described by couplings to one scalar and one vector field. These fields are not identified with observed mesons. Only a particular class of diagrams, constructed from tadpole terms, is retained in this investigation. It is argued that these terms contain the leading order density dependence of any set of diagrams that can be built up from fundamental two baryon-one meson vertices. The two parameters in the model, the coupling strengths, are fixed by the requirement that the accepted binding energy of infinite nuclear matter be reproduced at nuclear density. These couplings are used to calculate a forward proton-neutron cross section, which is found to agree with experimental data over a limited energy range. A pressure-energy density equation of state is generated for an electrically neutral system of electrons, muons, and the lowest mass baryon octet. The constituents are held in chemical equilibrium by the weak interactions. The equation of state exhibits a broad phase transition encompassing nuclear density, which leads to neutron stars containing a nearly incompressible core surrounded by a significantly less dense shell. The masses and moments of inertia of these model neutron stars are in good agreement with observational data for pulsars
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Application of Maximum Entropy Distribution to the Statistical Properties of Wave Groups
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The new distributions of the statistics of wave groups based on the maximum entropy principle are presented. The maximum entropy distributions appear to be superior to conventional distributions when applied to a limited amount of information. Its applications to the wave group properties show the effectiveness of the maximum entropy distribution. FFT filtering method is employed to obtain the wave envelope fast and efficiently. Comparisons of both the maximum entropy distribution and the distribution of Longuet-Higgins (1984) with the laboratory wind-wave data show that the former gives a better fit.
Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices
International Nuclear Information System (INIS)
Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.
2006-01-01
We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime
Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars
Wambach, J.; Anisworth, T. L.; Pines, D.
1993-01-01
A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.
Application of Remote Sensing for Mapping Soil Organic Matter Content
Directory of Open Access Journals (Sweden)
Bangun Muljo Sukojo
2010-10-01
Full Text Available Information organic content is important in monitoring and managing the environment as well as doing agricultural production activities. This research tried to map soil organic content in Malang using remote sensing technology. The research uses 6 bands of data captured by Landsat TM (Thematic Mapper satellite (band 1, 2, 3, 4, 5, 7. The research focuses on pixels having Normalized Difference Soil Index (NDSI more than 0.3. Ground-truth data were collected by analysing organic content of soil samples using Black-Walkey method. The result of analysis shows that digital number of original satellite image can be used to predict soil organic matter content. The implementation of regression equation in predicting soil organic content shows that 63.18% of research area contains of organic in a moderate category.
Application of extracorporeal shock wave on bone: preliminary report.
Ikeda, K; Tomita, K; Takayama, K
1999-11-01
We have studied the effect of extracorporeal shock waves (ESW) on bone. ESW emitted by the new powerful generator provides three to six times greater energy than a common lithotriptor. Because the ESW causes fracture of rabbit femurs and induces new bone formation, we have called this treatment as ESWIB (ESW-induced bone formation). The purpose of this study is to confirm the effect of ESWIB on a canine model, which is more similar to clinical cases, and to apply ESWIB on nonunion of clinical cases. In our basic research, ESWIB was applied on six canine femurs as follows: group I with 100, 500, 1,000 shots and group II with 100, 500, 1,000 shots. A femur was extracted immediately after ESWIB in group I and 2 months after ESWIB in group II. Blood tests, including blood cell counts and blood chemistry studies, were performed before and after ESWIB in group II. In our clinical research, we applied ESWIB to six patients of delayed or nonunion of the fracture. The sites of the ESWIB application were three tibiae, one radius, one femur, and one humerus. Average age of the patients, the period from the previous surgery, and the period until fusion was achieved were 38.6 years, 14.0 months, and 4.3 months, respectively. In our basic research, group I, 500 or more shots caused periosteum detachment. In addition, small fractures of the inner surface of the cortex were observed. However, gross fracture with displacement was not observed. In group II, 500 or more shots caused callus formation beneath the detached periosteum. Subcutaneous hemorrhage was seen in all dogs, and the degree of bleeding was directly proportional to the number of the shots. The blood was absorbed within a week. The level of serum creatine kinase was significantly high 2 days after ESWIB, but it recovered in a week. In our clinical research, four of the patients achieved union without any complications except mild subcutaneous bleeding. We predict that ESWIB will be one of the tactics for treatment of
Planar millimeter wave radar frontend for automotive applications
Directory of Open Access Journals (Sweden)
J. Grubert
2003-01-01
Full Text Available A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterf
Applications of nanosecond, kilojoule lasers to the basic physics of waves in plasmas
International Nuclear Information System (INIS)
Drake, R.P.
1992-01-01
Plasmas can sustain many normal modes of oscillation (waves), including both electromagnetic and electrostatic modes. These waves can interact by a wide variety of linear and nonlinear mechanisms, including mode coupling, mixing, and instabilities. Furthermore, such mechanisms compete, so that a given wave might be absorbed, might mode convert, or might decay by one of several instabilities, depending upon the specific circumstances in which it is produced. Moreover, such waves are important in many applications, including for example laser fusion, x-ray lasers, plasma accelerators, and ionospheric heating. Laser-produced plasmas can provide an effective medium for the studies of such waves and the related mechanisms. New opportunities will be made possible by the advent of comparatively inexpensive nanosecond, kilojoule lasers. One can now contemplate affordable experiments, not limited by programmatic constraints, that could study such the basic physics of the waves in such plasmas with unprecedented precision and in unprecedented detail
Application of Lamb waves for the characterization of composite plates
International Nuclear Information System (INIS)
Agostini, Valentina; Delsanto, Pier P.; Olivero, Dimitri; Baboux, Jean-C.; Monnier, Thomas
1999-01-01
In order to detect and evaluate flaws in thin composite structures, such as skins on aircraft wings or sail boat bodies, Lamb waves are the preferred tool of ultrasonic excitation. In the framework of a European Brite EuRam project, we have been involved in the problem of damage assessment in smart composite plates. Our goal is to predict the system signature and to identify optimal signal extraction routines. Given the wave frequency, thickness and physical properties of the materials, we simulate, using the Local Interaction Simulation Approach (LISA), the propagation of Lamb waves in carbon fiber reinforced plates and their interaction with defects and compare the numerical results with the experimental data
Propagation and application of waves in the ionosphere.
Yeh, K. C.; Liu, C. H.
1972-01-01
This review deals with the propagation of waves, especially radio waves in the ionosphere. In the macroscopic electromagnetic theory, the mathematical structure of wave propagation problems depends entirely on the properties of the dielectric operator in a magnetically nonpermeable medium. These properties can be deduced from general discussions of symmetry and considerations of physical principles. When the medium is specifically the ionosphere, various physical phenomena may occur. Because of a large number of parameters, it is desirable to define a parameter space. A point in the parameter space corresponds to a specific plasma. The parameter space is subdivided into regions whose boundaries correspond to conditions of resonance and cutoff. As the point crosses these boundaries, the refractive index surface transforms continuously.
Fabrication of photonic amorphous diamonds for terahertz-wave applications
Energy Technology Data Exchange (ETDEWEB)
Komiyama, Yuichiro; Abe, Hiroyuki; Kamimura, Yasushi; Edagawa, Keiichi, E-mail: edagawa@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2016-05-09
A recently proposed photonic bandgap material, named “photonic amorphous diamond” (PAD), was fabricated in a terahertz regime, and its terahertz-wave propagation properties were investigated. The PAD structure was fabricated from acrylic resin mixed with alumina powder, using laser lithographic, micro-additive manufacturing technique. After fabrication, the resulting structure was dewaxed and sintered. The formation of a photonic bandgap at around 0.45 THz was demonstrated by terahertz time-domain spectroscopy. Reflecting the disordered nature of the random network structure, diffusive terahertz-wave propagation was observed in the passbands; the scattering mean-free path decreased as the frequency approached the band edge. The mean-free paths evaluated at the band edges were close to the Ioffe-Regel threshold value for wave localization.
Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin
2018-04-01
We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.
Hospital electronic medical record enterprise application strategies: do they matter?
Fareed, Naleef; Ozcan, Yasar A; DeShazo, Jonathan P
2012-01-01
Successful implementations and the ability to reap the benefits of electronic medical record (EMR) systems may be correlated with the type of enterprise application strategy that an administrator chooses when acquiring an EMR system. Moreover, identifying the most optimal enterprise application strategy is a task that may have important linkages with hospital performance. This study explored whether hospitals that have adopted differential EMR enterprise application strategies concomitantly differ in their overall efficiency. Specifically, the study examined whether hospitals with a single-vendor strategy had a higher likelihood of being efficient than those with a best-of-breed strategy and whether hospitals with a best-of-suite strategy had a higher probability of being efficient than those with best-of-breed or single-vendor strategies. A conceptual framework was used to formulate testable hypotheses. A retrospective cross-sectional approach using data envelopment analysis was used to obtain efficiency scores of hospitals by EMR enterprise application strategy. A Tobit regression analysis was then used to determine the probability of a hospital being inefficient as related to its EMR enterprise application strategy, while moderating for the hospital's EMR "implementation status" and controlling for hospital and market characteristics. The data envelopment analysis of hospitals suggested that only 32 hospitals were efficient in the study's sample of 2,171 hospitals. The results from the post hoc analysis showed partial support for the hypothesis that hospitals with a best-of-suite strategy were more likely to be efficient than those with a single-vendor strategy. This study underscores the importance of understanding the differences between the three strategies discussed in this article. On the basis of the findings, hospital administrators should consider the efficiency associations that a specific strategy may have compared with another prior to moving toward
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Dynamical control of matter-wave splitting using time-dependent optical lattices
DEFF Research Database (Denmark)
Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune
2012-01-01
We report on measurements of splitting Bose-Einstein condensates (BEC) by using a time-dependent optical lattice potential. First, we demonstrate the division of a BEC into a set of equally populated components by means of time-dependent control of Landau-Zener tunneling in a vertical lattice....... Finally, a combination of multiple Bragg reflections and Landau-Zener tunneling allows for the generation of macroscopic arrays of condensates with potential applications in atom optics and atom interferometry....
National Research Council Canada - National Science Library
Pritchard, David
1999-01-01
Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Group theory Application to the physics of condensed matter
Dresselhauss, M S; Jorio, A
2007-01-01
Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...
Theory of bending waves with applications to disk galaxies
International Nuclear Information System (INIS)
Mark, J.W.K.
1982-01-01
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way
Wave propagation in layered anisotropic media with application to composites
Nayfeh, AH
1995-01-01
Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications
Directory of Open Access Journals (Sweden)
Mark Melnykowycz
2016-03-01
Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.
Applications of Shock Wave Research to Developments of Therapeutic Devices.
Takayama, Kazuyoshi
2007-06-01
Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.
Application of RMS for damage detection by guided elastic waves
Energy Technology Data Exchange (ETDEWEB)
Radzienski, M; Dolinski, L; Krawczuk, M [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk (Poland); Zak, A; Ostachowicz, W, E-mail: Maciej.Radzienski@gmail.com [Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)
2011-07-19
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
Application of RMS for damage detection by guided elastic waves
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
Wave motion as inquiry the physics and applications of light and sound
Espinoza, Fernando
2017-01-01
This undergraduate textbook on the physics of wave motion in optics and acoustics avoids presenting the topic abstractly in order to emphasize real-world examples. While providing the needed scientific context, Dr. Espinoza also relies on students' own experience to guide their learning. The book's exercises and labs strongly emphasize this inquiry-based approach. A strength of inquiry-based courses is that the students maintain a higher level of engagement when they are studying a topic that they have an internal motivation to know, rather than solely following the directives of a professor. "Wave Motion" takes those threads of engagement and interest and weaves them into a coherent picture of wave phenomena. It demystifies key components of life around us--in music, in technology, and indeed in everything we perceive--even for those without a strong math background, who might otherwise have trouble approaching the subject matter.
International Nuclear Information System (INIS)
Nascimento, M.A.C. do
1992-01-01
A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)
DEFF Research Database (Denmark)
Larsén, Xiaoli Guo; Kalogeri, Christina; Galanis, George
2015-01-01
and post-process outputs from a high resolution numerical wave modeling system for extreme wave estimation based on the significant wave height. This approach is demonstrated through the data analysis at a relatively deep water site, FINO 1, as well as a relatively shallow water area, coastal site Horns...... as a characteristic index of extreme wave conditions. The results from the proposed methodology seem to be in a good agreement with the measurements at both the relatively deep, open water and the shallow, coastal water sites, providing a potentially useful tool for offshore renewable energy applications. © 2015...... Rev, which is located in the North Sea, west of Denmark. The post-processing targets at correcting the modeled time series of the significant wave height, in order to match the statistics of the corresponding measurements, including not only the conventional parameters such as the mean and standard...
The need for expanded exploration of matter-antimatter annihilation for propulsion application
Massier, P. F.
1982-01-01
The use of matter-antimatter annihilation as a propulsion application for interstellar travel is discussed. The physical basis for the superior energy release in such a system is summarized, and the problems associated with antimatter production, collection and storage are assessed. Advances in devising a workable propulsion system are reported, and the parameters of an antimatter propulsion system are described.
Millimeter-Wave Wireless Power Transfer Technology for Space Applications
Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville
2008-01-01
In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.
Guided wave photonics fundamentals and applications with Matlab
Binh, Le Nguyen
2012-01-01
IntroductionHistorical Overview of Integrated Optics and PhotonicsWhy Analysis of Optical Guided-wave Devices?Principal ObjectivesChapters OverviewSingle Mode Planar Optical WaveguidesFormation of Planar Single Mode Waveguide ProblemsApproximate Analytical Methods of SolutionAPPENDIX A: Maxwell Equations in Dielectric MediaAPPENDIX B: Exact Analysis of Clad-linear Optical WaveguidesAPPENDIX C: Wentzel-Kramers-Brilluoin Method, Turning Points and Connection FormulaeAPPENDIX D: Design and Simulation of Planar Optical Waveguides3D Integrated Optical WaveguidesMarcatili's Method| Effective Index M
Damping of surface waves due to oil emulsions in application to ocean remote sensing
Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.
2017-10-01
Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.
Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano
Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.
2017-12-01
This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to
Use of isotopes in organic matter studies: a discussion illustrated by recent applications
International Nuclear Information System (INIS)
Warembourg, F.R.
1982-01-01
After a presentation of the various concepts leading to the advantageous use of isotope tracers in soil organic matter and related studies, a discussion is proposed around three main types of methods which are related to the time scale of the processes occurring in the soil organic matter transformations. Examples help to illustrate the purpose. Static methods describing the state of soil organic matter such as carbon dating. Long term dynamic studies involving the use of labelled plant materials and their applications in situ. Short term dynamic studies as an insight into the short term lived processes such as biotic and abiotic energetic activivation, flushes, priming effect, nitrogen fixation. More than an exhaustive enumeration of the litterature, the main objective of this presentation will tend to be a comprehensive analysis of the many problems arising from the study of soil activities and of the modern approaches of investigation. (Author) [pt
On a class of nonlocal wave equations from applications
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
Current status of musculoskeletal application of shear wave elastography
Energy Technology Data Exchange (ETDEWEB)
Ryu, Jeong Ah [Dept. of Radiology, Hanyang University Guri Hospital, Hanyang University School of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)
2017-07-15
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
Directory of Open Access Journals (Sweden)
JeongAh Ryu
2017-07-01
Full Text Available Ultrasonography (US is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
International Nuclear Information System (INIS)
Ryu, Jeong Ah; Jeong, Woo Kyoung
2017-01-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography
Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96
1996-01-01
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI
2018-06-01
A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.
International Nuclear Information System (INIS)
Bourdier, A.; Patin, D.
2005-01-01
The basic physical processes in laser-matter interaction, up to 10 17 W/cm 2 (for a neodymium laser) are now well understood, on the other hand, new phenomena evidenced in particle-in-cell code simulations have to be investigated above 10 18 W/cm 2 . Thus, the relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First, the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized space is explored. The problem is shown to be integrable. The results obtained are compared to those derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that the two approaches are in good agreement during a finite time. After this short time, when the plasma response is taken into account no chaos take place at least when considering low densities and/or high wave intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous magnetic field is then considered. The problem is shown to be integrable when the wave propagates in vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be reduced to a time-dependent system with two degrees of freedom. The system is shown to be non-integrable, chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. (authors)
Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications
Directory of Open Access Journals (Sweden)
M. A. Matin
2016-12-01
Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.
Slow wave structures using twisted waveguides for charged particle applications
Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.
2012-12-11
A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.
Application of the S"3M code in transport of ion beams in matter
International Nuclear Information System (INIS)
Bokor, J.; Pavlovic, M.; Sagatova, A.
2013-01-01
In the present paper, the basic processes of interaction of ion beams with matter are explained with emphasis on their statistical analysis. The tools for this analysis have been implemented in the S"3M code that is described in this paper. The statistical modules of the S"3M code are demonstrated using a particular application for research and development of fast-neutron semiconductor detectors as an example. (authors)
Stopping powers of energetic electrons penetrating condensed matter-theory and application
International Nuclear Information System (INIS)
Tan Zhenyu; Xia Yueyuan
2004-01-01
In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)
Application of the Exp-function method to the equal-width wave equation
International Nuclear Information System (INIS)
Biazar, J; Ayati, Z
2008-01-01
In this paper, the Exp-function method is used to find an exact solution of the equal-width wave (EW) equation. The method is straightforward and concise, and its applications are promising. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving the EW equation.
Tandem shock waves in medicine and biology: a review of potential applications and successes
Czech Academy of Sciences Publication Activity Database
Lukeš, Petr; Fernández, F.; Gutiérrez-Aceves, J.; Fernández, E.; Alvarez, U.M.; Šunka, Pavel; Loske, A.M.
2016-01-01
Roč. 26, č. 1 (2016), s. 1-23 ISSN 0938-1287 Institutional support: RVO:61389021 Keywords : Tandem shock waves * Acoustic cavitation * Clinical applications * Bactericidal effect * Genetic transformation * Cancer treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.107, year: 2016 http://link.springer.com/article/10.1007%2Fs00193-015-0577-0
A Novel HBT Frequency Doubler Design for Millimeter-Wave Applications
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens
2006-01-01
In this paper we presents a novel HBT frequency doubler design for millimeter-wave application. A HBT frequency doubler theory is described which leads to accurate design equations for optimal performance. The developed theory shows that an optimal HBT frequency doubler can be achieved using a no...
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Compact Receiver Front Ends for Submillimeter-Wave Applications
Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.
2012-01-01
The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.
Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael
2016-07-01
Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.
Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E
2016-03-01
Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.
SU (N ) spin-wave theory: Application to spin-orbital Mott insulators
Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin
2018-05-01
We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.
Response of Arabica Coffee Cultivated on Andisols on Organic Matter Applications
Directory of Open Access Journals (Sweden)
Pujiyanto .
2013-12-01
Full Text Available Andisols are characterized by dominance of amorphous minerals which form strong and stable bonding with organic matter, therefore Andisols always contain high organic matter. For that reason, organic fertilizer is generally not applied on Andisols, because it is assumed that it will not give any positive effect on growth or yield. The experiment was aimed to evaluate response of mature Kartika 1 Arabica coffee variety (seven years old cultivated on Andisols applied with organic matter derived from cow dung manure. The experiment was carried out at Andungsari Experimental Station located in Bondowoso District, East Java. Elevation of the site was 1,150 m asl., with rainfall type of C (Schmidt & Fergusson. The experiment was arranged according to completely randomized block design with four replications to evaluate effect of ninecombination treatments of application rates at application depths of 50, 100, and 150 cm. The range of organic fertilizers rates were 0 - 13.5 kg/tree/year. The experiment revealed that cow dung manure applications on Arabica coffee cultivated on Andisols significantly increased yield at the average of 33% compared to the untreated crop. No significant effect of the treatment onvariables of leaf water deficit and soil moisture content during dry season and root density. At range of application depths of 50 - 150 cm, the deeper the organic matter applications, the higher the yield will be.Key words: Andisols, Arabica coffee, organic matter, cow dung manure
Modeling of microwave applicators with an excitation through the wave guide using TLM method
Directory of Open Access Journals (Sweden)
Ranđelović Tijana
2005-01-01
Full Text Available In this paper, a real microwave applicator with a wave guide used to launch the energy from the source into the cavity is analyzed using 3D TLM method. In order to investigate the influence of the positions and number of feed wave guides to the number of the resonant modes inside the cavity, obtained results are compared with analytical results and results obtained by using TLM software with an impulse excitation as well. TLM method is applied to the both empty and loaded rectangular metallic cavity, and a very good agreement between simulated and experimental results is achieved.
Lamb, George L
1995-01-01
INTRODUCTORY APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS. With Emphasis on Wave Propagation and Diffusion. This is the ideal text for students and professionals who have some familiarity with partial differential equations, and who now wish to consolidate and expand their knowledge. Unlike most other texts on this topic, it interweaves prior knowledge of mathematics and physics, especially heat conduction and wave motion, into a presentation that demonstrates their interdependence. The result is a superb teaching text that reinforces the reader's understanding of both mathematics and physic
Terahertz Wave Approach and Application on FRP Composites
Directory of Open Access Journals (Sweden)
Kwang-Hee Im
2013-01-01
Full Text Available Terahertz (THz applications have emerged as one of the most new powerful nondestructive evaluation (NDE techniques. A new T-ray time-domain spectroscopy system was utilized for detecting and evaluating orientation influence in carbon fiber-reinforced plastics (CFRPs composite laminates. Investigation of terahertz time-domain spectroscopy (THz-TDS was made, and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here, the CFRP composites derived their excellent mechanical strength, stiffness, and electrical conductivity from carbon fibers. Especially, the electrical conductivity of the CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. In order to solve various material properties, the index of refraction (n and the absorption coefficient (α are derived in reflective and transmission configurations using the terahertz time-domain spectroscopy. Also, for a 48-ply thermoplastic polyphenylene-sulfide-(PPS- based CFRP solid laminate and nonconducting materials, the terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field direction in the CFRP solid laminates. It is found that the conductivity (σ depends on the angles of the nominal axis in the unidirectional fiber.
Directory of Open Access Journals (Sweden)
Wu Xuebang
2015-09-01
Full Text Available The general trend in soft matter is to study systems of increasing complexity covering a wide range in time and frequency. Mechanical spectroscopy is a powerful tool for understanding the structure and relaxation dynamics of these materials over a large temperature range and frequency scale. In this work, we collect a few recent applications using low-frequency mechanical spectroscopy for elucidating the structural changes and relaxation dynamics in soft matter, largely based on the author’s group. We illustrate the potential of mechanical spectroscopy with three kinds of soft materials: colloids, polymers and granular systems. Examples include structural changes in colloids, segmental relaxations in amorphous polymers, and resonant dissipation of grain chains in three-dimensional media. The present work shows that mechanical spectroscopy has been applied as a necessary and complementary tool to study the dynamics of such complex systems.
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Efficient techniques for wave-based sound propagation in interactive applications
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data
Yushkanov, A. A.; Zverev, N. V.
2018-03-01
An influence of quantum and spatial dispersion properties of the non-degenerate electron plasma on the interaction of electromagnetic P-waves with one-dimensional photonic crystal consisting of conductor with low carrier electron density and transparent dielectric matter, is studied numerically. It is shown that at the frequencies of order of the plasma frequency and at small widths of the conducting and dielectric layers of the photonic crystal, optical coefficients in the quantum non-degenerate plasma approach differ from the coefficients in the classical electron gas approach. And also, at these frequencies one observes a temperature dependence of the optical coefficients.
Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun
Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.
Directory of Open Access Journals (Sweden)
Farman Ali Mangi
2016-01-01
Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.
A first course in vibrations and waves
Samiullah, Mohammad
2015-01-01
This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...
Dynamics of interstellar matter
International Nuclear Information System (INIS)
Kahn, F.D.
1975-01-01
A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
Directory of Open Access Journals (Sweden)
Qicheng Meng
2016-04-01
Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.
A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber
Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.
2014-08-01
Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.
A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber
Energy Technology Data Exchange (ETDEWEB)
Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Y. F.; Ko, C. C.; Yang, E. C. [Department of Entomology, National Taiwan University, Taipei, Taiwan (China); Jiang, J. A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan (China)
2014-08-15
Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.
A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.
Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R
2014-08-01
Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.
Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar
Igor Prokopovich; Alexei Popov; Lara Pajewski; Marian Marciniak
2017-01-01
This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the s...
International Nuclear Information System (INIS)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.
2015-01-01
Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications
Application of the Analog Method to Modelling Heat Waves: A Case Study with Power Transformers
2017-04-21
UNCLASSIFIED Massachusetts Institute of Technology Lincoln Laboratory APPLICATION OF THE ANALOG METHOD TO MODELLING HEAT WAVES: A CASE STUDY WITH...18 2 Calibration and validation statistics with the use of five atmospheric vari- ables to construct analogue diagnostics for JJA of transformer T2...electrical grid as a series of nodes (transformers) and edges (transmission lines) so that basic mathematical anal- ysis can be performed. The mathematics
Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application
Yanik, G.; Isen, E.
2015-01-01
—This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...
The physics of wave-particle interactions with applications to astrophysics
International Nuclear Information System (INIS)
Karimabadi, H.
1988-01-01
The physics of electromagnetic wave-particle interactions in the limit of a strong static magnetic field is investigated using Hamiltonian and multiple time-scale techniques. For sufficiently small wave amplitude, the system is integrable and the motion in phase space is regular. For amplitudes exceeding a threshold value, the system become nonintegrable and the particle motion in phase space becomes stochastic. The stochasticity is caused by the overlapping of the adjacent resonances. The particle dynamics in various limits is discussed using a novel graphical technique for analyzing the particle motion. It is found that for ncosα > 1, the constant Hamiltonian surfaces are topologically closed and the maximum attainable particle energy is severely limited (n is the index of refraction and α is the wave propagation angle). For ncosα ≤ 1, however, the constant Hamiltonian surfaces are open due to relativistic correlations and the particles can gain large energies. A diffusion equation analogous to the Fokker-Planck equation is derived and used to examine the effect of the wave on an ensemble of particles. The model is applied to two different space applications. (i) It is shown that electrons can be accelerated by interacting with fundamental or second harmonic of an obliquely propagating cyclotron wave. This acceleration mechanism can explain the observed high energy electrons in solar type III bursts. (ii). The Kennel and Coroniti (1984) model of the Crab nebula is reexamined including the wave effects. A new model for the Crab nebula which accounts for the presence of radio electrons is proposed and its predictions compared to observations
DEFF Research Database (Denmark)
Murphy, Dooley Joel
This preliminary study surveys whether/which avatar body parts are visible in first-wave consumer virtual reality (VR) applications for the HTC Vive (n = 200). A simple coding schema for assessing avatar bodily coherence (ABC) is piloted and evaluated. Results provide a snapshot of ABC in popular...... high-end VR applications in Q3 2016. It is reported (Table 1) that 86.5% of sampled items feature fully invisible avatars, 9% depict hands only, and 4.5% feature a head, torso, or legs, but still with some degree of bodily incoherence. Findings suggest that users may experience a sense of ownership and...
Angioletti-Uberti, Stefano
2017-11-01
Functionalised nanoparticles for biomedical applications represents an incredibly exciting and rapidly growing field of research. Considering the complexity of the nano-bio interface, an important question is to what extent can theory and simulations be used to study these systems in a realistic, meaningful way. In this review, we will argue for a positive answer to this question. Approaching the issue from a "Soft Matter" perspective, we will consider those properties of functionalised nanoparticles that can be captured within a classical description. We will thus not concentrate on optical and electronic properties, but rather on the way nanoparticles' interactions with the biological environment can be tuned by functionalising their surface and exploited in different contexts relevant to applications. In particular, we wish to provide a critical overview of theoretical and computational coarse-grained models, developed to describe these interactions and present to the readers some of the latest results in this fascinating area of research.
A library for X-ray-matter interaction cross sections for X-ray fluorescence applications
Energy Technology Data Exchange (ETDEWEB)
Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100 Sassari (Italy) and INFN, Sezione di Cagliari (Italy)]. E-mail: brunetti@uniss.it; Sanchez del Rio, M. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Golosio, B. [INFN, Sezione di Cagliari (Italy); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Simionovici, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Laboratoire de Sciences de la Terre, Ecole Normale Superieure, Lyon, F-69364 (France); Somogyi, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France)
2004-10-08
Quantitative estimate of elemental composition by spectroscopic and imaging techniques using X-ray fluorescence requires the availability of accurate data of X-ray interaction with matter. Although a wide number of computer codes and data sets are reported in literature, none of them is presented in the form of freely available library functions which can be easily included in software applications for X-ray fluorescence. This work presents a compilation of data sets from different published works and an xraylib interface in the form of callable functions. Although the target applications are on X-ray fluorescence, cross sections of interactions like photoionization, coherent scattering and Compton scattering, as well as form factors and anomalous scattering functions, are also available.
2010-04-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12749-002] Oregon Wave Energy Partners I, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting.... Charles F. Dunleavy, Oregon Wave Energy Partners I, LLC, 1590 Reed Road, Pennington, NJ 08534. FERC...
Energy Technology Data Exchange (ETDEWEB)
Coutaz, J.L.; Garet, F. [Universite de Savoie au Bourget du Lac, IMEP-LAHC, UMR CNRS 5130, 73 (France); Le Drean, Y.; Zhadobov, M. [Institut d' Electronique et des Telecommunications de Rennes, 35 (France); Veyret, B. [I.M.S., 33 - Pessac (France); Mounaix, P. [Laboratoire Ondes et Matiere d' Aquitaine, Universite de Bordeaux, 1 UMR 5798, 33 - Talence (France); Caumes, J.P. [ALPhANOV, 33 - Bordeaux (France); Gallot, G. [Ecole Polytechnique, Laboratoire d' Optique et Biosciences, CNRS UMR 7645, INSERM U696, 91 - Palaiseau (France); Gian Piero, Gallerano [ENEA, Frascati (Italy); Mouret, G. [Universite du Littoral Cote d' Opale - ULCO, 59 - Dunkerque (France); Guilpin, J.C. [Direction Generale de l' Aviation Civile, 94 - Bonneuil sur Marne (France)
2011-07-01
Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)
Power converter for raindrop energy harvesting application: Half-wave rectifier
Izrin, Izhab Muhammad; Dahari, Zuraini
2017-10-01
Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.
The European programme to develop the Wells air turbine for applications in wave energy
International Nuclear Information System (INIS)
White, P.R.S.
1996-01-01
The European Wave Energy Pilot Plants currently under construction are utilising Wells air turbines to convert oscillating pneumatic energy within the converters to unidirectional energy of rotation for direct coupling to electrical generators. The Wells turbine has also been proposed for future off shore wave energy converters (eg SEA CLAM). The European research programme was to produce Recommendations for selecting the most appropriate air turbine for a given wave power application. The work concentrated on collating existing work on the Wells turbine, and extending it to examine rotor aerodynamics, the effect and practicality of variable pitch rotor blades, the effect on performance of interaction with the converter, and the preparation of design guide lines. A comparison between the output of a Wells turbine and a conventional air turbine with rectifying valves when subjected to the same random reversing air flow was also conducted. This paper gives a brief outline of the programme of work, and concludes that at this stage of development the Wells turbine is the preferred choice of prime mover for pneumatic wave energy converters. (Author)
Slow waves in microchannel metal waveguides and application to particle acceleration
Directory of Open Access Journals (Sweden)
L. C. Steinhauer
2003-06-01
Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6 mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
Slow waves in microchannel metal waveguides and application to particle acceleration
Steinhauer, L. C.; Kimura, W. D.
2003-06-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.
DEFF Research Database (Denmark)
Ferri, Francesco
The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly unt...
Digital Repository Service at National Institute of Oceanography (India)
Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.
. Res. 106(C6), 11659-11676 Babanin, A.V., 2011. Breaking and Dissipation of Ocean Surface Waves. Book, Cambridge University Press, 480p Banner, M. L., Gemmrich, J. R., and Farmer, D. M., 2002. Multiscale measurements of ocean wave breaking...
Energy Technology Data Exchange (ETDEWEB)
Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.
1999-08-01
We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)
CSIR Research Space (South Africa)
Shatalov, M
2012-09-01
Full Text Available are transformed into systems of ordinary differential equations with initial conditions. This reduction is obtained by means of application of particular finite difference schemes to the spatial derivatives. Many of the wave propagation problems describing...
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Application of Wave Distribution Function Method to the ERG/PWE Data
Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.
2017-12-01
The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.
Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph
1999-01-01
Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
Directory of Open Access Journals (Sweden)
Królak Andrzej
2005-03-01
Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, F-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case
Directory of Open Access Journals (Sweden)
Piotr Jaranowski
2012-03-01
Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, ℱ-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.
Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP
International Nuclear Information System (INIS)
Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo
2005-01-01
The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP
Simulation of millimeter-wave body images and its application to biometric recognition
Moreno-Moreno, Miriam; Fierrez, Julian; Vera-Rodriguez, Ruben; Parron, Josep
2012-06-01
One of the emerging applications of the millimeter-wave imaging technology is its use in biometric recognition. This is mainly due to some properties of the millimeter-waves such as their ability to penetrate through clothing and other occlusions, their low obtrusiveness when collecting the image and the fact that they are harmless to health. In this work we first describe the generation of a database comprising 1200 synthetic images at 94 GHz obtained from the body of 50 people. Then we extract a small set of distance-based features from each image and select the best feature subsets for person recognition using the SFFS feature selection algorithm. Finally these features are used in body geometry authentication obtaining promising results.
Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.
2017-04-01
Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).
International Nuclear Information System (INIS)
Sussman, Roberto A.
2009-01-01
A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.
Special issue on electron cyclotron wave physics, technology, and applications - Part 2
International Nuclear Information System (INIS)
Uckan, Nermin A.
2008-01-01
This issue of Fusion Science and Technology (FS and T) contains a compendium of full-length, peer-reviewed papers on electron cyclotron (EC) wave physics, technology, and applications on magnetically confined plasmas. The interest in this special issue started with a simple question from a single individual who asked if he could submit for publication in FS and T his paper ''ITER ECH Front Steering Upper Launcher,'' parts of which he was planning to present at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini Island, Greece, May 2006. Such interest quickly grew, and the decision was made to offer the same opportunity to other workshop participants as well as to other interested researchers from around the world to contribute to a special FS and T issue on EC wave physics, technology, and applications. The person who started this ''wave'' of interest is no other than Dr. Mark Henderson, who was later drafted and kindly agreed to serve as the guest editor for this issue. The worldwide research program on EC wave physics, technology, and applications has shown impressive progress over the past couple of years, and much of this progress is reflected in the fifty or so papers that are included in this two-part special issue - part 1 in August 2007 and part 2 in January 2008. To complement the contributed papers, several informative reviews, which will be valuable for years to come, were also invited and are included. These review papers provide an objective summary of the current state of the art in EC emission research, theory of EC waves, EC heating and current drive experiments, gyrotron development, launcher development, and transmission systems. In preparation for ITER, this special issue is timely and should be of interest to those already working in the field and to the new generation of scientists and engineers who will be the ones to design, build, and carry out experiments on ITER. We extend our
Expression for time travel based on diffusive wave theory: applicability and considerations
Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.
2017-12-01
Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the
Advances in condensed matter optics
Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin
2015-01-01
This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
Sakamoto, Shinichi; Otsuru, Toru
2014-01-01
This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.
National Research Council Canada - National Science Library
Pritchard, David
2000-01-01
Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Tensor-based morphometry of fibrous structures with application to human brain white matter.
Zhang, Hui; Yushkevich, Paul A; Rueckert, Daniel; Gee, James C
2009-01-01
Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in anatomy both across populations and in time. Our work extends the standard TBM for quantifying local volumetric changes to establish both rich and intuitive descriptors of shape changes in fibrous structures. It leverages the data from diffusion tensor imaging to determine local spatial configuration of fibrous structures and combines this information with spatial transformations derived from image registration to quantify fibrous structure-specific changes, such as local changes in fiber length and in thickness of fiber bundles. In this paper, we describe the theoretical framework of our approach in detail and illustrate its application to study brain white matter. Our results show that additional insights can be gained with the proposed analysis.
Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter
Energy Technology Data Exchange (ETDEWEB)
Huang, Di; Hua, Xin; Xiu, Guang-Li; Zheng, Yong-Jie; Yu, Xiao-Ying; Long, Yi-Tao
2017-10-01
Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PM characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.
Directory of Open Access Journals (Sweden)
Sugiyanto Sugiyanto
2008-07-01
Full Text Available Effort repair of land quality better be done by simultan namely with application of organic matters and inorganic fertilization. The objective of this research is to study the effect of varied organic matters source and phosphate fertilizers on the chemicals soil characteristic and cocoa nutrient uptake. The experiment was laid experimentally in split-plot design and environmentally in randomized complete block design. The main plot was source of P consisted of, control, SP 36 and rock phosphate in dosage of 200 mg P2O5 per kg of air dry soil. Source of organic matter as sub-plot consisted of control (no organic matter, cow dung, cocoa pod husk compost and sugar cane filter cake, each in dosage of 2.5 and 5.0%. Result of this experiment showed application of cow dung, cocoa pod husk compost and sugar cane filter cake increased content of C, N, Ca exchangeable, Fe available, and pH in soil, and SP 36 increased availability of P in soil. Application of sugar cane filter cake increased N, K, Ca, Mg, and SO4 uptake but did not increase Cl uptake, application of cow dung in dosage 5% increased N, K, and Cl uptake and cocoa pod husk compost dosage 5% increased N and K uptake of cocoa. SP 36 increased Mg uptake of cocoa but rock phosphate did not increase it. They were not interaction between organic matters and phosphate fertilizers to nutrient uptake of cocoa. Nutrient soil content as affected by organic matters correlated with nutrient uptake of cocoa.Key words : soil chemical properties, nutrient uptake, cocoa, organic matter, phosphate fertlizers.
AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION
International Nuclear Information System (INIS)
ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.
2002-01-01
Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined
Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst
2017-07-01
The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Directory of Open Access Journals (Sweden)
Ivan Aldaya
2015-01-01
Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.
International Nuclear Information System (INIS)
Laye epouse Granier, Agnes
1986-01-01
This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr
Nerguizian, Vahe; Rafaf, Mustapha
2004-08-01
This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.
Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge
2013-09-01
The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described
Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun
2017-01-01
A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.
Czech Academy of Sciences Publication Activity Database
Yang, H.X.; Ma, Y.Y.; Xu, H.; Shao, F.Q.; Yu, M.Y.; Yin, Y.; Zhuo, H.B.; Borghesi, Marco
2013-01-01
Roč. 31, č. 3 (2013), s. 379-386 ISSN 0263-0346 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : betatron resonance * electron plasma waves * ponderomotive force * preplasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.701, year: 2013
Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei
2018-06-01
Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.
Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent
2018-03-01
Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.
Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications
Directory of Open Access Journals (Sweden)
Chen S. Tsai
2017-02-01
Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.
Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.
Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C
2017-01-01
An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.
Directory of Open Access Journals (Sweden)
Mara Lucia Jacinto Oliveira
2015-02-01
Full Text Available Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr, which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L. was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS. Over a four-year period, CTS was applied on permanent plots (2 × 5 m and incorporated in the soil (0-20 cm at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis. These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.
Directory of Open Access Journals (Sweden)
Vera M. Kolb
2010-06-01
Full Text Available The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in the green organic reactions in water are directly applicable to astrobiology. Another green chemistry approach is to abolish use of toxic solvents. This can be accomplished by carrying out the reactions without a solvent in the solventless or solid-state reactions. The advances in these green reactions are directly applicable to the chemistry on asteroids during the periods when water was not available. Many reactions on asteroids may have been done in the solid mixtures. These reactions may be responsible for a myriad of organic compounds that have been isolated from the meteorites.
Russell, Armistead G
2008-02-01
One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.
Wave Separation. Part Two: Applications La séparation des ondes. Deuxième partie : applications
Directory of Open Access Journals (Sweden)
Glangeaud F.
2006-11-01
clearly located it is in the f-k domain, the more efficient the filter is. The method is very cost-effective in CPU time. The KLT or SVD filter requires flattening the wave that is to be extracted, which must additionally be of greater amplitude. Filtering is carried out without any edge effect and the wave amplitude variations are preserved. It serves to separate the normal incidence wave from the other waves and the noise. The SMF filter (spectral matrix is expensive in CPU time It makes the hypothesis that the wave is locally stable and does not require the data to be flattened. It can be used to separate very close neighboring waves without resorting to restrictive a priori hypotheses. It gives a measurement of time delays and also provides a measurement of variations in amplitude and phase spectra during propagation. This measurement is much better than the one supplied by the Wiener method, since it operates on all the traces. Additionally, it is used to separate data into a signal space and a noise space. The parametric method is the most expensive as regards time. It is simple to implement and requires no flattening or preparation of data. It extracts the waves according to chosen parameters, especially time delays. It is particularly recommended in offset vertical seismic profiling where the slowness of upgoing waves is unknown. It is robust with respect to some input parameters if the noise is low in comparison to the signal that is to be extracted. Many applications to field data have illustrated the effectiveness of these wave separation techniques. However, application to a new type of data often requires performance to be monitored to choose the best method. L'identification d'ondes dans les sections utilisées en prospection sismique nécessite parfois de séparer ces ondes. La première partie de cet article a été consacrée au principe et aux méthodes de séparation d'ondes. Les méthodes de séparation d'ondes peuvent être classées en trois familles
Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng
2013-03-01
We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.
2011-03-02
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has not previously performed any...
Energy Technology Data Exchange (ETDEWEB)
Benuzzi, A
1997-12-15
This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 {mu}m. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)
Directory of Open Access Journals (Sweden)
A. Soleymani
2012-04-01
Full Text Available In order to evaluate the effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage corn. Field experiment was conducted in 2006 at Bersian village Isfahan. A randomized complete block design with four replications was used. Plant treated with 8 foliar application treatments (Fe, Zn, Cu, Mn, Fe + Mn, Cu + Zn, Fe + Mn + Cu + Zn and control. The responses to foliar application in total dry weight, LAI and CGR appeared to differ between the treatments, but there is no significant difference in NAR between the treatments. Maximum leaf area index gained in foliar application of Fe but there is significant difference between this treatment and other treatments except foliar application of Zn and Fe + Mn. Foliar application of Fe and Fe + Mn result to maximum total dry weight, but there is no significant difference between these treatments and foliar application of Zn, Mn, Mn + Cu and Fe + Zn + Cu +Mn. Maximum and minimum NAR gained in foliar application of Mn and control treatments respectively. Maximum CGR gained in foliar application of Zn, there is significant difference between this treatment and others. Control treatment in comparison with others shows minimum value in all measured factors. The results indicate that foliar application of micro nutrients particularly Fe and Fe+Mn may be suitable to product maximum total dry matter yield under similar condition.
International Nuclear Information System (INIS)
Campbell, Eleanor E; Paustian, Keith
2015-01-01
Soil organic matter (SOM) is an important natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. We conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4) SOM dynamics in deep soil layers; and (5) SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions. (topical review)
The development and application of the AstroFit program for complementary dark matter studies
International Nuclear Information System (INIS)
Nguyen, Ngoc-Lan Nelly
2013-02-01
This doctoral thesis describes the development and application of the AstroFit program. Many studies have shown the existence of dark matter (DM), a mass component that constitutes over eighty percent of the entire matter in the Universe. From historical astrophysical evidence to latest reconstructions with sophisticated methods, the gravitational effect of DM can be shown, but its nature remains unknown. Many theoretical explanations aim at describing DM, for example as weakly interacting massive particles (WIMPs), within particular frameworks. The majority of these frameworks extend the existing standard model of particle physics (SM), so that new particles are added to the known set of elementary particles. One of these frameworks is the constrained supersymmetric standard model (CMSSM) that naturally introduces a DM candidate in form of the lightest supersymmetric particle(LSP). Searches for DM particles are undertaken in three different ways. First, directly with fixed-target experiments that measure WIMPs coming towards the Earth with nuclei of the target material. Second, indirectly by reconstructing DM signatures in particle spectra of known particles observed with ground-based telescopes, spaceborne satellites or balloon-borne experiments. And third, indirectly via direct production of DM at particle colliders such as the Large Hadron Collider (LHC) and energy reconstructions where missing transverse energy is presumably carried away by the DM particles. Global fit programs used in particle physics, such as Fittino, are designed to fit parameters of theories beyond the SM simultaneously that are in accordance with the experimental and observed data in order to probe models and constrain the parameter space. To explore complementarity in DM research, the AstroFit interface program has been developed to combine all available information from direct and indirect searches for DM as well as collider searches for new physics in such global fits. To demonstrate
The development and application of the AstroFit program for complementary dark matter studies
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ngoc-Lan Nelly
2013-02-15
This doctoral thesis describes the development and application of the AstroFit program. Many studies have shown the existence of dark matter (DM), a mass component that constitutes over eighty percent of the entire matter in the Universe. From historical astrophysical evidence to latest reconstructions with sophisticated methods, the gravitational effect of DM can be shown, but its nature remains unknown. Many theoretical explanations aim at describing DM, for example as weakly interacting massive particles (WIMPs), within particular frameworks. The majority of these frameworks extend the existing standard model of particle physics (SM), so that new particles are added to the known set of elementary particles. One of these frameworks is the constrained supersymmetric standard model (CMSSM) that naturally introduces a DM candidate in form of the lightest supersymmetric particle(LSP). Searches for DM particles are undertaken in three different ways. First, directly with fixed-target experiments that measure WIMPs coming towards the Earth with nuclei of the target material. Second, indirectly by reconstructing DM signatures in particle spectra of known particles observed with ground-based telescopes, spaceborne satellites or balloon-borne experiments. And third, indirectly via direct production of DM at particle colliders such as the Large Hadron Collider (LHC) and energy reconstructions where missing transverse energy is presumably carried away by the DM particles. Global fit programs used in particle physics, such as Fittino, are designed to fit parameters of theories beyond the SM simultaneously that are in accordance with the experimental and observed data in order to probe models and constrain the parameter space. To explore complementarity in DM research, the AstroFit interface program has been developed to combine all available information from direct and indirect searches for DM as well as collider searches for new physics in such global fits. To demonstrate
Effect of the application of ultrasonic waves on the leaching of nickel ore
International Nuclear Information System (INIS)
Reyes Padilla, Osniel; Castellanos Suarez, Jose; Hernandez Martinez, A. Naida; Cortes Miranda, Maritza; Abraham Islas, Osvel; Cardenas Merella, Rodnie; Trujillo, Maria Elena; Nicot, Yarisleydis; Calzada, Lidia; Sanabria de la Torre, Antonio; Echaide Hernandez, Marcos Julio
2016-01-01
The use of the ultrasonic waves (OU) he/she has been successful in some fields like: the medicine, in catalysts, treatments of foods and in the chemical procedures of laboratory. The applications of OU in the mining are not very well-known and it is not reported in detail in the literature. In the CIPIMM they have been carried out some test in the laboratory with positive results, for what the studies of this technique are continued. The objective of this work was to evaluate in a preliminary phase the application of ultrasonic waves in the process of lixiviation of nickel minerals. The prepared pulps with the mineral were treated in an ultrasonic bathroom at laboratory level. In the process of atmospheric lixiviation with H 2 SO 4 , the application of OU produced an increment in the nickel breakup between a 2 and 5%. The kinetics of breakup of Co was quicker than that of the nickel. The use of OU doesn't increase in a significant way the breakup of the iron, making that the process is selective. It was observed that the treatment with OU of 60 minutes during the lixiviation of the pulp of mineral lateritic (Serpentine of Nicaro) it was enough. The reported maximum recovery of Neither and Co was: 69% neither and 33% Co. The acid consumption (which represents 70% of the costs of industrial process) was between 11 to 20 t of acid per ton of nickel leached, being lower than the average reported consumption (26 ton acid / ton nickel) in the industrial plant acid pressure leaching in Moa. (Author)
29th International Symposium on Shock Waves
Ranjan, Devesh
2015-01-01
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...
DEFF Research Database (Denmark)
Ferri, Francesco
The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly...... untapped, renewable energy resource that has the potential to contribute significantly to the future energy mix, especially in an environmental friendly future scenario. What is bounding the sector to roll off into the market is the cost of the produced energy: too high if compared with other renewable...... energy sources. Generally speaking, the devices have a low efficiency and a high structural cost. The aim of the thesis is to push the research toward a cost minimisation algorithm, based on numerical simulation, which account for both efficiency and structural cost of the device. In order to achieve...
Adiabatic theorem for the time-dependent wave operator
International Nuclear Information System (INIS)
Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne
2005-01-01
The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan;
2014-01-01
The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract
Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.
Zhong, P; Chuong, C J; Preminger, G M
1993-07-01
To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.
SiGe BiCMOS manufacturing platform for mmWave applications
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
A switched-beam millimeter-wave array with MIMO configuration for 5G applications
Ikram, Muhammad
2018-03-08
In this work, a switched-beam 2-element multiple-input multiple-output (MIMO) antenna system is proposed at mm-wave bands for 5G applications. The antenna system consists of a 4 × 4 connected slot antennas for each MIMO element forming the connected antenna array (CAA). A feed network based on a Butler matrix is used to excite the CAA, in addition to steer the beam at different locations which enhance the diversity performances. The mm-wave MIMO antenna system operates at 28 GHz with at least −10 dB measured bandwidth of 830 MHz (27.4 GHZ–28.23 GHz). It is fabricated on a commercially available RO3003 substrate with dielectric constant of 3.3 and height of 0.13 mm, respectively. The dimensions of the board are equal to 150 mm3 × 100 mm3 × 0.13 mm3. The proposed design is compact, low profile, and suitable for future 5G-enabled tablet PCs.
Laser Source for Atomic Gravity Wave Detector
National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.;
2014-01-01
We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.
Analysis of Defective Pipings in Nuclear Power Plants and Applications of Guided Ultrasonic Wave Techniques
International Nuclear Information System (INIS)
Koo, Dae Seo; Cheong, Yong Moo; Jung, Hyun Kyu; Park, Chi Seung; Park, Jae Suck; Choi, H. R.; Jung, S. S.
2006-07-01
In order to apply the guided ultrasonic techniques to the pipes in nuclear power plants, the cases of defective pipes of nuclear power plants, were investigated. It was confirmed that geometric factors of pipes, such as location, shape, and allowable space were impertinent for the application of guided ultrasonic techniques to pipes of nuclear power plants. The quality of pipes, supports, signals analysis of weldment/defects, acquisition of accurate defects signals also make difficult to apply the guided ultrasonic techniques to pipes of nuclear power plants. Thus, a piping mock-up representing the pipes in the nuclear power plants were designed and fabricated. The artificial flaws will be fabricated on the piping mock-up. The signals of guided ultrasonic waves from the artificial flaws will be analyzed. The guided ultrasonic techniques will be applied to the inspection of pipes of nuclear power plants according to the basis of signals analysis of artificial flaws in the piping mock-up
P-polarized surface waves in a slab waveguide with left-handed material for sensing applications
International Nuclear Information System (INIS)
Taya, Sofyan A.
2015-01-01
In this paper, surface waves excited at the interface between left-handed and right-handed materials are employed for sensing applications. The propagation of p-polarized (TM) surface waves in a three-layer slab waveguide structure with air core layer as an analyte and anisotropic left-handed materials as claddings is investigated for detection of any changes in the refractive index of the analyte. The dispersion equations and the sensitivity of the effective refractive index to any change in the air layer index are derived, plotted, and discussed in details. The field profile is also explored. It is found that the sensitivity of the proposed surface wave sensor is almost independent of the wavelength of the propagating wave. A considerable sensitivity improvement can be obtained with the increase of transverse components of the left-handed material permittivity. - Highlights: • P-polarized surface waves in a three-layer slab waveguide are employed for sensing applications. • The structure contains air core layer as an analyte and anisotropic left-handed material in the claddings. • The sensitivity is found to be almost independent of the wavelength of the propagating wave. • Unusual sensitivity enhancement is observed as the transverse components of the LHM permittivity increase. • The asymmetric waveguide structure exhibits much higher sensitivity compared to the symmetric one
International Nuclear Information System (INIS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G
2010-01-01
This paper concerns the active vibration control of a rectangular panel using smart sensors from the viewpoint of an active wave control theory. The objective of this paper is to present a new type of filter which enables the measurement of the wave amplitude of a rectangular panel in real time for the application of an adaptive feedforward control system which inactivates vibration modes. Firstly, a novel wave filtering method using smart PVDF sensors is proposed. It is found that the shaping function of smart sensors is a complex function. To realize the smart sensor in a practical situation, a Hilbert transformer is utilized to implement a phase shifter of 90° for broadband frequencies. Then, from the viewpoint of a numerical analysis, the characteristics of the proposed wave filter and the performance of the adaptive feedforward control system using the wave filter are discussed. Finally, experiments implementing the active wave control theory which uses the proposed wave filter are conducted, demonstrating the validity of the proposed method in suppressing the vibration of a rectangular panel
Head waves in ultrasonic testing. Physical principle and application to welded joint testing
International Nuclear Information System (INIS)
Wustenberg, H.; Erhard, A.
1984-01-01
A head wave sensor is developed from distinct emitter and receiver sensors using longitudinal waves under a 70 0 incidence. These heat wave sensors present a high sensitivity for underlying cracks and are not influenced by surface accidents like liquid drops or welding projection. They are multi mode sensors emitting simultaneously longitudinal head waves, a main longitudinal lobe and a transverse wave with a maximum at about 38 0 . This wave combination can be used for automatic testing of welded joints even with austenitic materials for defect detection near internal or external surfaces. This process can substitute or complete liquid penetrant inspection or magnetic inspection for testing pipes (13 references are given) [fr
Wave front engineering by means of diffractive optical elements for applications in microscopy
Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo
2006-05-01
We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.
Surface Acoustic Wave (SAW for Chemical Sensing Applications of Recognition Layers
Directory of Open Access Journals (Sweden)
Adnan Mujahid
2017-11-01
Full Text Available Surface acoustic wave (SAW resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.
Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.
Mujahid, Adnan; Dickert, Franz L
2017-11-24
Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.
Directory of Open Access Journals (Sweden)
Mongur Hossain
2017-10-01
Full Text Available Recently, two-dimensional (2D charge density wave (CDW materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials have been studied for decades, recent developments in nanoscale characterization and device fabrication have opened up new opportunities allowing applications such as oscillators, electrodes in supercapacitors, energy storage and conversion, sensors and spinelectronic devices. In this review, we first outline the synthesis techniques of 2D CDW materials including mechanical exfoliation, liquid exfoliation, chemical vapor transport (CVT, chemical vapor deposition (CVD, molecular beam epitaxy (MBE and electrochemical exfoliation. Then, the characterization procedure of the 2D CDW materials such as temperature-dependent Raman spectroscopy, temperature-dependent resistivity, magnetic susceptibility and scanning tunneling microscopy (STM are reviewed. Finally, applications of 2D CDW materials are reviewed.
International Nuclear Information System (INIS)
Valor, A.; Heenen, P.-H.; Bonche, P.
2000-01-01
We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
Directory of Open Access Journals (Sweden)
Niels-Uwe F. Bastian
2018-05-01
Full Text Available We outline an approach to a unified equation of state for quark-hadron matter on the basis of a Φ − derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster decomposition of thermodynamic quantities like the density. To this end we summarize the cluster virial expansion for nuclear matter and demonstrate the equivalence of the Green’s function approach and the Φ − derivable formulation. As an example, the formation and dissociation of deuterons in nuclear matter is discussed. We formulate the cluster Φ − derivable approach to quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration and deconfinement in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description which are contained as limiting cases. The developed formalism shall replace the common two-phase approach to the description of the deconfinement and chiral phase transition that requires a phase transition construction between separately developed equations of state for hadronic and quark matter phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.
Anastasiou, Sotiria; Sylaios, Georgios K; Tsihrintzis, Vassilios A
2015-06-01
The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth.
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The
International Nuclear Information System (INIS)
Cairns, Iver H.
2000-01-01
Langmuir waves driven to high levels by beam instabilities are subject to nonlinear processes, including the closely related processes of scattering off thermal ions (STI) and a decay process in which the ion response is organized into a product ion acoustic wave. Calculations of the nonlinear growth rates predict that the decay process should always dominate STI, creating two paradoxes. The first is that three independent computer simulation studies show STI proceeding, with no evidence for the decay at all. The second is that observations in space of type III solar radio bursts and Earth's foreshock, which the simulations were intended to model, show evidence for the decay proceeding but no evidence for STI. Resolutions to these paradoxes follow from the realization that a nonlinear process cannot proceed when its growth rate exceeds the minimum frequency of the participating waves, since the required collective response cannot be maintained and the waves cannot respond appropriately, and that a significant number of e-foldings and wave periods must be contained in the time available. It is shown that application of these ''collective'' and ''time scale'' constraints to the simulations explains why the decay does not proceed in them, as well as why STI proceeds in specific simulations. This appears to be the first demonstration that collective constraints are important in understanding nonlinear phenomena. Furthermore, applying these constraints to space observations, it is predicted that the decay should proceed (and dominate STI) in type III sources and the high beam speed regions of Earth's foreshock for a specific range of wave levels, with a possible role for STI alone at slightly higher wave levels. Deeper in the foreshock, for slower beams and weaker wave levels, the decay and STI are predicted to become ineffective. Suggestions are given for future testing of the collective constraint and an explanation for why waves in space are usually much weaker than
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Matter couplings in Horava-Lifshitz theories and their cosmological applications
International Nuclear Information System (INIS)
Carloni, Sante; Elizalde, Emilio; Silva, Pedro J
2011-01-01
In this paper, the issue of how to introduce matter in Horava-Lifshitz theories of gravity is addressed. This is a key point in order to complete the proper definition of these theories and, more importantly, to study their possible phenomenological implications. As is well known, in Horava-Lifshitz gravity, the breakdown of Lorentz invariance invalidates the usual notion of minimally coupled matter. Two different approaches to bypass this problem are described here. One is based on a Kaluza-Klein reinterpretation of the 3+1 decomposition of the gravity degrees of freedom, which naturally leads to a definition of a U(1) gauge symmetry and, hence, to a new type of minimal coupling. The other approach relies on a midi-superspace formalism and the subsequent parametrization of the matter stress-energy tensor in terms of deep infrared variables. Using the last option, the phase space of Horava-Lifshitz cosmology in the presence of general matter couplings is studied. It is found, in particular, that the equation of state of the effective matter may be very different from the actual matter one, owing to the nonlinear interactions which exist between matter and gravity.
Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.
2012-12-01
We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors
System on Package (SoP) Millimeter Wave Filters for 5G Applications
Showail, Jameel
2018-05-01
Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented
Application of the cylindrically guided wave technique for bolt and pump-shaft inspections
International Nuclear Information System (INIS)
Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Tsai, Y.M.
1990-01-01
Southwest Research Institute (SwRI) has been working with the cylindrically guided wave technique (CGWT) since late 1982. The initial work was aimed at inspecting reactor pressure vessel hold-down studs. The CGWT was shown to be able to detect defects as small as 0.060 inch (1.5 mm) deep through metal paths up to 120 inches (304 cm) in stud bolt carbon steel. Later developments in the application of CGWT were aimed at inspecting reactor coolant pump (RCP) shafts. The RCP shafts are usually approximately 2 meters long and have changing diameters along the length, from approximately 12 cm to 23 cm in discrete steps. The pump shafts have been susceptible to small cracks and can be inspected most cost-effectively from the top of the shaft. A matrix transducer composed of six 1-inch (2.54-cm) diameter transducers along with pulsing and receiving electronics (EPRI Pump-Shaft Inspection System) was developed during 1988. A patent application for this technology has been made. This report describes the work conducted during 1989 and the results obtained
Li, Bin; Wang, Dayong; Rong, Lu; Zhai, Changchao; Wang, Yunxin; Zhao, Jie
2018-02-01
Terahertz (THz) radiation is able to penetrate many different types of nonpolar and nonmetallic materials without the damaging effects of x-rays. THz technology can be combined with computed tomography (CT) to form THz CT, which is an effective imaging method that is used to visualize the internal structure of a three-dimensional sample as cross-sectional images. Here, we reported an application of THz as the radiation source in CT imaging by replacing the x-rays. In this method, the sample cross section is scanned in all translation and rotation directions. Then, the projection data are reconstructed using a tomographic reconstruction algorithm. Two-dimensional (2-D) cross-sectional images of the chicken ulna were obtained through the continuous-wave (CW) THz CT system. Given by the difference of the THz absorption of different substances, the compact bone and spongy bone inside the chicken ulna are structurally distinguishable in the 2-D cross-sectional images. Using the filtered back projection algorithm, we reconstructed the projection data of the chicken ulna at different projection angle intervals and found that the artifacts and noise in the images are strikingly increased when the projection angle intervals become larger, reflected by the blurred boundary of the compact bone. The quality and fidelity of the 2-D cross-sectional images could be substantially improved by reducing the projection angle intervals. Our experimental data demonstrated a feasible application of the CW THz CT system in biological imaging.
Modelling of long-wave chaotic radar system for anti-stealth applications
Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi
2018-04-01
Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.
Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine
Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham
1999-04-01
A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.
Application of Rudoe’s Formula in Long Seismic Surface Wave Paths Determination
Directory of Open Access Journals (Sweden)
Jorge L. de Souza
2005-12-01
Full Text Available An algorithm to compute accurate distances over grid cells crossed by seismic surface wave paths by Rudoe’s formula is proposed. The intersection coordinates between paths and the geodetic grid are also computed, which data are exhibited in an azimuthal equidistant projection to check the results. GRS-80 is the adopted ellipsoidal Earth model. The algorithm computes the intermediate intersections, from both forward and reciprocal normal sections given by Rudoe’s method, which separation may be greater than the cell size. It was tested on a data set including 3,269 source-station paths, which seismic events were recorded at 23 IRIS stations. The epicentral distances range from 1,634 km to 16,400 km, which the grid spreads over 149°E x 21°W, and 50°N x 90°S. The results show that the estimated intersections accuracy depends on the path azimuth and latitude, which influence may be significative for very long distances as in teleseismic applications, which argues for the algorithm application.
Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W.; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.
2016-01-01
SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES» Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L. COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF PATIENTS AND DISABLED PEOPLE Edited by Chukh...
Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw
2005-09-01
Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to
Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar
Directory of Open Access Journals (Sweden)
Igor Prokopovich
2017-12-01
Full Text Available This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique, and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development.
Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation
Wang, Q.
2015-12-01
An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.
Dispersion properties of transverse waves in electrically polarized BECs
International Nuclear Information System (INIS)
Andreev, Pavel A; Kuz'menkov, L S
2014-01-01
Further development of the method of quantum hydrodynamics in applications for Bose–Einstein condensates (BECs) is presented. To consider the evolution of polarization direction along with particle movement, we have developed a corresponding set of quantum hydrodynamic equations. It includes equations of the polarization evolution and the polarization-current evolution along with the continuity equation and the Euler equation (the momentum-balance equation). Dispersion properties of the transverse waves, including the electromagnetic waves propagating through the BECs, are considered. To this end, we consider a full set of the Maxwell equations for the description of electromagnetic field dynamics. This approximation gives us the possibility of considering the electromagnetic waves along with the matter waves. We find a splitting of the electromagnetic-wave dispersion on two branches. As a result, we have four solutions, two for the electromagnetic waves and two for the matter waves; the last two are the concentration-polarization waves appearing as a generalization of the Bogoliubov mode. We also find that if the matter wave propagates perpendicular to the external electric field then the dipolar contribution does not disappear (as it follows from our generalization of the Bogoliubov spectrum). A small dipolar frequency shift exists in this case due to the transverse electric field of perturbation. (paper)
Lü, Li-Sha; Zhao, Wei-Hong; Miao, Hui
2013-03-01
Using excitation-emission matrix spectrum(EEMs) combined with parallel factor analysis (PARAFAC) examine the fluorescent components feature of dissolved organic matter (DOM) sampled from East China Sea in the summer and autumn was examined. The type, distribution and origin of the fluorescence dissolved organic matter were also discussed. Three fluorescent components were identified by PARAFAC, including protein-like component C1 (235, 280/330), terrestrial or marine humic-like component C2 (255, 330/400) and terrestrial humic-like component C3 (275, 360/480). The good linearity of the two humic-like components showed the same source or some relationship between the chemical constitutions. As a whole, the level of the fluorescence intensity in coastal ocean was higher than that of the open ocean in different water layers in two seasons. The relationship of three components with chlorophyll-a and salinity showed the DOM in the study area is almost not influenced by the living algal matter, but the fresh water outflow of the Yangtze River might be the source of them in the Yangtze River estuary in Summer. From what has been discussed above, we can draw the conclusion that the application of EEM-PARAFAC modeling will exert a profound influence upon the research of the dissolved organic matter.
Groenig, Hans
Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.
Sarsimbayeva, S. M.; Kospanova, K. K.
2015-11-01
The article provides the discussion of matters associated with the problems of transferring of object-oriented Windows applications from C++ programming language to .Net platform using C# programming language. C++ has always been considered to be the best language for the software development, but the implicit mistakes that come along with the tool may lead to infinite memory leaks and other errors. The platform .Net and the C#, made by Microsoft, are the solutions to the issues mentioned above. The world economy and production are highly demanding applications developed by C++, but the new language with its stability and transferability to .Net will bring many advantages. An example can be presented using the applications that imitate the work of queuing systems. Authors solved the problem of transferring of an application, imitating seaport works, from C++ to the platform .Net using C# in the scope of Visual Studio.
Energy Technology Data Exchange (ETDEWEB)
Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey
1998-09-01
An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.
Mastalerz, Maria; Glikson, M.; Simpson, R.W.
1999-01-01
An increase in participate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2 ??m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungal spores is commonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. ?? 1998 Elsevier Science B.V. All rights reserved.
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
Shahriari, Nima; Hanifi, Ardeshir; Henningson, Dan S.
2016-01-01
Acoustic receptivity of a two-dimensional boundary layer on a flat plate with elliptic leading edge is studied through direct numerical simulation (DNS). Sound waves are modelled by a uniform oscillation of freestream boundaries in time which results to an infinite-wavelength acoustic wave. Acoustic disturbances interact with strong streamwise gradients at the leading edge or surface non- homogeneities and create Tollmien-Schlichting (TS) waves inside the boundary layer. Measuring amplitude o...
Application of the cylindrically guided wave technique for bolt and pump shaft inspections
International Nuclear Information System (INIS)
Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Joshi, N.R.; Tsai, Y.M.; Liu, S.N.
1993-01-01
Elastic wave propagation in a bounded medium significantly differs from that in an unbounded medium. The bounded medium in the form of a cylinder acts like a solid waveguide directing the wave with its geometry. A continuous or a pulsed wave interacts with cylindrical boundaries producing mode-converted signals in addition to the backwall echo. The signals are received at constant time intervals directly proportional to the diameter of a solid cylindrical object such as a bolt or an anchor stud. The Cylindrically Guided Wave Technique (CGWT) makes intelligent use of the mode-converted signals, or trailing pulses, to detect corrosion wastages and cracks in cylindrical objects. (orig.)
Directory of Open Access Journals (Sweden)
Mirchev Yordan
2018-01-01
Full Text Available The main challenge for guided wave inspection is exact defect characterization and sizing. EMAT generated Lamb waves usually have low signal-to-noise ratio which reduces the defect detection, characterization and sizing capabilities. That's why in most cases the method is used only as a screening tool. The Synthetic Aperture Focusing Technique is a process that increases the signal-to-noise ratio by numerically focusing the acoustic fields. In this paper the application of SAFT is tested over EMAT generated Lamb waves. The improvement of lateral resolution and signal-to-noise ratio is evaluated. Results are presented as a comparison between standard B-scan and SAFT processed data.
International Nuclear Information System (INIS)
Yomba, Emmanuel
2005-01-01
By using a modified extended Fan's sub-equation method, we have obtained new and more general solutions including a series of non-travelling wave and coefficient function solutions namely: soliton-like solutions, triangular-like solutions, single and combined non-degenerative Jacobi elliptic wave function-like solutions for the (2 + 1)-dimensional dispersive long wave equation. The most important achievement of this method lies on the fact that, we have succeeded in one move to give all the solutions which can be previously obtained by application of at least four methods (method using Riccati equation, or first kind elliptic equation, or auxiliary ordinary equation, or generalized Riccati equation as mapping equation)
International Nuclear Information System (INIS)
Wang Qi; Chen Yong; Zhang Hongqing
2005-01-01
With the aid of computerized symbolic computation, a new elliptic function rational expansion method is presented by means of a new general ansatz, in which periodic solutions of nonlinear partial differential equations that can be expressed as a finite Laurent series of some of 12 Jacobi elliptic functions, is more powerful than exiting Jacobi elliptic function methods and is very powerful to uniformly construct more new exact periodic solutions in terms of rational formal Jacobi elliptic function solution of nonlinear partial differential equations. As an application of the method, we choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we can successfully obtain the solutions found by most existing Jacobi elliptic function methods and find other new and more general solutions at the same time. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition
Hybrid fully nonlinear BEM-LBM numerical wave tank with applications in naval hydrodynamics
Mivehchi, Amin; Grilli, Stephan T.; Dahl, Jason M.; O'Reilly, Chris M.; Harris, Jeffrey C.; Kuznetsov, Konstantin; Janssen, Christian F.
2017-11-01
simulation of the complex dynamics response of ships in waves is typically modeled by nonlinear potential flow theory, usually solved with a higher order BEM. In some cases, the viscous/turbulent effects around a structure and in its wake need to be accurately modeled to capture the salient physics of the problem. Here, we present a fully 3D model based on a hybrid perturbation method. In this method, the velocity and pressure are decomposed as the sum of an inviscid flow and viscous perturbation. The inviscid part is solved over the whole domain using a BEM based on cubic spline element. These inviscid results are then used to force a near-field perturbation solution on a smaller domain size, which is solved with a NS model based on LBM-LES, and implemented on GPUs. The BEM solution for large grids is greatly accelerated by using a parallelized FMM, which is efficiently implemented on large and small clusters, yielding an almost linear scaling with the number of unknowns. A new representation of corners and edges is implemented, which improves the global accuracy of the BEM solver, particularly for moving boundaries. We present model results and the recent improvements of the BEM, alongside results of the hybrid model, for applications to problems. Office of Naval Research Grants N000141310687 and N000141612970.
270GHz SiGe BiCMOS manufacturing process platform for mmWave applications
Kar-Roy, Arjun; Preisler, Edward J.; Talor, George; Yan, Zhixin; Booth, Roger; Zheng, Jie; Chaudhry, Samir; Howard, David; Racanelli, Marco
2011-11-01
TowerJazz has been offering the high volume commercial SiGe BiCMOS process technology platform, SBC18, for more than a decade. In this paper, we describe the TowerJazz SBC18H3 SiGe BiCMOS process which integrates a production ready 240GHz FT / 270 GHz FMAX SiGe HBT on a 1.8V/3.3V dual gate oxide CMOS process in the SBC18 technology platform. The high-speed NPNs in SBC18H3 process have demonstrated NFMIN of ~2dB at 40GHz, a BVceo of 1.6V and a dc current gain of 1200. This state-of-the-art process also comes with P-I-N diodes with high isolation and low insertion losses, Schottky diodes capable of exceeding cut-off frequencies of 1THz, high density stacked MIM capacitors, MOS and high performance junction varactors characterized up to 50GHz, thick upper metal layers for inductors, and various resistors such as low value and high value unsilicided poly resistors, metal and nwell resistors. Applications of the SBC18H3 platform for millimeter-wave products for automotive radars, phased array radars and Wband imaging are presented.
Commercialization of an S-band standing-wave electron accelerator for industrial applications
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
Bolduc, A.; Gauthier, P.-A.; Berry, A.
2017-12-01
While perceptual evaluation and sound quality testing with jury are now recognized as essential parts of acoustical product development, they are rarely implemented with spatial sound field reproduction. Instead, monophonic, stereophonic or binaural presentations are used. This paper investigates the workability and interest of a method to use complete vibroacoustic engineering models for auralization based on 2.5D Wave Field Synthesis (WFS). This method is proposed in order that spatial characteristics such as directivity patterns and direction-of-arrival are part of the reproduced sound field while preserving the model complete formulation that coherently combines frequency and spatial responses. Modifications to the standard 2.5D WFS operators are proposed for extended primary sources, affecting the reference line definition and compensating for out-of-plane elementary primary sources. Reported simulations and experiments of reproductions of two physically-accurate vibroacoustic models of thin plates show that the proposed method allows for an effective reproduction in the horizontal plane: Spatial and frequency domains features are recreated. Application of the method to the sound rendering of a virtual transmission loss measurement setup shows the potential of the method for use in virtual acoustical prototyping for jury testing.
Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël
2008-03-01
Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).
Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja
2017-09-01
We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that
Energy Technology Data Exchange (ETDEWEB)
Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering
1994-07-20
A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.
Czech Academy of Sciences Publication Activity Database
Dalimier, E.; Oks, E.; Renner, Oldřich
2014-01-01
Roč. 2, č. 2 (2014), s. 178-194 ISSN 2218-2004 Grant - others:AVČR(CZ) M100101208 Institutional support: RVO:68378271 Keywords : Laser-matter interaction * spectral line profiles * Langmuir waves * plasma electron density * charge exchange rates Subject RIV: BL - Plasma and Gas Discharge Physics
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation
Medicus, Heinrich A.
1974-01-01
Discusses the origin of de Broglie's concept and its influences on his contemporaries, notably on Einstein, Schrodinger, Elsasser, Davisson, and Thomson. Indicates that the theory served not only as the starting point of quantum mechanics, but also opened new experimental possibilities. Historical inaccuracies are corrected with new material…
Hydraulic evaluation of Joltech’s GyroPTO for wave energy applications
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Pecher, Arthur Francois Serge; Guaraldi, Irene
The work presented in this report was completed under the support from the Danish Energy Technological Development and Demonstration Program (EUDP), project no. 64014-0129 “Gyro electric energy converter unit for wave energy”. Testing took place in the wave basin at the Department of Civil Engine...
MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO
International Nuclear Information System (INIS)
Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.; Williams, Michael J.; Drory, Niv
2013-01-01
We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 ≤ r ≤ 700 pc. The profile for r ≥ 20 pc is well fit by a power law with slope α = –1.0 ± 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.
Czech Academy of Sciences Publication Activity Database
Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.
2017-01-01
Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 6.942, year: 2016
Application of a planetary wave breaking parameterization to stratospheric circulation statistics
Randel, William J.; Garcia, Rolando R.
1994-01-01
The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.
The Bloch wave operator: generalizations and applications: Part I. The time-independent case
Killingbeck, J P
2003-01-01
This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection ...
Directory of Open Access Journals (Sweden)
L. Schoon
2018-05-01
Full Text Available For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi. It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia–gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia–gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.
Energy Technology Data Exchange (ETDEWEB)
Cairns, Iver H.
2000-12-01
Langmuir waves driven to high levels by beam instabilities are subject to nonlinear processes, including the closely related processes of scattering off thermal ions (STI) and a decay process in which the ion response is organized into a product ion acoustic wave. Calculations of the nonlinear growth rates predict that the decay process should always dominate STI, creating two paradoxes. The first is that three independent computer simulation studies show STI proceeding, with no evidence for the decay at all. The second is that observations in space of type III solar radio bursts and Earth's foreshock, which the simulations were intended to model, show evidence for the decay proceeding but no evidence for STI. Resolutions to these paradoxes follow from the realization that a nonlinear process cannot proceed when its growth rate exceeds the minimum frequency of the participating waves, since the required collective response cannot be maintained and the waves cannot respond appropriately, and that a significant number of e-foldings and wave periods must be contained in the time available. It is shown that application of these ''collective'' and ''time scale'' constraints to the simulations explains why the decay does not proceed in them, as well as why STI proceeds in specific simulations. This appears to be the first demonstration that collective constraints are important in understanding nonlinear phenomena. Furthermore, applying these constraints to space observations, it is predicted that the decay should proceed (and dominate STI) in type III sources and the high beam speed regions of Earth's foreshock for a specific range of wave levels, with a possible role for STI alone at slightly higher wave levels. Deeper in the foreshock, for slower beams and weaker wave levels, the decay and STI are predicted to become ineffective. Suggestions are given for future testing of the collective constraint and an explanation
Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; vanÂ derÂ Hilst, Robert D.
2016-05-01
We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
Matsushima, Kyoji
2008-07-01
Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.
Millimeter-Wave Integrated Circuit Design for Wireless and Radar Applications
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens
2006-01-01
This paper describes a quadrature voltage-controlled oscillator (QVCO), frequency doubler, and sub-harmonic mixer (SHM) for a millimeter-wave (mm-wave) front-end implemented in a high-speed InP DHBT technology. The QVCO exhibits large tuning range from 38 to 47.8 GHz with an output power around -...... from 40-50 GHz. To the authors knowledge the QVCO, frequency doubler, and SHM presents the first mm-wave implementations of these circuits in InP DHBT technology....
Directory of Open Access Journals (Sweden)
Schnabel Roman
2013-08-01
Full Text Available This contribution reviews our recent progress on the generation of squeezed light [1], and also the recent squeezed-light enhancement of the gravitational wave detector GEO 600 [2]. GEO 600 is currently the only GW observatory operated by the LIGO Scientific Collaboration in its search for gravitational waves. With the help of squeezed states of light it now operates with its best ever sensitivity, which not only proves the qualification of squeezed light as a key technology for future gravitational wave astronomy but also the usefulness of quantum entanglement.
Energy Technology Data Exchange (ETDEWEB)
Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)
1997-10-01
We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.
Symmetry analysis of many-body wave functions, with applications to the nuclear shell model
International Nuclear Information System (INIS)
Novoselsky, A.; Katriel, J.
1995-01-01
The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration
Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science
Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.
2016-12-01
Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.
Asten, M. W.; Hayashi, K.
2018-05-01
Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an
Yu, Shang-yun; Zhou, Yan-mei
2015-08-01
This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.
International Nuclear Information System (INIS)
Foos, J.; Bonfand, E.; Rimbert, J.N.
1994-01-01
This volume is the second one of a group of three. The first one exposed nuclides, with neutrons and protons in a stable building: atomic nucleus. Here is the second one with unstable, radioactive nucleus. After the description of different kinds of disintegrations, it is justified to follow radiations in matter and modifications attached to them; different uses of radioactivity are developed in medicine, age determination, industrial utilization and biology
2007-06-01
and soxhlet extracted for 2 days in 2:1 dichloromethane:methanol to yield their respective total lipid extracts (TLEs). Each TLE was then hydrolyzed...revisited. Global Biogeochemical Cycles, 9: 377-389. Di-Giovanni, C., Disnar, J.R., Macaire, J.J., 2002. Estimation of the annual yield of organic...isotopic mass balance expressions to yield the fractional abundances of the OC sources they represent. Since the provenance of organic matter contained
Vera M. Kolb
2010-01-01
The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in th...
The wave equation on a curved space-time
International Nuclear Information System (INIS)
Friedlander, F.G.
1975-01-01
It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)
Detector with internal gain for short-wave infrared ranging applications
Fathipour, Vala; Mohseni, Hooman
2017-09-01
Abstarct.Highly sensitive photon detectors are regarded as the key enabling elements in many applications. Due to the low photon energy at the short-wave infrared (SWIR), photon detection and imaging at this band are very challenging. As such, many efforts in photon detector research are directed toward improving the performance of the photon detectors operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high sensitivity at room temperature, a condition that is very difficult to achieve in conventional SWIR detectors. An EI detector offers an overall system-level sensitivity enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI detectors. The shortcomings of the first-generation devices were addressed in the second-generation detectors. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI detectors a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI detector with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR images obtained by our model show that the EI
Hadrons in dense matter. Proceedings
International Nuclear Information System (INIS)
Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.
2000-03-01
The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules
The influence of long-range links on spiral waves and their application for control
International Nuclear Information System (INIS)
Qian Yu
2012-01-01
The influence of long-range links on spiral waves in an excitable medium has been investigated. Spatiotemporal dynamics in an excitable small-world network transform remarkably when we increase the long-range connection probability P. Spiral waves with few perturbations, broken spiral waves, pseudo spiral turbulence, synchronous oscillations, and homogeneous rest state are discovered under different network structures. Tip number is selected to detect non-equilibrium phase transition between different spatiotemporal patterns. The Kuramoto order parameter is used to identify these patterns and explain the emergence of the rest state. Finally, we use long-range links to successfully control spiral waves and spiral turbulence. (interdisciplinary physics and related areas of science and technology)
Alfven wave. [Book on linear and nonlinear properties for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A.; Uberoi, C.
1978-11-01
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.
Millimeter-wave radiation from a Teflon dielectric probe and its imaging application
International Nuclear Information System (INIS)
Kume, Eiji; Sakai, Shigeki
2008-01-01
The beam profile of a millimeter wave radiated from the tip of a Teflon dielectric probe was characterized experimentally by using a three-dimensional scanning dielectric probe and numerically by using the finite difference time domain (FDTD) method. The measured intensity distribution and polarization of the millimeter wave radiated from the tip of the probe was in good agreement with those of the FDTD simulation. A reflection type of a millimeter- wave imaging system using this dielectric probe was constructed. The resolution of the imaging system was as small as 1 mm, which was slightly smaller than a half wavelength, 1.6 mm, of the radiation wave. Translucent measurement of a commercially manufactured IC card which consists of an IC chip and a leaf-shaped antenna coil was demonstrated. Not only the internal two-dimensional structures but also the vertical information of the card could be provided
Application of advanced one sided stress wave velocity measurement in concrete
International Nuclear Information System (INIS)
Lee, Joon Hyun; Song, Won Joon; Popovices, J. S.; Achenbach, J. D.
1997-01-01
It is of interest to reliably measure the velocity of stress waves in concrete. At present, reliable measurement is not possible for dispersive and attenuating materials such as concrete when access to only one surface of the structure is available, such as in the case of pavement structures. In this paper, a new method for one-sided stress wave velocity determination in concrete is applied to investigate the effects of composition, age and moisture content. This method uses a controlled impact as a stress wave source and two sensitive receivers mounted on the same surface as the impact sites. The novel aspect of the technique is the data collection system which automatically determines the arrival of the generated longitudinal and surface wave arrivals. A conventional ultrasonic through transmission method is used to compare with the results determined by the one-sided method.
Application of perturbation theory to a P-wave eikonal equation in orthorhombic media
Stovas, Alexey; Masmoudi, Nabil; Alkhalifah, Tariq Ali
2016-01-01
The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical
Focused tandem shock waves in water and their potential application in cancer treatment
Czech Academy of Sciences Publication Activity Database
Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Poučková, P.; Zadinová, M.; Zeman, J.; Dibdiak, L.; Kolářová, H.; Tománková, K.; Binder, S.; Beneš, J.
2014-01-01
Roč. 24, č. 1 (2014), s. 51-57 ISSN 0938-1287. [International Symposium on Shock Waves/28./. Manchester, 17.07.2011-22.07.2011] R&D Projects: GA ČR GA202/09/1151 Institutional support: RVO:61389021 Keywords : focused shock waves * underwater discharge * cancer treatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.885, year: 2014
Development of a guided wave simulator and its application to monitoring of pipe wall thinning
International Nuclear Information System (INIS)
Furukawa, Akinori; Kojima, Fumio
2009-01-01
Motivated by growing demand for quantitative nondestructive evaluation of pipe wall thinning, the aim of this paper is to develop a simulator for guided wave analysis. First, an inspection system can be represented by a linear elastic system in cylindrical coordinates. Secondly a dynamical numerical scheme for wave propagation on a pipe wall is proposed based on Fourier-Galerkin approach. Finally, the effectiveness and validity of the proposed method are shown in computational experiments. (author)
Katsumata, Hisatoshi; Konishi, Keiji; Hara, Naoyuki
2018-04-01
The present paper proposes a scheme for controlling wave segments in excitable media. This scheme consists of two phases: in the first phase, a simple mathematical model for wave segments is derived using only the time series data of input and output signals for the media; in the second phase, the model derived in the first phase is used in an advanced control technique. We demonstrate with numerical simulations of the Oregonator model that this scheme performs better than a conventional control scheme.
Applications of the 3-dim ICRH global wave code FISIC and comparison with other models
International Nuclear Information System (INIS)
Kruecken, T.; Brambilla, M.
1989-01-01
Numerical simulations of two ICRF heating experiments in ASDEX are presented, using the FISIC code to solve the integrodifferential wave equations in the finite Larmor radius (FLR) approximation model and of ray tracing. The different models show on the whole good agreement; we can however identify a few interesting toroidal effects, in particular on the efficiency of mode conversion and on the propagation of ion Bernstein waves. (author)
International Nuclear Information System (INIS)
Beshtoev, Kh.M.
2006-01-01
I have considered three-neutrino vacuum transitions and oscillations in the general case and obtained expressions for neutrino wave functions in three cases: with CP violation, without CP violation and in the case when direct ν e - ν τ transitions are absent β(θ 13 ) = 0 (some works indicate this possibility). Then using the existing experimental data some analysis has been fulfilled. This analysis definitely has shown that direct transitions ν e - ν τ cannot be closed for the Solar neutrinos, i. e., β(θ 13 ) ≠ 0. It is also shown that the possibility that β(θ 13 ) = 0 cannot be realized by using the mechanism of resonance enhancement of neutrino oscillations in matter (the Sun). It was found out that the probability of ν e - ν e neutrino transitions is a positive defined value, if in reality neutrino oscillations take place, only if the angle of ν e , ν τ mixing β ≤ 15 - 17 deg
Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling
Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.
2017-12-01
Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.
Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill
Directory of Open Access Journals (Sweden)
M. Drivdal
2014-12-01
Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.
Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho
2010-03-01
Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.
International Nuclear Information System (INIS)
Kobayashi, Tetsuo
2010-01-01
Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)
Energy Technology Data Exchange (ETDEWEB)
Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division
2016-11-14
These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
DEFF Research Database (Denmark)
Lillieholm, Mads
2017-01-01
Optical Fourier transformations enabled by the versatile time lens (quadratic phase modulator), have been demonstrated for numerous optical signal processing applications. Applications include ultrafast optical oscilloscopes, high resolution spectralanalysers, and the processing of ultrahigh......-speed communication signals, to enable e.g. such varied applications as phase regeneration for wavelength-division multiplexing (WDM) signals, conversion between spectrally efficient formats and receivers with reduced complexity for advanced optical multiplexing formats. Four-wave mixing (FWM) is showing promise...... of HNLF for different applications, and to a novel generic method based on only two tunable CW lasers, which allows for accurate prediction of the FWM performance in HNLF with chirped pump pulses.Then, a composite dispersion-flattened HNLF (DF-HNLF) is proposed and assembled to mitigate the effects...
Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter
International Nuclear Information System (INIS)
Sorensen, Peter; Dahl, Carl Eric
2011-01-01
We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.
Directory of Open Access Journals (Sweden)
M. Memarianfard
2017-09-01
Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.
Nonlinear dynamics and damage induced properties of soft matter with application in oncology
Naimark, O.
2017-09-01
Molecular-morphological signs of oncogenesis could be linked to multiscale collective effects in molecular, cell and tissue related to defects (damage) dynamics. It was shown that nonlinear behavior of biological systems can be linked to the existence of characteristic collective open state modes providing the coherent expression dynamics. New type of criticality in nonequilibrium systems with defects—structural-scaling transition allows the definition of the `driving force' for a biological soft matter related to consolidated open states. The set of collective open states (breathers, autosolitons and blow-up modes) in the molecular ensembles provides the collective expression dynamics to attract the entire system (cell, tissue) toward a few preferred global states. The co-existence of three types of collective modes determines the multifractal scenario of biological soft matter dynamics. The appearance of `globally convergent' dynamics corresponding to the coherent behavior of multiscale blow-up open states (blow-up gene expression) leads to anomalous localized softening (blow-up localized damage) and the subjection of the cells (or tissue) to monofractal dynamics. This dynamics can be associated with cancer progression.
Dark matter and halo bispectrum in redshift space: theory and applications
Energy Technology Data Exchange (ETDEWEB)
Gil-Marín, Héctor; Percival, Will [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Wagner, Christian [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741 Garching (Germany); Noreña, Jorge [Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Verde, Licia, E-mail: hector.gil@port.ac.uk, E-mail: cwagner@mpa-garching.mpg.de, E-mail: jorge.norena@unige.ch, E-mail: liciaverde@icc.ub.edu, E-mail: will.percival@port.ac.uk [ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, E-08010 Barcelona (Spain)
2014-12-01
We present a phenomenological modification of the standard perturbation theory prediction for the bispectrum in redshift space that allows us to extend the model to mildly non-linear scales over a wide range of redshifts, z≤1.5. Our model require 18 free parameters that are fitted to N-body simulations using the shapes k{sub 2}/k{sub 1}=1, 1.5, 2.0, 2.5. We find that we can describe the bispectrum of dark matter particles with ∼5% accuracy for k{sub i}∼<0.10 h/Mpc at z=0, for k{sub i}∼<0.15 h/Mpc at z=0.5, for k{sub i}∼<0.17 h/Mpc at z=1.0 and for k{sub i}∼<0.20 h/Mpc at z=1.5. For very squeezed triangles with k{sub 1}=k{sub 2}∼>0.1 hMpc{sup -1} and k{sub 3}≤0.02 hMpc{sup -1}, however, neither SPT nor the proposed fitting formula are able to describe the measured dark matter bispectrum with this accuracy. We show that the fitting formula is sufficiently general that can be applied to other intermediate shapes such as k{sub 2}/k{sub 1}=1.25, 1.75, and 2.25. We also test that the fitting formula is able to describe with similar accuracy the bispectrum of cosmologies with different Ω{sub m}, in the range 0.2∼< Ω{sub m} ∼< 0.4, and consequently with different values of the logarithmic grow rate f at z=0, 0.4∼< f(z=0) ∼< 0.6. We apply this new formula to recover the bias parameters, f and σ{sub 8}, by combining the redshift space power spectrum monopole and quadrupole with the bispectrum monopole for both dark matter particles and haloes. We find that the combination of these three statistics can break the degeneracy between b{sub 1}, f and σ{sub 8}. For dark matter particles the new model can be used to recover f and σ{sub 8} with ∼1% accuracy. For dark matter haloes we find that f and σ{sub 8} present larger systematic shifts, ∼10%. The systematic offsets arise because of limitations in the modelling of the interplay between bias and redshift space distortions, and represent a limitation as the statistical errors of
International Nuclear Information System (INIS)
Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F
2012-01-01
Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B
2011-12-01
Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.
Laser Source for Atomic Gravity Wave Detector Project
National Aeronautics and Space Administration — The Atom Interferometry (AI) Technology for Gravity Wave Measurements demonstrates new matter wave Interferometric sensor technology for precise detection and...
A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications
Li, Xiaoyi; Tao, Juan; Zhu, Jing; Pan, Caofeng
2017-07-01
The ocean wave energy is one of the most promising renewable and clean energy sources for human life, which is the so-called "Blue energy." In this work, a nanowire based triboelectric nanogenerator was designed for harvesting wave energy. The nanowires on the surface of FEP largely raise the contacting area with water and also make the polymer film hydrophobic. The output can reach 10 μ A and 200 V. When combined with a capacitor, an infrared emitter, and a receiver, a self-powered wireless infrared system is fabricated, which can be used in the fields of communication and detecting.
A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications
Directory of Open Access Journals (Sweden)
Xiaoyi Li
2017-07-01
Full Text Available The ocean wave energy is one of the most promising renewable and clean energy sources for human life, which is the so-called “Blue energy.” In this work, a nanowire based triboelectric nanogenerator was designed for harvesting wave energy. The nanowires on the surface of FEP largely raise the contacting area with water and also make the polymer film hydrophobic. The output can reach 10 μ A and 200 V. When combined with a capacitor, an infrared emitter, and a receiver, a self-powered wireless infrared system is fabricated, which can be used in the fields of communication and detecting.
Plasma generation using high-power millimeter-wave beam and its application for thrust generation
International Nuclear Information System (INIS)
Oda, Yasuhisa; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi
2006-01-01
Propagation of an ionization front in the beam channel was observed after plasma was generated using a 170 GHz millimeter-wave beam in the atmosphere. The propagation velocity of the ionization front was found to be supersonic when the millimeter-wave power density was greater than 75 kW cm -2 . The momentum coupling coefficient C m , a ratio of the propulsive impulse to the input energy, was measured using conical and cylindrical thruster models. A C m value greater than 350 N MW -1 was recorded when the ionization front propagated with supersonic velocity
International Nuclear Information System (INIS)
Vguyen-Tuong, V.
2004-01-01
In this analysis the proposed 10MW window design is free of multipacting on the ceramic surface for the full power range, both in the traveling wave and full reflection mode. Near 7MW and 8MW in the traveling wave mode, multipacting might show up on the outer conductor of the matching section. These multipacting barriers are however very soft and are expected to be easily eliminated by regular RF processing. The multipacting analysis can identify early design problems while it is unable to provide certainty in design success and testing of window designs is the only certain measure of freedom from multipacting
Energy Technology Data Exchange (ETDEWEB)
Attisha, Michael J. [Brown U.
2006-01-01
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10^{-43} cm^{2} on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural
Introduction to wave scattering, localization, and mesoscopic phenomena
Sheng, Ping
1995-01-01
This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)
Roy, S. B.; Myneni, G. R.
2015-12-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
Energy Technology Data Exchange (ETDEWEB)
Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)
2015-12-04
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.
International Nuclear Information System (INIS)
Roy, S. B.; Myneni, G. R.
2015-01-01
We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values
Calculation of the stopping power and the path of charged particles in matter. Application example
International Nuclear Information System (INIS)
Barre, Bertrand; Du Lieu, Pierre
1969-05-01
The path of a charged particle in matter is calculated by integrating the stopping power of the medium against this particle. Depending on the energy of the particle, stopping powers are calculated using Lindhard, Bethe, or semi-empirical smoothing solutions. After exposing recent theories in this field, the authors present a Fortran subroutine which performs these various operations, and covers all energy domains. This routine is available for operation on IBM 360; it uses a magnetic tape library that can take into account experimental results. The subprogram presentation, leaving the user the option of entering the data and using the results at his discretion, allows a particularly flexible use. At the end of this note, some considerations on possible further improvements in the program, and a bibliography of the articles that have dealt with the question from a theoretical or an experimental point of view are discussed [fr
Energy Technology Data Exchange (ETDEWEB)
Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)
2014-06-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
International Nuclear Information System (INIS)
Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.
2014-01-01
The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.
Development And Application of Functional Assays For Freshwater Dissolved Organic Matter
Thacker, S.; Tipping, E.; Gondar, D.; Baker, A.
2006-12-01
Dissolved organic matter (DOM) in natural waters participates in many important ecological and geochemical reactions, including acid-base buffering, light absorption, proton binding, binding of heavy metals, organic contaminants, aluminium and radionuclides, adsorption at surfaces, aggregation and photochemical reactivity. We are studying DOM in order to understand and quantify these functional properties, so we can use the knowledge to predict the influence of DOM on the natural freshwater environment. As DOM has no readily identifiable structure, our approach is to measure what it does, rather than what it is. Thus, we have developed a series of 12 standardised, reproducible assays of physico-chemical functions of dissolved organic matter (DOM) in freshwaters. The assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo(a)pyrene binding, hydrophilicity and adsorption to alumina. We have collected twenty DOM samples in total, ten samples from a eutrophic lake (Esthwaite Water) and ten samples from three stream waters. A mild isolation method was then used to concentrate the DOM samples for the assay work. When assaying the concentrates, parallel assays were also preformed with Suwannee River Fulvic Acid (SRFA), as a quality control standard. Our results showed that; (i) for eleven of the assays, the variability among the twenty DOM samples was significantly (p<0.001) greater than can be explained by analytical error, i.e. by comparison with results from the SRFA quality control; (ii) the functional properties of the DOM from Esthwaite Water are strongly influenced by the seasonally-dependent input of autochthonous DOM, derived from phytoplankton. The autochthonous DOM is less fluorescent, light absorbing, hydrophobic and has a lower acid group content and capacity to be adsorbed onto alumina than terrestrially derived allochthonous DOM; (iii) significant correlations were found between
Chen, Sow-Hsin; Baglioni, Piero
2006-09-01
This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of
International Nuclear Information System (INIS)
Shin, Yong Woo; Kim, Min Soo; Lee, Sang Kwon
2010-01-01
For the detection of the impact location in a pipeline system, the correlation method has been the conventional method. For the application of the correlation method, the diameter of a duct should be small so that the acoustic wave inside the duct can propagate with nondispersive characteristics, in the form of, for example, a plane wave. This correlation method calculates the cross-correlation between acoustic waves measured at two acceleration sensors attached to a buried duct. It also gives information about the arrival time delay of an acoustic wave between two sensors. These arrival time delays are used for the estimation of the impact location. However, when the diameter of the duct is large, the acoustic waves inside the duct propagate with dispersive characteristics owing to the reflection of the acoustic wave off of the wall of the duct. This dispersive characteristic is related to the acoustic modes inside a duct. Therefore, the correlation method does not work correctly for the detection of the impact location. This paper proposes new methods of accurately measuring the arrival time delay between two sensors attached to duct line system. This method is based on the time-frequency analyses of the short time Fourier transform (STFT) and continuous wavelet transform (CWT). These methods can discriminate direct waves (non-dispersive waves) and reflective waves (dispersive waves) from the measured wave signals through the time-frequency analysis. The direct wave or the reflective wave is used to estimate the arrival time delay. This delay is used for the identification of the impact location. This systematic method can predict the impact location due to the impact forces of construction equipment with more accuracy than the correlation method
Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials
Energy Technology Data Exchange (ETDEWEB)
Wosko, Paul; Sundram, S. K.
2012-10-16
New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.
Application of Electron Bernstein Wave heating and current drive to high beta plasmas
International Nuclear Information System (INIS)
Efthimion, P.C.
2002-01-01
Electron Bernstein Waves (EBW) can potentially heat and drive current in high-beta plasmas. Electromagnetic waves can convert to EBW via two paths. O-mode heating, demonstrated on W-7AS, requires waves be launched within a narrow k-parallel range. Alternately, in high-beta plasmas, the X-mode cutoff and EBW conversion layers are millimeters apart, so the fast X-mode can tunnel to the EBW branch. We are studying the conversion of EBW to the X-mode by measuring the radiation temperature of the cyclotron emission and comparing it to the electron temperature. In addition, mode conversion has been studied with an approximate kinetic full-wave code. We have enhanced EBW mode conversion to ∼ 100% by encircling the antenna with a limiter that shortens the density scale length at the conversion layer in the scrape off of the CDX-U spherical torus (ST) plasma. Consequently, a limiter in front of a launch antenna achieves efficient X-mode coupling to EBW. Ray tracing and Fokker-Planck codes have been used to develop current drive scenarios in NSTX high-beta (∼ 40%) ST plasmas and a relativistic code will examine the potential synergy of EBW current drive with the bootstrap current. (author)
Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals
Energy Technology Data Exchange (ETDEWEB)
Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.
International Nuclear Information System (INIS)
Wright, J.W.; Pitteway, M.L.V.
1982-01-01
A sequence of digital ionograms is processed by dopplionogram and gonionogram methods. Together, these disclose a disturbance in the F region which descends in altitude with time. Two wavelike periods of the disturbance are evident. The Doppler and angle-of-arrival behavior are consistent with a semiquantitative model of the plasma perturbations caused by an internal atmospheric gravity wave
Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications
Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won
2017-09-01
In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.
Directory of Open Access Journals (Sweden)
Erlich Marc
2016-01-01
Full Text Available Coping with various types of natural or man-made hazards the FP7 SECURITY CRISMA project (http://www.crismaproject.eu has designed and developed an experimental software framework allowing building crisis management simulation application. One of the five pilot applications of CRISMA dealing with preparedness to the coastal submersions was developed and implemented using return of experience of the reference Xynthia storm surge event in the Charente Maritime County in France. The paper addresses the generic CRISMA Framework applicability to simulate mitigation effects of a coastal submersion through CRISMA-Wave implementation of a full modelling cycle. The CRISMA-Wave paradigm reflects user needs for simulation of “what-if” scenarios for short and long-term actions and the paper describes in particular its different components : *Simulation of submersion effects at a range of temporal and spatial scales, *Preparedness Planning, *Assessment of impacts depending on scenarios based on options for managing the inundation risks, *Cascading effects and *Evaluation of damages with comparison of submersion defence scenarios based on cost-benefit and multi criteria analysis.
Kochunov, P; Chiappelli, J; Hong, L E
2013-01-01
Diffusion tensor imaging (DTI) assumes a single pool of anisotropically diffusing water to calculate fractional anisotropy (FA) and is commonly used to ascertain white matter (WM) deficits in schizophrenia. At higher b-values, diffusion-signal decay becomes bi-exponential, suggesting the presence of two, unrestricted and restricted, water pools. Theoretical work suggests that semi-permeable cellular membrane rather than the presence of two physical compartments is the cause. The permeability-diffusivity (PD) parameters measured from bi-exponential modeling may offer advantages, over traditional DTI-FA, in identifying WM deficits in schizophrenia. Imaging was performed in N = 26/26 patients/controls (age = 20-61 years, average age = 40.5 ± 12.6). Imaging consisted of fifteen b-shells: b = 250-3800 s/mm(2) with 30 directions/shell, covering seven slices of mid-sagittal corpus callosum (CC) at 1.7 × 1.7 × 4.6 mm. 64-direction DTI was also collected. Permeability-diffusivity-index (PDI), the ratio of restricted to unrestricted apparent diffusion coefficients, and the fraction of unrestricted compartment (Mu) were calculated for CC and cingulate gray matter (GM). FA values for CC were calculated using tract-based-spatial-statistics. Patients had significantly reduced PDI in CC (p ≅ 10(- 4)) and cingulate GM (p = 0.002), while differences in CC FA were modest (p ≅ .03). There was no group-related difference in Mu. Additional theoretical-modeling analysis suggested that reduced PDI in patients may be caused by reduced cross-membrane water molecule exchanges. PDI measurements for cerebral WM and GM yielded more robust patient-control differences than DTI-FA. Theoretical work offers an explanation that patient-control PDI differences should implicate abnormal active membrane permeability. This would implicate abnormal activities in ion-channels that use water as substrate for ion exchange, in cerebral tissues of schizophrenia patients.
Application of TAM III to study sensitivity of soil organic matter degradation to temperature
Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica
2014-05-01
Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal
International Nuclear Information System (INIS)
Drieu la Rochelle, G.
2012-01-01
We have developed in this thesis a method to shed some light on the features of supersymmetry in view of Higgs physics and observables pertaining to dark matter: the effective approach. We have thus investigated the BMSSM framework, an extension of the MSSM - Minimal Supersymmetric Standard Model - that encompasses many different extensions of the MSSM. It turns out that allowing for extra-physics that affect the Higgs sector of the MSSM produces a much richer Higgs phenomenology compared to the MSSM. An important development that we have carried out in the aim of exploiting the LHC performance in the BMSSM framework is the recasting of the Standard Model analyses to BSM (Beyond the Standard Model) theories. Precisely, we have evaluated the accuracy of some approximations as for instance the quadrature sum of different signals to combine the statistical significances and the use of the inclusive predicted cross-sections instead of the exclusive ones. We have also seen that limits on the cross-sections that are obtained by a combination of different subchannels are generically model-dependent. We have then turned to another set of constraints on supersymmetric theories that consists in the dark matter observables. Our work has focused on the precise computation of the relic density in the MSSM. We have decided to introduce once again an effective approach, but whereas the one implemented in the BMSSM aimed at accounting for extra physics beyond the MSSM, this specific one was built to account for radiative corrections brought by MSSM particles. We have performed the implementation of different effective vertices and assessed the robustness of the approach in the case of annihilation of neutralinos to fermions. We have found that the full one-loop result was very well approximated in the case of a bi no-like neutralino, where the discrepancy between both calculations was found to be less than 2%. We have also discussed the case of the Higgsino's-like neutralino with
Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle
2015-03-19
Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.
Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.
Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel
2015-04-01
The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful
Moschos, Evangelos; Manou, Georgia; Georganta, Xristina; Dimitriadis, Panayiotis; Iliopoulou, Theano; Tyralis, Hristos; Koutsoyiannis, Demetris; Tsoukala, Vicky
2017-04-01
The large energy potential of ocean dynamics is not yet being efficiently harvested mostly due to several technological and financial drawbacks. Nevertheless, modern renewable energy systems include wave and tidal energy in cases of nearshore locations. Although the variability of tidal waves can be adequately predictable, wind-generated waves entail a much larger uncertainty due to their dependence to the wind process. Recent research has shown, through estimation of the wave energy potential in coastal areas of the Aegean Sea, that installation of wave energy converters in nearshore locations could be an applicable scenario, assisting the electrical network of Greek islands. In this context, we analyze numerous of observations and we investigate the long-term behaviour of wave height and wave period processes. Additionally, we examine the case of a remote island in the Aegean sea, by estimating the local wave climate through past analysis data and numerical methods, and subsequently applying a parsimonious stochastic model to a theoretical scenario of wave energy production. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications
Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid
2017-06-01
We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.
DEFF Research Database (Denmark)
Shutova, Yulia; Karna, Barun Lal; Hambly, Adam C.
2016-01-01
on the sample, respectively. The optimal normalised coagulant dose (Fe3+ to DOC ratio) was observed to be 0.5-4 at pH5.5 increasing to 4-12 at pH7.5. At pH5.5, the optimum coagulant dose increased with increasing humic character of the feed water. Overall, the OM removal efficiency by DAF observed in this study......Membrane fouling in reverse osmosis (RO) systems caused by organic matter (OM) remains a significant operational issue during desalination. Dissolved air flotation (DAF) has recently received attention as a pre-treatment option for seawater OM removal; however, only a limited number of studies have...... been undertaken. This may be because it is difficult to characterise OM in seawater due to the high salt content and low carbon concentration. In this study, DAF pre-treatment experiments were conducted using a model seawater solution, and real seawater and brackish water samples. DAF performance...
Applications of scanning electron microscopy to the study of mineral matter in peat
Energy Technology Data Exchange (ETDEWEB)
Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.
1983-01-01
Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.
Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications
International Nuclear Information System (INIS)
Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid
2017-01-01
We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process. (paper)
Numerical simulations of wave propagation in long bars with application to Kolsky bar testing
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-11-01
Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instrumental to conduct measurements of material behavior at strain rates in the order of 10^{3} s^{-1}. Test design and data reduction, however, remain empirical endeavors based on the experimentalist's experience. Issues such as wave propagation across discontinuities, the effect of the deformation of the bar surfaces in contact with the specimen, the effect of geometric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other particulars are generally treated using simplified models. The work presented here was conducted in Q3 and Q4 of FY14. The objective was to demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done successfully.
Application of perturbation theory to a P-wave eikonal equation in orthorhombic media
Stovas, Alexey
2016-10-12
The P-wave eikonal equation for orthorhombic (ORT) anisotropic media is a highly nonlinear partial differential equation requiring the solution of a sixth-order polynomial to obtain traveltimes, resulting in complex and time-consuming numerical solutions. To alleviate this complexity, we approximate the solution of this equation by applying a multiparametric perturbation approach. We also investigated the sensitivity of traveltime surfaces inORT mediawith respect to three anelliptic parameters. As a result, a simple and accurate P-wave traveltime approximation valid for ORT media was derived. Two different possible anelliptic parameterizations were compared. One of the parameterizations includes anelliptic parameters defined at zero offset: η1, η2, and ηxy. Another parameterization includes anelliptic parameters defined for all symmetry planes: η1, η2, and η3. The azimuthal behavior of sensitivity coefficients with different parameterizations was used to analyze the crosstalk between anelliptic parameters. © 2016 Society of Exploration Geophysicists.
ZnO film for application in surface acoustic wave device
International Nuclear Information System (INIS)
Du, X Y; Fu, Y Q; Tan, S C; Luo, J K; Flewitt, A J; Maeng, S; Kim, S H; Choi, Y J; Lee, D S; Park, N M; Park, J; Milne, W I
2007-01-01
High quality, c-axis oriented zinc oxide (ZnO) thin films were grown on silicon substrate using RF magnetron sputtering. Surface acoustic wave (SAW) devices were fabricated with different thickness of ZnO ranging from 1.2 to 5.5 μmUm and the frequency responses were characterized using a network analyzer. Thick ZnO films produce the strongest transmission and reflection signals from the SAW devices. The SAW propagation velocity is also strongly dependent on ZnO film thickness. The performance of the ZnO SAW devices could be improved with addition of a SiO 2 layer, in name of reflection signal amplitude and phase velocity of Rayleigh wave
Zhan, Hanyu; Jiang, Hanwan; Jiang, Ruinian
2018-03-01
Perturbations worked as extra scatters will cause coda waveform distortions; thus, coda wave with long propagation time and traveling path are sensitive to micro-defects in strongly heterogeneous media such as concretes. In this paper, we conduct varied external loads on a life-size concrete slab which contains multiple existing micro-cracks, and a couple of sources and receivers are installed to collect coda wave signals. The waveform decorrelation coefficients (DC) at different loads are calculated for all available source-receiver pair measurements. Then inversions of the DC results are applied to estimate the associated distribution density values in three-dimensional regions through kernel sensitivity model and least-square algorithms, which leads to the images indicating the micro-cracks positions. This work provides an efficiently non-destructive approach to detect internal defects and damages of large-size concrete structures.
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-04-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
High-power pulsed light ion beams for applications in fusion- and matter research
International Nuclear Information System (INIS)
Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.
1982-01-01
The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de
Modelling of acoustic pressure waves in bubbly liquids with application to sonochemical reactors
Dogan, Hakan
2013-01-01
This thesis investigates the acoustic wave propagation in bubbly liquids as part of the SONO project supported by the FP7 European Commission programme, which is aimed at developing a pilot sonochemical plant in order to produce antibacterial medical textile fabrics by coating of the textile with ZnO or CuO nanoparticles. The findings of this research are anticipated to aid the design procedures and also to provide better understanding of the micro scale physical and chemical events. Propagat...
Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong
2010-01-01
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...
Application of numerical methods to the determination of molecular wave functions
International Nuclear Information System (INIS)
Douady, Jerome
1969-01-01
A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Tsironis, Christos, E-mail: ctsiron@mail.ntua.gr [School of Electrical and Computer Engineering, National Technical University of Athens, 157 73 Athens (Greece); Department of Physics, Aristotle University of Thessaloniki, 54 136 Thessaloniki (Greece); Giannopoulos, Iordanis K.; Vasileiadou, Soultana; Kakogiannos, Ioannis D.; Kalligeropoulos, Dimitrios [Department of Automation, Technological Education Institute of Piraeus, 122 44 Piraeus (Greece)
2016-11-15
Highlights: • Open-loop modeling and control simulation of an electromechanical mm-wave launcher. • Simulations of the experiment without employing the real (hardware) system. • Launcher mirror dynamics correspond to a second-order weakly-nonlinear system. • Closed-loop control design in terms of cascade PIDs achieves required performance. - Abstract: Controlled thermonuclear fusion via magnetic confinement, still in experimental stage, has the potential to become a viable and environment-friendly solution to the energy problem, especially for the high-power needs of modern industry. In order to optimize the operation of devices based on the tokamak principle, automatic control systems are envisaged to fulfill the requirements for the magnetic equilibrium and plasma stability, with copper coils, neutral gas injectors and microwave sources used as actuators. In present-day experiments, the implemented control loops are simple and practical, however in future devices like ITER (presently under construction) more sophisticated control design will be required, based on realistic closed-loop simulations with efficient computational tools and real-time diagnosing. For magnetohydrodynamic instability control, the system should include physics/engineering models for the plasma dynamics, the wave actuation and the diagnostic sensors, as well as controllers based on classical or modern principles. In this work, we present a model for a specific design of a controlled electromechanical millimeter-wave launcher, which executes the major part of the wave actuation, and perform numerical simulations of its open-loop dynamics and closed-loop control for scenarios relevant to tearing mode stabilization in medium-sized tokamaks.
Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.
2015-01-01
A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.
Slow waves in microchannel metal waveguides and application to particle acceleration
L. C. Steinhauer; W. D. Kimura
2003-01-01
Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong ex...
International Nuclear Information System (INIS)
Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc
2014-01-01
The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called 'head wave' is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.
Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc
2014-04-01
The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.
van Hecke, Martin
2013-03-01
All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.
Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael
2018-05-01
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dubrawski, Kristian L; Mohseni, Madjid
2013-09-15
In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Sun Jilin; Wu Jie; Jia Xiuchuan; Li Sumin
2011-01-01
Objective: To evaluate the value of magnetic source imaging (MSI) in localizing the epileptic foci of patients with histologically proved grey matter heterotopia (GMH) and seizure. Methods: MSI examinations were performed on 8 patients with GMH and seizure. The location of the epileptic foci defined by MSI was compared with the results of the ECoG. After imaging examinations, all patients received operation with 13-48 months follow up to observe the effectiveness of the operation. Results: Among the 8 patients, 1 had hippocampal sclerosis, 2 had focal cortical dysplasia of type Ⅰ B and 1 had focal cortical dysplasia of type Ⅱ B. MRI showed normal findings in 2 cases, subcortical heterotopia in 4 cases, and nodular heterotopia in 2 cases with one having schizencephaly. The epileptic foci defined by MSI were at right temporal lobe in 2 cases, left frontal lobe in 2 cases, biparietal lobe in 1 case, left parietal lobe in 1 case, left temporal lobe in 1 case, and left frontal-parietal lobe in 1 case. The epileptic foci defined by MSI were completely overlaid with area of GMH in 4 cases, closely behind the area of GMH in case, and partly overlaid with area of CMH in 1 cases with size larger than that of the latter. One patient showed two epileptic foci with one located within the area of GMH and the other one 2 centimeters anterior to the area of GMH. One case's epileptic focus located 2 centimeters posteolateral to the area of GMH. The locations of the epileptic foci defined by MSI showed no difference with those defined by ECoG in all patients. According to Engel classification of treatment effect of epilepsy, 6 patients achieved Engle class Ⅰ ( seizure free after operation), and 2 patients Engel class Ⅳ (no changes in the frequency of occurrence of seizures before and after operation). Conclusion: MSI can noninvasively and precisely localize the epileptic foci before operation in patients with GMH and seizure. (authors)
From Standard Application Packages to Enterprise Systems - A Matter of Opportunities
Nilsson, Anders G.
The purpose of this chapter is to make clearer the meaning behind the concepts of “standard application package” and “enterprise system.” There is today a confusion in our IS field about the connection between the two concepts and how they have appeared historically? The main idea is to contrast them against each other and in this sense to study which opportunities organizations and companies can achieve with these two different IT environments. This transparency will give business and IT people a better understanding for managing investments in information systems more professionally. The research approach is characterized as “consumable research” (Robey, and Markus, Information Resources Management Journal, 11(1): 7-15, 1998) based on theoretical knowledge integrated with business practice from the IS field. Our background is through working with practical methods for customer involvement (purchasing, implementation, maintenance) as well as performing vendor studies of the software application industry.
The Principle of Substance Stability Is Applicable to All Levels of Organization of Living Matter
Gladyshev, Georgi P.
2006-01-01
The principle of substance stability Ã¢Â€Â“ the feedback principle Ã¢Â€Â“ is applicable to allbiological systems. It boils down for different temporal hierarchies to the following: duringthe formation (self-assembly) of the most thermodynamically stable structures at the highesthierarchical level (j), e.g., the supramolecular level, in accordance with the second law,Nature spontaneously uses predominantly the (available for the given local part of thebiological system) least thermodynamically...
Zomeren, van A.
2008-01-01
Natural organic matter (NOM) is the material that is formed after the natural
decomposition and transformation of dead plant and animal matter. The fresh
organic matter (e.g. plant leaves or animal debris) is decomposed and
transformed by microbial activity. As such, NOM is found
International Nuclear Information System (INIS)
Daw, E J; Hewitson, M R
2008-01-01
Many experiments, and in particular gravitational wave detectors, produce continuous streams of data whose frequency representations contain discrete, relatively narrowband coherent features at high amplitude. We discuss the application of digital Fourier transforms (DFTs) to characterization of these features, hereafter frequently referred to as lines. Application of DFTs to continuously produced time-domain data is achieved through an algorithm, hereafter referred to as EFC , for efficient time-domain determination of the Fourier coefficients of a data set. We first define EFC and discuss parameters relating to the algorithm that determine its properties and action on the data. In gravitational wave interferometers, these lines are commonly due to parasitic sources of coherent background interference coupling into the instrument. Using GEO 600 data, we next demonstrate that time-domain subtraction of lines can proceed without detrimental effects either on features at frequencies separated from that of the subtracted line, or on features at the frequency of the line but having different stationarity properties
Field plated 0.15 μm GaN HEMTs for millimeter-wave application
International Nuclear Information System (INIS)
Ren Chunjiang; Li Zhonghui; Yu Xuming; Wang Quanhui; Wang Wen; Chen Tangsheng; Zhang Bin
2013-01-01
SiN dielectrically-defined 0.15 μm field plated GaN HEMTs for millimeter-wave application have been presented. The AlGaN/GaN hetero-structure epitaxial material for HEMTs fabrication was grown on a 3-inch SiC substrate with an Fe doped GaN buffer layer by metal-organic chemical deposition. Electron beam lithography was used to define both the gate footprint and the cap of the gate with an integrated field plate. Gate recessing was performed to control the threshold voltage of the devices. The fabricated GaN HEMTs exhibited a unit current gain cut-off frequency of 39 GHz and a maximum frequency of oscillation of 63 GHz. Load-pull measurements carried out at 35 GHz showed a power density of 4 W/mm with associated power gain and power added efficiency of 5.3 dB and 35%, respectively, for a 0.15 mm gate width device operated at a 24 V drain bias. The developed 0.15 μm gate length GaN HEMT technology is suitable for Ka band applications and is ready for millimeter-wave power MMICs development. (semiconductor devices)
Sardana, A.; Aziz, T. N.; Cottrell, B. A.
2017-12-01
In this presentation we will discuss our ongoing work to characterize the photochemical behavior of dissolved organic matter (DOM) from wastewater treated in constructed wetlands. We have used a suite of spectroscopic and chromatographic techniques to characterize the DOM and to quantify the potential production of reactive oxygenated species (ROS). In the present study, DOM was fractionated based on its hydrophobicity and both the natural water isolates and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs) and proton nuclear magnetic resonance (1H NMR). Photodegradation of wetland DOM and the formation of the hydroxyl radical (*OH), singlet oxygen (1O2), and the triplet-excited state (3DOM*) was also determined to assess the reactivity of DOM. EEM spectra exhibited the four main fluorescence peaks that are characteristic of DOM: peak A humic-like DOM, Peak C (fulvic or chromophoric DOM), Peak M (marine-like DOM), and peak T (tryptophan or protein-like absorbance). Two additional observed peaks with shorter emission wavelengths (A' Ex/Em = 243/278 nm and T' Ex/Em = 272/319 nm) were attributed to the microbial DOM in wastewater effluent. The spectral slope ratios decreased from 1.46 at the wetland inlet to 0.89 at the wetland outlet. The protein-like Peak T fluorescence decreased from 50% at the wetland inlet to 6.7% at the Wetland 2 outlet. A negative correlation between the percent fluorescence of Peak T and Peaks A, C and M confirmed the transition from the spectrum of pure wastewater with a primarily protein-like signature to a spectrum characteristic of terrestrially derived DOM. This transition coincided with enhanced formation rates and steady state concentrations of photochemically produced reactive intermediates (PPRIs). Size Exclusion Chromatography demonstrated that the influent wastewater had a lower molecular weight as compared to downstream wetland locations
Generalized spin-wave theory: Application to the bilinear-biquadratic model
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
Application of Wind Fetch and Wave Models for Habitat Rehabilitation and Enhancement Projects
Rohweder, Jason J.; Rogala, James T.; Johnson, Barry L.; Anderson, Dennis; Clark, Steve; Chamberlin, Ferris
2012-01-01
Models based upon coastal engineering equations have been developed to quantify wind fetch length and several physical wave characteristics including significant height, length, peak period, maximum orbital velocity, and shear stress. These models were used to quantify differences in proposed island construction designs for three Habitat Rehabilitation and Enhancement Projects (HREPs) in the U.S. Army Corps of Engineers St. Paul District (Capoli Slough and Harpers Slough) and St. Louis District (Swan Lake). Weighted wind fetch was calculated using land cover data supplied by the Long Term Resource Monitoring Program (LTRMP) for each island design scenario for all three HREPs. Figures and graphs were created to depict the results of this analysis. The difference in weighted wind fetch from existing conditions to each potential future island design was calculated for Capoli and Harpers Slough HREPs. A simplistic method for calculating sediment suspension probability was also applied to the HREPs in the St. Paul District. This analysis involved determining the percentage of days that maximum orbital wave velocity calculated over the growing seasons of 2002–2007 exceeded a threshold value taken from the literature where fine unconsolidated sediments may become suspended. This analysis also evaluated the difference in sediment suspension probability from existing conditions to the potential island designs. Bathymetric data used in the analysis were collected from the LTRMP and wind direction and magnitude data were collected from the National Oceanic and Atmospheric Administration, National Climatic Data Center. These models are scheduled to be updated to operate using the most current Environmental Systems Research Institute ArcGIS Geographic Information System platform, and have several improvements implemented to wave calculations, data processing, and functions of the toolbox.
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
International Nuclear Information System (INIS)
Tan, Jianhao; Tong, Dechun; Gu, Qiang; Fang, Wencheng; Zhao, Zhentang
2016-01-01
A tuning method augmented by the bead-pull technique based on nonresonant perturbation field distribution measurements has been widely applied for traveling-wave (TW) accelerating structures. The method is also suitable for deflecting structures, but some key considerations of the field components of the HEM_1_1 mode and the selection of bead merit discussion. A “cage”-type perturbing object has been designed, fabricated and applied in nonresonant perturbation measurements. Measurements on an S-band TW deflecting structure are carried out, and the measurement and tuning method will be used on the newly developed X-band deflecting structure at Shanghai Institute of Applied Physics.
Energy Technology Data Exchange (ETDEWEB)
Tan, Jianhao [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China); Tong, Dechun [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Gu, Qiang; Fang, Wencheng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China); Shanghai Key Laboratory of Cryogenics & Superconducting RF Technology, Shanghai 201800 (China); Shanghai Science Research Center, Chinese Academy of Science, Shanghai 201204 (China)
2016-11-01
A tuning method augmented by the bead-pull technique based on nonresonant perturbation field distribution measurements has been widely applied for traveling-wave (TW) accelerating structures. The method is also suitable for deflecting structures, but some key considerations of the field components of the HEM{sub 11} mode and the selection of bead merit discussion. A “cage”-type perturbing object has been designed, fabricated and applied in nonresonant perturbation measurements. Measurements on an S-band TW deflecting structure are carried out, and the measurement and tuning method will be used on the newly developed X-band deflecting structure at Shanghai Institute of Applied Physics.
Electromagnetic wave absorption in high-Tc superconductors and its application
International Nuclear Information System (INIS)
Porjesz, T.; Khatiashvili, N.; Kovacs, Gy.; Leppavuori, S.; Uusimaki, A.; Kokkomaki, T.; Hagberg, J.
1995-08-01
The experimental study of the electromagnetic wave absorption of high-Tc superconductors subjected to small magnetic fields has been extended to a wide frequency range. The results obtained show an almost frequency independent behaviour in the 4 MHz - 20 GHz region. The measurement technique for the high frequency regime was developed in such a way that the sensitivity increased so much that the sample under investigation could be used as a very sensitive magnetic field detector, too. (author). 4 refs, 8 figs, 1 tab