WorldWideScience

Sample records for matter removal efficiency

  1. Natural organic matters removal efficiency by coagulation

    Science.gov (United States)

    Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared

    2017-10-01

    The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.

  2. REMOVAL EFFICIENCY OF ORGANIC MATTER OF PIG SLURRY WITH BIODIGESTERS IN YUCATAN STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    W. Trejo-Lizama

    2014-08-01

    Full Text Available In the intensive pig production in the state of Yucatan, 62 biodigesters were installed in the last 10 years. However, the complexities of the anaerobic biodigestion enclose difficulties to reach the expected efficiency. The objective of the present study was to determine the removal efficiency of the organic matter in pig slurry using biodigesters in the state of Yucatan. There were visited 15 pig farms in the state of Yucatan to interview the farmer about the management of the farm and the waste disposal and to take samples of the influent of the collector of the pig slurry and the effluent of the biodigestor and evaluating the samples by laboratory analysis. The removal values found in the present study were 7 percentage points below the reference value of total volatile solids, which represent the organic matter fraction of the solids treated in the biodigestor. More than the 50 % of the farms evaluated were similar or higher than the parameters of reference. The removal efficiency of the organic matter in the pig slurry by biodigesters in the state of Yucatan is close to the reference values. However complementary treatments are necessary to continue the waste slurry treatment.

  3. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  4. The efficiency of macroporous polystyrene ion-exchange resins in natural organic matter removal from surface water

    Directory of Open Access Journals (Sweden)

    Urbanowska Agnieszka

    2017-01-01

    Full Text Available Natural water sources used for water treatment contains various organic and inorganic compounds. Surface waters are commonly contaminated with natural organic matter (NOM. NOM removal from water is important e.g. due to lowering the risk of disinfection by-product formation during chlorination. Ion exchange with the use of synthetic ion-exchange resins is an alternative process to typical NOM removal approach (e.g. coagulation, adsorption or oxidation as most NOM compounds have anionic character. Moreover, neutral fraction could be removed from water due to its adsorption on resin surface. In this study, applicability of two macroporous, polystyrene ion exchange resins (BD400FD and A100 in NOM removal from water was assessed including comparison of treatment efficiency in various process set-ups and conditions. Moreover, resin regeneration effectivity was determined. Obtained results shown that examined resins could be applied in NOM removal and it should be noticed that column set-up yielded better results (contrary to batch set-up. Among the examined resins A100 one possessed better properties. It was determined that increase of solution pH resulted in a slight decrease in treatment efficiency while higher temperature improved it. It was also observed that regeneration efficiency was comparable in both tested methods but batch set-up required less reagents.

  5. Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment.

    Science.gov (United States)

    Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz

    2017-09-15

    Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    Science.gov (United States)

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of Organic Matter Removal Efficiency and Microbial Enzyme Activity in Vertical-Flow Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Qiaoling Xu

    2016-09-01

    Full Text Available In this study, enzyme activities and their relationships to organics purification were investigated in three different vertical flow constructed wetlands, namely system A (planting Pennisetum sinese Roxb, system B (planting Pennisetum purpureum Schum., and system C (no plant. These three wetland systems were fed with simulation domestic sewage at an influent flow rate of 20 cm/day. The results showed that the final removal efficiency of Chemical Oxygen Demand (COD in these three systems was 87%, 85% and 63%, respectively. Planting Pennisetum sinese Roxb and Pennisetum purpureum Schum. could improve the amount of adsorption and interception for organic matter in the substrate, and the amount of interception of organic matter in planting the Pennisetum sinese Roxb system was higher than that in planting the Pennisetum purpureum Schum. system. The activities of enzymes (urease, phosphatase and cellulase in systems A and B were higher than those in system C, and these enzyme activities in the top layer (0–30 cm were significantly higher than in the other layers. The correlations between the activities of urease, phosphatase, cellulase and the COD removal rates were R = 0.815, 0.961 and 0.973, respectively. It suggests that using Pennisetum sinese Roxb and Pennisetum purpureum Schum. as wetland plants could promote organics removal, and the activities of urease, phosphatase and cellulase in those three systems were important indicators for COD purification from wastewater. In addition, 0–30 cm was the main function layer. This study could provide a theoretical basis for COD removal in the wetland system and supply new plant materials for selection.

  8. The Efficiency of Removing Organic Matters and Colour from Groudwater Using Coaguliants

    Directory of Open Access Journals (Sweden)

    Ramunė Albrektienė

    2011-12-01

    Full Text Available Organic matter in drinking water must be removed as it causes many problems such as changes in colour, taste, odour and lower quality of water. During the chlorination process, humic acid reacts with chlorine and produce toxic disinfection-by-products. The study has used three coagulants: polialuminium oxychloride (PAC, aluminum sulphate and iron (III chloride. The paper presents the outcomes of removing organic compounds from groundwater, investigates the decolourisation process and discusses pH impact on removing organic compounds and water colour. Aluminum based coagulants have been found to be the most effective regents. pH values have also a very significant impact on the effectiveness of the water coagulation process.Article in Lithuanian

  9. Removal of particulate matter emitted from a subway tunnel using magnetic filters.

    Science.gov (United States)

    Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun

    2014-01-01

    We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.

  10. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    Science.gov (United States)

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  11. Emission Rate of Particulate Matter and Its Removal Efficiency by Precipitators in Under-Fired Charbroiling Restaurants

    Directory of Open Access Journals (Sweden)

    Jun-Bok Lee

    2011-01-01

    Full Text Available In order to explore the potent role of meat cooking processes as the emission sources of particulate matter (PM, emission rates and the associated removal efficiency by precipitators were estimated based on the on-site measurements made at five under-fired charbroiling (UFC restaurants. The emission patterns of PM for these five restaurants were compared after having been sorted into the main meat types used for cooking: beef (B, chicken (C, intestines (I, and pork (P: two sites. The mass concentrations (μg m-3 of three PM fractions (PM2.5/PM10/TSP measured from these restaurants were 15,510/15,701/17,175 (C; 8,525/10,760/12,676 (B; 11,027/13,249/13,488 (P; and 22,409/22,412/22,414 (I. Emission factors (g kg-1 for those PM fractions were also estimated as 3.23/4.08/4.80 (B, 3.07/3.82/3.87 (P, 8.12/8.22/8.99 (C, and 6.59/6.59/6.59 (I. If the annual emission rate of PM10 is extrapolated by combining its emission factor, population, activity factor, etc., it is estimated as 500 ton year-1, which corresponds to 2.4% of the PM10 budget in Seoul, Korea. Removal efficiencies of PM10 via precipitators, such as an electrostatic precipitator (ESP, bag filter (BF, and the combination system (ESP + catalyst, installed in those UFC restaurants ranged between 54.76 and 98.98%. The removal efficiency of PM by this control system was the least effective for particles with <0.4 μm, although those in the range of 0.4–10 μm were the most effective.

  12. The examination of the seasonal influence on the efficiency in oil and fats removal through primary treatment from the wastewater of edible oil industry

    Directory of Open Access Journals (Sweden)

    Nikolin Tatjana

    2014-01-01

    Full Text Available This paper investigates the influence of the seasonal change of the air temperature, chemical oxygen demand as well as efficiency of suspended matter removal on the efficiency of oil and fats removal (h, % during primary treatment. The parameters are monitored in the period of time from 2006 to 2011. The efficiency of oil and fats removal in the first and in the fourth quartal is proportional to the efficiency of the removal of suspended matter and of total organic matter, measured as chemical oxygen demand (COD. The measured values for oil and fat are: η (IV quartal = 0.96 % - 50.8 % and η (I quartal = 5.06 % - 95.97 %. The efficiency of oil and fats removal in the second and third quartal is proportional to air temperature so the measured efficiency of fat and oil removal are, η (II quartal = 3.93 % - 82.86 % and η (III quartal = 6.82% - 71.51%. The results of investigation have shown the existence of the correlation between the air temperature during various seasons and the efficiency of the oil and fats removal (h, % as well as the removal of the suspended matter and chemical oxygen demand (COD.

  13. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays

    International Nuclear Information System (INIS)

    Wang, Hongtao; Keller, Arturo A.; Clark, Kristin K.

    2011-01-01

    Highlights: → New nanostructured material for removing pollutants from water. → Confined surfactant micelle array allows for reuse of surfactant and reduces loss. → Magnetic core allows easy removal from solution with lower separation costs. → High removal efficiency of natural organic matter. → Low energy use for regeneration of adsorbent. - Abstract: To remove natural organic matter (NOM) from water, magnetic permanently confined micelle arrays (Mag-PCMAs) were synthesized by coating the surface of Fe 3 O 4 particles with a silica/surfactant mesostructured hybrid layer. An environmental scanning electron microscope (ESEM) was used to characterize the particle size and surface morphology of the Mag-PCMAs. The zeta potential was used to assess the surface charge. Batch experiments were performed to investigate the adsorption of NOM by Mag-PCMAs. It was determined that NOM removal efficiency by Mag-PCMAs could be as high as 80% at a wide range of initial pH values (∼6.0-10.0). The adsorption isotherm was fitted well by a Langmuir model. Although Fe 3 O 4 had a high positive charge and Mag-PCMAs a small negative charge, Mag-PCMAs had a higher removal efficiency of NOM than uncoated Fe 3 O 4 particles (which are also magnetic), which indicated that the adsorption of NOM onto Mag-PCMAs was not dominated by electrostatic interactions. Possible mechanisms of the adsorption of NOM onto Mag-PCMAs were hydrophobic interactions and hydrogen bonding. It was feasible to reuse Mag-PCMAs after regeneration. These results indicate that Mag-PCMAs can be very attractive for the removal of NOM from aqueous matrices.

  14. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.

    Science.gov (United States)

    Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo

    2013-01-01

    This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.

  15. Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

    Directory of Open Access Journals (Sweden)

    Izabela Major Barbosa

    2016-04-01

    Full Text Available This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD5 and Total Organic Carbon (TOC. Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

  16. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  18. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    Science.gov (United States)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. THE EFFICIENCY OF ELECTROCOAGULATION PROCESS USING ALUMINUM ELECTRODES IN REMOVAL OF HARDNESS FROM WATER

    Directory of Open Access Journals (Sweden)

    M. Malakootian ، N. Yousefi

    2009-04-01

    Full Text Available There are various techniques for removal of water hardness each with its own special advantages and disadvantages. Electrochemical or electrocoagulation method due to its simplicity has gained a great attention and is used for removal of various ions and organic matters. The aim of the present study was to investigate the efficiency of this technique in removal of water hardness under different conditions. This experimental study was performed using a pilot plant. The applied pilot was comprised of a reservoir containing aluminum sheet electrodes. The electrodes were connected as monopolar and a power supply was used for supplying direct electrical current. Drinking water of Kerman (southeast of Iran was used in the experiments. The efficiency of the system in three different pH, voltages and time intervals were determined. Results showed the efficiency of 95.6% for electrocoagulation technique in hardness removal. pH and electrical potential had direct effect on hardness removal in a way that the highest efficiency rate was obtained in pH=10.1, potential difference of 20 volt and detention time of 60 minutes. Considering the obtained efficiency in the present study, electrocoagulation technique may be suggested as an effective alternative technique in hardness removal.

  20. Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency.

    Science.gov (United States)

    Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-10-19

    In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.

  1. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    International Nuclear Information System (INIS)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-01-01

    Highlights: ► A continuous electrocoagulation/flotation reactor was designed built and operated. ► Highest NOM removal according to UV 254 was 77% relative to raw groundwater. ► Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. ► Highest As removal archived was 85% (6.2 μg/l), relative to raw groundwater. ► Specific reactor energy and electrode consumption was 1.7 kWh/m 3 and 66 g Al/m 3 . - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm 2 , A/V ratio = 0.248 cm −1 . The NOM removal according to UV 254 absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m 3 . According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  2. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  3. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. © 2012 Elsevier B.V.

  4. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems

    KAUST Repository

    Kim, Younggy

    2013-01-01

    A new bioelectrochemical system is proposed for simultaneous removal of salinity and organic matter. In this process, exoelectrogenic microorganisms oxidize organic matter and transfer electrons to the anode, hydrogen is evolved at the cathode by supplying additional voltage, and salt is removed from the wastewater due to the electric potential generated and the use of two ion-exchange membranes. Salinity removal (initial conductivity ~40mS/cm) increased from 21 to 84% by increasing the substrate (sodium acetate) from 2 to 8g/L. A total of 72-94% of the chemical oxygen demand was degraded in the anode and cathode chambers, with 1-4% left in the anode chamber and the balance lost through the anion-exchange membrane into the concentrate waste chamber. The maximum hydrogen production rate was 3.6m3-H2/m3-electrolyte per day at an applied potential of 1.2V. The Coulombic efficiency was ~100%, while the cathode recovery varied from 57 to 100%, depending on the extent of methanogenesis. Exoelectrogenic microbes generated high current densities (7.8mA/cm2) at ≤36g/L of total dissolved solids, but >41g/L eliminated current. These results provide a new method for achieving simultaneous removal of salinity and organic matter from a saline wastewater with H2 production. © 2012 Elsevier B.V.

  6. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  7. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Amy, Gary L.

    2011-01-01

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log K ow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  8. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu

    2011-10-01

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log K ow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  9. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: batch and column studies.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Amy, Gary L

    2011-10-15

    Natural water treatment systems such as bank filtration have been recognized as providing effective barriers in the multi-barrier approach for attenuation of organic micropollutants for safe drinking water supply. In this study, the role of biodegradation in the removal of selected pharmaceutically active compounds (PhACs) during soil passage was investigated. Batch studies were conducted to investigate the removal of 13 selected PhACs from different water sources with respect to different sources of biodegradable organic matter. Neutral PhACs (phenacetine, paracetamol, and caffeine) and acidic PhACs (ibuprofen, fenoprofen, bezafibrate, and naproxen) were removed with efficiencies greater than 88% from different organic matter water matrices during batch studies (hydraulic retention time (HRT): 60 days). Column experiments were then performed to differentiate between biodegradation and sorption with regard to the removal of selected PhACs. In column studies, removal efficiencies of acidic PhACs (e.g., analgesics) decreased under conditions of limited biodegradable carbon. The removal efficiencies of acidic PhACs were found to be less than 21% under abiotic conditions. These observations were attributed to sorption under abiotic conditions established by a biocide (20 mM sodium azide), which suppresses microbial activity/biodegradation. However, under biotic conditions, the removal efficiencies of these acidic PhACs were found to be greater than 59%. This is mainly attributed to biodegradation. Moreover, the average removal efficiencies of hydrophilic (polar) neutral PhACs (paracetamol, pentoxifylline, and caffeine) with low octanol/water partition coefficients (log Kow less than 1) were low (11%) under abiotic conditions. However, under biotic conditions, removal efficiencies of the neutral PhACs were greater than 98%. In contrast, carbamazepine persisted and was not easily removed under either biotic or abiotic conditions. This study indicates that biodegradation

  10. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  11. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  12. AOM Characterization and Removal Efficiency Using Various SWRO Pretreatment Techniques

    KAUST Repository

    Namazi, Mohammed

    2017-12-01

    This study investigates the operation of dual media filter DMF during ambient and simulated algal bloom conditions, and the role of coagulation and dissolved air flotation (DAF) in mitigating the adverse effects of algal blooms on DMF performance. The study also highlights which AOM concentration as a function of biopolymer is critical to organic fouling in DMF pretreatment for Red Sea water desalination with RO. On the other hand, the present study has carried out another experiment on AOM fouling in comparison with bacterial organic matter (BOM) and humic organic matter (HOM) using two different pore sizes of UF ceramic membranes, 5 and 50 kDa. The main aim of this comparison is to examine fouling behavior and mechanism and removal efficiency. The study revealed that AOM can induce organic fouling in DMF during simulated algal bloom conditions at biopolymer concentrations as low as 0.2 mg C/L. DMF performance was strongly affected by AOM concentration as observed by flow rate decline through time. Liquid chromatography – organic carbon detection (LC-OCD) analysis showed higher removal rates of biopolymers than lower molecular weight fractions (i.e., humic substances, building blocks and low molecular weight neutrals) for all pretreatment scenarios. The study also indicated that while DMF performance was enhanced with coagulation and sedimentation, the most significant improvement in performance was observed for DMF operation preceded by coagulation and DAF. Hydraulic performance of DMF correlated well with biopolymers removal, with removal rates of 72%, 53% and 39%, for coagulation/DAF, coagulation/sedimentation, and no coagulation, respectively. For UF ceramic membranes, results showed that more TEP/organics were removed by the 5 kDa membranes compared to the 50 kDa membrane, which is accounted for lower MWCO. The UF 5 kDa membrane also showed low fouling formation than 50 kDa membrane for all of three types of organic matter tested. Analysis of the fouled

  13. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Science.gov (United States)

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  14. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  15. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter

    International Nuclear Information System (INIS)

    Gattullo, C. Eliana; Bährs, Hanno; Steinberg, Christian E.W.; Loffredo, Elisabetta

    2012-01-01

    Phytoremediation of waters by aquatic organisms such as algae has been recently explored for the removal of organic pollutants possessing endocrine disrupting capacity. Monoraphidium braunii, a green alga known for rapid growth and good tolerance to different natural organic matter (NOM) qualities, was tested in this study for the ability to tolerate and remove the endocrine disruptor bisphenol A at concentrations of 2, 4 and 10 mg L −1 , either in NOM-free or NOM-containing media. NOM at concentrations of 2, 5 and 20 mg L −1 of DOC, was added because it may interfere with xenobiotics and modify their effects, modulate algal growth performances or produce a trade-off of both effects. After 2 and 4 days of algal growth, the cell number and size, the maximum quantum yield of photosystem II in the dark or light adapted state, and the chlorophyll a content were recorded in order to evaluate the algal response to bisphenol A. Moreover, the residual bisphenol A was measured in the algal cultures by chromatographic technique. Results indicated that after 2 and 4 days bisphenol A at the lower concentrations was not toxic for alga, whereas at the highest concentration it reduced algal growth and photosynthetic efficiency. The sole NOM and its combinations with bisphenol A at the lower concentrations increased the cell number and the chlorophyll a content of algae. After 4-day growth, good removal efficiency was exerted by M. braunii at concentrations of 2, 4 and 10 mg L −1 removing, respectively, 39%, 48% and 35% of the initial bisphenol A. Lower removal percentages were found after 2-day growth in the different treatments. NOM at any concentration scarcely influenced the bisphenol A removal. On the basis of data obtained, the use of M. braunii could be reasonably recommended for the phytoremediation of aquatic environments from bisphenol A. - Highlights: ► The alga Monoraphidium braunii tolerates high concentrations of bisphenol A. ► The alga Monoraphidium

  16. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Gattullo, C. Eliana, E-mail: e.gattullo@agr.uniba.it [Dipartimento di Biologia e Chimica Agro-forestale e Ambientale, University of Bari, Via Amendola 165/A, 70126 Bari (Italy); Baehrs, Hanno; Steinberg, Christian E.W. [Department of Biology, Freshwater and Stress Ecology, Humboldt Universitaet zu Berlin, Spaethstr. 80/81, 12437 Berlin (Germany); Loffredo, Elisabetta [Dipartimento di Biologia e Chimica Agro-forestale e Ambientale, University of Bari, Via Amendola 165/A, 70126 Bari (Italy)

    2012-02-01

    Phytoremediation of waters by aquatic organisms such as algae has been recently explored for the removal of organic pollutants possessing endocrine disrupting capacity. Monoraphidium braunii, a green alga known for rapid growth and good tolerance to different natural organic matter (NOM) qualities, was tested in this study for the ability to tolerate and remove the endocrine disruptor bisphenol A at concentrations of 2, 4 and 10 mg L{sup -1}, either in NOM-free or NOM-containing media. NOM at concentrations of 2, 5 and 20 mg L{sup -1} of DOC, was added because it may interfere with xenobiotics and modify their effects, modulate algal growth performances or produce a trade-off of both effects. After 2 and 4 days of algal growth, the cell number and size, the maximum quantum yield of photosystem II in the dark or light adapted state, and the chlorophyll a content were recorded in order to evaluate the algal response to bisphenol A. Moreover, the residual bisphenol A was measured in the algal cultures by chromatographic technique. Results indicated that after 2 and 4 days bisphenol A at the lower concentrations was not toxic for alga, whereas at the highest concentration it reduced algal growth and photosynthetic efficiency. The sole NOM and its combinations with bisphenol A at the lower concentrations increased the cell number and the chlorophyll a content of algae. After 4-day growth, good removal efficiency was exerted by M. braunii at concentrations of 2, 4 and 10 mg L{sup -1} removing, respectively, 39%, 48% and 35% of the initial bisphenol A. Lower removal percentages were found after 2-day growth in the different treatments. NOM at any concentration scarcely influenced the bisphenol A removal. On the basis of data obtained, the use of M. braunii could be reasonably recommended for the phytoremediation of aquatic environments from bisphenol A. - Highlights: Black-Right-Pointing-Pointer The alga Monoraphidium braunii tolerates high concentrations of bisphenol A

  17. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  18. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    Science.gov (United States)

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  19. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.

    Science.gov (United States)

    Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R

    2010-09-15

    Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  1. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); He, Xuexiang [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); O' Shea, Kevin E. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Boccelli, Dominic L. [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, 705 Engineering Research Center, Cincinnati, OH 45221-0012 (United States); Nireas-International Water Research Centre, University of Cyprus, 20537 Nicosia (Cyprus)

    2013-12-15

    Highlights: • Removal of endosulfan was studied by UV-C and UV-based advanced oxidation processes (AOPs). • Among UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2}, endosulfan was removed the most efficiently by UV/S{sub 2}O{sub 8}{sup 2−}. • Hydroxyl and/or sulfate radicals were involved in the destruction of endosulfan and its by-products. • Presence of natural organic matter or alcohol inhibited the removal of endosulfan and its by-products. • Degradation pathways were proposed based on the nature of endosulfan degradation intermediates. -- Abstract: This study explored the efficiency of UV-C-based advanced oxidation processes (AOPs), i.e., UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2} for the degradation of endosulfan, an organochlorine insecticide and an emerging water pollutant. A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mJ/cm{sup 2}, was achieved by UV/S{sub 2}O{sub 8}{sup 2−}, UV/HSO{sub 5}{sup −}, and UV/H{sub 2}O{sub 2} processes, respectively, at a [peroxide]{sub 0}/[endosulfan]{sub 0} molar ratio of 20. The efficiency of these processes was, however, inhibited in the presence of radical scavengers, such as alcohols (e.g., tertiary butyl alcohol and isopropyl alcohol) and natural organic matter (NOM). The inhibition was also influenced by common inorganic anions in the order of nitrite > bicarbonate > chloride > nitrate ≃ sulfate. The observed pseudo-first-order rate constant decreased while the degradation rate increased with increasing initial concentration of the target contaminant. The degradation mechanism of endosulfan by the AOPs was evaluated revealing the main by-product as endosulfan ether. Results of this study suggest that UV-C-based AOPs are potential methods for the removal of pesticides, such as endosulfan and its by-products, from contaminated water.

  2. REMOVAL OF NATURAL ORGANIC MATTER USING ELECTROCOAGULATION AS A FIRST STEP FOR DESALINATION OF BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    Wasinton Simanjuntak

    2011-07-01

    Full Text Available In the present study, electrocoagulation method was employed to remove natural organic matter from brackish water. This study explores the potential of brackish water as a source of potable water. Two electrochemical variables, potential and contact time, were tested to determine their effect on the treatment efficiency defined in terms of the reduction of the absorbance at the wavelength of 254 nm (A254. Both potential and contact time were found to influence the removal efficiency of the method, and the best result was obtained from the experiment using the potential of 8 V and contact time of 60 min, resulting in 69.5% reduction of the absorbance. Very clean treated water was produced with much lower conductivity (12.06 mS/cm as compared to that obtained for the sea water sample from a location near to the sampling site (133.9 mS/cm.

  3. Methods for removing contaminant matter from a porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2018-02-01

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m 2 . The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  5. Anaerobic ammonia removal in presence of organic matter: A novel route

    International Nuclear Information System (INIS)

    Sabumon, P.C.

    2007-01-01

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP -248 ± 25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO 2 - , NO 3 - and SO 4 2- ) studied, NO 2 - was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH 4 + to NO 3 - , followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation

  6. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. Copyright © 2014. Published by Elsevier B.V.

  7. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  8. Soil texture analysis revisited: Removal of organic matter matters more than ever

    Science.gov (United States)

    Schjønning, Per; Watts, Christopher W.; Christensen, Bent T.; Munkholm, Lars J.

    2017-01-01

    Exact estimates of soil clay (<2 μm) and silt (2–20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion. PMID:28542416

  9. REMOVAL OF ORGANIC MATTER FROM SURFACE WATER USING COAGULANTS WITH VARIOUS BASICITY

    Directory of Open Access Journals (Sweden)

    Lidia Dąbrowska

    2016-07-01

    Full Text Available Humic substances are a natural admixture of surface water and determine the level of organic pollution of water and colour intensity. Application of coagulation process in surface water treatment allows for decrease turbidity and colour of water, as well as organic matter content. In Poland most drinking water treatment plants use aluminium sulphate as a coagulant. Research works on pre-hydrolysed coagulants, e.g. polyaluminium chlorides (general formula Aln(OHmCl3n-m are also carried out. The aim of this study was to evaluate the effectiveness of the coagulation process using polyaluminium chlorides with different basicity, in reducing the level of pollution of surface water with organic substances. Apart from the typical indicators used to evaluate the content of organic compounds, the potential for trihalomethanes formation THM-FP was also determined. The influence of the type of coagulant (low, medium, highly alkaline on the efficiency of organic compound removal, determined as total organic carbon TOC, oxidisability OXI, absorbance UV254, was stated. Under the conditions of the coagulation (pH 7.2-7.4, temperature of 19-21°C, the best results were obtained using highly alkaline polyaluminium chlorides PAX-XL19F, PAX-XL1905 and PAX-XL1910S, decrease in TOC and OXI by 43-46%, slightly worse - 40-41% using low alkaline PAX18. Using the medium alkaline coagulants PAX-XL61 and PAXX-XL69, 30-35% removal of organic matter was obtained. Despite various effects of dissolved organic carbon removal, depending on the used coagulant, THM-FP in purified water did not differ significantly and ranged from 10.0 to 10.9 mgCHCl3 m-3. It was by 37-42% lower than in surface water.

  10. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    Science.gov (United States)

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  11. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  13. Temperature dependent fission product removal efficiency due to pool scrubbing

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki; Hanamoto, Yukio; Osakabe, Masahiro; Fujikawa, Masahiro

    2016-01-01

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  14. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  15. Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation

    DEFF Research Database (Denmark)

    Shutova, Yulia; Karna, Barun Lal; Hambly, Adam C.

    2016-01-01

    on the sample, respectively. The optimal normalised coagulant dose (Fe3+ to DOC ratio) was observed to be 0.5-4 at pH5.5 increasing to 4-12 at pH7.5. At pH5.5, the optimum coagulant dose increased with increasing humic character of the feed water. Overall, the OM removal efficiency by DAF observed in this study......Membrane fouling in reverse osmosis (RO) systems caused by organic matter (OM) remains a significant operational issue during desalination. Dissolved air flotation (DAF) has recently received attention as a pre-treatment option for seawater OM removal; however, only a limited number of studies have...... been undertaken. This may be because it is difficult to characterise OM in seawater due to the high salt content and low carbon concentration. In this study, DAF pre-treatment experiments were conducted using a model seawater solution, and real seawater and brackish water samples. DAF performance...

  16. Effect of Permanganate Preoxidation to Natural Organic Matter and Disinfection by-Products Formation Potential Removal

    Science.gov (United States)

    Hidayah, E. N.; Yeh, H. H.

    2018-01-01

    Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.

  17. Calcium and organic matter removal by carbonation process with waste incineration flue gas towards improvement of leachate biotreatment performance.

    Science.gov (United States)

    Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren

    2017-09-01

    Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Screening three Finfish Species for their Potential in Removing Organic Matter from the Effluent of White Leg Shrimps (Litopenaeus vannamei Farming

    Directory of Open Access Journals (Sweden)

    Nguyen, LQ.

    2016-01-01

    Full Text Available White leg shrimp (Litopenaeus vannamei farming effluent contains pollutants that include high levels of organic matter (OM nutrients and growth-promoting substances. This study investigated the effects of varied concentrations of white leg shrimp (Litopenaeus vannamei farm wastewater 0, 50, 75 and 100%, on the survival rate (SR of three finfish species: tilapia (Oreochromis niloticus, grey mullet (Mugil cephalus and rabbit fish (Siganus guttatus as part of screening their potential in removing organic matter from the effluent of white leg shrimp farming. The different initial levels of shrimp wastewater from 50% to 100% had no significant effect on the survival rate of tilapia and mullet; but the survival rate of S. guttatus significantly decreased with increasing shrimp wastewater (P<0.05. The results showed that the removal of BOD, COD and TSS occurred in the range of 66-83, 68-81 and 30-54%; respectively and the removal efficiency of OM by mullet was higher than Tilapia in all treatments. The study also indicated that the reduction highest removal of BOD, COD and TSS was achieved being 83.1%, 80.7and 53,7% respectively, at the medium stocking density (25 fish/m2 of mullet.

  19. Experimental study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Gulhane, N.P.; Landge, A.D.; Shukla, D.S.; Kale, S.S.

    2015-01-01

    Highlights: • Fabrication, erection of experimental set up and carrying out experimentation with self priming venturi scrubber. • Predicting solubility of iodine in water and its pH dependency. • Increasing pH of water increases iodine removal efficiency. • Maximum iodine removal efficiency is obtained at 10 pH of water using sodium thiosulphate. - Abstract: The objective of present experimental study is to examine the iodine removal efficiency of a self-priming venturi scrubber for submerged operating condition. The venturi scrubber is used in Containment Filtered Venting System of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. The experiment consists of mixing the iodine vapours with the air using suction venturi and pressure cooker system. The purpose of iodine mixing with air is to examine scrubbing performance of the designed venturi scrubber with water as scrubbing liquid. The performance parameters of venturi scrubber are expressed mainly in terms of pressure drop and iodine removal efficiency. The iodine removal efficiency of venturi scrubber is estimated for a series of two experiments by measuring the quantity of iodine in water from iodometric titration with four distinct pH of water. It has been experimentally observed that iodine removal efficiency is improved by using higher pH value of scrubbing liquid since solubility of iodine gets improved at higher pH

  20. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  1. Study of iodine removal efficiency in self-priming venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong

    2013-01-01

    Highlights: ► Study of iodine removal efficiency in a self-priming venturi scrubber. ► Investigation of iodine removal efficiency at different gas and liquid flow rates. ► Investigation of different inlet concentrations of iodine. ► Mathematical model based on mass transfer. - Abstract: Venturi scrubber is used in filtered vented containment system of nuclear power plants to remove the gaseous pollutants from contaminated gas during severe accidents. In this research, an experimental and theoretical investigation has been carried out to study the iodine removal efficiency in a self-priming venturi scrubber. The aqueous solution is prepared by adding weight percentage of sodium hydroxide 0.5% and sodium thiosulphate 0.2% in scrubbing water to increase the absorbance of inorganic iodine (I 2 ) from the contaminated gas during emission. The iodine removal efficiency is investigated at various gas and liquid flow rates, and iodine inlet concentrations. The iodine removal efficiency is measured experimentally by measuring the inlet and outlet concentration of iodine at sampling ports. The petite droplets are formed in a venturi scrubber to absorb the iodine through the mass transfer phenomenon. A mathematical model for mass transfer based on a gas liquid interface is employed for the verification of experimental results. The contact time between iodine and scrubbing solution depends on the total volumetric flow of gas and liquid, and volume of throat and diffuser of the venturi scrubber. Sauter mean diameter is calculated from the Nukiyama and Tanasawa correlation. Steinberger and Treybal’s correlation is used to measure the mass transfer coefficient for the gas phase. The results calculated from the model under predict the experimental data

  2. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment.

    Science.gov (United States)

    Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Meyer, Melissa; Carter, Jason; Nowack, Kirk; Huang, Ching-Hua

    2017-01-01

    A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (24% of dissolved organic carbon (DOC), >57% of UV 254 , and >44% of SUVA 254 ), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH 4 -N and PO 4 -P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV 254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV 254 would result in significantly reduced removals of UV 254 and SUVA 254 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters.

    Science.gov (United States)

    Wang, Qiongjie; Li, Aimin; Wang, Jinnan; Shuang, Chengdong

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water. The effect of water quality (pH, temperature, ionic strength, etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated. Among the four studied MAERs, the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time. The MAERs could also effectively remove inorganic matter such as sulfate, nitrate and fluoride. Because of the higher specific UV absorbance (SUVA) value, the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin. The temperature showed a weak influence on the removal of DOC from 6 to 26 degrees C, while a relatively strong one at 36 degrees C. The removal of DOM by NDMP was also affected to some extent by the pH value. Moreover, increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  4. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyungguen; Amy, Gary L.

    2012-01-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR

  5. Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane

    Directory of Open Access Journals (Sweden)

    A. Grefte

    2013-01-01

    Full Text Available To guarantee a good water quality at the customers tap, natural organic matter (NOM should be (partly removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration and two IEX configurations (MIEX® and fluidized IEX (FIX were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3, however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.

  6. Investigation of Removal Efficiency of Nano Sized Alumina for Removal of Acid Red 18 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    M.H. Dehghani

    2014-08-01

    Full Text Available Background and Objectives: Acid Red 18 dye was one of the Azo colors that are used in textile and dyeing industries. These dyes are often toxic and carcinogenic to humans and the environment as pollution. This study was conducted with the aim of investigating on nano alumina efficiency for removal of Acid Red 18 dye from aqueous solutions. Materials and Methods: This study was carried out in the laboratory scales and effect of The initial concentration of dye (25 to 100 mg/l, pH solution (3, 7, 11, nano alumina concentration (0.1, 0.4, 1, 1.5 g/l and contact time in range 5 to 240 min on dye removal efficiency were evaluated. Also kinetic and isotherm models of adsorption process were evaluated. Results: The high removal efficiency was observed in pH=3, contact time=60 min and Adsorbent concentration of 0.4 g/L. The rate of color removal were 63/24, 50/84 and 20 percent respectively at pH of 3, 7 and 11 for the initial dye concentration of 25 mg/l and 0.4 g/l mass absorbent that showing with increasing pH removal efficiency is reduced. the studied dye absorption isotherm was fitted Langmuir model (R2=0.994 which was 83.33 mg/g for maximum adsorption. The results from kinetic studies showed that removal of the studied dye was best described by pseudo-second order kinetic model (r2=0.999. Conclusion: The present study shows nano alumina powder is promising adsorbent for removal of Acid Red 18 from aqueous solution.

  7. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping

    2014-01-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe 3 O 4 . • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe 3 O 4 nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly

  8. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping, E-mail: tongmeiping@pku.edu.cn

    2014-03-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe{sub 3}O{sub 4}. • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe{sub 3}O{sub 4} nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly.

  9. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation.

    Science.gov (United States)

    Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav

    2017-05-01

    The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Applicability of MIEX(®)DOC process for organics removal from NOM laden water.

    Science.gov (United States)

    Karpinska, Anna M; Boaventura, Rui A R; Vilar, Vítor J P; Bilyk, Andrzej; Molczan, Marek

    2013-06-01

    The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61-91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal.

  11. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    Directory of Open Access Journals (Sweden)

    MAJID ALI

    2013-04-01

    Full Text Available The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH and sodium thiosulphate (Na2S2O3 in water to remove the gaseous iodine (I2 from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  12. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram [Harbin Engineering Univ., Harbin (China)

    2013-04-15

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na{sub 2}S{sub 2}O{sub 3}) in water to remove the gaseous iodine (I{sub 2}) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

  13. Iodine Removal Efficiency in Non-Submerged and Submerged Self-Priming Venturi Scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Wang, Junlong; Mehboob; Khurram

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na 2 S 2 O 3 ) in water to remove the gaseous iodine (I 2 ) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of 0.99±0.001 has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber

  14. Fundamental study on the simultaneous removal of gaseous and particulate matters in room environment by fibrous filters

    International Nuclear Information System (INIS)

    Otani, Y.; Emi, H.; Mori, J.

    1991-01-01

    In order to achieve simultaneous removal of gaseous and particulate room air pollutants, two approaches were taken. The use of activated carbon fiber (ACF) filter, focusing on the improvement of its particle collection efficiency by using electrostatic charge caused by surface modification with chemicals and enhancement of adsorption capacity by chemical impregnation, and conversion of gaseous components to particles so as to collect them by air filters. It was shown that the immersion of ACF filter in hydrogen peroxide solution brings electrostatic charge on the fibers, which markedly increases the collection efficiency for charged particles. The impregnation of aniline is very effective for the adsorption of acetaldehyde, and by the use of corona discharge, acetaldehyde is decomposed to other gaseous matters, but some olefin compounds in cigarette smoke are converted to particles via a reaction with ozone. (author)

  15. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology

    Science.gov (United States)

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.

  16. Efficiency of lead removal from drinking water using cationic resin Purolite

    Directory of Open Access Journals (Sweden)

    Ashour Mohammad Merganpour

    2015-01-01

    Full Text Available Background: Today, issues such as water shortage, difficulties and costs related to supplying safe water, and anomalous concentrations of heavy metals in groundwater and surface water resources, doubled the necessity of access to technical methods on removing these pollutants from water resources. Methods: In this lab study, cationic resin Purolite S-930 (with co-polymer styrene di-vinyl benzene structure was used for lead removal from drinking water containing up to 22 μg/L. Using statistical analysis and designing a full factorial experiment are the most important effective parameters on lead removal obtained through ion exchange process. Results: Analysis of response and interaction parameters of ion exchange showed that the resin column height has maximum and pH value has minimum effect on the efficiency of lead removal from aquatic environment. Trinary interaction of “effective size, flow rate, resin column high” has the most important for lead removal efficiency in this system. So the maximum efficiency was obtained at the mesh = 40, bed height =1.6 meter, and pH= 6.5. At the best operation conditions, ability to remove 95.42% of lead concentration can be achieved. Conclusion: Using the resin Purolite S-930 during 21-day service with 91.12% of mean lead removal ratio from drinking water is an economic and technical feasibility.

  17. Evaluation of the Efficiency of Clay Pots in Removal of Water Impurities

    Directory of Open Access Journals (Sweden)

    K Naddafi , AH Mahvi, S Nasseri, M Mokhtari, H Zeraati

    2005-04-01

    Full Text Available Recently, inexpensive technologies for drinking water supply in small communities are highly considered in developing countries. One of these technologies is the application of ceramic filters that are usually made of diatomaceous earth or clay soil. This research was carried out to determine the efficiency of clay pots (as a filter in removing water impurities. Pilot and the related clay parts were manufactured and its efficiency in removing TDS, hardness, NO3-, color and turbidity was measured by passing water through the clay pipes. The results showed that the clay filters had not the potential to remove hardness, EC, TDS and nitrate of water. However, they showed excellent efficiency in turbidity removal (≥ 90% and could significantly decrease the color of the water (≥ 60%.

  18. Removal performance and water quality analysis of paper machine white water in a full-scale wastewater treatment plant.

    Science.gov (United States)

    Shi, Shuai; Wang, Can; Fang, Shuai; Jia, Minghao; Li, Xiaoguang

    2017-06-01

    Paper machine white water is generally characterized as a high concentration of suspended solids and organic matters. A combined physicochemical-biological and filtration process was used in the study for removing pollutants in the wastewater. The removal efficiency of the pollutant in physicochemical and biological process was evaluated, respectively. Furthermore, advanced technology was used to analyse the water quality before and after the process treatment. Experimental results showed that the removal efficiency of suspend solids (SS) of the system was above 99%, while the physicochemical treatment in the forepart of the system had achieved about 97%. The removal efficiency of chemical oxygen demand (COD) and colour had the similar trend after physicochemical treatment and were corresponding to the proportion of suspended and the near-colloidal organic matter in the wastewater. After biological treatment, the removal efficiency of COD and colour achieved were about 97% and 90%, respectively. Furthermore, molecular weight (MW) distribution analysis showed that after treatment low MW molecules (analysis showed that most humic-like substances were effectively removed during the treatment. The analyses of gas chromatography/mass spectrometry showed that the composition of organic matter in the wastewater was not complicated. Methylsiloxanes were the typical organic components in the raw wastewater and most of them were removed after treatment.

  19. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    Science.gov (United States)

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    Science.gov (United States)

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Analysis of Septic Tank Performance in Regard to Suspended Solids and Organic Matter Removal

    Directory of Open Access Journals (Sweden)

    Ala Kirjanova

    2011-12-01

    Full Text Available Abstract 117 The aim of this work was to evaluate the removal of suspended solids (SS and 7-day biochemical oxygen demand (BOD7 in a three chamber septic tank depending on theoretical wastewater retention time and the degree of septic tank cleanliness. It was found out that the performance of the septic tank depended on the degree of its cleanliness: when the septic tank was clean and retention time was three days, SS and BOS7 removal efficiency was 77±10% and 67±14% respectively, whereas two months later, after septic tank desludging, SS removal efficiency decreased to 53±22% and BOD7 to 32±31%. The performance of the septic tank also depended on theoretical wastewater retention time: when some amount of solids was accumulated at the bottom of the septic tank and wastewater retention time was one day, SS and BOS7 removal efficiency was 45±40% and 33±16% respectively; when retention time was three days, SS removal efficiency increased to 53±22% but BOD7 removal efficiency remained similar to one day retention time, i.e. 32±31%.Article in Lithuanian

  2. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.

    Science.gov (United States)

    Lopez-Lopez, C; Martín-Pascual, J; González-Martínez, A; Calderón, K; González-López, J; Hontoria, E; Poyatos, J M

    2012-01-01

    At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria.

  3. IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

    OpenAIRE

    MAJID ALI; YAN CHANGQI; SUN ZHONGNING; GU HAIFENG; WANG JUNLONG; KHURRAM MEHBOOB

    2013-01-01

    The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate (Na2S2O3) in water to remove the gaseous iodine (I2) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine...

  4. THE USE OF BIOFILTRATION PROCESS TO REMOVE ORGANIC MATTER FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Dorota Papciak

    2016-07-01

    Full Text Available The article describes the research on the removal of organic matter from natural underground water using biofiltration process. The study was carried out in semi-technical scale on a model filter composed of activated carbon WD-extra. The development of biological activity in a biosorption bed, as well as observations on the relationship between the processes of sorption and biodegradation was evaluated based on the Eberhardt, Madsen, Sontheimer (EMS test. Leading operation control parameters of biologically active carbon filter BAF included: change of TOC content, dissolved oxygen and permanganate index. To evaluate the colonization of granular carbon determination of ATP value was used. The presence of the biofilm was found by observation using light and scanning microscopes. The organic compounds in the water taken were adsorbed 100% and 70% biodegradable. The combination of sorption process with biodegradation until depletion of activated carbon adsorption capacity allowed in the initial phase of coalbed work for the removal of organic matter in approx. 100% . Formation of biofilm at the right time allowed to extend the filtration cycle and helped lower the TOC by 70%, i.e. from 10 mg C/l to 3-4 mg C/l.

  5. Hydraulic washing removal efficiencies of Orimulsion from rock surfaces

    International Nuclear Information System (INIS)

    Harper, J.R.; Ward, S.; Sergy, G.

    2002-01-01

    Orimulsion is a fuel alternative composed of 70 per cent bitumen in 30 per cent water. It is shipped from Venezuela to New Brunswick where it is used as fuel oil for power plants. While there have not been any major spills of Orimulsion, it is recognized that very little is known regarding the dispersal and weathering processes of Orimulsion, or the behaviour and cleanup of the product on both rocky and course sediment shorelines. For that reason, this study was conducted to determine the efficiency of hydraulic washing under different water temperatures and pressures to remove bitumen from rocky shorelines. The results of the study make it possible to assess the physical effectiveness of the method and to determine the range of effective operational parameters. The coating protocol was refined to create uniform coating of both dispersed and coalesced bitumen of rock surfaces. The use of a chemical agent for enhancing removal efficiency was also assessed. Orimulsion could reach shorelines as low concentration dispersions of bitumen particles suspended in a water column, or as a high concentration mixture of bitumen, water and air. Granite tiles were coated with uniform coatings of both dispersed and coalesced bitumen. They were then washed under different pressures, temperatures and other treatments. Temperatures of more than 40 degrees C and pressures of more than 76 kPa were needed to effectively remove the bitumen coatings. Weathering significantly increased coating tenacity for dispersed coatings, but did not affect coalesced coating tenacity. Immediate washing was found to be very effective for removing dispersed coating, but not for coalesced coating. Coating tenacity was also affected by submergence times. Pre-treatment of the coating with a dispersion called Corexit significantly improved the removal efficiencies of dispersed coatings, but not coalesced coatings. 6 refs., 10 tabs., 5 figs

  6. Nanotoxicity modelling and removal efficiencies of ZnONP.

    Science.gov (United States)

    Fikirdeşici Ergen, Şeyda; Üçüncü Tunca, Esra

    2018-01-02

    In this paper the aim is to investigate the toxic effect of zinc oxide nanoparticles (ZnONPs) and is to analyze the removal of ZnONP in aqueous medium by the consortium consisted of Daphnia magna and Lemna minor. Three separate test groups are formed: L. minor ([Formula: see text]), D. magna ([Formula: see text]), and L. minor + D. magna ([Formula: see text]) and all these test groups are exposed to three different nanoparticle concentrations ([Formula: see text]). Time-dependent, concentration-dependent, and group-dependent removal efficiencies are statistically compared by non-parametric Mann-Whitney U test and statistically significant differences are observed. The optimum removal values are observed at the highest concentration [Formula: see text] for [Formula: see text], [Formula: see text] for [Formula: see text]and [Formula: see text] for [Formula: see text] and realized at [Formula: see text] for all test groups [Formula: see text]. There is no statistically significant differences in removal at low concentrations [Formula: see text] in terms of groups but [Formula: see text] test groups are more efficient than [Formula: see text] test groups in removal of ZnONP, at [Formula: see text] concentration. Regression analysis is also performed for all prediction models. Different models are tested and it is seen that cubic models show the highest predicted values (R 2 ). In toxicity models, R 2 values are obtained at (0.892, 0.997) interval. A simple solution-phase method is used to synthesize ZnO nanoparticles. Dynamic Light Scattering and X-Ray Diffraction (XRD) are used to detect the particle size of synthesized ZnO nanoparticles.

  7. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    Science.gov (United States)

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    Science.gov (United States)

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents.

    Science.gov (United States)

    Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Rubinstein, Guy; Bar Shalom, Oded

    2017-06-01

    Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock ® ) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock ® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock ® /mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock ® /mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock ® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

  10. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yaria

    2013-09-01

    Full Text Available Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This experiment was conducted in a batch system with a volume of 2 L that had been equipped with 4 iron electrodes. The effect of operating parameters, such as voltage, time of reaction, initial dye concentration, and interelectrode distance on the dye removal efficiency was investigated. Results: In optimum condition (pH 2, voltage 40 V, electrolysis time 25 min, and interelectrode distance 1 cm, electrocoagulation method was able to remove 99.27% of Reactive Yellow 14 from synthetic solution. Conclusions: Electrocoagulation process by iron electrode is an efficient method for removal of reactive dyes from colored solution.

  11. Highly efficient removal of pathogenic bacteria with magnetic graphene composite.

    Science.gov (United States)

    Zhan, Sihui; Zhu, Dandan; Ma, Shuanglong; Yu, Wenchao; Jia, Yanan; Li, Yi; Yu, Hongbing; Shen, Zhiqiang

    2015-02-25

    Magnetic Fe3O4/graphene composite (abbreviated as G-Fe3O4) was synthesized successfully by solvothermal method to effectively remove both bacteriophage and bacteria in water, which was tested by HRTEM, XRD, BET, XPS, FTIR, CV, magnetic property and zeta-potential measurements. Based on the result of HRTEM, the single-sheet structure of graphene oxide and the monodisperse Fe3O4 nanoparticles on the surface of graphene can be observed obviously. The G-Fe3O4 composite were attractive for removing a wide range of pathogens including not only bacteriophage ms2, but also various bacteria such as S. aureus, E. coli, Salmonella, E. Faecium, E. faecalis, and Shigella. The removal efficiency of E. coli for G-Fe3O4 composite can achieve 93.09%, whereas it is only 54.97% with pure Fe3O4 nanoparticles. Moreover, a detailed verification test of real water samples was conducted and the removal efficiency of bacteria in real water samples with G-Fe3O4 composite can also reach 94.8%.

  12. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  13. Application of X-ray scanning and tomography to evaluate the filtercake removal efficiency

    International Nuclear Information System (INIS)

    Lopes, R.T.; Oliveira, L.F. de; Miranda, C.R.; Leite, J.C.

    2004-01-01

    The removal of the filtercake formed during the drilling operation is essential for a successful cementing job. Nowadays, the use of synthetic base fluids brings the necessity of proceeding new evaluations of the efficiency of the washes in removing the filtercake and to guarantee the wettability inversion of the formation from oil to waterwet. It is presented here the application of X-ray tomographic scanning to evaluate the filtercake removal efficiency performed by different washes. This technique uses a natural core with a perforation, where a filtercake is formed by circulating a drilling fluid. The wash is circulated through this perforation and the filtercake removal efficiency is measured precisely by computer tomography scanning. This procedure enables the filtercake removal visualization during the wash circulation through the formation and from the data obtained from the X-ray tomography it is possible to select the most appropriate wash for a given drilling fluid, as well as to predict the necessary contact time between the wash and the formation to achieve an appropriate filtercake removal

  14. Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process.

    Science.gov (United States)

    Córdova, Rolando Nunes; Nagel-Hassemer, Maria Eliza; Matias, William Gerson; Muller, Jose Miguel; de Castilhos Junior, Armando Borges

    2017-12-04

    This study investigates the effects of pH, H 2 O 2 concentration and reaction time of the UV/H 2 O 2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H 2 O 2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H 2 O 2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH 3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H 2 O 2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H 2 O 2 process for the removal of organic matter and ammonia from landfill leachates.

  15. Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse.

    Science.gov (United States)

    de Abreu Domingos, Rodrigo; da Fonseca, Fabiana Valéria

    2018-05-15

    The oil refinery industry seeks solutions to reduce its water uptake and consumption by encouraging the reuse of internal streams and wastewater from treatment systems. After conventional treatment the petroleum refinery wastewater still contains a considerable quantity of recalcitrant organics and the adsorption on activated carbon is currently used in Brazilian refineries, although it is still expensive due to the difficulty of its regeneration. This study evaluated the use of adsorbent and ion exchange resins for the removal of organic matter from refinery wastewater after conventional treatment in order to verify its feasibility, applying successive resin regenerations and comparing the results with those obtained for activated carbon process. Adsorption isotherms experiments were used to evaluate commercial resins, and the most efficient was subjected to column experiments, where absorbance (ABS) and total organic carbon (TOC) removal were measured. The adsorption isotherm of the best resin showed an adsorptive capacity that was 55% lower than that of activated carbon. On the other hand, the column experiments indicated good removal efficiency, and the amount of TOC in the treated wastewater was as good as has been reported in the literature for activated carbon. The regeneration efficiency of the retained organics ranged from 57 to 94%, while regenerant consumption ranged from 12 to 79% above the amount recommended by the resin supplier for the removal of organic material from natural sources, showing the great resistance of these recalcitrant compounds to desorption. Finally, an estimate of the service life of the resin using intermediate regeneration conditions found it to be seven times higher than that of activated carbon when the latter is not regenerated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos, Dayana; Ortega Lopez, Joela; Rodriguez Chaparro, Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 mgO3/h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process.

  17. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos Dayana; Ortega Lopez Joela; Rodriguez Chaparro Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 MgO 3 /h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process. Allium cepa L., biodegradability, emergent compounds, recalcitrance

  18. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    International Nuclear Information System (INIS)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu

    2014-01-01

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO 4 3- ) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications

  19. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2014-02-15

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO{sub 4}{sup 3-}) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

  20. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  1. Evaluation of the efficiency of denture cleaners for removing denture adhesives.

    Science.gov (United States)

    Harada-Hada, Kae; Hong, Guang; Abekura, Hitoshi; Murata, Hiroshi

    2016-12-01

    We developed a new scoring index for assessing the removability of denture adhesives and evaluated the removal efficiency of denture cleaners. Although our understanding of the importance of denture care is increasing, little is known about the effectiveness and efficiency of denture cleaners on denture adhesives. Therefore, guidelines for proper cleaning are necessary. We used five denture cleaner solutions on two cream adhesives, one powder adhesive and one cushion adhesive. After immersion in the denture cleaners for a designated time, we evaluated the area of the sample plate still covered by denture adhesive. Cream adhesives were removed more completely after immersion in majority of the denture cleaners than in water. Powder adhesive was removed more quickly than cream adhesives. Cushion adhesive was not removed by immersion in either the denture cleaners or water control. Some denture cleaners could liquefy cream adhesives more than water, but these differences were not observed in case of powder and cushion adhesives. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  2. Removal of High -Concentration and Refractory Organic Matter from Diosgenin Manufacture Wastewater : a case study of a demonstration project in Hubei Province, P R China

    Science.gov (United States)

    Bao, J.; Wang, L.

    2009-12-01

    Wastewater from diosgenin manufacture is dark brown (3,500 ~4,000 times of the chroma) and acidic(pH=0.8~1.5)with high concentration of organic matter(COD=25,000~38,000 mg/L)and poor biodegradability(BOD5/COD= 0.25~0.30). It is highly toxic to biota due to the water-soluble saponin, tannins and pectin. Therefore removal of the organic matter is of great importance before the discharge of the wastewater into the environment. Here we presented a set of data from a demonstration project in Hubei province, P R China with an improved technics. This technics, focusing on the treatment of diosgenin wastewater, included hydrolytic acidification, internal electrolysis, neutralization, aerating-improved Up-flow Anaerobic Sludge Bed (UASB) and bio-contact oxidation treatment in sequence to remove the organic matter. After 60 days of starting-up, the water quality from hydrolytic acidification reactor was greatly improved. The effluent became clear, indicating the obvious removal of suspended solids in the water; the ratio of BOD/COD increased to 0.44, suggesting an significant increase of biodegradability; the content of volatile fatty acid (VFA) increased from 22.6 mmol/L to 86.8 mmol/L and the volume loading of COD reached 9.48 kg COD/(m3d). Basically at this stage the removal efficiency of COD was stabilized at 25%. Further treatment was conducted on the effluent from hydrolytic acidification reactor through the Improved UASB Reactor after the internal electrolysis and neutralization. The Improved UASB Reactor can start up at room temperature with an influent of 1,500 mg/L COD and inflow rate of 50(m3/d). Then, temperature was increased gradually to 38 oC (± 2 oC) to optimize the growth of the mesophilic anaerobes in the reactor. The content of VFA of the effluent was controlled below 8 mmol/L to guarantee the pH in the range of 6.8~7.2. After 150 days of debugging, the COD of the influent to UASB increased to 9,600 mg/L, hydraulic retaining time (HRT) was around 70 hrs

  3. Changes in different organic matter fractions during conventional treatment and advanced treatment

    Institute of Scientific and Technical Information of China (English)

    Chao Chen; Xiaojian Zhang; Lingxia Zhu; Wenjie He; Hongda Han

    2011-01-01

    XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes.The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP).The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process.The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment.The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction.In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP.The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP.The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.

  4. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation.

    Science.gov (United States)

    Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong

    2013-01-01

    GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW wastewater.

  5. An experimental study on removal efficiency of bio-particles in an airtight decontamination chamber

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanju [School of Environment Science and Technology, Tianjin University, Tianjin (China); National Biological Protection Engineering Center, Tianjin (China); Hao, Limei; Wang, Shuang; Hou, Lili; Zhang, Jinming; Qi, Jiancheng [National Biological Protection Engineering Center, Tianjin (China)

    2009-11-15

    Many bacteria and viruses lead to global dissemination of respiratory diseases, such as SARS, influenza, tuberculosis, pneumonia and asthma, by clinging to particles and transmission through aerosol. In this paper, an experiment was conducted to investigate the removal efficiency of bio-particles when exposed to ventilation in an airtight decontamination chamber made of stainless steel. After the bio-particles (Serratia marcescens) exposure condition was established in the chamber, the bio-particles removal efficiency was investigated. And a comparison experiment was then conducted with polystyrene latex spheres (PSL) as general particles under the same environmental condition. The comparison results indicate that the removal efficiency of bio-particles is lower than that of PSL during the first 300 s, but both removal efficiencies reached 90% almost at the same time. Furthermore, the differences between bio-particles and PSL, the influence of bio-particle size, environmental velocity, temperature and relative humidity on bio-particle removal efficiency were analyzed and discussed comprehensively. These data could not only underpin future numerical simulations of bio-particles, but also give information to aid in decisions for decreasing the risk of bio-particles pollution in a microbe exposure environment. (author)

  6. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    Science.gov (United States)

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights

  7. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  8. Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Xingxing Qiao

    2017-01-01

    Full Text Available Schwertmannite (Sch is an efficient adsorbent for arsenic(III removal from arsenic(III-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC, morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III removal efficiency from an initial 1 mg/L arsenic(III solution (pH 7.5 was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA obtained for this sample.

  9. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  10. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2006-01-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  11. The use of Syrian bentonite to remove organics and other ions from commercial Syrian phosphoric acid

    International Nuclear Information System (INIS)

    Khorfan, S.; Abdulbaki, M.; Zein, A.

    2005-03-01

    Using of activated carbon to remove organic matter from phosphoric acid in uranium and P 2 O 5 extraction units has high cost. A new study was conducted to establish a new material instead of activated carbon. Experiments were carried out on removing organic matter by adsorption on Syrian bentonite. The experiments of the removal of humic acid by Syrian bentonite gave good results and showed that the chemical and thermal activation of bentonite increased the adsorption efficiency. (Authors)

  12. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Science.gov (United States)

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  13. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    Directory of Open Access Journals (Sweden)

    Vinod Vellora Thekkae Padil

    2014-01-01

    Full Text Available Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  14. Parametric study on removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide

    International Nuclear Information System (INIS)

    Shiomi, H.; Yuasa, Y.; Tani, A.; Ohki, M.; Nakagawa, T.

    1983-01-01

    The removal efficiency of impregnated activated charcoal and silver zeolite for radioactive methyl iodide is influenced by various parameters such as temperature, relative humidity, face velocity and packing density. This study is to evaluate the dependency of the removal efficiency on each parameter and these combined parameters, quantitatively. Four types of adsorbents, BC-727, AgX, CHC-50 and SS 208C 5KI 3 , were tested. From experimental data and mass transfer theory, an experimental equation for evaluating the removal efficiency of adsorbents was derived under a series of experiments for radioactive methyl iodine-131. It was concluded that the removal efficiency calculated from the experimental equation agreed well with the experimental value. Effects of experimental specific parameters, such as Pre-flow time, methyl iodide injection time and After-flow time, on the removal efficiency of adsorbent are also described

  15. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  16. A study on nitrogen removal efficiency of Pseudomonas stutzeri ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... ambient temperature in the reaction system, the efficiency of nitrogen removal was studied. The results ... no reported experiment which has been conducted to ... controlled shaker at 32°C with a 150 r/min rotating speed (Ahn,.

  17. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: results of an on-farm monitoring program.

    NARCIS (Netherlands)

    Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M.

    2012-01-01

    Air scrubbers are commonly used for removal of ammonia and odor from exhaust air of animal houses in the Netherlands. In addition, air scrubbers remove a part of the particulate matter. In this article, the results of an on-farm monitoring are presented in which PM10 removal was monitored at 24

  18. Arsenic Removal Efficiency in Aqueous Solutions Using Reverse Osmosis and Zero-Valent Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Niloofar Saboori

    2018-01-01

    Full Text Available Arsenic is one of the most hazardous pollutants of water resources which threaten human health as well as animals. Therefore arsenic removal from water resources is the priority of health programs. There are several ways to remove arsenic. In this study, reverse osmosis and zero-valent iron nanoparticles methods have been used in a laboratory scale. To perform the test, the variables of temperature, arsenic concentration, pH, iron nanoparticle concentration and mixing time were considered. The results indicated that in both methods of reverse osmosis and iron nanoparticle, through increasing arsenic concentration, arsenic removal efficiency has been also increased. At concentration of 1.5 mg per litre in reverse osmosis method, the maximum efficiency was achieved by 98% and 95.2% removal of arsenic respectively. The effect of temperature and pH were similar in reverse osmosis; by increasing these two variables, arsenic removal percentage also increased. The highest removal rates of 95.98% and 95.56% were observed at pH 9 and Temperature 30oC respectively. The results indicated that in iron nanoparticles method the arsenic removal efficiency increases by increasing mixing time and temperature, while it decreases with increasing pH.

  19. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  20. Study of RBC Efficiency in Aniline Removal by Increasing Contactor Specific Surface

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mousavi Aliani

    2011-01-01

    Full Text Available Aniline is a first type amino aromatic compound and has various applications in different pharmaceutical, synthetic dye, plastic, and petrochemical industries. It is poisonous and its discharge into the environment causes serious hazards that warrant it removal by an efficient treatment process.  In this study, the efficiency of rotating biological contactors in aniline removal was investigated using four 3-liter parallel systems (in two series. Two reactors in the first series had 27 disks. The second series had 14 discs with packings in each reactor with the same specific surfaces as compared to the first system.Aniline concentrations from 100 to 1200 mg/L and hydraulic loading rates from 1.57 to 6.28 L/m2.d were used throughout the study period in two treatments. The effect of disc rotation speed on system efficiency was also investigated. The results indicated that COD removal efficiency decreased with increasing hydraulic loading rate but increased with increasing disc speed from 5 to 15 rpm. The best removal efficiencies of 88 and 86 percent for RBCI and RBCII, respectively, were obtained for an aniline concentration of 400 mg/L, a hydraulic loading rate of 1.57 L/m2.d, and a disc speed of 15 rpm. Based on the results, although both systems yield almost equal efficiencies, the start-up period was shorter in RBCII with a clearer effluent due to the lower quantity of suspended microorganisms in the reactor than that in RBCI. Use of packing may decrease energy consumption for disc rotation due to the overall weight reduction of the system.

  1. Statistically-Based Comparison of the Removal Efficiencies and Resilience Capacities between Conventional and Natural Wastewater Treatment Systems: A Peak Load Scenario

    Directory of Open Access Journals (Sweden)

    Long Ho

    2018-03-01

    Full Text Available Emerging global threats, such as climate change, urbanization and water depletion, are driving forces for finding a feasible substitute for low cost-effective conventional activated sludge (AS technology. On the other hand, given their low cost and easy operation, nature-based systems such as constructed wetlands (CWs and waste stabilization ponds (WSPs appear to be viable options. To examine these systems, a 210-day experiment with 31 days of peak load scenario was performed. Particularly, we conducted a deliberate strategy of experimentation, which includes applying a preliminary study, preliminary models, hypothetical tests and power analysis to compare their removal efficiencies and resilience capacities. In contrast to comparable high removal efficiencies of organic matter—around 90%—both natural systems showed moderate nutrient removal efficiencies, which inferred the necessity for further treatment to ensure their compliance with environmental standards. During the peak period, the pond treatment systems appeared to be the most robust as they indicated a higher strength to withstanding the organic matter and nitrogen shock load and were able to recover within a short period. However, high demand of land—2.5 times larger than that of AS—is a major concern of the applicability of WSPs despite their lower operation and maintenance (O&M costs. It is also worth noting that initial efforts on systematic experimentation appeared to have an essential impact on ensuring statistically and practically meaningful results in this comparison study.

  2. Removing efficiency of radon from water by different methods

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Gulasova, Z.; Polaskova, A.

    2008-01-01

    In this contribution problem of radon removing from water samples by different methods was tested. Lowest efficiency of deemanation was achieved at tossing of water from one vessel into the other. For increasing of efficiency deemanation of radon use of needle-bath principle was also used. Low efficiency deemanation was found at trapping of radon from sample of water by toluene (83 ± 5) %, too. Reversal highest efficiency deemanation of radon from water was reached at aerating by argon (95 ± 6)%. It is shown, that reduction of volume activity of radon in water under 0.1 Bq/dm l - 3 is big problem. Suppression of this limit will claim use of more completion and sophistic approaches. (author)

  3. Estimation of characteristics on high temperature filtration system for particle removal in vitrification process

    International Nuclear Information System (INIS)

    Park, Seung Chul; Ryu, Bo Hyun; Park, Byoung Chul; Ryu, Chang Soo; Hwang, Tae Won; Ha, Jong Hyun

    2003-01-01

    High temperature filtration technology has been widely used in nuclear industry systems to remove particulate matter from air and gas streams. Air filters are defined as porous structures through which air is passed to separate out entrained particulate matter. Especially among of them, ceramic candle filters are suitable to gain efficient dust removal at high temperatures and achieve high collection efficiencies for (sub-)micron particles. The paper presents experimental results for their application in the pilot scale vitrification plant operations. Experimental results were transformed into design equations for (i) total pressure drop and the effect of face velocity; (ii) the prediction of the operating parameters

  4. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    Science.gov (United States)

    Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.

    2017-12-01

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.

  5. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    Directory of Open Access Journals (Sweden)

    L. H. P. Garbossa

    2005-12-01

    Full Text Available The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to its characteristics and the fixed polyurethane foam bed arrangement in concentric chambers. Partial denitrification of the liquid also took place in the RAAIB. The reactor achieved an organic matter removal efficiency of 84%, expressed as chemical oxygen demand (COD, and a total Kjeldahl nitrogen (TKN removal efficiency of 96%. Average COD, nitrite and nitrate values for the final effluent were 54 mg.L-1, 0.3 mg.L-1 and 22.1 mg.L-1, respectively.

  6. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  7. Determination of the efficiency of sawdust and coco fiber used as Biofilter for pollutant removal for the treatment of wastewater

    Directory of Open Access Journals (Sweden)

    Jimmy Vicente Reyes

    2016-09-01

    Full Text Available Water is a resource used by mankind for industrial and domestic needs, which once used, is discharged into the public sewer system or septic tanks. This project proposes an ecological alternative for the treatment of wastewater from domestic use named Biofilter, which is built of living material (worms and inert material (chip and gravel, which filters the wastewater; the biological filter has shown high efficiency in the removal of organic matter and pathogens. The field work was carried out with experimental biological filters, to ascertain the best composition of inert material, different variants were used. Two experimental Biofilters, one using sawdust and the other coco fiber were used in the treatment of domestic wastewater; treated samples from each reactor were subjected to laboratory analysis. The analysis and interpretation of results showed that the Biofilter using sawdust removed 53.53 % of pollutants and is outside the required norm for wastewater treatment and the Biofilter using coco fiber removed 82.37 % of contaminants and is within the Environmental Quality Norm and Effluent Discharge: Water Resource.

  8. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah

    2016-10-18

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  9. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Ng, Kim Choon; Missimer, Thomas M.

    2016-01-01

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  10. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble-free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 vol % water vapor in the gas stream

  11. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  12. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  13. Comparison between Removal Efficiency of Slag, zeolite, and Conventional media in slow sand Filter for Removal of Lead and Cadmium from Water Resources

    Directory of Open Access Journals (Sweden)

    A Ebrahimi

    2016-03-01

    Full Text Available Introduction: Heavy metals owing to their health hazards and high toxicity in low concentration for human and environment have very concern and attention. Slow sand filter is one of the simple and cost-effective for removal of these pollutants. In this method, media play an important role for removal of pollutant. Therefore, the aim of this study was investigation of different media like slag, zeolite, and conventional media in slow sand filter for removal of lead and cadmium. Methods: In this research there are three beds filter include typical filter bed, slag and zeolite that used in pilot plant for investigation of lead and cadmium removal at three concentration of 0.1T 1 and 10 ppm. Each of filters has an internal diameter of 8 cm and a height of 120 cm with Plexiglas, which have a continuous flow operation. Results: The removal efficiency of turbidity by three typical filter bed, slag, and zeolite with initial turbidity of 13 NTU was 46%, 77%, and 89% respectively. Removal efficiency of lead without turbidity was 70.3%, 79%, and 59.8% respectively for 0.1 ppm lead. For 1 ppm, concentration of lead removal efficiency was 51.8%, 52.7% and 52.6% respectively and for 10 ppm it was 53.4%, 57.8%, and 59.8% respectively. Cadmium removal for these media was 23.4%, 37.5%, and 59.4% respectively at 0.1 ppm cadmium. At 1 ppm of cadmium concentration, it was 37.9%, 45% and 41.3% respectively and at 10 ppm concentration of cadmium it was 68.3%, 68.6% and 67% respectively. Conclusion: Slag and zeolite beds are more efficiently than the conventional sand beds in the slow sand filter, so it can be used instead of the usual sand for removing lead and cadmium from resources water.

  14. Efficiency of WWTP to remove emerging pollutants in wastewater

    Science.gov (United States)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Recently some compounds that are extensively used are considered emerging pollutants since are at low concentrations and have been little studied. Pharmaceuticals and personal care products are classified as this kind of pollutants and most of these are excreted through urine or feces and come to end up to treatment plants. Recent studies indicates that pharmaceuticals, personal care products or illicit drugs from Waste Water Treatment Plants (WWTP) are a considerable chemical pollution in surface [1, 2]. The purpose of this study is to determine the removal efficiency for two WWT of Pinedo I and II, Valencia (Spain). After obtaining the results of analysis by an Agilent 1260 HPLC in tandem with a 6410 MS/MS triple quad, a simple mathematical operation with the influents and effluents is performed. This operation consists in subtracted from the influent, the effluent, divided by the result of the influent and this multiply by 100. Results are expressed as a percentage with its 95 % confidence interval (CI). The influent and effluent of the samples were filtered with a 0.50 μm glass fiber filter of 90 mm by Advantec (Minato-ku, Tokyo, Japan). After filtration, 250ml of this water is extracted through a SPE. SPE was performed with Strata-X 33U Polymeric Reversed Phase (200 mg/6 mL) from Phenomenex. These cartridges were conditioned with 6 mL of methanol and 6 mL of distilled water. Extracts were eluted with 6mL of Methanol and evaporated with compressed air. The residue was reconstituted with 1 mL of methanol-water (30:70, v/v). The removal efficiencies depend on the type of the compound, these rates remain between 23% and 100%. In some cases, removal efficiency is negative since some compounds are accumulated in the sludge and these have more concentration. Tertiary treatment including UV disinfection could efficiently reduce most of the residual pharmaceuticals below their quantification limits. Acknowledgments This work has been supported by the Spanish Ministry

  15. Multilayer Substrate Configuration Enhances Removal Efficiency of Pollutants in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Shaoyuan Bai

    2016-11-01

    Full Text Available This study aimed at optimizing horizontal subsurface flow constructed wetlands (CWs to improve hydraulic performance and pollutant removal efficiency. A groundwater modeling package (MODFLOW was used to optimize three design parameters (length-to-width ratio, inlet/outlet-to-length ratio, and substrate size configuration. Using the optimized parameters, three pilot-scale CWs were built to treat actual wastewater. For model validation, we used a tracer test to evaluate hydraulic performance, and investigated the pollutant spatial distributions and removal efficiencies. We conclude that MODFLOW is suitable for designing CWs, accurately predicting that increasing hydraulic conductivity from surface to bottom layers could improve performance. However, the effect of vegetation, which decreased the hydraulic conductivity of the surface layer, should be considered to improve simulation results. Multilayer substrate configuration, with increasing hydraulic conductivity from the surface to bottom layers, significantly increased pollutant removal compared with monolayer configuration. The spatial variation in pollutant transport and degradation through the filling substrate showed that the multilayer configuration was able to increase use of the available space and moderately reduced short-circuiting and dead zones. Thus, multilayer CWs had higher experimental retention times, effective volume fractions and hydraulic efficiencies, and lower short-circuiting compared with monolayer CWs operating under similar conditions.

  16. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    Science.gov (United States)

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  17. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    OpenAIRE

    CORREA, TOMAS; TIAB, DJEBBAR; RESTREPO, DORA PATRICIA

    2009-01-01

    This work describes experimental design and tests performed to simulate gas condensate reservoir conditions below dew point in the laboratory using three different compositions of synthetic gas condensate. Methanol, propanol and methylene chloride are the solvents used to remove the condensate banking and improve the gas effective permeability near to the wellbore. Solvents are injected in Berea sandstone rock with similar petrophysical properties in order to compare the efficiency at removin...

  18. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  19. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    Science.gov (United States)

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    We examined the distribution and removal efficiencies of phenolic endocrine disruptors (EDs), namely nonylphenol diethoxylates (NP2EO), nonylphenol monoethoxylates (NP1EO), nonylphenol (NP), and octylphenol (OP), in wastewater treated by estuarine and freshwater constructed wetland systems in Dapeng Bay National Scenic Area (DBNSA) and along the Dahan River in Taiwan. Water samples were taken bimonthly at 30 sites in three estuarine constructed wetlands (Datan, Pengcun and Linbian right bank (A and B)) in DBNSA, for eight sampling campaigns. The average removal efficiencies were in the range of 3.13-97.3% for wetlands in DBNSA. The highest average removal occurred in the east inlet to the outlet of the Tatan wetland. The most frequently detected compound was OP (57.7%), whose concentration was up to 1458.7 ng/L in DBNSA. NP was seen in only 20.5% of the samples. The temporal variation of EDs showed a decrease across seasons, where summer>spring>winter>autumn in these constructed wetlands. The removal efficiencies of EDs by estuarine wetlands, in decreasing order, were Datan>Pengcun>Linbian right bank in DBNSA. Water samples collected at 18 sites in three freshwater constructed wetlands (Daniaopi, Hsin-Hai I, and Hsin-Hai II) along the riparian area of Dahan River. NP2EO was the most abundant compound, with a concentration of up to 11,200 ng/L. Removal efficiencies ranged from 55% to 91% for NP1EO, NP2EO, and NP in Hsin-Hai I. The average removal potential of EDs in freshwater constructed wetlands, in decreasing order, was Hsin-Hai II>Daniaopi>Hsin-Hai I constructed wetlands. The lowest concentrations of the selected compounds were observed in the winter. The highest removal efficiency of the selected phenolic endocrine disruptors was achieved by Hsin-Hai I wetland. The calculated risk quotients used to evaluate the ecological risk were up to 30 times higher in the freshwater wetlands along Dahan River than in the estuarine (DBNSA) constructed wetlands, indicating

  20. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR.

    Science.gov (United States)

    Jia, Shengyong; Han, Yuxing; Zhuang, Haifeng; Han, Hongjun; Li, Kun

    2017-10-01

    A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.91%, 34.28%, -36.05% and 64.34%, respectively. High-throughput sequencing showed a microorganisms succession from inoculated activated sludge (S1) to activated sludge in MBR (S2) with high salinity. Richness and diversity of microorganisms in S2 was lower than S1 and the community structure of S1 exhibited more even than S2. The most relative abundance of genus in S1 and S2 were unclassified_Desulfarculaceae (9.39%) and Roseibaca (62.1%), respectively. High salinity and intermittent aeration represented different influence on the denitrifying genus, and non-aeration phase provided feasible dissolved oxygen condition for denitrifying genera realizing denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  2. Biological systems coupled for treating wastewater from processing coffee cherries: I – Removal of organic matter - doi: 10.4025/actascitechnol.v35i2.13627

    Directory of Open Access Journals (Sweden)

    Ronaldo Fia

    2013-04-01

    Full Text Available Three treatment systems consisting of upflow anaerobic filters followed by constructed wetlands (CW were evaluated in the treatment of wastewater from processing coffee cherries (WCP. The filters (F were made up of PVC (1.5 m high and 0.35 m diameter filled with gravel # 2 and SACs were made of wood boxes (1.5 m long, 0.4 m high and 0.5 m wide sealed with HDPE geomembranes and filled with gravel ‘zero’. WCP had the pH adjusted with lime to values close to 7.0 and the nutrient concentration changed to obtain a BOD/N/P ratio equal to 100/5/1. As a result, the values of influent and effluent pH remained within the range appropriate to the biological degradation of organic material. The system could not bear the shock of the organic load, which reduced the organic matter removal efficiency. Based on the analysis of performance and operating conditions employed, only the system that received the lowest organic load (F1+CW1 on the third phase, was effective in removing organic matter.  

  3. Performance of Grass Filter Strip in Copper and Zinc Removal in Surface and Subsurface Runoff

    Directory of Open Access Journals (Sweden)

    Huo Weijie

    2017-01-01

    Full Text Available Three filter strips were conducted on self-designed soil bins. Taking a filter strip with no vegetation as contrast, the effectiveness of vegetation and soil conditions on heavy metals (including copper and zinc removal efficiencies were investigated by simulated runoff experiment. The results showed that the adsorbed state is the main existing form of heavy metal. For surface runoff, most of total copper and total zinc are trapped in first 4m and it is ineffective to increase the distance beyond 4m for removal. Vegetation has no significant effect on total copper and total zinc removal, while the soil with higher content of organic matter is contributing to total Zn interception. For subsurface runoff, the removal efficiencies of total copper and total zinc can reach to above 95.38% and both vegetation and soil conditions have no significant effects. Vegetation is contributing to copper ion and zinc ion removal significantly. Soil condition is only a significant factor to zinc ion, with higher content of organic matter as a contributing factor.

  4. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  5. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    Science.gov (United States)

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council

  6. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-01-01

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca 2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  7. The Efficiency of Inactive Saccharomyces Cerevisiae Biomass on Removing Arsenic from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-05-01

    Methods:This experimental study was performed in laboratory scale and was performed on 243 synthetic samples in a batch system. In this study the effect of parameters such as contact time (5,15,30,60,120,min and 24 h, pH (5,7,9, fluoride concentration (100, 250, 500, 750,1000 µg/l and absorbent dosages (0.5,1,2/5,5g/l was evaluated. Finally biosorption kinetic and equilibrium isotherms of adsorbent was investigated. Results: The removal efficiency of inactive Saccharomyces cerevisiae was 89.49% at pH 5, adsorbent dose of 1g/L and initial metal concentration of 100 mg/L. Maximum uptake was observed after the Contact time of 60 minutes. In addition absorption isotherm followed pseudo-second order model with a maximum R2 = 0.999. Conclusion:The results of study showed that biosorption efficiency decreases with increase in pH of solution. Optimum pH of biosorption was 5. The Removal efficiency of arsenic enhanced with increase in mass of Saccharomyces cerevisiae up to 1 g/L, but The Removal efficiency decreased with increase in initial concentration of arsenic. Maximum absorption was observed in 15 minutes.

  8. The Investigation of Electron Beam Catalytical Oxidation Process Efficiency with Potassium Persulfate in Removal Humic Acid from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2015-05-01

    Results: Based on the results, changes in pH had little effect on the Humic acid removal efficiency. The average, with increasing of pH from 4 to 10, the removal efficiency of humic acid from 72.59% to 73.36% increased, respectively. The results showed that increasing of the dose from 1 to 15 kGy, humic acid removal efficiency increases. Based on results by increasing of persulfate concentration, the removal efficiency increased so that with increasing of concentration of potassium persulfate from 0.1 to 0.5 mmol/100cc, removal efficiency from 69.43% to 83.82% was increased. Kinetic experiments showed that the decomposition of humic acid by electron beam radiation followed the second-order kinetic. Conclusion: The data from this study showed that the aqueous solution containing acid Humic is decomposed effectively by electron beams irradiation. Addition of potassium persulfate can be have significant improvements in removal efficiency of humic acid in the presence of electron beam.

  9. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  10. Characteristics of BPA removal from water by PACl-Al13 in coagulation process.

    Science.gov (United States)

    Xiaoying, Ma; Guangming, Zeng; Chang, Zhang; Zisong, Wang; Jian, Yu; Jianbing, Li; Guohe, Huang; Hongliang, Liu

    2009-09-15

    This paper discussed the coagulation characteristics of BPA with polyaluminum chloride (PACl-Al(13)) as coagulant, examined the impact of coagulation pH, PACl-Al(13) dosage, TOC (total organic carbon) and turbidity on BPA removal, and analyzed the possible dominant mechanisms in water coagulation process. Formation and performance of flocs during coagulation processes were monitored using photometric dispersion analyzer (PDA). When the concentration of humic acid matters and turbidity was low in the solution, the experimental results showed that the removal of BPA experienced increase and subsequently decrease with the PACl-Al(13) dosage increasing. The optimal PACl-Al(13) dosage was found at BPA/PACl-Al(13)=1:2.6(M/M) under our experiment conditions. Results show that the maximum BPA removal efficiency occurred at pH 9.0 due to the adsorption by Al(13) aggregates onto BPA rather than charge neutralization mechanism by polynuclear aluminous salts in the solution. The humic acid matters and kaolin in the solution have significant effect on BPA removal with PACl-Al(13) in the coagulation. The BPA removal will be weakened at high humic matters. The removal rate of BPA increased and subsequently decreased with the turbidity increasing.

  11. Investigation of Electrocoagulation Process Efficiency for Color Removal from Polyacrylic Textile Industrial astewater

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Dyes due to coloring nature are appearance pollutants and destroys the transparency and aesthetic quality of surface waters even at relatively low concentration. Several processes have been used for dye removal from wastewater. In recent years, electrochemical methods have been successfully employed to treat dying wastewater.In this study, the electrocoagulation method with aluminum electrodes were used for polyacrylic textile wastewater treatment. COD of wastewater was 1400mg/l. This study was conducted in laboratory scale. The sample was placed in to the electrochemical reactor contains 4 electrodes. The electrodes were connected to a DC power supply. Then the effect of the three operational parameters, electrolysis time (20-60 minutes, electrical applied current (0.5-2.5 Ampere and pH (4-9 on color and COD removal efficiency has been investigated. The results showed that the color and COD removal efficiency is a direct relation with increasing of the reaction time and inverse relation with increase of pH. Optimum operation conditions were in applied current of 1.5 A, the retention time of 60 minutes and pH of 4. In this condition, color and COD removals were 86% and 85%, respectively. This study showed that electrocoagulation process is an effective and efficient method to treatment of polyacrylic textile wastewater.

  12. Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Ghelmani

    2016-09-01

    Conclusion: The high removal efficiency of BOD5, TKN, and NH4+ showed that this advanced SBR system had an appropriate efficiency for nitrification. Phosphorus removal (TP had a lower efficiency than those of NH4+ and TKN, but it was within the environmental standard limits. On the other hand, in the advanced SBR the removal efficiency of heavy metals for Cd was not within the standard limits.

  13. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High efficiency particulate removal with sintered metal filters

    International Nuclear Information System (INIS)

    Kirstein, B.E.; Paplawsky, W.J.; Pence, D.T.; Hedahl, T.G.

    1981-01-01

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for HEPA filter protection in the off-gas treatment system for the proposed Idaho National Engineering Laboratory Transuranic Waste Treatment Facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to assume trouble-free operation. Subsequent pilot-scale testing was performed with fly ash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 0 C and 24 volume percent water vapor in the gas stream

  15. Nanoscale control of energy and matter in plasma-surface interactions: Toward energy- and matter-efficient nanotech

    International Nuclear Information System (INIS)

    Ostrikov, K.

    2011-01-01

    The approach to control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at nano- and subnanometer scales is introduced. This ability is related to the solution of the grand challenge of directing energy and matter at nanoscales and is critical for the renewable energy and energy-efficient technologies for a sustainable future development. The examples of deterministic synthesis of self-organized arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication are considered to illustrate this possibility. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under nonequilibrium conditions and harnessing numerous plasma-specific controls of species creation, delivery to the surface, nucleation, and large-scale self-organization of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilized, and further processed to meet the specific requirements of the envisaged applications.

  16. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    Science.gov (United States)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  17. Study on efficient methods for removal and treatment of graphite blocks in a gas cooled reactor

    International Nuclear Information System (INIS)

    Fujii, S.; Shirakawa, M.; Murakami, T.

    2001-01-01

    Tokai Power Station (GCR, 166 MWe) started its commercial operation on July 1966 and ceased activities at the end of March 1998 after 32 years of operation. The decommissioning plans are being developed, to prepare for near future dismantling. In the study, the methods for removal of the graphite blocks of about 1,600 ton have been developed to carrying it out safely and in a short period of time, and the methods of treatment of graphite have also been developed. All technological items have been identified for which R and D work will be required for removal from the core and treatment for disposal. (1) In order to reduce the programme required for the dismantling of reactor internals, an efficient method for removal of the graphite blocks is necessary. For this purpose the design of a dismantling machine has been investigated which can extract several blocks at a time. The conceptual design has being developed and the model has been manufactured and tested in a mock-up facility. (2) In order to reduce disposal costs, it will be necessary to segment the graphite blocks, maximising the packing density available in the disposal containers. Some of the graphite blocks will be cut into pieces longitudinally by a remote machine. Relevant technical matters have been identified, such as graphite cutting methods, the nature of fine particles arising from the cutting operation, the treatment of fine particles for disposal, and the method of mortar filling inside the waste container. (author)

  18. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Caselles-Osorio, Aracelly [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain); Department of Biology, Atlantic University, Km 7 Higway Old Colombia Port, Barranquilla (Colombia); Garcia, Joan [Environmental Engineering Division, Hydraulics, Coastal and Environmental Engineering Department, Technical University of Catalonia, c/Jordi Girona 1-3, Modul D-1, 08034 Barcelona (Spain)]. E-mail: joan.garcia@upc.edu

    2007-03-15

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands.

  20. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands

    International Nuclear Information System (INIS)

    Caselles-Osorio, Aracelly; Garcia, Joan

    2007-01-01

    In this study, we tested the effect of a physico-chemical pretreatment on contaminant removal efficiency in two experimental horizontal subsurface-flow constructed wetlands (SSF CWs). One SSF CW was fed with settled urban wastewater, whereas the other with the same wastewater after it had undergone a physico-chemical pretreatment. The SSF CWs were operated with three different hydraulic retention times. During the experiments the effluent concentrations of COD, ammonia N and sulfate were very similar, and, therefore, the physico-chemical pretreatment did not improve the quality of the effluents. COD removal efficiency (as percentage or mass surface removal rate) was slightly greater in the SSF CW fed with pretreated wastewater. Ammonia N removal efficiency was, in general, similar in both SSF CWs and very high (80-90%). At the end of the experiments it was observed that in the SSF CW fed with settled wastewater the hydraulic conductivity decreased by a 20%. - A physico-chemical pretreatment may help to reduce the risk of clogging of subsurface-flow constructed wetlands

  1. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; García, M. C.; Karakashev, Dimitar Borisov

    2009-01-01

    oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 +/- 4.9% for diluted UASB-post-digested effluent (95 mg COD L-1) and up to 98.5 +/- 0.8% for diluted partially oxidized effluent (121 mg COD L-1). Mass balance clearly showed that an increase in organic loading......The anammox process, under different organic loading rates (COD), was evaluated using a semi-continous UASB reactor at 37 degrees C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial...... improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L-1 of UASB-post-digested effluent and 242 mg COD L-1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80...

  2. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Hanna Runtti

    2016-02-01

    Full Text Available Sulphate removal from mine water is a problem because traditional chemical precipitation does not remove all sulphates. In addition, it creates lime sediment as a secondary waste. Therefore, an inexpensive and environmental-friendly sulphate removal method is needed in addition to precipitation. In this study, carbon residues from a wood gasification process were repurposed as precursors to a suitable sorbent for SO42- ion removal. The raw material was modified using ZnCl2, BaCl2, CaCl2, FeCl3, or FeCl2. Carbon residues modified with FeCl3 were selected for further consideration because the removal efficiency toward sulphate was the highest. Batch sorption experiments were performed to evaluate the effects of the initial pH, initial SO42- ion concentration, and contact time on sulphate removal. The removal of SO42- ions using Fe-modified carbon residue was notably higher compared with unmodified carbon residue and commercially available activated carbon. The sorption data exhibited pseudo-second-order kinetics. The isotherm analysis indicated that the sorption data of Fe-modified carbon residues can be represented by the bi-Langmuir isotherm model.

  3. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    Science.gov (United States)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-05-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  4. Influence of SiO2 and graphene oxide nanoparticles on efficiency of biological removal process.

    Science.gov (United States)

    Esmaeili-Faraj, Seyyed Hamid; Nasr Esfahany, Mohsen

    2017-11-01

    The effects of the presence of synthesized silica (SS) and exfoliated graphene oxide (EGO) on the removal of sulfide ion with activated sludge (AS) are experimentally investigated. The maximum removal efficiency of sulfide ion for AS without nanoparticles, and the samples with SS and EGO nanoparticles were 81%, 88% and 79%, respectively. Moreover, the maximum elimination capacity (EC max ) for the bioreactor with SS-nanoparticles is 7542 mg/L s, while the EC max of AS and EGO samples were 7075 and 6625 mg/L s, respectively. Two filamentous microbial strains as Gram-negative and Gram-positive bacteria are discerned that removed sulfide ion in the presence of nanoparticles. The measurement of mixture liquor volatile suspended solid that indicates the biomass growth rate during the test shows that the bioreactor containing SS-nanoparticles has more biomass content than the other samples. Our findings indicate that SS-nanoparticles with 0.1% wt. concentration in the bioreactor have no negative effects on the efficiency of the biological removal of sulfide and the presence of SS-nanoparticles even enhances the performance of the bioreactor. On the other side, a bioreactor with EGO nanosheets, as highly antibacterial nanoparticles, with 0.02% wt. concentration significantly influences the microbial growth and reduces sulfide removal efficiency.

  5. Organic Removal Efficiency of the Nanofiltration and Adsorption Hybrid System in High Strength Wastewater

    Directory of Open Access Journals (Sweden)

    Amir Hessam Hassani

    2011-03-01

    Full Text Available Surface and groundwater resources are increasingly jeopardized by discharges from pharmaceutical, chemical, and detergent plants. The high pollutant load of the effluents from these industries requires specific treatments. The objective of this research was to study and compare the nanofiltration and adsorption hybrid system with the plain nanofiltration system in wastewater treatment.For this purpose, a pilot nanofiltration system with a capacity of 7.6 m3/d using 1 and 5 micron filters and a FILMTEC NF90-4040 membrane was used in the first phase of the study. In the second phase, granular activated carbon cartridges were used. Inluent and effluent discharges as well as the COD removal were measured in both systems under variable times and organic load conditions. The results showed that COD removal efficiency was higher in the hybrid system than in the plain naonofiltration one. In the hybrid system, the Maximum in the hybrid system, the COD removal efficiencies achieved for organic loads of 1000, 2000, and 3000 mg/L were 99%, 95.86%, and 92.93%, respectively. The same values for the plain nanofiltration system were 87.34%, 50%, and 29.41%, respectively. It was found that polarization and membrane fouling decreased both the effluent flow and the COD removal efficiency with time. Fouling of the membrane was, however, lower in the hybrid system compared to the plain nanofiltration; thus, the hybrid system was associated with higher values of COD removal and delayed membrane fouling.

  6. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.

    Science.gov (United States)

    Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B

    2009-01-01

    Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.

  7. Efficient removal of UDMH from dilute nitride MOCVD exhaust streams

    Science.gov (United States)

    Pahle, Jörg; Czerniak, Mike; Seeley, Andy; Baker, Derek

    2004-12-01

    Unsymmetrical dimethyl hydrazine (UDMH) (CH 3) 2N 2H 2 is often used in the deposition of dilute nitride semiconductors because it provides a source of nitrogen with a low thermal decomposition temperature (Temperature-dependent carrier lifetime in GaNAs using resonant-coupled photoconductive decay, NCPV Program Review Meeting, Lakewood, Colorado, 14-17 October, 2001). The problems with using this material, however, are its significant toxicity (0.01 ppm compared to ammonia's 25 ppm) and also the fact that it blocks the action of conventional dosed wet scrubbers sometimes used on nitride applications, resulting in diminished efficiency in removing arsine (the source of arsenic), and arsine being similarly toxic (TLV of 0.05 ppm). Efficient removal of UDMH, AsH 3 and hydrogen (which, though not toxic poses a potential safety hazard) by means of a combined thermal oxidation reaction and wet scrubber in series is described at input gas flow rates exceeding those typically encountered in practice. The detection technique employed was Fourier transform infra red spectroscopy (FTIR), and the calibration and resolution techniques will be described. For input UDMH flows of up to 445 sccm (i.e. 1.85×10 -2 mol/min), destructive reaction efficiencies (DREs) of >99.9% were demonstrated, corresponding to the background detection resolution of 0.4 ppm.

  8. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Mikkelsen, Peter Steen; Ledin, Anna

    2016-01-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd......, Cu, Ni and Zn is about 4 h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH ~. 8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >. 7) decreased...... that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads...

  9. Oxytetracycline removal from water by novel microbial embedding gel beads

    Science.gov (United States)

    Wu, Nan; Pan, Peng; Zeng, Ming; Wang, Wei; Xu, Chenshan; Zhang, Zongpeng; Liu, Xinyuan; Wang, Yichao

    2018-01-01

    As a common antibiotic in aquatic environment, excessive oxytetracycline (OTC) is urgent to be removed due to its great biological toxicity. Compared with the traditional activated sludge, microbial embedding can enhance the treating efficiency. In this study, novel microbial embedding gel beads were produced with the additional agent of cyclodextrin (CD). Results show that CD could increase the mass transfer of OTC into gel beads, possibly because of its strong affinity for organic matters. In terms of OTC biodegradation, gel beads with CD were comparable to gel beads without CD, while the former’s sucrose removal efficiency was higher than the latter. The biodegradation of OTC only occurred in the presence of sucrose. The respiration test also confirmed these findings. Overall, the produced novel gel beads modified with CD could improve the removal performance of OTC.

  10. Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix.

    Science.gov (United States)

    Machado, A I; Dordio, A; Fragoso, R; Leitão, A E; Duarte, E

    2017-12-01

    The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    Science.gov (United States)

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  12. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    Science.gov (United States)

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    International Nuclear Information System (INIS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-01-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  14. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Jingwei, E-mail: jwzhang@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Jiwei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Gong, Chunhong [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou, Jingfang, E-mail: jingfang.zhou@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Zhijun [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2015-12-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  15. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    Science.gov (United States)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  18. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Science.gov (United States)

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effectiveness of pollutants removal in hybrid constructed wetlands – different configurations case study

    Directory of Open Access Journals (Sweden)

    Gajewska Magdalena

    2017-01-01

    Full Text Available In recent years, an increase in interest in hybrid constructed wetland systems (HCWs has been observed. The aim of the paper is to compare different HCW configurations in terms of mass removal rates and efficiency of pollutants removal. Analysed data have been collected at multistage constructed wetlands in Poland, which are composed by at least two beds: horizontal subsurface flow (SSHF and vertical subsurface flow (SSVF. The evaluation was focused on hybrid constructed wetlands performance with HF+VF vs. VF+HF configuration, where influent wastewater of the same composition was treated. In analysed HCWs, the effective removal of organic matter from 75.2 to 91.6% COD was confirmed. Efficiency of total nitrogen removal varied from 47.3 to 91.7%. The most effective removal of TN (8.3 g m−2 d−1 occurred in the system with VF+VF+HF configuration.

  20. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink

    International Nuclear Information System (INIS)

    Hao, Xiaohong; Peng, Bei; Xie, Gongnan; Chen, Yi

    2016-01-01

    Highlights: • A combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip has been proposed. • The TEC's mathematical model is established to assess its work performance. • A comparative study on the proposed efficient On-Chip Hotspot Removal Combined Solution. - Abstract: Hotspot will significantly degrade the reliability and performance of the electronic equipment. The efficient removal of hotspot can make the temperature distribution uniform, and ensure the reliable operation of the electronic equipment. This study proposes a combined solution of thermoelectric cooler (TEC) and mini-channel heat sink to remove the hotspot of the chip in the electronic equipment. Firstly, The TEC's mathematical model is established to assess its work performance under different boundary conditions. Then, the hotspot removal capability of the TEC is discussed for different cooling conditions, which has shown that the combined equipment has better hotspot removal capability compared with others. Finally, A TEC is employed to investigate the hotspot removal capacity of the combined solution, and the results have indicated that it can effectively remove hotspot in the diameter of 0.5 mm, the power density of 600W/cm 2 when its working current is 3A and heat transfer thermal resistance is 0 K/W.

  1. Evaluation of removal efficiency of residual diclofenac in aqueous solution by nanocomposite tungsten-carbon using design of experiment.

    Science.gov (United States)

    Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A

    2017-09-01

    Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.

  2. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  3. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sarim Ahmed

    2018-06-01

    Full Text Available A venturi scrubber is an important element of Filtered Containment Venting System (FCVS for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide (TiO2 particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB model has been used to predict deformation of water droplets, whereas the Eulerian–Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity. Keywords: Computational Fluid Dynamics, Dust Particles, Filtered Containment Venting System, Self-priming Venturi Scrubber, Venturi Scrubber

  4. Laser scabbling for nuclear decommissioning: Effect of concrete composition on volume removal efficiency

    International Nuclear Information System (INIS)

    Peach, B.; Petkovski, M.; Blackburn, J.; Engelberg, D.L.

    2015-01-01

    The objective of this study was to determine the effect of concrete composition and moisture content on volume removal with the overarching goal to identify mechanism(s) responsible for laser scabbling. Tests under application of fixed laser parameters showed that concrete composition had a significant effect on material removal but the investigation into moisture content was inconclusive. The mechanical properties and size of coarse aggregates seemed to affect scabbling efficiency, rather than their chemical properties. The presence of pulverized fuel ash as a cement replacement material indicated to be a major factor that determines material removal volumes. (authors)

  5. Potential of Constructed Wetlands for Removal of Antibiotics from Saline Aquaculture Effluents

    Directory of Open Access Journals (Sweden)

    Maria Bôto

    2016-10-01

    Full Text Available This work aimed to evaluate the potential of constructed wetlands (CWs for removal of antibiotics (enrofloxacin and oxytetracycline and antibiotic resistant bacteria from saline aquaculture wastewaters. Removal of other contaminants (nutrients, organic matter and metals and toxicity reduction and the influence of antibiotics with these processes were evaluated. Thus, nine CWs microcosms, divided into three treatments, were assembled and used to treat wastewater (doped or not with the selected antibiotics between October and December of 2015. Each week treated wastewater was removed and new wastewater (doped or not was introduced in CWs. Results showed >99% of each antibiotic was removed in CWs. After three weeks of adaptation, removal percentages >95% were also obtained for total bacteria and for antibiotic resistant bacteria. Nutrients, organic matter and metal removal percentages in CWs treated wastewater were identical in the absence and in the presence of each antibiotic. Toxicity in treated wastewaters was significantly lower than in initial wastewaters, independently of antibiotics presence. Results showed CWs have a high efficiency for removing enrofloxacin or oxytetracycline as well as antibiotic resistant bacteria from saline aquaculture wastewaters. CWs can also remove other contaminants independently of drug presence, making the aquaculture wastewater possible to be reutilized and/or recirculated.

  6. Application of walnut shell modified with Zinc Oxide (ZnO nanoparticles in removal of natural organic matters (NOMs from aqueous solution

    Directory of Open Access Journals (Sweden)

    ali naghizadeh

    2015-10-01

    Full Text Available Background & Aims of the Study: Natural organic matters (NOMs are a mixture of chemically complex polyelectrolytes produced mainly from the decomposition of plant and animal residues that are present in all surface and groundwater resources. This paper evaluates the aqueous NOMs adsorption efficiency on walnut shell modified with Zinc Oxide (ZnO. Materials & Methods: This study examined the feasibility of removing NOMs from aqueous solutions using walnut shell modified with ZnO. The effects of NOMs concentration, modified walnut shell with ZnO dosage, and pH on adsorption of NOMs by modified walnut shell with ZnO were evaluated. Results: The adsorption capacities of modified walnut shell with ZnO in the best conditions were 37.93 mg/g. The results also demonstrated that adsorption capacity of NOMs on modified walnut shell with ZnO was higher in lower pHs due to significantly high electrostatic attraction exists between the positively charged surface of the adsorbent and negatively charged NOMs. And finally adsorption capacity decreases as adsorbent dose increase. Conclusion: Walnut shell modified with ZnO can be proposed as a natural adsorbent in the removal of NOMs from aqueous solutions

  7. Efficient TEA CO2 laser based coating removal system

    CSIR Research Space (South Africa)

    Prinsloo, FJ

    2007-04-01

    Full Text Available stream_source_info Prinsloo_2007.pdf.txt stream_content_type text/plain stream_size 11617 Content-Encoding UTF-8 stream_name Prinsloo_2007.pdf.txt Content-Type text/plain; charset=UTF-8 Efficient TEA CO2 laser based... by keeping energy density below the damage threshold. The advantage of a pulsed TEA CO2 laser system is that a laser frequency and temporal profile can be chosen to maximize paint removal and concurrently minimize substrate damage. To achieve...

  8. A modified UCT method for biological nutrient removal: configuration and performance.

    Science.gov (United States)

    Vaiopoulou, E; Aivasidis, A

    2008-07-01

    A pilot-scale prototype activated sludge system is presented, which combines both, the idea of University of Cape Town (UCT) concept and the step denitrification cascade for removal of carbon, nitrogen and phosphorus. The experimental set-up consists of an anaerobic selector and stepwise feeding in subsequent three identical pairs of anoxic and oxic tanks. Raw wastewater with influent flow rates ranging between 48 and 168 l d(-1) was fed to the unit at hydraulic residence times (HRTs) of 5-18 h and was distributed at percentages of 60/25/15%, 40/30/30% and 25/40/35% to the anaerobic selector, 2nd and 3rd anoxic tanks, respectively (influent flow distribution before the anaerobic selector). The results for the entire experimental period showed high removal efficiencies of organic matter of 89% as total chemical oxygen demand removal and 95% removal for biochemical oxygen demand, 90% removal of total Kjeldahl nitrogen and total nitrogen removal through denitrification of 73%, mean phosphorus removal of 67%, as well as excellent settleability. The highest removal efficiency and the optimum performance were recorded at an HRT of about 9h and influent flow rate of 96 l d(-1), in which 60% is distributed to the anaerobic selector, 25% to the second anoxic tank and 15% to the last anoxic tank. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational assurance.

  9. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  10. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui

    2017-12-01

    In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  12. New mechanism for enhancing ash removal efficiency and reducing tritium inventory

    International Nuclear Information System (INIS)

    Li Chengyue; Deng Baiquan; Yan Jiancheng

    2007-01-01

    A new mechanism is suggested to suppress ash particle back streams in the divertor region of our fusion experimental breeder (FEB) reactor for enhancing the ash removal efficiency and reducing the tritium inventory by applications of the nonlinear effect of high power rf ponderomotive force potential which reflects the plate-released and re-ionized He + back to the plate. Meanwhile, the potential does not hinder α particles, which are coming from scraping of the layer, flowing to the target plate. However, it does stop tritium ions flowing to the target. Based on the FEB design parameters, our calculations have shown that the ash removal efficiency can be improved by as much as 40% if the parallel component of rf field 150-200 V/cm is applied to the location at a perpendicular distance L=20 cm apart from the plate and the plate-recycling neutral helium atom energy is about 0.75 eV, at the same time, the tritium inventory can be reduced to some extent. (authors)

  13. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2006-06-01

    Full Text Available Techniques involving supercritical carbon dioxide have been successfully used for the formation of drug particles with controlled size distributions. However, these processes show some limitations, particularly in processing aqueous solutions. A diagram walking algorithm based on available experimental data was developed to evaluate the effect of ethanol on the efficiency of water removal processes under different process conditions. Ethanol feeding was the key parameter resulting in a tenfold increase in the efficiency of water extraction.

  14. Variation in levels and removal efficiency of heavy and trace metals ...

    African Journals Online (AJOL)

    The general abundance distribution pattern for metals was Zn > Cu > Pb > Cr > Ni > As > Co > Cd > Hg. The removal efficiency ranged from 1.5% for Hg at Zandvliet WWTP plant during winter to 98.27% for Cu at Athlone WWTP treatment plant during summer. The final effluent concentration for most of the metals were within ...

  15. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  16. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    Science.gov (United States)

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification

  17. Anaerobic Biochemical Reactor (BCR) Treatment Of Mining-Influenced Water (MIW) - Investigation Of Metal Removal Efficiency and Ecotoxicity

    Science.gov (United States)

    BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...

  18. Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping

    2013-06-18

    This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.

  19. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  20. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  1. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  2. COUPLING OF MEMBRANE BIOREACTOR AND OZONATION FOR REMOVAL OF ANTIBIOTICS FROM HOSPITAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Bui Xuan Thanh

    2016-02-01

    Full Text Available Antibiotic residues in the environment and their potential toxic effects have been considered as one of the emerging research area in the environmental field. Their continuous introduction in our environment may increase their negative impacts on human health.  In this study, the eliminations of antibiotic such as Norfloxacin (NOR, Ciprofloxacin (CIP, Ofloxacin (OFL and Sulfamethoxazole (SMZ in wastewater of hospital were processed by membrane bioreactor (MBR coupled with ozonation process. In particular, the MBR was applied for the antibiotic removals followed by ozonation process as a post-treatment stage to create an adequate integration to enhance removal efficiency. Achieved results after MBR treatment showed that the removal efficiency of NOR, CIP, OFL and SMZ were 90 ± 4.0% , 83 ± 13% , 81 ± 13 % and  39 ± 6%, respectivley. In addition, those antibiotic matters were continously removed by ozonation process with the removal efficiency of 87±9.0% , 83±1.0% , 81±2.3% and 66±2.3% for NOR, CIP, OFL and SMZ, respectively. In summary, antibiotics could be basically limited by the combination of MBR and ozonation before discharging in aquatic environment.

  3. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  4. SPE analysis of high efficiency PMTs for the DEAP-3600 dark matter detector

    International Nuclear Information System (INIS)

    Olsen, Kevin; Hallin, Aksel

    2011-01-01

    The Dark matter Experiment using Argon Pulse-shape discrimination is a collaborative effort to develop a next-generation, tonne-scale dark matter detector at SNOLAB. The detector will feature a single-phase liquid argon (LAr) target surrounded by an array of 266 photomultiplier tubes (PMTs). A new high-efficiency Hamamatsu R877-100 PMT has been delivered to the University of Alberta for evaluation by the DEAP collaboration. The increase in efficiency could lead to a much greater light yield, but other experiments have reported a slower rise time. We have placed the PMT in a small dark box and had a base and preamplifier designed to be used with either an oscilloscope or a multi-channel analyzer. With this setup we have demonstrated the PMT's ability to distinguish single photo-electrons (SPE) and characterized the PMT by measuring the SPE pulse height spectrum, the peak-to-valley ratio, the dark pulse rate, the baseline, time resolution and SPE efficiency for varying the high voltage supplied to the PMT.

  5. Negligible effects of severe organic matter removal and soil compaction on loblolly pine growth over 10 years

    Science.gov (United States)

    Felipe G. Sanchez; D. Andrew Scott; Kim H. Ludovici

    2006-01-01

    The long-term soil productivity (LTSP) study was initiated to examine the effect of soil porosity and organic matter (OM) levels on net primary productivity (NPP). The study design calls for three levels of OM removal (bole, whole tree and whole tree plus forest floor) and three levels of compaction (none, moderate and severe) being imposed on harvested sites prior to...

  6. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Science.gov (United States)

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  7. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    Science.gov (United States)

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  8. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Directory of Open Access Journals (Sweden)

    Lorenzo Massimi

    2018-02-01

    Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  9. Terbuthylazine and desethylterbuthylazine: Recent occurrence, mobility and removal techniques.

    Science.gov (United States)

    Tasca, Andrea Luca; Puccini, Monica; Fletcher, Ashleigh

    2018-07-01

    The herbicide terbuthylazine (TBA) has displaced atrazine in most of EU countries, becoming one of the most regularly used pesticides and, therefore, frequently detected in natural waters. The affinity of TBA for soil organic matter suggests prolonged contamination; degradation leads to the release of the metabolite desethylterbuthylazine (DET), which has higher water solubility and binds more weakly to organic matter compared to the parent compound, resulting in higher associated risk for contamination of groundwater resources. Additionally, TBA and DET are chemicals of emerging concern because of their persistence and toxicity towards aquatic organisms; moreover, they are known to have significant endocrine disruption capacity to wildlife and humans. Conventional treatments applied during drinking water production do not lead to the complete removal of these chemicals; activated carbon provides the greatest efficiency, whereas ozonation can generate by-products with comparable oestrogenic activity to atrazine. Hydrogen peroxide alone is ineffective to degrade TBA, while UV/H 2 O 2 advanced oxidation and photocatalysis are the most effective processes for oxidation of TBA. It has been determined that direct photolysis gives the highest degradation efficiency of all UV/H 2 O 2 treatments, while most of the photocatalytic degradation is attributed to OH radicals, and TiO 2 solar-photocatalytic ozonation can lead to almost complete TBA removal in ∼30 min. Constructed wetlands provide a valuable buffer capacity, protecting downstream surface waters from contaminated runoff. TBA and DET occurrence are summarized and removal techniques are critically evaluated and compared, to provide the reader with a comprehensive guide to state-of-the-art TBA removal and potential future treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Efficient interruption of infection chains by targeted removal of central holdings in an animal trade network.

    Science.gov (United States)

    Büttner, Kathrin; Krieter, Joachim; Traulsen, Arne; Traulsen, Imke

    2013-01-01

    Centrality parameters in animal trade networks typically have right-skewed distributions, implying that these networks are highly resistant against the random removal of holdings, but vulnerable to the targeted removal of the most central holdings. In the present study, we analysed the structural changes of an animal trade network topology based on the targeted removal of holdings using specific centrality parameters in comparison to the random removal of holdings. Three different time periods were analysed: the three-year network, the yearly and the monthly networks. The aim of this study was to identify appropriate measures for the targeted removal, which lead to a rapid fragmentation of the network. Furthermore, the optimal combination of the removal of three holdings regardless of their centrality was identified. The results showed that centrality parameters based on ingoing trade contacts, e.g. in-degree, ingoing infection chain and ingoing closeness, were not suitable for a rapid fragmentation in all three time periods. More efficient was the removal based on parameters considering the outgoing trade contacts. In all networks, a maximum percentage of 7.0% (on average 5.2%) of the holdings had to be removed to reduce the size of the largest component by more than 75%. The smallest difference from the optimal combination for all three time periods was obtained by the removal based on out-degree with on average 1.4% removed holdings, followed by outgoing infection chain and outgoing closeness. The targeted removal using the betweenness centrality differed the most from the optimal combination in comparison to the other parameters which consider the outgoing trade contacts. Due to the pyramidal structure and the directed nature of the pork supply chain the most efficient interruption of the infection chain for all three time periods was obtained by using the targeted removal based on out-degree.

  11. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  12. Feed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2017-01-01

    Full Text Available Background & Aims of the Study: A feed forward artificial neural network (FFANN was developed to predict the efficiency of total petroleum hydrocarbon (TPH removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of   TPH removal. Materials and Methods: Several independent repressors including pH, shaking speed, surfactant concentration and contact time were used to describe the removal of TPH as a dependent variable in a FFANN model. 85% of data set observations were used for training the model and remaining 15% were used for model testing, approximately. The performance of the model was compared with linear regression and assessed, using Root of Mean Square Error (RMSE as goodness-of-fit measure Results: For the prediction of TPH removal efficiency, a FANN model with a three-hidden-layer structure of 4-3-1 and a learning rate of 0.01 showed the best predictive results. The RMSE and R2 for the training and testing steps of the model were obtained to be 2.596, 0.966, 10.70 and 0.78, respectively. Conclusion: For about 80% of the TPH removal efficiency can be described by the assessed regressors the developed model. Thus, focusing on the optimization of soil washing process regarding to shaking speed, contact time, surfactant concentration and pH can improve the TPH removal performance from polluted soils. The results of this study could be the basis for the application of FANN for the assessment of soil washing process and the control of petroleum hydrocarbon emission into the environments.

  13. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  14. Highly Efficient Closed-Loop CO2 Removal System for Deep-Space ECLSS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TDA Research Inc.(TDA) in collaboration with University of Puerto Rico ? Mayaguez (UPRM is proposing to develop a highly efficient CO2 removal system based on UPRM...

  15. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.

    Science.gov (United States)

    He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo

    2017-07-01

    The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH 3 -N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.

  16. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  17. Removal of organic pollutants from produced water using Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Afzal Talia

    2018-01-01

    Full Text Available Produced water (PW is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L, [H2O2]/[Fe2+] molar ratio (2 to 75, and reaction time (30 to 200 minutes, on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O and hydrogen peroxide (H2O2 were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  18. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  19. THE EFFICIENCY OF YARN WOUND FILTERS IN GIARDIA CYSTS REMOVAL USING THE IMPROVED SUCROSE GRADIENT

    Directory of Open Access Journals (Sweden)

    M.R SHAH MANSOURI

    2001-09-01

    Full Text Available Introduction. The protozoan parasite Giardia is one of the important biological cotaminants in water. lts presence in water has caused the outbreak of a number of epidemics in various part of the world including the United States. The major impediment in detecting this particular parasite is unavailability of suitable filters capable of removing it from water. Regarding the fact yarn wound filters (cartridge used in removing Giardia under laboratory condition are currently difficult to obtain in Iran, attempts were made to design and manufacture the filters according to standards recommended in the literature. Methods. To determine the efficiency of filters manufactured in this way, a pilot system was established and parameters of concern were investigated. A given number of cysts were introduced in each case to the water in the pilot tank after being counted on the hemocytometer lamella After the entire tank water (at least 4001had been pumped through the filters, the filter were removed from the pilot system to have their yarns separated and washed. The cysts recovered were then counted and compared with the original input cysts to determine the efficiency of the filters. Formation of sediments on filters due to suspended solids in water was a great impediment in counting the cysts hidden in the sediments. To overcome this difficulty, the method of floatation in sucrose was used to remove the hidden cysts from the sediments. Regarding the morphological characteristics of the cysts, the method was also studied in terms of the sucrose film concentration and the effects of centrifugal speed and duration on the removal of cysts from sediments. Results. The results indicated an efficiency of 80.69±5.85, which was ideal for a first experience in Iran. a level of 2.5 molar of Sucrose with a duration of 10 minutes for the centrifugation time at 2,000 rpm were considered to be optimum levels to yield a certainty of 95 percent and an efficiency of

  20. Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system.

    Science.gov (United States)

    Rodríguez-Nava, Odín; Ramírez-Saad, Hugo; Loera, Octavio; González, Ignacio

    2016-12-01

    Pharmaceutical degradation in conventional wastewater treatment plants (WWTP) represents a challenge since municipal wastewater and hospital effluents contain pharmaceuticals in low concentrations (recalcitrant and persistent in WWTP) and biodegradable organic matter (BOM) is the main pollutant. This work shows the feasibility of coupling electro-oxidation with a biological system for the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole (BGIS)) and BOM from wastewater. High removal efficiencies were attained without affecting the performance of activated sludge. BGIS degradation was performed by advanced electrochemical oxidation and the activated sludge process for BOM degradation in a continuous reactor. The selected electrochemical parameters from microelectrolysis tests (1.2 L s(-1) and 1.56 mA cm(-2)) were maintained to operate a filter press laboratory reactor FM01-LC using boron-doped diamond as the anode. The low current density was chosen in order to remove drugs without decreasing BOM and chlorine concentration control, so as to avoid bulking formation in the biological process. The wastewater previously treated by FM01-LC was fed directly (without chemical modification) to the activated sludge reactor to remove 100% of BGIS and 83% of BOM; conversely, the BGIS contained in wastewater without electrochemical pre-treatment were persistent in the biological process and promoted bulking formation.

  1. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    Science.gov (United States)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.; Altshuler, G. B.; Yaroslavskii, I. V.

    2008-06-01

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%—40% and, therefore, to increase the the photothermolysis efficiency.

  2. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study.

    Science.gov (United States)

    Boob, Ankush Ramnarayan; Manjula, M; Reddy, E Rajendra; Srilaxmi, N; Rani, Tabitha

    2014-01-01

    Many chemomechanical caries removal (CMCR) agents have been introduced and marketed since 1970s, with each new one being better and effective than the previously introduced. Papacarie and Carisolv are new systems in the field of CMCR techniques. These are reportedly minimally invasive methods of removing carious dentin while preserving sound dentin. To compare the Efficiency (time taken for caries removal) and effectiveness (Knoop hardness number of the remaining dentin) of caries removal by three minimally invasive methods, i.e. hand excavation and chemomechanical caries removal using Carisolv and Papacarie. Thirty recently extracted human permanent molars with occlusal carious lesions were divided randomly in three equal groups and bisected through the middle of the lesion mesiodistally and excavated by two methods on each tooth. Statistically significant difference was present among three methods with respect to time and knoop hardness values (KHN) of the remaining dentin. The Efficiency of Hand method is better compared to CMCR techniques and effectiveness of CMCR techniques is better than Hand method in terms of dentin preservation so the chances of maintaining vitality of the pulp will be enhanced. How to cite this article: Boob AR, Manjula M, Reddy ER, Srilaxmi N, Rani T. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):11-18.

  3. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    Science.gov (United States)

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084

  4. Biofiltration of exhaust air from animal houses: removal efficiencies and practical experiences

    NARCIS (Netherlands)

    Melse, R.W.; Hol, J.M.G.

    2014-01-01

    Two wood-chip biofilters (capacity and surface area for biofilter #1: 75.000 m3/hour from poultry manure dryer, 68 m2; biofilter #2: 100,000 m3/hour from fattening pig house, 188 m2; media depth: 25 cm) were monitored during 6 - 10 months. Average ammonia (NH3) and odour removal efficiencies were 42

  5. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    Science.gov (United States)

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  6. Do constructed wetlands remove metals or increase metal bioavailability?

    Science.gov (United States)

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Comparison of Water Turbidity Removal Efficiencies of Moringa oleifera Seed Extract and Poly-aluminum Chloride

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2007-03-01

    Full Text Available Coagulation and flocculation are essential processes in water treatment plants. Metal salts such as aluminum sulphate and ferric chloride are commonly used in the coagulation process in Iran. Poly-aluminum chloride (PAC has been used recently in Baba-Sheykhali Water Treatment Plant in Isfahan. Synthetic coagulants have health problems associated with them and are additionally uneconomical for use in developing countries. In this study, PAC and Moringa oleifera seed extract were compared for their efficiency as coagulants. Moringa oleifera, locally called “oil gaz” in Iran, grows in southern parts of Iran. One variety of this tree, Moringa progeria, is indigenous to Iran. For the purposes of this study, lab experiments were performed using distilled water containing synthetic caoline. Four turbidity levels of 10, 50, 500, and1000 (NTU and four pH levels of 5, 6, 7, and 8 were used for the jar test. It was found that oleifera seed extract was capable of removing 98, 97, 89, and 55% of the turbidity in the four experiments at optimum concentration levels of 10-30 (mg/l for all four pH levels of 6 to 8, respectively. PAC, in contrast, removed 99, 98, 95, and 89% of the turbidity at optimum concentrations of 20-30 (mg/l for a pH level of 8. The results indicate that Moringa oleifera seed extract has little effect on pH level and enjoys higher removal efficiency for higher turbidity levels. Reducing pH level decreased PAC turbidity removal efficiency.

  8. The use of activated carbons for removing organic matter from groundwater

    Directory of Open Access Journals (Sweden)

    Kaleta Jadwiga

    2017-09-01

    Full Text Available The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

  9. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti; Jeong, Sanghyun; AlizadehTabatabai, S.Assiyeh; An, Alicia Kyoungjin

    2018-01-01

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ Fe(VI) by wet chemical

  10. Characterization and removal of natural organic matter from slow sand filter effluent followed by alum coagulation

    Science.gov (United States)

    Hidayah, Euis Nurul; Chou, Yung-Chen; Yeh, Hsuan-Hsien

    2018-03-01

    Characterization and removal of natural organic matter, which is contained in the effluent of slow sand filters, was observed by alum coagulation under various dosages. In addition to non-purgedable dissolved organic carbon (NPDOC), trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAFP) measurement, high-performance size-exclusion chromatography (HPSEC) with ultraviolet/visible and dissolved organic carbon (DOC) detectors was used to characterize the various organic fractions contained in the water before and after coagulation. The results show that alum coagulation could effectively remove hydrophobic aromatic, which forms mainly humic substances. The reduction in THMFP was found to be higher than that of NPDOC and HAAFP under specific alum dosage, and the former was also found to be proportional to the corresponding reduction in the area of hydrophobic aromatic fraction, mostly humic subtances, as obtained from HPSEC chromatogram with peak-fitting.

  11. Role of surface energy and nano-roughness in the removal efficiency of bacterial contamination by nonwoven wipes from frequently touched surfaces

    Science.gov (United States)

    Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.

    2017-12-01

    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

  12. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.

    Science.gov (United States)

    Kralchevska, Radina P; Prucek, Robert; Kolařík, Jan; Tuček, Jiří; Machala, Libor; Filip, Jan; Sharma, Virender K; Zbořil, Radek

    2016-10-15

    Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Investigation of Fluoride Removal Efficiency from Aqueous Solution by Pistachio and Almonds Crust

    Directory of Open Access Journals (Sweden)

    Maryam Khodadadi

    2015-06-01

    Full Text Available Introduction: Fluoride and its compounds are widely used in industries and then through effluent are released into the environment. The purpose of this study was to evaluate Efficiency of low cost adsorbents (pistachios coal in the removal of fluoride from aqueous solutions.  Methods: For the preparation of adsorbent, crust of pistachios deride, then washed with distilled water, then powder in the furnace for burning for 2 hours at temperatures of 500, 600, and 700 °C. The effect of changing pH, burning temperature of adsorbent, stirring speed, initial concentration of fluoride, retention time and adsorbent dose was studied. Concentration of fluoride measured according to standard method using spectrophotometer the data were analyzed using Excel software. Results: The results of these experiments showed that the burning adsorbent, temperature 500 ° C, PH of solution in the neutral range (pH = 7, adsorbent dose of 2 g/L for absorbing almonds and adsorbent dose of 3 g pistachio, contact time of 40 minutes for both adsorbent, initial fluoride concentration (5ppm for both absorbent without mixing, the optimal conditions for the efficiency of the absorber is as much as 90-80 percent. Discussion: According to the results, pistachio coal can be used with high efficiency for fluoride removal

  14. Effect of Organic Matter on Cyanide Removal by Illuminated Titanium Dioxide or Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Shirzad-Siboni

    2013-08-01

    Full Text Available Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide.

  15. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    Science.gov (United States)

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes

    International Nuclear Information System (INIS)

    Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

    2014-01-01

    Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 μm. Halloysite has negative SiO 2 outermost and positive Al 2 O 3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters

  17. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    Science.gov (United States)

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  18. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    OpenAIRE

    Ahmad Reza Yaria; Mostafa Alizadeh; Sara Hashemi; Hamed Biglari

    2013-01-01

    Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This exper...

  19. Comparison of the Performance of Poly Aluminum Chloride (PACl, Ferric Chloride (FeCl3, in Turbidity and Organic Matter Removal; from Water Source, Case-Study: Karaj River, in Tehran Water Treatment Plant No. 2

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolah zadeh

    2009-06-01

    Full Text Available Coagulation and flocculation are the principal units in water treatment processes. In this study, the Jar test was used to investigate the effects of the pH and TOC on FeCl3 and PACl coagulants for further removal of turbidity, organic matter, aluminum, total organic carbon (TOC, dissolved organic carbon (DOC, organic Aadsorption at a wavelength of 254 nm (UV254 nm , alkalinity, residual aluminum and ferric, total trihalomethans (TTHMs in the Karaj River in the year 2007- 2008. These experiments were conducted through a bench scale study using conventional coagulation in the influent to Tehran Water Treatment Plant No. 2 (TWTP2.With normal pH levels, PACl demonstrated more efficiency than FeCl3 in removing turbidity, TOC, UV254 nm, and TTHMs. The lower coagulant consumption, high floc size, lower floc detention time, lower sludge production, lack of the need for pH adjustment in turbidity of 25 NTU and the lower alum consumption were the advantages of PACl application instead of FeCl3 as a coagulant. Also, PACl application was efficient at low turbidity (2 NTU, average turbidity (6 NTU, and high turbidity (100 NTU in TOC, turbidity, UV254 nm , and DOC removal. Thus, PACl is an economical alternative as a coagulant in TWTP2.

  20. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    International Nuclear Information System (INIS)

    Genina, E A; Bashkatov, A N; Tuchin, V V; Yaroslavskii, I V; Altshuler, G B

    2008-01-01

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%-40% and, therefore, to increase the the photothermolysis efficiency. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  1. More Efficient Sodium Removal by Ultrafiltration Compared to Diuretics in Acute Heart Failure; Underexplored and Overstated.

    Science.gov (United States)

    Kazory, Amir

    2016-01-01

    Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.

  2. An efficient algorithm for removal of inactive blocks in reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Ertekin, T. (Pennsylvania State Univ., PA (United States))

    1992-02-01

    In the efficient simulation of reservoirs having irregular boundaries one is confronted with two problems: the removal of inactive blocks at the matrix level and the development and application of a variable band-width solver. A simple algorithm is presented that provides effective solutions to these two problems. The algorithm is demonstrated for both the natural ordering and D4 ordering schemes. It can be easily incorporated in existing simulators and results in significant savings in CPU and matrix storage requirements. The removal of the inactive blocks at the matrix level plays a major role in effecting these savings whereas the application of a variable band-width solver plays an enhancing role only. The value of this algorithm lies in the fact that it takes advantage of irregular reservoir boundaries that are invariably encountered in almost all practical applications of reservoir simulation. 11 refs., 3 figs., 3 tabs.

  3. Efficiency Of Fabricated CNT-IPSFFe3O4 Nanocomposites In Removal Of Phenanthrenes From Contaminated Water

    Directory of Open Access Journals (Sweden)

    Shisia K. Silvanus

    2015-08-01

    Full Text Available The increased demand for oil to supply the needs of industry and motorists has exposed the water sources to one of the greatest threats. The removal of selective organic pollutants such as phenanthrenes in aqueous solution was investigated by adsorption process on fabricated CNT-IPSFFe3O4 nanocomposites. Characterization of products confirmed the synthesis of individual nanomaterials in the nanocomposites. The SEM image of prepared CNTs showed configuration with abundant threadlike entities whose TEMs further confirmed evidence for formation of MWCNTs. The silica modified magnetite Fe3O4.SiO2 nanoparticles had clear distinct and spherical shaped nanoparticles arranged in a 2-D closed packed manner. The XRD diffraction pattern showed well crystalline magnetite silica NPs with particle size 22.4 nm from the Debye-Scherrer equation. The SEMEDAX analysis revealed large quantities of dispersive magnetite NPs with moderately uniform and cubic structures in the fabricated CNT-IPSFFe3O4 nanocomposites. Adsorption parameters were optimized at adsorbent dose 6 mg20ml contact time 40 mins pHPZC 4.5 and pH 5. Adsorption kinetics followed pseudo second order kinetics while the adsorption isotherm favored was Freundlich isotherms. The nanocomposites were not largely affected by of counter PAHs as its removal efficiency was 42.2 and 40.8 in the presence of naphthalene and anthracene respectively. This was replicated in its application in phenanthrenes removal from industrial wastewater in which the nanocomposites showed 63 phenanthrenes removal. The trend for the studied desorption solvents was acetone hexane methanol which had 47 42 and 22 removal efficiency respectively. The adsorption-desorption cycles involved a small volume of phenanthrene concentrates being recovered with gradual decrease in adsorption capacity for phenanthrene from 33.46 - 28.68 gg after three cycles. The desorption efficiency of phenanthrenes increased from to 49.81 to 56.98 wt

  4. High-efficiency SO2 removal in utility FGD systems

    International Nuclear Information System (INIS)

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO 2 ) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company's Big Bend Station; cocurrent, packed absorbers at Hoosier Energy's Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company's Pirkey Station; horizontal spray absorbers at PSI Energy's Gibson Station; venturi scrubbers at Duquesne Light's Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations's (NYSEG's) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO 2 removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO 2 removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994

  5. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle.

    Science.gov (United States)

    Liu, Yulei; Wang, Lu; Wang, Xianshi; Huang, Zhuangsong; Xu, Chengbiao; Yang, Tao; Zhao, Xiaodan; Qi, Jingyao; Ma, Jun

    2017-11-01

    Thallium (Tl) is highly toxic to mammals and relevant pollution cases are increasing world-widely. Convenient and efficient method for the removal of trace Tl from contaminated source water is imperative. Here, the removal of trace Tl by K 2 FeO 4 [Fe(VI)] was investigated for the first time, with the exploration of reaction mechanisms. Six different types of water treatment agents (powdered activated carbon, Al 2 (SO 4 ) 3 , FeCl 3 , δ-MnO 2 , MnO 2 nano-particles, and K 2 FeO 4 ) were used for the removal of Tl in spiked river water, and K 2 FeO 4 showed excellent removal performance. Over 92% of Tl (1 μg/L) was removed within 5 min by applying 2.5 mg/L of K 2 FeO 4 (pH 7.0, 20 °C). XPS analysis revealed that in the reaction of Tl(I) with K 2 FeO 4 , Tl(I) was oxidized to Tl(III), and removed by the K 2 FeO 4 reduced ferric particles. The removal of Tl by in situ formed and ex situ formed ferric particle was examined respectively, and the results revealed that the removal of trace Tl could be attributed to the combination of adsorption and coprecipitation processes. The hydrodynamic size of the reduced particle from K 2 FeO 4 ranged from 10 nm to 100 nm, and its surface was negatively charged under neutral pH condition. These factors were conducive for the efficient removal of Tl by K 2 FeO 4 . The effects of solution pH, coexisting ions (Na + , Ca 2+ , and HCO 3 - ), humic acid, solution temperature, and reductive environment on the removal and desorption of Tl were investigated, and the elimination of Tl in polluted river water and reservoir water was performed. These results suggest that K 2 FeO 4 could be an efficient and convenient agent on trace Tl removal. Copyright © 2017. Published by Elsevier Ltd.

  6. Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method

    Energy Technology Data Exchange (ETDEWEB)

    Monárrez-Cordero, B.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Leyva-Porras, C.; Pizá-Ruiz, P. [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico)

    2014-02-15

    Highlights: ► Fast and high arsenic removal efficiency, almost 100% in one minute. ► Successful synthesis of high purity magnetite hollow nanoparticles is reported. ► They were synthesized by one step aerosol assisted CVD technique. ► Detailed microstructural characterization by electron microscopy was performed. -- Abstract: New nanotechnology alternatives and methodologies have been developed in order to overcome the limitations of conventional techniques for metal ions removal from water. Currently, the removal of heavy metals requires multiple steps which include the separation and post-treatment of the generated sludge. Usually, this sludge is composed of dangerous environmental pollutants mixed with the material used for removing the metal ion. Thus, the removal of these metals becomes a challenging task. Herein we report the synthesis of magnetite nanoparticles with high specific area by the aerosol assisted chemical vapour deposition method. Deposition temperature were fixed at 450 °C and a mixture of Ar–air were used as a carrier gas, a flow of 1.0 and 0.015 L min{sup −1} were used for Ar and air, respectively. The precursor solution was a dilution of Fe (II) chloride in methanol, with different concentration 0.01, 0.05 and 0.1 mol dm{sup −3}. The crystalline structure of the nanoparticles was characterized by grazing incidence X-ray diffraction. Morphology and microstructure were analyzed by field emission scanning electron microscopy, scanning probe microscopy and transmission electron microscopy. Magnetic properties were evaluated with a vibrating sample magnetometer and specific area was measured by the Brunauer–Emmett–Teller method. To determine the removal efficiency of arsenic ion from water, several tests were carried out at six exposition times 1, 3, 5, 10, 20 and 30 min. Results showed high removal efficiency, more than 99%, in less than 1 min.

  7. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    Science.gov (United States)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  8. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    Science.gov (United States)

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Data on performance of air stripping tower- PAC integrated system for removing of odor, taste, dye and organic materials from drinking water-A case study in Saqqez, Iran

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2018-06-01

    Full Text Available Unpleasant taste or smell are more importantly constituents of drinking-water, lead to complaints from consumers. Dye and organic matter as well change in disinfection practice may generate taste and an odorous compound in treated water. According to low efficiency of conventional methods to remove taste and odor compounds, present study was aimed to evaluate the performance of air stripping tower- Poly Aluminum Chloride (PAC integrated system to remove odor and taste, dye and organic materials from drinking water. Different air to water ratio and PAC doses were used to remove considered parameters in certain condition. The results of this study indicated that the maximum removal efficiency of 86.2, 76.47, 58.46 and 41.27% of taste and odor, dye, COD and TOC were achieved by the air stripping tower- PAC integrated system, respectively. However, the physico-chemical characteristics of water and adsorbent effect on the of substances removal efficiency considerably. It can be stated that the air striping tower - PAC integrated system is able to reduce the odor and taste-causing substances and organic matter to a level which is recommended by the Institute of Standards and Industrial Research of Iran. Keywords: Air stripping tower, PAC, Odor and Taste, Dye, Organic materials, Drinking water, Saqqez city

  10. Mixed Contaminants Removal Efficiency Using Bio-FeS Nanoparticles.

    Science.gov (United States)

    Seo, Hyunhee; Roh, Yul

    2018-02-01

    Advances in nanotechnology has provided diverse industrial applications including an environmental remediation field. In particular, bio-nanotechnology gives extended eco-friendly remediation practice. Among diverse bio-nanoparticles synthesized by microorganisms, the iron based nanoparticles (NPs) are of great interest because of their availability, low cost and toxicity to human health and the environment. In this study, iron based nanoparticles were biologically synthesized and mineralogically identified. Also, the removal efficiency of mixed contaminants, high As(III)-low Cr(VI) and high As(V)-low Cr(VI), using these bio-nanoparticles were conducted. As a result, biologically synthesized NPs were identified as FeS complex and their catalytic capacity showed highly effective to immobilize more than 97% of mixed contaminants by adsorption/mineralization.

  11. Microbial Removal Efficiency of UV in Tehran Shahid Mahallati Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Reza Dabbagh

    2009-03-01

    Full Text Available Shahid Mahallati Wastewater Treatment Plant was selected for installing a UV disinfection unit to investigate its germicidal effect on microbial removal. Low pressure mercury lamps were used to generate germicidal ultraviolet radiation (UV-C. The UV system was operated over a period of 6 months that included both warm and cold seasons. A maximum UV disinfection efficiency of 14.4m3/h was recorded for the system on the basis of design criteria within turbidity ranges of 9 to 32 NTU. The minimum UV dose applied in the UV unit was 40000 µW.s/cm2 and the highest bacterial density in the UV unit influent was 5.6*107. Effluent total coliform or fecal coliform enumeration after exposure to UV ray showed the microbial density decreasing from four logs, or 99.99%, to as high as six logs, or 99.9999% removal efficiency, under different conditions. Effluent microbial densities in terms of total and fecal coliforms were below 1000MPN/100mL and 400MPN/100mL, respectively. These values comply with wastewater discharge or agricultural irrigation standards according to Iran Department of Environment. From our results, it is concluded that UV disinfection may be an effective technique for wastewater disinfection in Iranian wastewater treatment plants.

  12. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  13. Comparative efficiency of final endodontic cleansing procedures in removing a radioactive albumin from root canal systems

    International Nuclear Information System (INIS)

    Cecic, P.A.; Peters, D.D.; Grower, M.F.

    1984-01-01

    Fifty-six teeth were initially instrumented, with the use of seven irrigants or irrigant combinations, and filled with radioactive albumin. The study then showed the relative ability of three final endodontic procedures (copious reirrigation with saline solution, drying with paper points, and reassuring patency of the canal with the final instrument) to remove the albumin. Even after copious irrigation, each additional procedure removed statistically significant amounts of albumin. Alternating an organic solvent and an inorganic solvent did appear to leave the canal system in the optimal condition for final cleansing procedures. The study then correlated the relative efficiency of irrigation alone versus instrumentation plus irrigation in removing the remaining albumin from the canal systems. Reinstrumentation plus copious irrigation removed significantly more albumin than copious irrigation alone

  14. Evaluation of the Efficiency and Effectiveness of Three Minimally Invasive Methods of Caries Removal: An in vitro Study

    OpenAIRE

    Boob, Ankush Ramnarayan; Manjula, M; Reddy, E Rajendra; Srilaxmi, N; Rani, Tabitha

    2014-01-01

    ABSTRACT Background: Many chemomechanical caries removal (CMCR) agents have been introduced and marketed since 1970s, with each new one being better and effective than the previously introduced. Papacarie and Carisolv are new systems in the field of CMCR techniques. These are reportedly minimally invasive methods of removing carious dentin while preserving sound dentin. Aim: To compare the Efficiency (time taken for caries removal) and effectiveness (Knoop hardness number of the remaining den...

  15. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    Science.gov (United States)

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    Science.gov (United States)

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-01-01

    Graphical abstract: Malachite nanoparticles of 100-150 nm, have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate in pH range 4-5. - Abstract: Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  18. Performance of a reactor containing denitrifying immobilized biomass in removing ethanol and aromatic hydrocarbons (BTEX) in a short operating period

    International Nuclear Information System (INIS)

    Gusmao, Valquiria Ribeiro; Chinalia, Fabio Alexandre; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio

    2007-01-01

    A horizontal-flow anaerobic immobilized biomass reactor (HAIB) containing denitrifying biomass was evaluated with respect to its ability to remove, separately and in a short operating period (30 days), organic matter, nitrate, and the hydrocarbons benzene (41.4 mg L -1 ), toluene (27.8 mg L -1 ), ethylbenzene (31.1 mg L -1 ), o-xylene (28.5 mg L -1 ), m-xylene (28.4 mg L -1 ) and p-xylene (32.1 mg L -1 ). The purified culture, which was grown in the presence of the specific hydrocarbon, was used as the source of cells to be immobilized in the polyurethane foam. After 30 days of operation, the foam was removed and a new immobilized biomass was grown in the presence of another hydrocarbon. The average hydrocarbon removal efficiency attained was 97%. The organic matter, especially ethanol, was removed with an average efficiency of 83% at a mean influent concentration of 1185.0 mg L -1 . A concomitant removal of 97% of nitrate was observed for a mean influent concentration of 423.4 mg L -1 . The independent removal of each hydrocarbon demonstrated that these contaminants can be biodegraded separately, without the need for a compound to be the primary substrate for the degradation of another. This study proposes the application of the system for treatment of areas contaminated with these compounds, with substitution and formation of a biofilm in a 30-day period

  19. Removal of residual particulate matter from filter media

    Science.gov (United States)

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  20. Removal of residual particulate matter from filter media

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay C.; Miller, Stanley J.

    2018-01-09

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  1. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Plauborg, Finn; Kristensen, Kristian

    2017-01-01

    while N rate varied from 0 to 180 kg ha−1. Statistical analysis using mixed modelling detected two clear features: Both temperature and N supply were important factors for dry matter production. Higher temperatures were associated with decreased dry matter production mainly through its negative effect...... on radiation use efficiency (RUE) when comparing inter-annual variation in dry matter production. The loss of tuber dry matter was c. 10% per °C, which is higher than estimated in previous studies. Specifically, compared to mean air temperature from end of tuber initiation to maturity, mean air temperature...... from emergence to end of tuber initiation was more important for dry matter production. N supply promoted dry matter production (p

  2. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  3. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  4. Evaluations of Effective Factors on Efficiency Zinc Oxides Nanoparticles in Cadmium Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-09-01

    Results: The results indicated that the adsorption process is affected by different parameters such as initial pollutant concentrations, adsorbent dose, pH, and contact time and Cadmiumremoval efficiency increases with increasing adsorbent dose and reaction time and decreases with increasing initial concentration of Cadmium. Therefore, it is observed that by raising the initial Cadmium concentration, the adsorption rate increases. The maximum efficiency of adsorptionin pH=7amounted to 89.6%. Conclusion: It is concluded that Zinc Oxide nanoparticles have proper efficiency in removal of Cadmium from aqueous solutions and can be used in the treatment of wastewater that contains ion Cadmium. However, its efficiency is deeply dependent on ion strength and the interaction of other metals in wastewater.

  5. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda

    2016-02-01

    This study aims to evaluate the removal efficiency of microbial contaminants from two hospitals on-site Wastewater Treatment Plants (WWTPs) in Saudi Arabia. Hospital wastewaters often go untreated in Saudi Arabia as in many devolving countries, where no specific regulations are imposed regarding hospital wastewater treatment. The current guidelines are placed to ensure a safe treated wastewater quality, however, they do not regulate for pathogenic bacteria and emerging contaminants. Results from this study have detected pathogenic bacterial genera and antibiotic resistant bacteria in the sampled hospitals wastewater. And although the treatment process of one of the hospitals was able to meet current quality guidelines, the other hospital treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive investigation is needed that will facilitate and guide suggestions for more detailed guidelines and monitoring.

  6. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  7. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  8. Evaluation of the Efficiency of a Biofilter System’s Phenol Removal From Wastewater

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-06-01

    Full Text Available Phenol is a toxic hydrocarbon that has been found in the wastewater of several industries, including the petroleum and petrochemical industries. The discharge of untreated wastewater from these industries causes environmental pollution, especially in water. The aim of this study was to evaluate the efficiency of phenol removal from wastewater using a biofiltration system. In this experimental study, a cylindrical plexiglass biofilter reactor with an effective volume of 12 liters was used. A total of 30 pcs of plastic grid discs were placed inside the reactor by plastic pipes to maintain the biofilm media in the reactor. The microorganisms used in this study were obtained from the biological sludge of a municipal wastewater treatment plant. The reproduction and adaptation of the microorganisms to 500 mg/L of phenol lasted three months. The effects of pH, phenol, nitrogen, phosphorus, glucose concentration, and hydraulic retention time on the biofilter system’s performance was evaluated. The results of this study showed that in optimal conditions, this system can reduce the phenol concentration from 500 mg/L to zero within about 4 hr. Maximum efficiency occurred in pH = 7, and the proper COD/N/P ratio was 100/10/2, respectively. In general, this biofilter system is capable of removing 500 mg/L of phenol concentrations and an organic load of 4 - 4.5 kg COD/m3.d within 4 - 5 hr. with high efficiency.

  9. Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide

    Directory of Open Access Journals (Sweden)

    Taleb Khaled A.

    2016-01-01

    Full Text Available A novel adsorbents NC-PEG, obtained by the modification of nanocellulose (NC with PEG-6-arm amino polyethylene glycol (PEG-NH2 via maleic anhydride (MA linker, was used for the removal of Cd2+ and Ni2+ from water. Subsequent precipitation of goethite (FO on NC-PEG produced NC-PEG/FO adsorbent which was used for As(V and As(III removal. In a batch test, the influence of pH, contact time, initial ion concentration and temperature on adsorption efficiency were studied. The maximum adsorption capacities found for Cd2+ and Ni2+, obtained by the use of Langmuir model, were 37.9 and 32.4 mg g−1 at 25 °C, respectively. Also, high As(V and As(III removal capacity of 26.0 and 23.6 mg g-1 were obtained. Thermodynamic parameters indicate endothermic, feasible and spontaneous nature of adsorption process. Kinetic study, i.e. fitting by Weber-Morris model predicted intra-particle diffusion as a rate-controlling step. Multi-cycle reusability of both NC-PEG and NC-PEG/FO, significantly affects the affordability of techno-economic indicators for consideration of their possible application. [Ministry of Education, Science and Technological developments of the Republic of Serbia, Project No. 172013, and University of Defence, Republic of Serbia, project VA-TT/4/16-18

  10. An efficient strategy for enhancing traffic capacity by removing links in scale-free networks

    International Nuclear Information System (INIS)

    Huang, Wei; Chow, Tommy W S

    2010-01-01

    An efficient link-removal strategy, called the variance-of-neighbor-degree-reduction (VNDR) strategy, for enhancing the traffic capacity of scale-free networks is proposed in this paper. The VNDR strategy, which considers the important role of hub nodes, balances the amounts of packets routed from each node to the node's neighbors. Compared against the outcomes of strategies that remove links among hub nodes, our results show that the traffic capacity can be greatly enhanced, especially under the shortest path routing strategy. It is also found that the average transport time is effectively reduced by using the VNDR strategy only under the shortest path routing strategy

  11. Removal of radionuclides from household water

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2007-02-01

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2 - 3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller

  12. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants

    Directory of Open Access Journals (Sweden)

    Seung-Han Hong

    2017-02-01

    Full Text Available This study was conducted to evaluate the ability of plants to purify indoor air by observing the effective reduction rate among pollutant types of particulate matter (PM and volatile organic compounds (VOCs. PM and four types of VOCs were measured in a new building that is less than three years old and under three different conditions: before applying the plant, after applying the plant, and a room without a plant. The removal rate of each pollutant type due to the plant was also compared and analyzed. In the case of indoor PM, the removal effect was negligible because of outdoor influence. However, 9% of benzene, 75% of ethylbenzene, 72% of xylene, 75% of styrene, 50% of formaldehyde, 36% of acetaldehyde, 35% of acrolein with acetone, and 85% of toluene were reduced. The purification of indoor air by natural ventilation is meaningless because the ambient PM concentration has recently been high. However, contamination by gaseous materials such as VOCs can effectively be removed through the application of plants.

  13. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  14. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  15. Investigation of combined coagulation and advanced oxidation process efficiency for the removal of Clarithromycin from wastewater

    Directory of Open Access Journals (Sweden)

    ahmad reza Yazdanbakhsh

    2011-06-01

    Conclusion: In general the results of the performed tests indicated that combined coagulation and advanced oxidation process has high efficiency in removal of Claritromycin wastewater COD. But application this method in the industry should be surveyed.

  16. Nitrogen removal kinetics in the treatment of landfill leachate by SBR systems

    International Nuclear Information System (INIS)

    Andreottola, G.; Foladori, P.; Ragazzi, M.

    1998-01-01

    In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to leachate from an old MSW landfill operating for 7 years. Due to the fact that old leachate is characterized with a high concentration of ammonia (approximately 1500 mgN/1) and low availability of readily biodegradable organic matter (BOD 5 /COD,06), the aim was to examine the nitrogen removal process and to compare the efficiency of one-stage and two stage systems operating at temperature of 20 C and 12 C. The second alternative SBR configuration is based on the coupling of two SBR reactors: the first one specialized in nitrification and the second one in post-denitrification, with external carbon source addition. By the efficient removal of nitrogen, an on-site pretreatment of leachate allows to comply with the limits required for discharging into sewers or into municipal wastewater treatment plant [it

  17. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    Science.gov (United States)

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Optimization of Removal Efficiency and Minimum Contact Time for Cadmium and Zinc Removal onto Iron-modified Zeolite in a Two-stage Batch Sorption Reactor

    Directory of Open Access Journals (Sweden)

    M. Ugrina

    2018-01-01

    Full Text Available In highly congested industrial sites where significant volumes of effluents have to be treated in the minimum contact time, the application of a multi-stage batch reactor is suggested. To achieve better balance between capacity utilization and cost efficiency in design optimization, a two-stage batch reactor is usually the optimal solution. Thus, in this paper, a two-stage batch sorption design approach was applied to the experimental data of cadmium and zinc uptake onto iron-modified zeolite. The optimization approach involves the application of the Vermeulen’s approximation model and mass balance equation to kinetic data. A design analysis method was developed to optimize the removal efficiency and minimum total contact time by combining the time required in the two-stages, in order to achieve the maximum percentage of cadmium and zinc removal using a fixed mass of zeolite. The benefits and limitations of the two-stage design approach have been investigated and discussed

  19. Particle Removal Efficiency of the Portable HEPA Air Cleaner in a Simulated Hospital Ward

    DEFF Research Database (Denmark)

    Qian, Hua; Li, Yuguo; Sun, Hequan

    2010-01-01

    of beds in an isolation ward is insufficient. An experiment was conducted in a full scale experimental ward with a dimension of 6.7 m × 6 m × 2.7 m and 6 beds to test these hypotheses for a portable HEPA filter. The removal efficiency for different size particles was measured at different locations...

  20. Comparison of the Efficiency of Simultaneous Application of UV/O3 for the Removal of Organophosphorus and Carbamat Pesticides in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2010-03-01

    Full Text Available A vast variety of pesticides are used for agricultural pests in Iran. The release of these persistent organic pollutants. into water supplies leaves adverse effects on both the environment and public health. Advanced oxidation processes have been used recently for pesticide removal. In this research, the combined UV/O3 process has been investigated for the removal of organophosphorus pesticides (Diazinon, Chlorpyrifos, Carbamate pesticides (carbaryl. In this survey, samples have been prepared by adding given concentration (1, 5, 10, 15, 20 mg/L of the pesticides to deionized water. The samples at separation periods were exposed to the combined UV/O3 (UV=50-200 Wm-2 and O3 = 1g hr-1in a bath  reactor at different pH levels (6, 7, 9 and for different contact times (0.5,1,1.5,2 hr and the removal efficiencies were determined. Residual concentrations were determined using GC/MS/MS and HPLC.  Based on the results, increasing pH reduced pesticide concentration and increased contact time had a direct effect on enhancing removal efficiency. The combined UV/O3 process was found to have a high efficiency (>80% in degrading both halogenated Organophosphorus(Chlorpyrifos and non- halogenated Organophosphorus (Diazinon pesticides. Its removal efficiency for degrading carbamate pesticide (Carbari was found to be >90%. Based on our results, this method may be suggested for the removal of pesticides from aqueous solutions.

  1. A novel, efficient and facile method for the template removal from mesoporous materials

    KAUST Repository

    Chen, Lu

    2014-11-12

    © 2014, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH. A new catalytic-oxidation method was adopted to remove the templates from SBA-15 and MCM-41 mesoporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template’s property and textural property. The samples were characterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectroscopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.

  2. Removal of radionuclides from household water

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2003-10-01

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2-3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller particles

  3. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Scheideler, Jens; Mielcke, Jörg; Ried, Achim; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2017-07-01

    Natural organic matter in drinking water is causing concern especially due to the formation of disinfection by-products (DBPs) by chlorine, as these are proven to have adverse health effects on consumers. In this research, humic acid was used as a source of dissolved organic carbon (DOC) in drinking water (up to 3mgL -1 ). The efficiency of DOC removal was studied by applying O 3 , H 2 O 2 /O 3 , H 2 O 2 /UV and O 3 /UV advanced oxidation processes (AOPs) alone and combined with hybrid hydrodynamic cavitation (HC), generated by an orifice plate, as this technology recently shows promising potential for the treatment of water, containing recalcitrant organic substances. It was observed that the combined treatment by HC could significantly affect the performance of the applied AOPs, with as little as 3-9 passes through the cavitation generators. For O 3 and H 2 O 2 dosages up to 2 and 4mgL -1 , respectively, and UV dosage up to 300mJcm -2 , HC enhanced DOC removal by 5-15% in all combinations, except for O 3 /UV AOPs. Overall, the potential benefits of HC for DOC removal were emphasized for low ratio between applied oxidants to DOC and high UV absorbance of the sample. Investigated DBPs formation potentials require special attention for H 2 O 2 /UV AOPs and combinations with HC. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of Selective Edge Removal and Refractory Period in a Self-Organized Critical Neuron Model

    International Nuclear Information System (INIS)

    Lin Min; Gang, Zhao; Chen Tianlun

    2009-01-01

    A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system. (condensed matter: structural, mechanical, and thermal properties)

  5. The application of polyelectrolytes to improve liquid radwaste treatment system radionuclide removal efficiency

    International Nuclear Information System (INIS)

    Homyk, W.A.; Spall, M.J.; Vance, J.N.

    1990-01-01

    At nuclear plants, miscellaneous waste water treated in the liquid radwaste processing system contains a significant fraction of suspended particulate materials ranging in size from a few microns down to the submicron region. The fewer particles that typically exist as colloids are generally negatively charged by virtue of inorganic and organic anions absorbed onto the particle surfaces. Because many of the radionuclides exist as colloids and resist agglomeration and settling they are not easily removed by mechanical filtration or ion exchange processes. The colloidal materials will easily pass through most filters with conventional pore size ratings and through most ion exchange media. This leads to poor decontamination Factors (dFs) and higher radionuclide releases to the environment. A laboratory-scale testing program was conducted at Indian Point Unit No. 2 to determine the effectiveness of the use of organic polyelectrolytes to destabilize colloidal suspensions in liquid radwaste. Destabilizing colloidal suspensions will improve the removal efficiencies of the suspended material by typical filtration and ion exchange processes. The increased removal efficiencies will provide increased dFs in the liquid radwaste treatment system. The testing focused on identifying the specific organic polyelectrolytes and the associated dosages which would be effective in destabilizing the colloidal suspensions on actual waste water samples. The testing also examined the filtration characteristics of the water source to determine filter parameters such as: body feed material, body feed dosages, specific flow rates, etc., which would provide the basis for the design of filtration systems for these applications. The testing effort and the major conclusions from this investigation are given. 4 refs., 8 figs., 2 tabs

  6. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma

    International Nuclear Information System (INIS)

    Ye Dan; Gao Dengshan; Yu Gang; Shen Xianglin; Gu Fan

    2005-01-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 μm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions

  7. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    Science.gov (United States)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  8. Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Li; Ning Liu; Fei-Ze Li; Jia-Li Liao; Ji-Jun Yang; Bing Li; Yun-Ming Chen; Yuan-You Yang; Jin-Song Zhang; Jun Tang

    2016-01-01

    In this paper, a novel material for Co(II) adsorption, titanate sodium nanotubes (Na2Ti2O5-NTs) were synthesized and characterized, and then they were used to remove Co(II) from aqueous solution and compared with titanic acid nanotubes (H2Ti2O5-NTs) and potassium hexatitanate whiskers (K2Ti6O13). The results showed that the adsorption of Co(II) on the materials was dependent on pH values and was a spontaneous, endothermic process. Specifically, Na2Ti2O5-NTs exhibited much more efficient ability to adsorb Co(II) from aqueous solution, with the maximum adsorption capacity of 85.25 mg/g. Furthermore, Na2Ti2O5-NTs could selectively adsorb Co(II) from aque-ous solution containing coexisting ions (Na+, K+, Mg2+, and Ca2+). The results suggested that Na2Ti2O5-NTs were potential effective adsorbents for removal of Co(II) or cobalt-60 from wastewater.

  9. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  10. Removal efficiency of radioactive cesium and iodine ions by a flow-type apparatus designed for electrochemically reduced water production.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available The Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 attracted people's attention, with anxiety over possible radiation hazards. Immediate and long-term concerns are around protection from external and internal exposure by the liberated radionuclides. In particular, residents living in the affected regions are most concerned about ingesting contaminated foodstuffs, including drinking water. Efficient removal of radionuclides from rainwater and drinking water has been reported using several pot-type filtration devices. A currently used flow-type test apparatus is expected to simultaneously provide radionuclide elimination prior to ingestion and protection from internal exposure by accidental ingestion of radionuclides through the use of a micro-carbon carboxymethyl cartridge unit and an electrochemically reduced water production unit, respectively. However, the removability of radionuclides from contaminated tap water has not been tested to date. Thus, the current research was undertaken to assess the capability of the apparatus to remove radionuclides from artificially contaminated tap water. The results presented here demonstrate that the apparatus can reduce radioactivity levels to below the detection limit in applied tap water containing either 300 Bq/kg of 137Cs or 150 Bq/kg of 125I. The apparatus had a removal efficiency of over 90% for all concentration ranges of radio-cesium and -iodine tested. The results showing efficient radionuclide removability, together with previous studies on molecular hydrogen and platinum nanoparticles as reactive oxygen species scavengers, strongly suggest that the test apparatus has the potential to offer maximum safety against radionuclide-contaminated foodstuffs, including drinking water.

  11. EFFICIENCY OF THE EARTHWORM Eisenia fetida UNDER THE EFFECT OF ORGANIC MATTER FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH CADMIUM AND CHROMIUM

    Directory of Open Access Journals (Sweden)

    G. R. Mostafaii

    Full Text Available Abstract The use of earthworms to bioremediate soil results in decreasing the pollutant concentration through a bioaccumulation mechanism of the contaminants in the earthworm's body. The present work is an empirical study that was carried out on soils contaminated with chromium and cadmium. Organic matter in the amount of 5% and 9% of soil weight was added. Chromium and cadmium concentrations in soil and in the body of worms were measured at two time periods of 21 and 42 days. According to the results, increasing from 5% to 9% the organic material of the soil contaminated with chromium at the initial concentration of 0.06 mg/g, the removal efficiency decreased by 5%. In 0.1 mg/g concentration the bioremediation efficiency decreased by 20%, showing that the earthworms probably have more tendency to consume the organic material and low tendency for consuming the soil contaminated by metal. Results showed that, considering the increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using this method is not recommended. For cadmium we require more study, though we can say that the organic material had no influence on the bioremediation of the soil.

  12. Removal Efficiency of Linear Alkyl Benzene Sulfonate (LAS in Yazd Stabilization Pond

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-01-01

    Full Text Available Surfactants are organic chemicals with wide applications as detergents. Linear alkyl benzene sulfonate (LAS is an anionic surfactant most commonly used. Discharge of raw or treated wastewater containing this chemical into the environment causes major public health problems. In this study, 64 samples were taken from the effluent of Yazd Wastewater  Treatment Plant over a period of one year. The samples were analyzed according to standard methods. The results obtained from the samples taken in different seasons showed that the highest efficiency of anionic surfactant removal was achieved in the summer in the secondary facultative stabilization pond. The least efficiency was observed in the autumn in samples from the anaerobic stabilization pond. It was also found that treated wastewater discharged into surface waters, reused for agricultural irrigation, or discharged into absorbent wells had significant differences with Pvalue

  13. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell.

    Science.gov (United States)

    Ghosh Ray, S; Ghangrekar, M M

    2015-01-01

    For enhancing organic matter removal from cereal-based distillery stillage two-stage treatment consisting of fermentation by Aspergillus awamori followed by microbial fuel cell (MFC) is proposed. Considerable reduction in total and soluble chemical oxygen demand (COD) up to 70% and 40%, respectively, along with 98% reduction of suspended solids (SS) has been achieved during fungal pretreatment. The process generated chitosan, a useful fermentation byproduct from fungal mycelia, as 0.6-0.7g/l of settled sludge with mycelium (3.8% solids). Prior treatment of wastewater with fungal strain enhanced the power generation in MFC by 2.9 times at an organic loading rate of 1.5kgCOD/m(3)day, demonstrating soluble COD reduction of 92% in MFC. While treating distillery wastewater, this two-stage integrated biological process demonstrated overall 99% COD removal and almost complete removal of SS, delivering ample scope for scale-up and industrial application to offer effective solution for distillery wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  15. Reuse of sewage sludge as a catalyst in ozonation – Efficiency for the removal of oxalic acid and the control of bromate formation

    International Nuclear Information System (INIS)

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-01-01

    Highlights: ► Sewage sludge was converted into catalyst (SBC) and characterized. ► SBC can enhance oxalic acid degradation in ozonation. ► Surface reaction mechanism is responsible for enhancement of ozonation by SBC. ► SBC can control the formation of bromate in ozonation. ► Several combined reasons for the control of bromate formation are proposed. - Abstract: Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl 2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO 3 − ) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO 3 − formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO 3 − formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO 3 − formation was demonstrated and the reason for its control in the process of O 3 /SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase.

  16. Nutrient Removal Efficiency of Rhizophora mangle (L. Seedlings Exposed to Experimental Dumping of Municipal Waters

    Directory of Open Access Journals (Sweden)

    Claudia Maricusa Agraz-Hernández

    2018-03-01

    Full Text Available Mangrove forests are conspicuous components of tropical wetlands that sustain continuous exposure to wastewater discharges commonly of municipal origins. Mangroves can remove nutrients from these waters to fulfill their nutrients demand, although the effects of continuous exposure are unknown. An experimental greenhouse imitating tidal regimes was built to measure the efficiency of mangrove seedlings to incorporate nutrients, growth and above biomass production when exposed to three periodic wastewater discharges. The experiment totaled 112 d. Nutrient removal by the exposed group, such as phosphates, ammonia, nitrites, nitrates and dissolved inorganic nitrogen (97%, 98.35%, 71.05%, 56.57% and 64.36%, respectively was evident up to the second dumping. By the third dumping, all nutrient concentrations increased in the interstitial water, although significant evidence of removal by the plants was not obtained (p > 0.05. Nutrient concentrations in the control group did not change significantly throughout the experiment (p > 0.05. Treated plants increased two-fold in stem girth when compared to the control (p < 0.05, although control plants averaged higher heights (p < 0.05. Biomass of treated group increased up to 45% against 37% of the control during the duration of the experiment (p < 0.05. We suggest that nutrient removal efficiency of mangroves is linked to the maintenance of oxic conditions in the pore-water because of oxygen transference from their aerial to their subterranean radicular system that facilitates the oxidation of reduced nitrogen compounds and plants uptake. Nevertheless, continuous inflows of wastewater would lead to eutrophication, establishment of anoxic conditions in water and soil, and lessening of nutrient absorption of mangroves.

  17. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  18. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  19. Efficiency of Tea Disposal from Cafeteria for Removal Nickel ion from Contaminated Groundwater

    Directory of Open Access Journals (Sweden)

    Rusul Nasser Mohammed

    2017-07-01

    Full Text Available This work aims to study the removal of Nickel from ground water using low cost adsorbent tea waste from cafeteria. The total adsorbed amounts, equilibrium uptakes and overall removal efficiency of Nickel were determined by investigating the breakthrough curve obtained at different inlet Nickel concentrations, various pH value, gain size of waste tea and bed height. Decrease in the grain size of adsorbent tea from 0.3 to 0.05 cm resulted in essential increase in the removal rate and total adsorbed amounts while increasing the bed depth leads the increase of bed capability and the breakthrough period. The experimental data were calibrated using three isotherm models, Dubinin- Radushkevich (DRM Langmuir (LM , Freundlich (FM where the experimental data is well fitted to the Langmuir (LM. Experimental and theoretical breakthrough study showed that the prolonged breakthrough period and maximum capability of nickel is achieved at pH of 3, 125 mg/L of inlet concentration and 0.5 m of bed depth. As a final engineering observation, waste tea from cafeteria is a good and low-cost material that can absorb nickel from groundwater.

  20. Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hai-Rong [School of Chemical Engineering, Sichuan University, No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan, 610065 (China); College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, No. 16, Southern 4 Section, Yihuan Road, Chengdu, Sichuan, 610041 (China); Hu, Jia-Qi [School of Chemical Engineering, Sichuan University, No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan, 610065 (China); Liu, Zhuang, E-mail: liuz@scu.edu.cn [School of Chemical Engineering, Sichuan University, No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan, 610065 (China); Ju, Xiao-Jie; Xie, Rui; Wang, Wei [School of Chemical Engineering, Sichuan University, No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan, 610065 (China); State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Chu, Liang-Yin, E-mail: chuly@scu.edu.cn [School of Chemical Engineering, Sichuan University, No. 24, Southern 1 Section, Yihuan Road, Chengdu, Sichuan, 610065 (China); State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu 211816 (China)

    2017-02-05

    Highlights: • An easy-to-get and low-cost Cs{sup +}-recognizable polymeric hydrogel has been developed. • The hydrogel displays rapid and selective adsorption towards Cs{sup +}. • Synergistic effect of AAc units and Cs{sup +}(B18C6){sub 2} host-guest complexes is good for adsorption. • The hydrogel shows great potential for decontamination of Cs{sup +} from radioactive contaminants. - Abstract: At present, selective and efficient removal of cesium ions (Cs{sup +}) from nuclear waste is of significant importance but still challenging. In this study, an easy-to-get and low-cost hydrogel adsorbent has been developed for effective adsorption and removal of Cs{sup +} from aqueous environment. The novel Cs{sup +}-recognizable poly(acrylic acid-co-benzo-18-crown-6-acrylamide) (poly(AAc-co-B18C6Am)) hydrogel is specifically designed with a synergistic effect, in which the AAc units are designed to attract Cs{sup +} via electrostatic attraction and the B18C6Am units are designed to capture the attracted Cs{sup +} by forming stable 2:1 “sandwich” complexes. The poly(AAc-co-B18C6Am) hydrogels are simply synthesized by thermally initiated free-radical copolymerization and display excellent Cs{sup +} adsorption from commonly coexisting metal ions. Important parameters affecting the adsorption are investigated comprehensively, and the adsorption kinetics and adsorption isotherms are also discussed systematically. The poly(AAc-co-B18C6Am) hydrogels exhibit rapid Cs{sup +} adsorption within 30 min and the adsorption process is governed by the pseudo-second order model. Adsorption isotherm results demonstrate that the equilibrium data are well fitted by the Langmuir isotherm model, indicating that the Cs{sup +} adsorption is probably a monolayer adsorption process. Such Cs{sup +}-recognizable hydrogel materials based on the host-guest complexation are promising as efficient and feasible candidates for adsorption and removal of radioactive Cs{sup +} from nuclear

  1. Efficiency of final irrigation of root canal in removal of smear layer

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2009-01-01

    Full Text Available Introduction A smear layer forms on the root canal walls as the consequence of root instrumentation. The smear layer formed in such a way considerably influences the quality of root obturation and endodontic treatment outcome. Objective The aim of this study was to ultrastructurally analyze the surface of intracanal dentine after removal of the smear layer by the solution of doxycycline, citric acid and detergent Tween-80 (MTAD. Methods The study involved 60 single-rooted, extracted, human teeth divided into four groups. All samples were instrumented by a step-back technique and manual K-files, and rinsed during instrumentation by 2% CHX and H2O2. The first group of samples was exclusively rinsed by CHX and H2O2; in the second group, besides using CHX and H2O2, MTAD solution was used for the final irrigation. The samples which were rinsed by distilled water (+ control and the samples rinsed by 5.25% NaOCl and 17% Na EDTA (-control served as control groups. All samples were observed under the scanning electronic microscope JEOL-JSM-5300. The coronary, middle and apex thirds of the radix region were analyzed. Results The obtained results of the SEM analysis showed that the application of 2% chlorhexidine and hydrogen peroxide did not give clear dentine walls, and the smear layer could not be removed completely. The application of the same combination (CHX and H2O2, added by the final MTAD irrigation solution, led to the efficient removal of the smear layer, while the morphological structure of dentine surface remained unchanged. Statistical analysis showed that canal walls in the experimental group with MTAD as the final irrigation were significantly clearer compared to the control group (p<0.001. Conclusion Based on the obtained results, it can be concluded that MTAD is an efficient solution for the final irrigation of the canal system.

  2. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse.

    Science.gov (United States)

    Souza, Bianca M; Souza, Bruno S; Guimarães, Tarsila M; Ribeiro, Thiago F S; Cerqueira, Ana C; Sant'Anna, Geraldo L; Dezotti, Márcia

    2016-11-01

    This paper comes out from the need to provide an improvement in the current oil refinery wastewater treatment plant (WWTP) aiming to generate water for reuse. The wastewater was pretreated and collected in the WWTP after the biological treatment unit (bio-disks) followed by sand filtration. Ozonation (ozone concentration from 3.0-60 mgO 3  L -1 ), UV (power lamp from 15 to 95 W), H 2 O 2 (carbon:H 2 O 2 molar ratio of 1:1, 1:2, and 1:4), and two advanced oxidation processes (UV/O 3 and UV/H 2 O 2 ) were investigated aiming to reduce the wastewater organic matter and generate water with suitable characteristics for the reverse osmosis operation and subsequent industrial reuse. Even after the biological and filtration treatments, the oil refinery wastewater still presented an appreciable amount of recalcitrant organic matter (TOC of 12-19 mgC L -1 ) and silt density index (SDI) higher than 4, which is considered high for subsequent reverse osmosis due to membrane fouling risks. Experiments using non combined processes (O 3 , H 2 O 2 , and UV only) showed a low degree of mineralization after 60 min of reaction, although the pretreatment with ozone had promoted the oxidation of aromatic compounds originally found in the real matrix, which suggests the formation of recalcitrant compounds. When the combined processes were applied, a considerable increase in the TOC removal was observed (max of 95 % for UV/O 3 process, 55 W, 60 mgO 3  L -1 ), likely due the presence of higher amounts of reactive species, specially hydroxyl radicals, confirming the important role of these species on the photochemical degradation of the wastewater compounds. A zero-order kinetic model was fitted to the experimental data and the rate constant values (k, mgC L -1  h -1 ) ranged from 4.8 < k UV/O3  < 11 ([O 3 ] 0  = 30-60 mg L -1 ), and 8.6 < k UV/H2O2  < 11 (C:H 2 O 2 from 1:1 to 1:4). The minimum and maximum electrical energy per order (E EO ) required for 60 min of

  3. High-efficiency SO{sub 2} removal in utility FGD systems

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.L.; Gray, S.; Dekraker, D. [Radian Corporation, Austin, TX (United States)] [and others

    1995-11-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO{sub 2}) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company`s Big Bend Station; cocurrent, packed absorbers at Hoosier Energy`s Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company`s Pirkey Station; horizontal spray absorbers at PSI Energy`s Gibson Station; venturi scrubbers at Duquesne Light`s Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations`s (NYSEG`s) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO{sub 2} removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO{sub 2} removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994.

  4. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Efficiency of Acacia Tortillis Plant Pod Shell as a Low Cost and Available Adsorbent for the Removal of Phenol

    Directory of Open Access Journals (Sweden)

    Hossien JafariMansoorian

    2015-05-01

    Full Text Available The presence of nondegradable toxic compounds such as phenol in the environment has nowadays led to many health and environmental problems. The present empirical study was conducted on the lab scale to evaluate the efficiency of Acacia tortillis pod shell as a new alternative and low cost adsorbent for removing phenol from aqueous solutions. The experiment was performed in a batch system and the effects of important operation variables including initial phenol concentrations of 0.5, 1, 2, 4, 8, 16, 32, and 64 mg/l, absorbent doses of 0.1, 0.2, 0.4, 0.8, and 1.6g/l in predetermined mesh sizes (ranging over 30-60 and 60-100, pH levels of 2, 4, 6, 8, 10, and 12, and contact times of 10, 20, 30, 40, 50, and 60 min were evaluated. Finally, the Freundlich and Langmuir adsorption isotherms were determined in order to describe the relationship between the colored solution and the absorbent. Results showed that the highest phenol absorption efficiency achieved was above 95% which was obtained with an optimum pH level of 2, an optimum absorbent dose of 0.2 g/l, and a mesh size of 60-100 for a contact time of 10 minutes and at a low pollutant concentration. Increasing phenol concentration increased its removal efficiency but this removal rate was lower at extreme concentrations. Also, the adsorption process was found to be more compatible with the Freundlich model. Based on the results obtained, the pod shells of Acacia tortillis pod shell may be claimed to be an effective, efficient, and cheap absorbent for the removal of phenol from aqueous solutions.

  6. Using reverse osmosis to remove natural organic matter from power plant makeup water

    International Nuclear Information System (INIS)

    Mattaraj, S.; Kilduff, J.E.

    2003-01-01

    A field-scale reverse osmosis (RO) system was used to remove salts and natural organic matter (NOM) from a surface water source. The RO membrane exhibited an NOM solution hydraulic permeability of 8.33 x 10 -9 m x s -1 x kPa -1 , about 6% less than the clean water value, over pressures ranging from 414 to 1 000 kPa (60 to 145 psi). The rejection of salt and NOM were greater than 98% and 99%, respectively. Under controlled laboratory conditions, greater than 99% mass recovery of NOM could be obtained. A small fraction of NOM was not recovered using hydrodynamic cleaning but could be recovered with chemical cleaning (NaOH wash solution). The mass recovered in the NaOH solution increased from 6% with increasing transmembrane pressures from 414 kPa to 1 000 kPa, respectively. This is consistent with fouling that results from an increase in solution flux, and a concomitant decrease in tangential crossflow velocity. (orig.)

  7. Energy efficient SO2 removal from flue gases using the method Wellman-Lord

    International Nuclear Information System (INIS)

    Dzhonova-Atanasova, D.; Razkazova-Velkova, E.; Ljutzkanov, L.; Kolev, N.; Kolev, D.

    2013-01-01

    Full text: Investigations on development of energy efficient technology for SO 2 removal from flue gases of combustion systems by using the method Wellman-Lord are presented. It is characterized by absorption of sulfur dioxide with sodium sulfite solution, which reacts to form sodium bisulfite. The absorber is a packed column with multiple stages. After evaporation of the solution, SO 2 and sodium sulfite are obtained. The latter is dissolved in water from condensation of the steam carrying SO 2 from the evaporator. The regenerated solution returns in the absorber. The SO 2 removed from the flue gases is obtained as a pure product for use in chemical, food or wine production. The data discussed in the literature sources on flue gas desulfurization demonstrate the predominance of the methods with lime or limestone as absorbent, due to higher capital investments associated with the method of Wellman-Lord. A technological and economical evaluation of this regenerative method is presented in comparison to the non-regenerative gypsum method, using data from the existing sources and our own experience from the development of an innovative gypsum technology. Three solutions are discussed for significant enhancement of the method efficiency on the basis of a considerable increasing of the SO 2 concentration in the saturated absorbent. The improved method uses about 40% less heat for absorbent regeneration, in comparison to the existing applications of the method Wellman-Lord, and gives in addition the possibility to regenerate 95% of the consumed heat for heating water streams to about 90°C. Moreover, the incorporation in the installation of our system with contact economizers of second generation, already in industrial application, enables utilization of the waste heat of the flue gases for district heating. The employment of this system also leads to significant decreasing of the NO x emissions. key words: SO 2 removal, flue gases, absorption

  8. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  9. Efficiency of removal of bod5 and ss in sedimentation tanks and filters in wastewater treatment systems for coffee bean (Coffea arabica processing

    Directory of Open Access Journals (Sweden)

    Nelson Gutiérrez Guzmán

    2014-12-01

    Full Text Available n order to evaluate the current operating conditions of wastewater treatment systems of small scale coffee growers in the south of Huila a lab-scale prototype (S 1:25 was constructed. It was composed of both a sediment tank and a filter fit in series, simulating similar operating conditions used by coffee producers. Removal of biological oxygen demand (BOD5 and suspended solids (SS was performed in wastewater from coffee bean processing. A 23 factorial experimental design for the evaluation of the type of sedimentation tank, type of filter and hydraulic retention time (HRT in the sedimentation tank was employed. The results showed high removal efficiencies of suspended solid concentrations (more than 95%, and low removal efficiencies in BOD5 (about 20%. The combination of tank type 1 (square with a lower area, filter type 1 (upflow anaerobic filter – UAF and HRT of 30 hours had the highest removal efficiency.

  10. Electro-remediation of copper mine tailings. Comparing copper removal efficiencies for two tailings of different age

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Lamas, Victor; Gutierrez, Claudia

    2013-01-01

    This work compares and evaluates the copper removal efficiency when applying electric fields to two mine tailings originating from the same mine but of different age. Eight experiments were carried out - four on tailings deposited more than 20 years ago (old tailings) and four on tailings deposit...

  11. A Survey on the Removal Efficiency of Fat, Oil and Grease in Shiraz Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Dehghani

    2014-12-01

    Full Text Available Background Fat, oil and grease (FOG in municipal wastewater treatment plant (MWWTP caused many problems. Objectives This study aimed to determine the removal efficiency of FOG in Shiraz MWWTP. Materials and Methods The removal efficiencies of FOG in the MWWTP were studied from June 2011 to September 2011 in Shiraz (Iran. The influent and effluent wastewater samples were collected in a volume of one liter (4 samples per week and analyzed according to the standard methods. Samples are transferred to the laboratory immediately. The concentration of FOG was determined using the solvent extraction and separating funnel and then compared with the effluent standards. To analyze the data, SPSS (version 11.5, Chi-square test and t test were used. Results The results showed that the FOG amount in input raw sewage in the MWWTP from June 2011 to September 2011 was around 25.5 mg/L and the amount in treated wastewater was about 8.1 mg/L. The FOG removal efficiency in this refinery was about 70% and met the environmental standards for the discharge (less than 10 mg/L (P < 0.05. Conclusions The effluent can be discharged to surface waters or used for irrigation. In order to the FOG concentration met the effluent standards, it is very crucial to control the entrance of industrial wastewater to the municipal wastewater collection networks. Otherwise, the MWWTP should be upgraded and the special techniques used to reduce FOG.

  12. Removal of steroid estrogens from wastewater using granular activated carbon: comparison between virgin and reactivated carbon.

    Science.gov (United States)

    Rowsell, Victoria Francesca; Pang, Dawn Sok Cheng; Tsafou, Foteini; Voulvoulis, Nikolaos

    2009-04-01

    This research was set up in response to new European legislation to identify cost-effective treatment for removal of steroid estrogens from effluent. This study aimed to compare estrogen removal of two types of granular activated carbon: virgin (F400) and reactivated (C401) carbon. Rapid, small-scale column tests were conducted with a total bed volume of 24.9 cm3 over three columns, and analysis was carried out using high-performance liquid chromatography. Results demonstrated that C401 performed more efficiently with greater than or equal to 81% estrogen removal in wastewater compared to F400 which produced greater than or equal to 65% estrogen removal. Estrogen removal can be affected by competitive adsorption from natural organic matter present in wastewater. In addition, the physical properties of each carbon had the potential to influence adsorption differently, thus resulting in the observed varied adsorption capability of the two carbons.

  13. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    Science.gov (United States)

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight 1x 10(3) were the main remained substances in the effluent.

  14. Efficiency of Oil Removal from Real Storm Water With Different Sorbents

    Directory of Open Access Journals (Sweden)

    Aušra Mažeikienė

    2011-12-01

    Full Text Available Suspended solids and oil products are considered as the most important pollutants in storm water. Surface water flow and changes in pollutant concentration complicate conventional matching techniques and prolong the duration of technological processes; therefore, a comprehensive study on this area is necessary. For this reason, the research and analysis of three different sorbents (“FIBROIL®”, “Duck”, “Reo-dry” were performed in the laboratory. According to the results of the conducted experiment, all three sorbents have similar treatment efficiency: “FIBROIL®” – 99%, “Reo-dry” – 95%, “Duck” – 98%. Filtering rate had an influence on the effectiveness of removing petrol products (slower speed increases effectiveness.Article in Lithuanian

  15. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  16. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  17. Removal of COD from laundry wastewater by electrocoagulation/electroflotation

    International Nuclear Information System (INIS)

    Wang, C.-T.; Chou, W.-L.; Kuo, Y.-M.

    2009-01-01

    The removal efficiency of COD in the treatment of simulated laundry wastewater using electrocoagulation/electroflotation technology is described. The experimental results showed that the removal efficiency was better, reaching to about 62%, when applying ultrasound to the electrocoagulation cell. The solution pH approached neutrality in all experimental runs. The optimal removal efficiency of COD was obtained by using the applied voltage of 5 V when considering the energy efficiency and the acceptable removal efficiency simultaneously. The Cl - concentration of less than 2500 ppm had a positive effect on the removal efficiency. The performance of the monopolar connection of electrodes was better than that of the bipolar connection in this work. In addition, the removal efficiency of using Al electrodes was higher in comparison with using Fe electrodes in the study. The highest COD removal amount per joule was found to be 999 mg dm -3 kW h -1 while using two Al electrodes, although the removal efficiency increased with the number of Al plates

  18. Computed tomography assessment of the efficiency of different techniques for removal of root canal filling material

    International Nuclear Information System (INIS)

    Dall'agnol, Cristina; Barletta, Fernando Branco; Hartmann, Mateus Silveira Martins

    2008-01-01

    This study evaluated the efficiency of different techniques for removal of filling material from root canals, using computed tomography (CT). Sixty mesial roots from extracted human mandibular molars were used. Root canals were filled and, after 6 months, the teeth were randomly assigned to 3 groups, according to the root-filling removal technique: Group A - hand instrumentation with K-type files; Group B - reciprocating instrumentation with engine-driven K-type files; and Group C rotary instrumentation with engine-driven ProTaper system. CT scans were used to assess the volume of filling material inside the root canals before and after the removal procedure. In both moments, the area of filling material was outlined by an experienced radiologist and the volume of filling material was automatically calculated by the CT software program. Based on the volume of initial and residual filling material of each specimen, the percentage of filling material removed from the root canals by the different techniques was calculated. Data were analyzed statistically by ANOVA and chi-square test for linear trend (α=0.05). No statistically significant difference (p=0.36) was found among the groups regarding the percent means of removed filling material. The analysis of the association between the percentage of filling material removal (high or low) and the proposed techniques by chi-square test showed statistically significant difference (p=0.015), as most cases in group B (reciprocating technique) presented less than 50% of filling material removed (low percent removal). In conclusion, none of the techniques evaluated in this study was effective in providing complete removal of filling material from the root canals. (author)

  19. Computed tomography assessment of the efficiency of different techniques for removal of root canal filling material

    Energy Technology Data Exchange (ETDEWEB)

    Dall' agnol, Cristina; Barletta, Fernando Branco [Lutheran University of Brazil, Canoas, RS (Brazil). Dental School. Dept. of Dentistry and Endodontics]. E-mail: fbarletta@terra.com.br; Hartmann, Mateus Silveira Martins [Uninga Dental School, Passo Fundo, RS (Brazil). Postgraduate Program in Dentistry

    2008-07-01

    This study evaluated the efficiency of different techniques for removal of filling material from root canals, using computed tomography (CT). Sixty mesial roots from extracted human mandibular molars were used. Root canals were filled and, after 6 months, the teeth were randomly assigned to 3 groups, according to the root-filling removal technique: Group A - hand instrumentation with K-type files; Group B - reciprocating instrumentation with engine-driven K-type files; and Group C rotary instrumentation with engine-driven ProTaper system. CT scans were used to assess the volume of filling material inside the root canals before and after the removal procedure. In both moments, the area of filling material was outlined by an experienced radiologist and the volume of filling material was automatically calculated by the CT software program. Based on the volume of initial and residual filling material of each specimen, the percentage of filling material removed from the root canals by the different techniques was calculated. Data were analyzed statistically by ANOVA and chi-square test for linear trend ({alpha}=0.05). No statistically significant difference (p=0.36) was found among the groups regarding the percent means of removed filling material. The analysis of the association between the percentage of filling material removal (high or low) and the proposed techniques by chi-square test showed statistically significant difference (p=0.015), as most cases in group B (reciprocating technique) presented less than 50% of filling material removed (low percent removal). In conclusion, none of the techniques evaluated in this study was effective in providing complete removal of filling material from the root canals. (author)

  20. Biogenic Fe(III) minerals lower the efficiency of iron-mineral based commercial filter systems for arsenic removal

    DEFF Research Database (Denmark)

    Kleinert, Susanne; Muehe, Eva M.; Posth, Nicole

    2011-01-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear...

  1. The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system

    NARCIS (Netherlands)

    Miranda, Marcela; Noyma, Natalia; Pacheco, Felipe S.; de Magalhaes, Leonardo; Pinto, Ernani; Santos, Suzan; Soares, Maria Fernanda A.; Huszar, Vera L.; Lürling, Miquel; Marinho, Marcelo M.

    We tested the hypothesis that a combination of coagulant and ballast could be efficient for removal of positively buoyant harmful cyanobacteria in shallow tropical waterbodies, and will not promote the release of cyanotoxins. This laboratory study examined the efficacy of coagulants [polyaluminium

  2. The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system

    NARCIS (Netherlands)

    Miranda, Marcela; Noyma, Natália; Pacheco, Felipe S.; Magalhães, de Leonardo; Pinto, Ernani; Santos, Suzan; Soares, Maria Fernanda A.; Huszar, Vera L.; Lurling, Miguel; Marinho, Marcelo M.

    2017-01-01

    We tested the hypothesis that a combination of coagulant and ballast could be efficient for removal of positively buoyant harmful cyanobacteria in shallow tropical waterbodies, and will not promote the release of cyanotoxins. This laboratory study examined the efficacy of coagulants

  3. Removing chromium and lead metals using phytoremediation technique

    Directory of Open Access Journals (Sweden)

    Al-Anbari Riyad

    2018-01-01

    Full Text Available Phytoremediation technique uses plants parts to remove, extract, and absorb heavy or toxic matter from soil and water. In the present study, Catharanthusroseus (Periwinkle and Nerium Oleander (Oleander were used for removing Chromium (Cr and Lead (Pb metals. These plant species were seeded in polyethylene pots containing 8kg of soil. Each pot was irrigated with wastewater for four months (May, June, July and August and accumulation of the considered metals was analyzed after every month for leaf, stem and root by using Atomic Absorption Spectrophotometer (AAS. This experimental work was carried out in the laboratories of Water Desalination Researches Unit - Building and Construction Engineering Department and Environmental Research Centre at the University of Technology in Baghdad City, Iraq. The concentration of Cr was found to be increased with time. High Cr concentration, 20.34 mg/kg, was recorded at August in leaf of Periwinkle and 19.61 mg/kg in root of Oleander in case of using 100% wastewater (WW. While, for Pb, the maximum concentration, 22 mg/kg, was recorded in June in leaf of Periwinkle and 19.5 mg/kg in steam of Oleander. Accordingly, Oleander has the maximum removal efficiency.

  4. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    Science.gov (United States)

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  6. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  7. Methanol removal efficiency and bacterial diversity of an activated carbon biofilter.

    Science.gov (United States)

    Babbitt, Callie W; Pacheco, Adriana; Lindner, Angela S

    2009-12-01

    Motivated by the need to establish an economical and environmentally friendly methanol control technology for the pulp and paper industry, a bench-scale activated carbon biofiltration system was developed. This system was evaluated for its performance in removing methanol from an artificially contaminated air stream and characterized for its bacterial diversity over time, under varied methanol loading rates, and in different spatial regions of the filter. The biofilter system, composed of a novel packing mixture, provided an excellent support for growth and activity of methanol-degrading bacteria, resulting in approximately 100% methanol removal efficiency for loading rates of 1-17 g/m(3) packing/h, when operated both with and without inoculum containing enriched methanol-degrading bacteria. Although bacterial diversity and abundance varied over the length of the biofilter, the populations present rapidly formed a stable community that was maintained over the entire 138-day operation of the system and through variable operating conditions, as observed by PCR-DGGE methods that targeted all bacteria as well as specific methanol-oxidizing microorganisms. Phylogenetic analysis of bands excised and sequenced from DGGE gels indicated that the biofilter system supported a diverse community of methanol-degrading bacteria, with high similarity to species in the genera Methylophilus (beta-proteobacteria), Hyphomicrobium and Methylocella (both alpha-proteobacteria).

  8. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    Science.gov (United States)

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  9. The impact of loading approach and biological activity on NOM removal by ion exchange resins.

    Science.gov (United States)

    Winter, Joerg; Wray, Heather E; Schulz, Martin; Vortisch, Roman; Barbeau, Benoit; Bérubé, Pierre R

    2018-05-01

    The present study investigated the impact of different loading approaches and microbial activity on the Natural Organic Matter (NOM) removal efficiency and capacity of ion exchange resins. Gaining further knowledge on the impact of loading approaches is of relevance because laboratory-scale multiple loading tests (MLTs) have been introduced as a simpler and faster alternative to column tests for predicting the performance of IEX, but only anecdotal evidence exists to support their ability to forecast contaminant removal and runtime until breakthrough of IEX systems. The overall trends observed for the removal and the time to breakthrough of organic material estimated using MLTs differed from those estimated using column tests. The results nonetheless suggest that MLTs could best be used as an effective tool to screen different ion exchange resins in terms of their ability to remove various contaminants of interest from different raw waters. The microbial activity was also observed to impact the removal and time to breakthrough. In the absence of regeneration, a microbial community rapidly established itself in ion exchange columns and contributed to the removal of organic material. Biological ion exchange (BIEX) removed more organic material and enabled operation beyond the point when the resin capacity would have otherwise been exhausted using conventional (i.e. in the absence of a microbial community) ion exchange. Furthermore, significantly greater removal of organic matter could be achieved with BIEX than biological activated carbon (BAC) (i.e. 56 ± 7% vs. 15 ± 5%, respectively) when operated at similar loading rates. The results suggest that for some raw waters, BIEX could replace BAC as the technology of choice for the removal of organic material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-03-01

    Full Text Available Electrocoagulation (EC technique was used to investigate the removal performance of aqueous perfluorooctanoic acid (PFOA with relatively high concentration as simulating the wastewater from organic fluorine industry. A comparison was done with the similar amount of coagulant between EC and chemical coagulation process. PFOA removal obtained was higher with EC process, especially for Fe anode. Several factors were studied to optimize the EC process. At the optimal operating parameters including 37.5 mA/cm2 of current density, initial pH 3.77, and 180 rpm of mixing speed, 93% of PFOA could be removed with 100 mg/L of initial concentration after 90-min electrolysis. Furthermore, the remove efficiency could be obviously improved by H2O2 intermittent addition, which removed more than 99% of PFOA within 40-min EC. It could be attributed to that H2O2 facilitated the oxidative transformation from ferrous to ferric ion. In addition, the adsorptive removal of aqueous PFOA on Fe flocs during EC was also verified by fourier transform infrared spectra.

  11. Optimizing The Efficiency of a Dielectric Barrier Discharge Reactor for Removal of Nitric Oxides in Gas Phase

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Wong, C.S.; Abas, M.R.

    2016-01-01

    A dielectric barrier discharge (DBD) reactor was built and used to remove nitric oxides in gas phase. In the preliminary work, it was found that the DBD reactor can used for direct processing of contaminated air stream. It was observed that if the applied energy is sufficiently high, reduction can overcome the oxidation process. The other characteristics that can affect the efficiency of the reactor are the processing flow rate, number of DBD tubes used and how the tubes are connected. The composition of the feed gas also plays important role. To improve the efficiency, more tubes were added and configured in combination of serial and parallel connections to achieve the best result. The reactor was found to be most efficient when using 6 tubes configured to have 2 sets of 3 tubes in series connected in parallel. The maximum flow rate that can be treated is 5 scfh. When operated with the optimum input voltage of 32 kV, the reactor can remove up to 80 % nitric oxide in the reduction mode. This means that the energy is sufficiently high to sustain the reduction mode and prevent further oxidation. (author)

  12. Removal Efficiency of Nitrite and Sulfide Pollutants by Electrochemical Process by Using Ti/RuIrO2 Anode

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2018-05-01

    Full Text Available In general, wastewater treatment by physical, chemical and biological methods are only focused on TSS, BOD and COD removals that the effluent still contains anion pollutant as NO2- and S2-. Electrochemical technology is a proper method for those pollutants treatment due to its fast process, easy operation and minimum amount of sludge. Electrocatalytic reactor with 8 L capacity using Ti/RuIrO2 cylinder as anode and Fe plate as cathode was arranged and applied to treat anion pollutants. Hydraulic retention time (30, 60, 90 and 120 min, salt concentration (250, 500 and 750 mg/L and voltage (4, 5, and 6 V were chosen as operation variables and NO2- and S2- concentrations as parameter indicators. Nitrite removal efficiency reached 75 and 99.7% after 60 and 120 min of electrolysis, respectively, while sulfide could obtain higher efficiency, i.e., 97 and 99.9% after 60 and 90 min, respectively, at operation variables of potential of 5 V and salt of 500 mg/L. Removal process is dominated by indirect oxidation mechanism by HClO/ClO- oxidators generated at anode surface as intermediate products. The lifespan of electrode and electric consumption are two main factors of operation cost. Electric consumed was 0.452 kWh per 1 g nitrite removed.

  13. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  14. Removal efficiency of 75Se, 51Cr and 60Co from tidal water by mangrove sediments from Sepetiba Bay (SE Brazil)

    International Nuclear Information System (INIS)

    Suzuki, K.N.; Lopes, R.T.; Machado, E.C.; Machado, W.; Osso, J.A.Jr.

    2014-01-01

    Mangrove sediment cores sampled from Sepetiba Bay (SE Brazil) were covered with tidal water spiked with 75 Se, 51 Cr and 60 Co to evaluate the removal efficiency of these radiotracers by underlying sediments. Variable time-evolution trends were observed along 115 h experiments, with significant differences between removal efficiencies of all radiotracers observed only after 70 h ( 51 Cr > 60 Co > 75 Se). After an event of 60 Co release back to overlying water, there was a general trend of lower 60 Co removal than observed for other radiotracers during the period from 20 to 54 h. After this event, alternated periods of higher 60 Co and higher 75 Se removal trends were observed, attributed to behavioural differences expected for such anionic and cationic radiotracers. While 75 Se and 51 Cr showed uniform time-evolution curves, as typically found in the literature for most radiotracers, 60 Co removal rates presented oscillations, probably due to sensitivity to changes in redox conditions within underlying sediments. Results evidenced the role of mangrove sediments as trace element sinks, which have implications for coastal water quality and for possible uses of such sediments in wastewater treatment systems. (author)

  15. High Efficient Nanocomposite for Removal of Heavy Metals (Hg2+ and Pb2+ from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Ebadi

    2016-01-01

    Full Text Available In current work, CdS/black carbon nanocomposites were successfully synthesized with the aid of chestnut and cadmium nitrate as the starting reagents. Besides, the effects of preparation parameters such as reaction time, and precursor concentration on the morphology of products and removal of heavy metals (Hg+2, Pb+2 were studied by scanning electron microscopy images and batch adsorption mode. CdS/black carbon nanocomposite introduced as new and high efficient system for removal of heavy metal ions. The as-synthesized products were characterized by powder X-ray diffraction, scanning electron microscopy, and spectra energy dispersive analysis of X-ray.

  16. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review

    KAUST Repository

    Maeng, Sungkyu

    2011-05-01

    Managed aquifer recharge (MAR) is a natural water treatment process that induces surface water to flow in response to a hydraulic gradient through soil/sediment and into a vertical or horizontal well. It is a relatively cost-effective, robust and sustainable technology. Detailed characteristics of bulk organic matter and the occurrence and fate of pharmaceutically active compounds (PhACs) during MAR processes such as bank filtration (BF) and artificial recharge (AR) were reviewed. Understanding the fate of bulk organic matter during BF and AR is an essential step in determining pre- and/or post-treatment requirements. Analysis of organic matter characteristics using a suite of analytical tools suggests that there is a preferential removal of non-humic substances during MAR. Different classes of PhACs were found to behave differently during BF and AR. Antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), beta blockers, and steroid hormones generally exhibited good removal efficiencies, especially for compounds having hydrophobic-neutral characteristics. However, anticonvulsants showed a persistent behavior during soil passage. There were also some redox-dependent PhACs. For example, X-ray contrast agents measured, as adsorbable organic iodine (AOI), and sulfamethoxazole (an antibiotic) degraded more favorably under anoxic conditions compared to oxic conditions. Phenazone-type pharmaceuticals (NSAIDs) exhibited better removal under oxic conditions. The redox transition from oxic to anoxic conditions during soil passage can enhance the removal of PhACs that are sensitive to redox conditions. In general, BF and AR can be included in a multi-barrier treatment system for the removal of PhACs. © 2011.

  17. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Lekkerkerker-Teunissen, Karin; Amy, Gary L

    2011-05-01

    Managed aquifer recharge (MAR) is a natural water treatment process that induces surface water to flow in response to a hydraulic gradient through soil/sediment and into a vertical or horizontal well. It is a relatively cost-effective, robust and sustainable technology. Detailed characteristics of bulk organic matter and the occurrence and fate of pharmaceutically active compounds (PhACs) during MAR processes such as bank filtration (BF) and artificial recharge (AR) were reviewed. Understanding the fate of bulk organic matter during BF and AR is an essential step in determining pre- and/or post-treatment requirements. Analysis of organic matter characteristics using a suite of analytical tools suggests that there is a preferential removal of non-humic substances during MAR. Different classes of PhACs were found to behave differently during BF and AR. Antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), beta blockers, and steroid hormones generally exhibited good removal efficiencies, especially for compounds having hydrophobic-neutral characteristics. However, anticonvulsants showed a persistent behavior during soil passage. There were also some redox-dependent PhACs. For example, X-ray contrast agents measured, as adsorbable organic iodine (AOI), and sulfamethoxazole (an antibiotic) degraded more favorably under anoxic conditions compared to oxic conditions. Phenazone-type pharmaceuticals (NSAIDs) exhibited better removal under oxic conditions. The redox transition from oxic to anoxic conditions during soil passage can enhance the removal of PhACs that are sensitive to redox conditions. In general, BF and AR can be included in a multi-barrier treatment system for the removal of PhACs. Copyright © 2011. Published by Elsevier Ltd.

  18. Removal of COD from laundry wastewater by electrocoagulation/electroflotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-T. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan County, Hsien 717, Taiwan (China)], E-mail: ctwwang@mail.hwai.edu.tw; Chou, W.-L. [Department of Safety Health and Environmental Engineering and Institute of Occupational Safety and Hazard Prevention, HungKuang University, Sha-Lu, Taichung 433, Taiwan (China); Kuo, Y.-M. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan County, Hsien 717, Taiwan (China)

    2009-05-15

    The removal efficiency of COD in the treatment of simulated laundry wastewater using electrocoagulation/electroflotation technology is described. The experimental results showed that the removal efficiency was better, reaching to about 62%, when applying ultrasound to the electrocoagulation cell. The solution pH approached neutrality in all experimental runs. The optimal removal efficiency of COD was obtained by using the applied voltage of 5 V when considering the energy efficiency and the acceptable removal efficiency simultaneously. The Cl{sup -} concentration of less than 2500 ppm had a positive effect on the removal efficiency. The performance of the monopolar connection of electrodes was better than that of the bipolar connection in this work. In addition, the removal efficiency of using Al electrodes was higher in comparison with using Fe electrodes in the study. The highest COD removal amount per joule was found to be 999 mg dm{sup -3} kW h{sup -1} while using two Al electrodes, although the removal efficiency increased with the number of Al plates.

  19. Use of calcined layered double hydroxides for the removal of color and organic matter from textile effluents: kinetic, equilibrium and recycling studies

    Directory of Open Access Journals (Sweden)

    T. P. F. Teixeira

    2014-03-01

    Full Text Available This paper presents data for the synthesis and characterization of layer double hydroxides (LDH and their use for color and chemical oxygen demand (COD removal from effluents generated by a textile industry. Adsorption studies with raw and biologically treated (activated sludge textile effluent showed that the pseudo-second order model best fitted the experimental data, leading to adsorption coefficients of 39.1 and 102.9 mgCOD/gLDH for raw and treated effluents, respectively. The best conditions for color and COD removal were obtained at lower values of temperature and pH (25 °C and pH 7 and, in these conditions, an LDH dose of 10 g/L resulted in color removal efficiencies of 56% for samples of raw and 66% for samples of treated effluent. Recycling studies indicated that the reuse of thermally treated LDH led to a progressive loss in the removal efficiencies of COD and color. The reduction was more pronounced with samples of the raw textile effluent. LDH characterization performed before and after each adsorption and regeneration experiment showed that there was no intercalation of dye molecules in the interlayer region of the LDH, indicating that COD and color removal might be due to the adsorption of organic molecules onto the LDH surface.

  20. Colloids removal from water resources using natural coagulant: Acacia auriculiformis

    Science.gov (United States)

    Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.

    2017-09-01

    All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.

  1. Aerosol removal due to precipitation and wind forcings in Milan urban area

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo; Ghezzi, Antonio; Gianelle, Vorne

    2018-01-01

    Air pollution represents a critical issue in Milan urban area (Northern Italy). Here, the levels of fine particles increase, overcoming the legal limits, mostly in wintertime, due to favourable calm weather conditions and large heating and vehicular traffic emissions. The main goal of this work is to quantify the aerosol removal effect due to precipitation at the ground. At first, the scavenging coefficients have been calculated for aerosol particles with diameter between 0.25 and 3 μm. The average values of this coefficient vary between 2 ×10-5 and 5 ×10-5 s-1. Then, the aerosol removal induced separately by precipitation and wind have been compared through the introduction of a removal index. As a matter of fact, while precipitation leads to a proper wet scavenging of the particles from the atmosphere, high wind speeds cause enhanced particle dispersion and dilution, that locally bring to a tangible decrease of aerosol particles' number. The removal triggered by these two forcings showed comparable average values, but different trends. The removal efficiency of precipitation lightly increases with the increase of particle diameters and vice versa happens with strong winds.

  2. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  3. Removal of particulates from nuclear offgas

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1976-01-01

    Particulate removal from nuclear offgases can be broken down into three parts: pretreatment, prefiltration, and absolute filtration. Pretreatment, using conventional air cleaning devices in most cases, is sometimes required to temper the gases and remove heavy concentrations of particulate matter. Prefiltration, if required, serves primarily to protect the final filter stages from heavy dust loadings in order to extend their life. HEPA filters are the most commonly used ''absolute'' filtration devices and are always required for removal of submicrometer particulates that cannot be removed effectively by other devices

  4. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    .R. Asgari

    2008-04-01

    Full Text Available Background and ObjectivePollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.MethodsThis study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares. ResultsResults showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.ConclusionAccording to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost. Keywords: Arsenic, Granular Ferric Hydroxide (GFH, Adsorption, Drinking Water

  5. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  6. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  7. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  8. Performance of titanium salts compared to conventional FeCl 3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics

    KAUST Repository

    Chekli, L.; Corjon, E.; Tabatabai, S. Assiyeh Alizadeh; Naidu, G.; Tamburic, B.; Park, S.H.; Shon, H.K.

    2017-01-01

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography – organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.

  9. Performance of titanium salts compared to conventional FeCl3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics.

    Science.gov (United States)

    Chekli, L; Corjon, E; Tabatabai, S A A; Naidu, G; Tamburic, B; Park, S H; Shon, H K

    2017-10-01

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl 4 ) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl 3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl 4 and PTC achieved better performance than FeCl 3 in terms of turbidity, UV 254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography - organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl 4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl 3 indicated that sweep flocculation is also a contributing mechanism for the coagulation

  10. Performance of titanium salts compared to conventional FeCl 3 for the removal of algal organic matter (AOM) in synthetic seawater: Coagulation performance, organic fraction removal and floc characteristics

    KAUST Repository

    Chekli, L.

    2017-06-20

    During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography – organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.

  11. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  12. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene

    Directory of Open Access Journals (Sweden)

    Florencio Ballesteros, Jr.

    2016-03-01

    Full Text Available Leaking underground petroleum storage poses human and environmental health risks as it contaminates the soil and the groundwater. Of the many contaminants, benzene – a major constituent of gasoline, is of primary concern. It is an identified carcinogen with a permissible limit set at a low level of 0.005 mg L−1. This poses technical and regulatory challenge to remediation of contaminated sites. Various specialized treatment methods are available, but despite of the high removal efficiencies of sophisticated treatments, the residual level still poses health risks. Thus, additional alternative ways that are cost effective and require minimum technical expertise are necessary, and a constructed wetland (CW is a potential alternative. This study evaluates the performance of a surface flow type CW for the removal of benzene from the contaminated water. It further determines the efficacy of a common reed plant Phragmites karka in treating benzene. Planted and unplanted CW were acclimated with benzene for 16 wk and tested for an 8-d hydraulic retention time at benzene levels of 66 and 45 mg L−1. Results indicate that the planted CW performed better and gave reliable and stable results.

  13. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched

  14. Organic contaminant removal efficiency of sodium bentonite/clay (BC) mixtures in high permeability regions utilizing reclaimed wastewater: A meso-scale study

    Science.gov (United States)

    Xiao, Yang; Li, Yunkai; Ning, Zigong; Li, Pengxiang; Yang, Peiling; Liu, Chengcheng; Liu, Zhongwei; Xu, Feipeng; Hynds, Paul Dylan

    2018-03-01

    Wastewater reclamation now represents an effective measure for sustainable water resource management in arid regions, however wastewater components (organic micropollutants) may potentially impact local ecological and/or human health. Previous studies have shown that sodium bentonite/natural clay (BC) mixes may be used to effectively reduce riverbed infiltration in regions characterized by excessively high hydraulic conductivity. Accordingly, the current study sought to investigate the contaminant removal efficiency (Re) of several BC mass ratios in simulated dry riverbeds. Results indicate that the measured Re of NH4+-N, CODcr and BOD5 increased in concurrence with an increasing sodium bentonite ratio, up to a maximum Re of 97.4% (NH4+-N), 55.2% (CODcr), and 51.5% (BOD5). The primary contaminant removal site was shown to be the infiltration-reducing (BC) layer, accounting for approximately 40%, 60%, and 70% of NH4+-N, CODcr and BOD5 removal, respectively. Conversely, the removal efficiency of NO3-N was found to be low (managing recharge of non-potable aquifers with reclaimed wastewater.

  15. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal.

    Science.gov (United States)

    Lv, Xiaoshu; Zhang, Yuling; Fu, Wenyang; Cao, Jiazhen; Zhang, Jiao; Ma, Hanbo; Jiang, Guangming

    2017-11-15

    Zero-valent iron nanoparticles (Fe 0 NPs) technologies are often challenged by poor dispersibility, chemical instability to oxidation, and mobility during processing, storage and use. This work reports a facile approach to synthesize Fe 0 NPs embedded reduced graphene oxide-alginate beads (Fe@GA beads) via the immobilization of pre-synthesized Fe 0 NPs into graphene oxide modified alginate gel followed by a modelling and in-situ reduction process. The structure/composition characterization of the beads finds that the graphene sheets and the Fe 0 NPs (a shape of ellipsoid and a size of beads. We demonstrate that these Fe@GA beads show a robust performance in aqueous Cr(VI) removal. With a optimized Fe and alginate content, Fe@GA bead can achieve a high Cr(VI) removal efficiency and an excellent mechanical strength. The initial Cr(VI) concentration, ionic strength, temperature and especially solution pH are all critical factors to control the Fe@GA beads performance in Cr(VI) removal. Fitness of the pseudo second-order adsorption model with data suggests adsorption is the rate-controlling step, and both Langmuir and Freundlich adsorption isotherm are suitable to describe the removal behavior. The possible Cr(VI) removal path by Fe@GA beads is put forward, and the synergistic effect in this ternary system implies the potentials of Fe@GA beads in pollutant removal from water body. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The role of organic matter in the removal of emerging trace organic chemicals during managed aquifer recharge.

    Science.gov (United States)

    Rauch-Williams, T; Hoppe-Jones, C; Drewes, J E

    2010-01-01

    This study explored the effect of different bulk organic carbon matrices on the fate of trace organic chemicals (TOrC) during managed aquifer recharge (MAR). Infiltration through porous media was simulated in biologically active column experiments under aerobic and anoxic recharge conditions. Wastewater effluent derived organic carbon types, differing in hydrophobicity and biodegradability (i. e., hydrophobic acids, hydrophilic carbon, organic colloids), were used as feed substrates in the column experiments. These carbon substrates while fed at the same concentration differed in their ability to support soil biomass growth during porous media infiltration. Removal of degradable TOrC (with the exception of diclofenac and propyphenazone) was equal or better under aerobic versus anoxic porous media infiltration conditions. During the initial phase of infiltration, the presence of biodegradable organic carbon (BDOC) enhanced the decay of degradable TOrC by promoting soil biomass growth, suggesting that BDOC served as a co-substrate in a co-metabolic transformation of these contaminants. However, unexpected high removal efficiencies were observed for all degradable TOrC in the presence of low BDOC concentrations under well adopted oligotrophic conditions. It is hypothesized that removal under these conditions is caused by a specialized microbial community growing on refractory carbon substrates such as hydrophobic acids. Findings of this study reveal that the concentration and character of bulk organic carbon present in effluents affect the degradation efficiency for TOrC during recharge operation. Specifically aerobic, oligotrophic microbiological soil environments present favorable conditions for the transformation of TOrC, including rather recalcitrant compounds such as chlorinated flame retardants. (c) 2009 Elsevier Ltd. All rights reserved.

  17. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  18. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Science.gov (United States)

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Efficiency of thermal outgassing for tritium retention measurement and removal in ITER

    Directory of Open Access Journals (Sweden)

    G. De Temmerman

    2017-08-01

    Full Text Available As a licensed nuclear facility, ITER must limit the in-vessel tritium (T retention to reduce the risks of potential release during accidents, the inventory limit being set at 1kg. Simulations and extrapolations from existing experiments indicate that T-retention in ITER will mainly be driven by co-deposition with beryllium (Be eroded from the first wall, with co-deposits forming mainly in the divertor region but also possibly on the first wall itself. A pulsed Laser-Induced Desorption (LID system, called Tritium Monitor, is being designed to locally measure the T-retention in co-deposits forming on the inner divertor baffle of ITER. Regarding tritium removal, the baseline strategy is to perform baking of the plasma-facing components, at 513K for the FW and 623K for the divertor. Both baking and laser desorption rely on the thermal desorption of tritium from the surface, the efficiency of which remains unclear for thick (and possibly impure co-deposits. This contribution reports on the results of TMAP7 studies of this efficiency for ITER-relevant deposits.

  20. The Coagulant Type Influence on Removal Efficiency of 5- and 6-Ring Pahs During Water Coagulation Process

    Directory of Open Access Journals (Sweden)

    Nowacka Anna

    2014-12-01

    Full Text Available The article presents results on investigation of the removal efficiency of selected 5- and 6-ring polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[j]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene from water during coagulation and sedimentation process. Two pre-hydrolyzed aluminum coagulants: PAX XL 19H and FLOKOR 105V were chosen for research. Process was carried out at optimum process parameters: rapid-mixing - 3 min at the rotational speed of 200 rpm, slow mixing - 10 min at 30 rpm, sedimentation - 60 min. The removal effectiveness was dependant on coagulant type and its composition. Better results in the removal of 5-and 6-ring PAHs were obtained after application of FLOKOR 105V (lower aluminum content than after using PAX XL 19H.

  1. Investigation of Acorn fruit Ash Efficiency in Cadmium Removal from Aqueous Solutions: Adsorption Isotherm and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Salman Zarei

    2014-12-01

    Full Text Available Background: Heavy metals are known as significant pollutants because of toxicity and nonbiodegradable characteristics. Cadmium is one of the heavy metals that have carcinogen potential. So, this study carried out in order to investigate the acorn fruit ash efficiency in cadmium removal from aqueous solutions. Methods: This study was done in the batch laboratory conditions. In this study, the effect of different parameters including pH, contact time, adsorbent dose, and initial cadmium concentration were evaluated. The Langmuir, Freundlich and Temkin isotherm models were used for analysis of the equilibrium isotherm. Adsorption kinetics of cadmium by different models were also investigated. The measurement of residual cadmium in the samples was determined by atomic absorption spectrophotometry at 228.8 nm. The SPSS-16 software was used for analysis of data. Results: According to the results, the maximum adsorption capacity of cadmium was 9.29 mg/g at pH=7 and 8 g/L adsorbent dose. The removal efficiency was increased with increasing contact time and decreased with increasing of cadmium initial concentration. Investigation of achieving data showed that the adsorption process followed better by Freundlich isotherm and the pseudo-second order kinetic. Conclusions: According to the results of this study, it could be concluded that the acorn fruit ash had high ability in cadmium adsorption and could be used as a cheap adsorbent in the removal of cadmium.

  2. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    Science.gov (United States)

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    Science.gov (United States)

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  4. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    Science.gov (United States)

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Salmani

    2016-06-01

    Full Text Available Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II ions from aqueous solution. Materials and methods: the washed granola of pomegranate peel was separately socked with FeCl3 and FeCl2 solutions for 24 h. Then, the granules were carbonized at 400 ºC for 3 h in a programmable furnace in the atmosphere of nitrogen. The adsorption experiments were carried out for two types of iron-modified carbons by batch adsorption using one variable at a time procedures. Results: The optimum conditions were found as contact time 90 min, initial concentration 50 mg/l, and adsorbent dose, 1.00 g/100 ml solution. Maximum removal efficiency was calculated as 84% and 89% for Fe3+ and Fe2+ impregnated pomegranate peel carbons respectively. Conclusion: The iron treatment pomegranate peel carbons modified their surfaces for adsorption of heavy metals. The results showed that chemical modification of the low-cost adsorbents originating from agricultural waste has stood out for metal removal capabilities.

  6. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  7. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  8. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    Science.gov (United States)

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  9. Removal Efficiency and Risk Assessment of Polycyclic Aromatic Hydrocarbons in a Typical Municipal Wastewater Treatment Facility in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Zhineng Liu

    2017-08-01

    Full Text Available The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs were examined in an inverted A2/O wastewater treatment plant (WWTP located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal. Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities (TEQBaP were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.

  10. Removal Efficiency and Risk Assessment of Polycyclic Aromatic Hydrocarbons in a Typical Municipal Wastewater Treatment Facility in Guangzhou, China.

    Science.gov (United States)

    Liu, Zhineng; Li, Qing; Wu, Qihang; Kuo, Dave T F; Chen, Shejun; Hu, Xiaodong; Deng, Mingjun; Zhang, Haozhi; Luo, Min

    2017-08-01

    The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) were examined in an inverted A²/O wastewater treatment plant (WWTP) located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal). Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities ( TEQ BaP ) were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.

  11. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  12. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    Science.gov (United States)

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    A.R Asgari

    2012-05-01

    Full Text Available

    Background and Objective

    Pollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.

     

    Methods

    This study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares.

     

    Results

    Results showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.

     

    Conclusion

    According to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost.

  14. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations

    Science.gov (United States)

    Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth

    2017-01-01

    Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...

  15. Mass loss and nutrient concentrations of buried wood as a function of organic matter removal, soil compaction, and vegetation control in a regenerating oak-pine forest

    Science.gov (United States)

    Felix Ponder; John M. Kabrick; Mary Beth Adams; Deborah S. Page-Dumroese; Marty F. Jurgensen

    2017-01-01

    Mass loss and nutrient concentrations of northern red oak (Quercus rubra) and white oak (Q. alba) wood stakes were measured 30 months after their burial in the upper 10 cm of soil in a regenerating forest after harvesting and soil disturbance. Disturbance treatments were two levels of organic matter (OM) removal (only...

  16. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    Science.gov (United States)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  17. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  18. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  19. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  1. Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin.

    Science.gov (United States)

    Bayazit, Şahika Sena; Danalıoğlu, Selen Tuğba; Abdel Salam, Mohamed; Kerkez Kuyumcu, Özge

    2017-11-01

    Metal organic frameworks are widely used as adsorbent materials in recent years. In this study, the most prepared metal organic framework MIL-101 was prepared by hydrothermal method and featured magnetic property using co-precipitation method Fe 3 O 4 . Then, the prepared composite (MIL-101/Fe 3 O 4 ) was first characterized using XRD, FTIR, SEM-EDS, and surface area analysis, then was used for the adsorptive removal of the most used antibiotic, ciprofloxacin (CIP). The effect of different adsorption variables which may affect the removal of CIP by MIL-101/Fe 3 O 4 was investigated, as well as their adsorbent quantity, initial CIP concentration, pH, temperature, and contact time. The non-linear Langmuir and Freundlich isotherm were applied to experimental data. It was observed that rising solution temperature decreases adsorption efficiency, as the maximum adsorption uptake value was 63.28 mg g -1 at 298 K and 22.93 mg g -1 at 313 K, indicating the exothermic nature of the adsorption. The adsorption was studied kinetically and found to follow the pseudo-second-order kinetic model. The desorption of CIP from the MIL-101/Fe 3 O 4 was investigated using three different eluents, and the results showed that phosphate-buffered solution was the most effective desorption eluent. Graphical abstract Schematic diagram of the preparation steps of MIL-101/Fe3O4.

  2. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  3. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production.

    Science.gov (United States)

    Coleman, J; Berry, D P; Pierce, K M; Brennan, A; Horan, B

    2010-09-01

    The primary objective of the study was to quantify the effect of genetic improvement using the Irish total merit index (Economic Breeding Index) on dry matter intake and feed efficiency across lactation and to quantify the variation in performance among alternative definitions of feed efficiency. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: 1) low Economic Breeding Index North American Holstein-Friesian representative of the Irish national average dairy cow, 2) high genetic merit North American Holstein-Friesian, and 3) high genetic merit New Zealand Holstein-Friesian. Animals from within each genotype were randomly allocated to 1 of 2 possible intensive pasture-based feed systems: 1) the Moorepark pasture system (2.64 cows/ha and 500 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare pasture system (2.85 cows/ha and 1,200 kg of concentrate supplement per cow per lactation). A total of 128 and 140 spring-calving dairy cows were used during the years 2007 and 2008, respectively. Each group had an individual farmlet of 17 paddocks, and all groups were managed similarly throughout the study. The effects of genotype, feed system, and the interaction between genotype and feed system on dry matter intake, milk production, body weight, body condition score, and different definitions of feed efficiency were studied using mixed models with factorial arrangements of genotypes and feed systems accounting for the repeated cow records across years. No significant genotype-by-feed-system interactions were observed for any of the variables measured. Results showed that aggressive selection using the Irish Economic Breeding Index had no effect on dry matter intake across lactation when managed on intensive pasture-based systems of milk production, although the ranking of genotypes for feed efficiency differed depending on the definition of feed efficiency used. Performance of

  4. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    Science.gov (United States)

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  5. Effect of K-N-Humates on Dry Matter Production and Nutrient Use Efficiency of Maize in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Auldry Chaddy Petrus

    2010-01-01

    Full Text Available Agricultural waste, such as sago waste (SW, is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer, which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS, but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6 showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from

  6. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye

    OpenAIRE

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-01-01

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe3O4 nanoparticles were simultaneously achieved via a one...

  7. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    Directory of Open Access Journals (Sweden)

    Raphiou Maliki

    2016-01-01

    Full Text Available Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM production (tubers, shoots, nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation. The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA using the general linear model (GLM procedure was applied to the dry matter (DM production (tubers, shoots, nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  8. Performance Evaluation of Ozonation Combined with Persulfate Application for Removal of Furfural from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Alireza Rahmani

    2017-03-01

    Full Text Available Background: Furfural is an organic compound which derived from a variety industrial, including petrochemicals, pulping, pharmaceutical, food. Also is a main agent in many industries and aromatic organic compounds entrance in the environment. There are several methods of treating including physical, chemical, biological and physicochemical for remove this matter. Among advanced oxidation methods can be combined ozonation process with persulfate catalytic are noted. The purpose of this study was to evaluate the efficiency of ozonation process with the use of persulfate in removal furfural from aqueous solution. Materials and Methods: In this study, the efficiency of the process with a concentration furfural 5 to 30 mg/L, concentration persulfate 4 to 15 mM, pH = 3-11 and reaction time of 35 minutes in the semi-continuous reactor with a capacity of one liter was obtained. Results: The results of this study have been shown in  conditions of operation optimal , pH =,3 persulfate dosage 12 mM, ozone dosage of 1 g/min and the initial concentration of furfural  5 mg/L, this process is capable  remove of %93/34 percent Furfural and %70 of the initial COD. Conclusion: The results of this study showed that the ozone/persulfate process can be a suitable process for the removal of organic aromatic compounds including pollutants of interest.

  9. Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater.

    Science.gov (United States)

    Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu

    2017-05-01

    This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.

  10. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    Science.gov (United States)

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  11. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    KAUST Repository

    Hu, Tong-Liang

    2015-06-04

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  12. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  13. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    Science.gov (United States)

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  14. Energy efficient trace removal by extractive distillation

    NARCIS (Netherlands)

    Jongmans, M.T.G.

    2012-01-01

    Separation processes contribute for about 40–70 % to the total energy requirements of the chemical process industry. Especially when trace removal is required to manufacture high purity products, traditional separation technologies become extremely expensive and are not providing satisfying

  15. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    Directory of Open Access Journals (Sweden)

    TOMAS CORREA

    2009-01-01

    Full Text Available Este estudio describe el montaje experimental y las pruebas realizadas en el laboratorio para simular las condiciones de un yacimiento de gas condensado por debajo del punto de burbuja usando tres diferentes composiciones sintéticas de gas condensado. Metanol, Propanol y cloruro de metileno son los solventes usados para remover el banco de condensado y mejorar la permeabilidad efectiva al gas en la cara del núcleo. Ellos son inyectados en areniscas Berea con propiedades petrofísicas similares con el fin de comparar el grado de eficiencia en la remoción del banco de condensado. Los experimentos muestran que los tres solventes mejoraron la permeabilidad efectiva al gas después de remover el banco de condensado; sin embargo el metanol fue el solvente más eficiente para remover el banco de condensado, mientras el cloruro de metileno mostró los valores más bajos de permeabilidad efectiva al gas indicando menor eficiencia en la remoción el banco de condensado.

  16. Determination of the Removal Efficiency of Linear Alkyl Benzene Sulphonate Acids (LAS in Fixed Bed Aeration Tank and Conventional Activated Sludge

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-03-01

    Full Text Available Linear Alkyl Benzene Sulphonate Acids (LAS are one of the anionic surfactants that are produced and used in large quantities in different countries and find their way into the natural environment through sewer systems. These compounds may potentially cause environmental hazards in such surface waters as rivers. It is, therefore, necessary to remove as much of these compounds as possible by biological processes in wastewater treatment plants. For this purpose, four parallel biological reactors were constructed that used the conventional activated sludge and aeration tanks with fixed bed on the bench scale in order to evaluate the removal efficiency of LAS. The reactors were operated under conditions similar to domestic wastewater treatment plants. Parameters of interest were measured according to standard methods and ANOVA and T-test were used for the statistical analysis of the data. The results showed that aeration tanks with fixed beds yielded higher values of LAS and COD removal and air consumption compared to the conventional activated sludge system. It was shown that the two systems studied achieved LAS removal efficiencies of 96% and 94% for an influent LAS concentration of 5 mg/L. Further, it was found that the effluents from both systems satisfied water quality standards for discharge into surface waters (

  17. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T

    2013-06-30

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  18. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T; Sharma, Saroj K.; Maeng, Sungkyu; Magic-Knezev, Aleksandra; Kennedy, Maria Dolores; Amy, Gary L.

    2013-01-01

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  19. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    Science.gov (United States)

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight 10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Survey Efficiency of Ultraviolet and Zinc Oxide Process (UV/ZnO for Removal of Diazinon Pesticide from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2015-03-01

    Full Text Available The presence of persistent organic pollutants and toxics (e.g., pesticides in ground, surface, and drinking water resources combined with the inability of conventional treatment methods to remove these pollutants have led to the development of advanced oxidation processes. Nowadays, nanophotocatalyst processes are considered as clean and environmentally-friendly treatment methods that can be extensively used for removing contaminants. The objective of the present study was to determine the efficiency of the ultraviolet and zinc oxide (UV/ZnO process in the removal of diazinon pesticide from aqueous solutions. For the purposes of this study, samples were adjusted in a batch reactor at five different detention times. The pH levels used were 3, 7, and 9. Irradiation was performed using a 125 W medium-pressure mercury lamp. The diazinon concentrations of the samples were 100 and 500 µg/L and the concentrations of zinc oxide nanoparticles were 50, 100, and 150 mg/L. The highest degradation efficiency was observed at pH 7 (mean = 80.92 30.3, while the lowest was observed for pH 3 (mean 67.11 24.49. Results showed that the optimal concentration of nanoparticles (6-12 nm was 100 mg L-1.

  1. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    Science.gov (United States)

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-06

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution.

  2. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    Science.gov (United States)

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

  3. Evaluation of organic matter removal and electricity generation by using integrated microbial fuel cells for wastewater treatment.

    Science.gov (United States)

    Yamashita, Takahiro; Ishida, Mitsuyoshi; Ogino, Akifumi; Yokoyama, Hiroshi

    2016-01-01

    A floating all-in-one type of microbial fuel cell (Fa-MFC) that allows simple operation and installation in existing wastewater reservoirs for decomposition of organic matter was designed. A prototype cell was constructed by fixing a tubular floater to an assembly composed of a proton-exchange membrane and an air-cathode. To compare anode materials, carbon-cloth anodes or carbon-brush anodes were included in the assembly. The fabricated assemblies were floated in 1-L beakers filled with acetate medium. Both reactors removed acetate at a rate of 133-181 mg/L/d. The Fa-MFC quipped with brush anodes generated a 1.7-fold higher maximum power density (197 mW/m(2)-cathode area) than did that with cloth anodes (119 mW/m(2)-cathode area). To evaluate the performance of the Fa-MFCs on more realistic substrates, artificial wastewater, containing peptone and meat extract, was placed in a 2-L beaker, and the Fa-MFC with brush anodes was floated in the beaker. The Fa-MFC removed the chemical oxygen demand of the wastewater at a rate of 465-1029 mg/L/d, and generated a maximum power density of 152 mW/m(2)-cathode area. When the Fa-MFC was fed with actual livestock wastewater, the biological oxygen demand of the wastewater was removed at a rate of 45-119 mg/L/d, with electricity generation of 95 mW/m(2)-cathode area. Bacteria related to Geobacter sulfurreducens were predominantly detected in the anode biofilm, as deduced from the analysis of the 16S rRNA gene sequence.

  4. Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?

    International Nuclear Information System (INIS)

    Webster, Mort; Paltsev, Sergey; Reilly, John

    2008-01-01

    Observations of historical energy consumption, energy prices, and income growth in industrial economies exhibit a trend in improving energy efficiency even when prices are constant or falling. Two alternative explanations of this phenomenon are: a productivity change that uses less energy and a structural change in the economy in response to rising income. It is not possible to distinguish among these from aggregate data, and economic energy models for forecasting emissions simulate one, as an exogenous time trend, or the other, as energy demand elasticity with respect to income, or both processes for projecting energy demand into the future. In this paper, we ask whether and how it matters which process one uses for projecting energy demand and carbon emissions. We compare two versions of the MIT Emissions Prediction and Policy Analysis (EPPA) model, one using a conventional efficiency time trend approach and the other using an income elasticity approach. We demonstrate that while these two versions yield equivalent projections in the near-term, that they diverge in two important ways: long-run projections and under uncertainty in future productivity growth. We suggest that an income dependent approach may be preferable to the exogenous approach

  5. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina; Ghaffour, NorEddine; Aubry, Cyril; Amy, Gary L.

    2012-01-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  6. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes

    KAUST Repository

    Rahmawati, Karina

    2012-12-01

    Seawater reverse osmosis (SWRO) desalination process provides high quality of fresh water. However, due to some operational constraints mainly scaling control some trace contaminant removal, such as acceptable boron concentration, cannot be achieved in a single pass SWRO system. The objective of this study was to investigate the efficiency of five difference reverse osmosis (RO) membranes (seawater SW and brackish water BW) provided by different manufacturers for boron removal. RO experiments using pretreated real Red Sea water were conducted in parallel to compare membrane performance under the same operating conditions. As expected, results showed that boron rejection increased as the feed pH increased. This was caused by dissociation of boric acid to negatively charged borate ions and more negatively charged membrane surface at elevated pH which enhanced boron rejection. Single pass RO system, with and without elevating the pH, may not be sufficient for two reasons. First, boron concentration in permeate does not fulfill local regulations (<0.5ppm). Second, severe scaling occurs due to operation in alkaline condition, since Ca 2+ and Mg 2+ concentrations are still high to cause salts precipitation. Techno-economical study was performed to select the best configuration and membrane giving the highest performance in terms of boron and TDS rejections and energy consumption. © 2012 Elsevier B.V.

  7. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-09

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  8. Effect of green manure crops and nitrogen fertilizer levels on dry matter remobilization efficiency in wheat (Triticum aestivum L. internodes

    Directory of Open Access Journals (Sweden)

    F. Gerami

    2016-05-01

    Full Text Available In order to evaluate the effect of nitrogen rates and green manure crops on dry matter mobilization and mobilization efficiency indices of wheat (Triticum aestivum L. a field experiment was conducted in Agricultural Faculty of Shahid Chamran University, Ahvaz during growing season of 2010-2011. The experimental design was split-plot based on randomized complete block with three replications. Main plot included four nitrogen rates (i.e. 0, 50, 100 and 150 kgN.ha-1 and sub-plot included six green manure crops containing millet (Pennisetum sp., amaranth (Amaranthus sp., sesbania (Sesbania sp., cowpea (Vigna unguiculata L., mung bean (Vigna radiata L. and fallow. This experiment was done at two stages. First, planting and turn down of green manure crops and then planting of wheat. The results showed that the maximum weight and specific weight of all stem internodes obtained from 0 to 20 days after wheat anthesis. Then, this trend decreased from 20 to 50 days after wheat anthesis due to remobilization of dry matter to grain. Mobilized dry matter was more in control (0 kg.N.h-1 than in high N application for peduncle (219 vs. 181 mg and penultimate (203 vs. 165 mg, while, was less in the lower internodes (403 vs. 407 mg. Generally, with increasing of nitrogen levels, dry matter mobilization efficiency was decreased by. So, the effect of green manure crops not limited only by soil properties, while influences the relationship between physiological sources and sink.

  9. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Tetsuo; Funabashi, Kiyomi [Hitachi, Ltd., Ibaraki (Japan); Kondo, Yoshikazu [Hitachi, Ltd., Ibaraki (Japan)

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  10. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation.

    Science.gov (United States)

    Jia, Peili; Zhou, Yanping; Zhang, Xufeng; Zhang, Yi; Dai, Ruihua

    2017-12-11

    Harmful algal blooms in source water are a worldwide issue for drinking water production and safety. UV/H 2 O 2 , a pre-oxidation process, was firstly applied to enhance Fe(II) coagulation for the removal of Microcystis aeruginosa [M. aeruginosa, 2.0 (±0.5) × 10 6  cell/mL] in bench scale. It significantly improved both algae cells removal and algal organic matter (AOM) control, compared with UV irradiation alone (254 nm UVC, 5.4 mJ/cm 2 ). About 94.7% of algae cells were removed after 5 min UV/H 2 O 2 pre-treatment with H 2 O 2 dose 375 μmol/L, FeSO 4 coagulation (dose 125 μmol/L). It was also certified that low residue Fe level and AOM control was simultaneously achieved due to low dose of Fe(II) to settle down the cells as well as the AOM. The result of L 9 (3) 4 orthogonal experiment demonstrated that H 2 O 2 and FeSO 4 dose was significantly influenced the algae removal. UV/H 2 O 2 induced an increase of intracellular reactive oxidant species (ROS) and a decrease in zeta potential, which might contribute to the algae removal. The total microcystins (MCs) concentration was 1.5 μg/L after UV/H 2 O 2 pre-oxidation, however, it could be removed simultaneously with the algae cells and AOM. This study suggested a novel application of UV/H 2 O 2 -Fe(II) process to promote algae removal and simultaneously control AOM release in source waters, which is a green and promising technology without secondary pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter.

    Science.gov (United States)

    Xue, Shuang; Jin, Wujisiguleng; Zhang, Zhaohong; Liu, Hong

    2017-07-01

    The reductions of dissolved organic matter (DOM) and disinfection byproduct precursors in four full-scale wastewater treatment plants (WWTPs) (Liaoning Province, China) where different biological treatment processes were employed in winter were investigated. The total removal efficiencies of dissolved organic carbon (DOC), ultraviolet light at 254 nm (UV-254), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) were in the range of 70.3-76.0%, 49.6-57.3%, 54.4-65.0%, and 53.7-63.8% in the four WWTPs, respectively. The biological treatment was the predominant process responsible for the removal of DOC, THMFP, and HAAFP in WWTPs. Differences in the reduction of UV-254 were not significant (p > 0.05) among biochemical reaction pool, secondary sedimentation tank, and disinfection tank. Biological aerated filter and suspended carrier activated sludge processes achieved higher DOM removal than the conventional active sludge and anaerobic-anoxic-oxic processes. Hydrophobic neutral and hydrophilic fraction were removed to a higher degree through biological treatment than the other three DOM fractions. HAAFP removal was more efficient than THMFP reduction during biological treatment. During primary treatment, fluorescent materials in secondary sedimentation tanks were preferentially removed, as compared to the bulk DOM. Humic-like fluorescent compounds were not readily eliminated during biological treatment. The fluorescent materials were more susceptible to chlorine than nonfluorescent compounds. Copyright © 2017. Published by Elsevier Ltd.

  12. Effect of two heavy metals, cadmium and nickel, on the organic load removal efficiency in a laboratory UASB reactor

    International Nuclear Information System (INIS)

    Forero, Luis Eduardo; Sierra, Jorge Humberto

    2004-01-01

    Experiments were carried out in three up flow anaerobic sludge blanket, UASB, reactors each with 3 L capacity, four hours of hydraulic retention time, (HRT) and volumetric organic load of 4,8 g/L/d. After the initial start phase, which was of 4.000 hours for the three reactors, they were affected in the following way: the first reactor was continuously feed with 5 mg/L of cadmium chloride, the second one was continuously feed with 10 mg/L of nickel chloride and the last one was not affected and served as reference. Efficiency in organic load removal was measured as oxygen chemical demand (OCD), the first reactor changed from 60% in the start phase (phase one) to 18% in the cadmium-affected phase (phase two), efficiency in removal (OCI) in reactor two varied from 60 to 24% and the last one did not change in a noticeable manner. Reactor one accumulated cadmium in the mud, whereas reactor two did not do that with nickel

  13. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    OpenAIRE

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison to physical and chemical phosphorus removal processes, the biological process has several advantages such as high removal efficiency, low cost, and no chemical sludge production, but disturbances an...

  14. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  15. Isotope studies on the comparative efficiency of nitrogenous sources

    Energy Technology Data Exchange (ETDEWEB)

    Dev, G; Rennie, D A [Saskatchewan Univ., Saskatoon (Canada). Dept. of Soil Science

    1979-03-01

    In a growth chamber experiment with /sup 15/N-labelled potassium nitrate, ammonium sulphate and urea at 75 and 150kg nitrogen/ha and ammonium nitrate at 150kg nitrogen/ha, nitrogen application produced significant responses of dry matter yield and total nitrogen uptake by shoot and root of barley in chernozemic dark brown Elstow silt loam and deep black Hoey clay soil. Total nitrogen removal per pot and isotope-derived criteria, viz. percentage nitrogen derived from fertilizer, 'A' value and percentage fertilizer nitrogen utilization, indicated that potassium nitrate was the most efficient and urea the least.

  16. SYNTHESIS OF MAGNETITE NANOPARTICLES AND EVALUATION OF ITS EFFICIENCY FOR ARSENIC REMOVAL FROM SIMULATED INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Khodabakhshi

    2011-09-01

    Full Text Available In this study the efficiency of magnetic nanoparticles for removal of trivalent arsenic from synthetic industrial wastewater was evaluated. The nanoparticles was prepared by sol-gel method and characterized by X-ray methods including XRD, XRF, and SEM, and vibrating sample magnetometer (VSM. The results showed that synthesized nanoparticles were in the size range of 40-300 nm, purity of about 90%, and magnetization of nanoparticles was 36.5emu/g. In initial conditions including: pH=7, As(III concentration of 10 mg/L, nanomagnetite concentration of 1g/L, shaking speed of 250 rpm and 20 minute retention time, 82% of As (III was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, SO42-, and Cl- was ignorable but for NO3- was significant. The adsorption data of magnetite nanoparticles fit well with Freundlich isotherm equations. The adsorption capacity of the Fe3O4 for As (III at pH=7 was obtained as 23.8 mg/g. It was concluded that magnetite nanoparticles have considerable potential in removal of As(III from synthetic industrial wastewaters.

  17. The efficiency of two anaerobic reactor components; Eficiencias de dos componentes de un reactor anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A. [Facultad de Ingenieria. Universidad de Yucatan (Mexico); Martinez Pereda, P.; Fernandez Villagomez, G. [Universidad Nacional Autonoma de Mexico. Division de Estudios de posgrado de la Facultad de Ingenieria. Mexico (Mexico)

    1997-09-01

    This study examined the behaviour of an anaerobic digester in treating pig farm sewage. The experimental model consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total capacity of 534 litres. The digester was installed on a pig farm and its performance under different operating conditions was determined, with hydraulic retention time (HRT) as the critical parameter for evaluating the anaerobic system`s efficiency. The results obtained during the experiment to establish the critical operating parameters are reported. The organic loads applied for a HRT of 1 day were 7.3 kg/m``3/day of total DQO and 3 kg/m``3/day of soluble DQO, following organic matter removal rates (as total DQO) of 36% and 49% respectively and removal rates (as soluble DQO) of 74% in the UASB and 8% in the sedimentator. The efficiency of the reactor as a whole at this HRT time was a removal rate of 74% of total DQO and 75% of soluble DQO. (Author) 25 refs.

  18. Determining the efficiency of ZSM-5 zeolite impregnated with nanoparticles of titanium dioxide in the photocatalytic removal of styrene vapors

    Directory of Open Access Journals (Sweden)

    Mojtaba Nakhaei pour

    2017-03-01

    Full Text Available Introduction: Styrene monomer is a volatile organic compound that has many applications particularly in plastic, rubber and paint industries. According to the harmful effects of these compounds on human and environment, reducing and controling of them seem necessary. Therefore, in this study removal of styrene was investigated using photocatalytic process of titanium dioxide nanoparticles stabilized on ZSM-5. Methods: After stabilization of titanium dioxide nanoparticles on ZSM-5 zeolite, BET, SEM and XRD analysis were used to determine the characteristics of nanoparticles. Experiments were conducted at ambient temperature in laboratory scale. Concentration of produced styrene in the experiments was 50 and 300 ppm, and input flow rate was 1 l/min. Results: images and spectra obtained through XRD and SEM-EDAX showed that  nano-catalysts are well- stabilized. The results showed that by increasing of input concentration of styrene from 50 to 300 ppm, photocatalytic removal efficiency are reduced. Also, adsorption capacity of the catalyst bed in concentrations of 50 and 300 ppm was calculated 16.3 and19.4 mg/gr of adsorbent respectively. Conclusion: The results show that the use of hybrid bed can increase the removal efficiency of contaminants. And due to low cost of application of these systems compared to conventional methods, it is recommended that more comprehensive studies to be done regarding the optimization of the parameters affecting the process of photocatalytic removal.

  19. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti

    2018-05-10

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ Fe(VI) by wet chemical oxidation. First, the removal efficiencies of model AOM compounds, humic acid (HA), and sodium alginate (SA) were evaluated in the presence of sodium chloride with an initial influent dissolved organic carbon (DOC) concentration of 5.0 mg C L−1 at different pH levels to establish the optimal doses for in situ Fe(VI) generation. The concentration of Fe(VI) was determined by the 2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ultraviolet–visible spectrophotometry method. In the case of HA, 72% DOC removal was recorded when applied with 1.5 mg L−1 of Fe(III) and 1.5 mg L−1 of NaOCl (in situ Fe(VI) concentration of 1.46 mg L−1) while 42% DOC removal was observed for SA. Subsequently, the removal of AOM extracted from two bloom-forming algal species, Chaetoceros affinis (CA) and Hymenomonas (Hym), cultivated in seawater from the Red Sea, were tested with in situ generated Fe(VI) at the established optimum condition. In situ Fe(VI) recorded superior performance in removing AOM extracted from CA and Hym, showing 83% and 92% DOC removal when the influent DOC concentrations were 2.48 and 2.63 mg L−1, respectively. A detailed AOM characterization was conducted using liquid chromatography–organic carbon detection.

  20. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    Science.gov (United States)

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  1. Removal of Cobalt ion by Foam Flotation(I)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, I.H.; Park, H.S.; Moon, J.S.; Yim, S.P.; Bae, K.K. [Korea Atomic Energy Research Institute (Korea)

    1999-02-01

    Simulated liquid waste containing 50 ppm cobalt ion was treated by precipitate flotation using the surfactant of sodium lauryl sulfate. The effects of initial cobalt ion concentration, pH, surfactant concentration, removal time, gas flow rate and foreign ions were estimated on removal efficiency. 35% H{sub 2}O{sub 2} was added for pre-treatment stage before precipitate flotation. As the result of pre-treatment, optimum removal pH and the pH of treated water being discharged were lowed and optimum removal pH range was broadened. For the result of this experiment, 99.8% removal efficiency was obtained at the condition of 50ppm of initial cobalt ion concentration, pH 9.5, 70 mL/min of gas flow rate, and 30 min of removal time. Attraction between precipitate and surfactant was supposed to be influenced by solubility and chemical affinity among species in solution as well as zeta potential. The influence of foreign ions such as, NO{sub 3}{sup -}, SO{sub 4}{sup -2}, Na{sup +}, Ca{sup +2} on the removal efficiency was also observed. Removal efficiency by precipitate flotation containing o.1 M of SO4{sup -}2 ion decreased to 90% due to the decrease of zeta potential and interruption of precipitation. 12 refs., 8 figs.

  2. An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS

    Directory of Open Access Journals (Sweden)

    Shou Yu-Wen

    2010-01-01

    Full Text Available We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4%~10% for our three tested videos in the experimental results of vehicle counting.

  3. Efficiency of a Photoreactor Packed with Immobilized Titanium Dioxide Nanoparticles in the Removal of Acid Orange 7.

    Science.gov (United States)

    Sheidaei, Behnaz; Behnajady, Mohammad A

    2016-05-01

    In this paper, the removal efficiency of Color Index Acid Orange 7 (AO7) as a model contaminant was investigated in a batch-recirculated photoreactor packed with immobilized titanium dioxide type P25 nanoparticles on glass beads. The effects of different operational parameters such as the initial concentration of AO7, the volume of solution, the volumetric flowrate, and the light source power in the photoreactor were investigated. The results indicate that the removal percent increased with the rise in volumetric flowrate and power of the light source, but decreased with the rise of the initial concentration of AO7 and the volume of solution. The AO7 degradation was followed through total organic carbon, gas chromatography/mass spectroscopy (GC/MS), and mineralization products analysis. The ammonium and sulfate ions were analyzed as mineralization products of nitrogen and sulfur heteroatoms, respectively. The results of GC/MS revealed the production of 1-indanone, 1-phthalanone, and 2-naphthalenol as intermediate products for the removal of AO7 in this process.

  4. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    Science.gov (United States)

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Performance of water filters towards the removal of selected ...

    African Journals Online (AJOL)

    Organic matter removal was found to be 47%, 43%, 53%, 43.4% for bio-sand, slow sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% for bone char filter. Furthermore, filters were also assessed in terms of media availability, buying costs, operation, benefits/ effectiveness ...

  6. Determination of on-stream destruction removal efficiency using Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Demirgian, J.C.; Mao, Zhouxiong; MacIntosh, M.; Wentz, C.A.

    1991-01-01

    The requirements of the Clean Air Act Amendments of 1990 and public concern about the safety of air emissions from incineration necessitate the development of continuous emission monitors for on-line determination of both the destruction removal efficiency (DRE) of hazardous wastes and the emission products of incomplete combustion (PICs). This paper describes a Fourier transform infrared (FTIR) spectroscopic method that has been developed for this purpose. A laboratory-scale hazardous waste incinerator was coupled directly, via heated sampling lines, to a heated long-path cell (LPC) combined with an FTIR analyzer. The DRE and PIC emission levels were measured, on-line, for toluene incineration. Thus, this new LPC/FTIR system has been demonstrated as an effective continuous emissions monitor. Further experimental work with other hydrocarbons is now underway using the FTIR system. 8 figs., 4 tabs

  7. Effects of Misgurnus anguillicaudatus and Cipangopaludina cathayensis on Pollutant Removal and Microbial Community in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2015-05-01

    Full Text Available Aquatic animals play an important role in the energy flow and matter cycling in the wetland ecosystem. However, little is known about their effects on pollutant removal performance and microbial community in constructed wetlands. This work presents an initial attempt to investigate the effects of Misgurnus anguillicaudatus (loach and Cipangopaludina cathayensis (snail on nutrient removal performance and microbial community of constructed wetlands (CWs. Compared with a control group, CW microcosms with aquatic animals exhibited better pollutant removal performance. The removal efficiencies of total phosphorus (TP in the loach group were 13.1% higher than in the control group, and snails increased the ammonium removal most effectively. Moreover, the concentration of total organic carbon (TOC and TP in sediment significantly reduced with the addition of loaches and snails (p < 0.05, whereas the concentration of total nitrogen (TN showed an obvious increase with the addition of loaches. High-throughput sequencing showed a microbial community structure change. Loaches and snails in wetlands changed the microbial diversity, especially in the Proteobacteria and denitrifying community. Results suggested that benthic aquatic animals might play an important role in CW ecosystems.

  8. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  9. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    Science.gov (United States)

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL -1 h -1 , ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL -1 h -1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of humic substances on phosphorus removal by struvite precipitation.

    Science.gov (United States)

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits

    Directory of Open Access Journals (Sweden)

    Konstantinos Simeonidis

    2017-02-01

    Full Text Available This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from groundwater to meet the requirements of drinking water regulations. Results obtained by batch adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH, synthesized at pH 4 for maintaining a high positive charge density (2.5 mmol OH−/g achieved a residual concentration of Sb(III below the EU drinking water regulation limit of 5 μg/L by providing an adsorption capacity of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH, Bayoxide or to tetravalent manganese feroxyhyte (Fe-MnOOH adsorbents. In contrast, all tested adsorbents failed to achieve a residual concentration below 5 μg/L for Sb(V. The higher efficiency of the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity of 3 mg Sb(III/g was determined at a breakthrough concentration of 5 μg/L. However, it completely failed to achieve Sb(V concentrations below 5 μg/L even at the beginning of the column experiments. The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min, the developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close to 30 ± 3.4 €/103 m3 for every 10 μg Sb(III/L removed.

  12. Removable orthodontic appliances: new perspectives on capabilities and efficiency.

    Science.gov (United States)

    Hamid Zafarmand, A; Mahdi Zafarmand, M

    2013-06-01

    Removable appliances are a dependable choice for many patients but like all orthodontic appliances, they have some limitations in use. Patient selection and appropriate appliance design are two key factors for success. Many patients, especially adults, prefer intra-oral appliances to extra-oral devices. Sometimes a removable intra-oral appliance can solve a dental problem in a shorter period of time compared to fixed treatment, and this has also been repeatedly seen in molar distalisation. From the interceptive perspective, the appliance can prevent or alleviate an impending crowding for erupting permanent incisors. This article describes 5 patients with different orthodontic problems: impending crowding for erupting upper canine with 2 approaches, provision of space for upper cuspids, resolution of chronic attrition of anterior teeth, relief of space shortage for upper canines eruption, and reduction of excess overjet. All subjects were treated with removable appliances of various designs.

  13. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    Science.gov (United States)

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  14. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A study on removal of elemental mercury in flue gas using fenton solution

    International Nuclear Information System (INIS)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Yongchun; Zhou, Jianfei; Zhang, Jun

    2015-01-01

    Highlights: • A novel technique on oxidation of Hg 0 using Fenton was proposed. • The effects of several process parameters on Hg 0 removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg 0 removal was studied. • Simultaneous removal of Hg 0 , NO and SO 2 was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg 0 ) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H 2 O 2 concentration, Hg 0 inlet concentration, Fe 2+ concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO 2 , O 2 , CO 2 , inorganic ions and particulate matters on Hg 0 removal were studied. The results indicate that H 2 O 2 concentration, Fe 2+ concentration, solution pH and gas flow have great effects on Hg 0 removal. Solution temperature, Hg 0 , NO, SO 2 , CO 3 2− and HCO 3 − concentrations also have significant effects on Hg 0 removal. However, Cl − , SO 4 2− , NO 3 − , O 2 and CO 2 concentrations only have slight effects on Hg 0 removal. Furthermore, reaction mechanism of Hg 0 removal and simultaneous removal process of Hg 0 , NO and SO 2 were also studied. Hg 0 is removed by oxidation of ·OH and oxidation of H 2 O 2 . The simultaneous removal efficiencies of 100% for SO 2 , 100% for Hg 0 and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg 0 removal and simultaneous removal of Hg 0 , SO 2 and NO using Fenton solution in a bubbling reactor

  16. Evaluation of radiation use efficiency and its relationship with dry matter accumulation in three millet species

    Directory of Open Access Journals (Sweden)

    behnam kamkar

    2009-06-01

    Full Text Available A factorial arrangement of three millets species (Panicum miliaceum, Pennisetum glaucum, and Setaria italica and two sowing dates with three replications were used in a completely randomized design to evaluate the radiation use efficiency and its relationship with dry matter accumulation. Leaf area index was used in daily intervals to calculate daily intercepted radiation. Light extinction coefficient was calculated as the slope of regression line between log transformed fraction of intercepted radiation and leaf area index during growing season. Radiation use efficiency was calculated as the slope of linear regression between cumulative intercepted radiation and cumulative biomass during growing season. Results showed that light extinction coefficient and radiation use efficiency for proso, pearl and foxtail millets were 0.75, 0.66, 0.57 and 1.43, 1.83, 1.74 g/MJ in terms of total radiation, respectively. Differences in biomass production were not significant between proso and pearl millets. Proso millet had higher intercepted radiation, but lower radiation use efficiency in comparison with pearl millet. Foxtail millet had lower intercepted radiation than proso and pearl millets, but its radiation use efficiency was higher than pearl millet. Total biomass of foxtail millet was lower than other species. Results indicated that proso and pearl millets can produce more biomass than foxtail millet.

  17. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved

  18. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation.

    Science.gov (United States)

    Tünay, Olcay; Simşeker, Merve; Kabdaşli, Isik; Olmez-Hanci, Tugba

    2014-08-01

    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well.

  19. An organic-inorganic hybrid coagulant containing Al, Zn and Fe (HOAZF: preparation, efficiency and mechanism of removing organic phosphorus

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2018-04-01

    Full Text Available A polymeric-Al-Zn-Fe (PAZF coagulant showing high removal of pollutants has been successfully developed using a galvanized slag in earlier works, but it gave less elimination of phosphorus. To improve phosphorus removal, a hybrid organic-Al-Zn-Fe (HOAZF coagulant was prepared using PAZF and polyacrylamide (PAM as an organic additive, and then was characterized by scanning electron microscopy (SEM, infrared spectroscopy (IR, X-ray diffraction (XRD, and Zeta potential, respectively. Removing efficiency and mechanism of organophosphorus by HOAZF was probed using jar tests in treating a simulated pesticide wastewater containing dichlorvos (DDVP, compared to that by PAZF and polyaluminum chloride. The results displayed that HOAZF having relative lower Zeta potential (compared to PAZF exhibited complex surface morphology composited by Al, Zn and Fe and PAM, forming some new crystalline and amorphous substances different from that in PAZF. HOAZF gave higher removal of organophosphorus and far lower dosage than PAZF, and also posed a suitable wider pH range (pH = 7–12 for HOAZF and 10–11 for PAZF, respectively and suitable wider organophosphorus level range than PAZF. Removing organophosphorus by HOAZF was a simultaneous complex process involving a non-phase transfer of adsorption/bridging/sweeping and a phase transfer of chemical precipitation.

  20. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    Science.gov (United States)

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  1. Efficiency of Advanced H2O2/ZnO Oxidation Process in Ceftriaxone Antibiotic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Maryam Noroozi cholcheh

    2017-11-01

    Full Text Available A major concern about pharmaceutical pollution is the presence of antibiotics in water resources through their release into sewers where they cause bacterial resistance and enhanced drug-resistance in human-borne pathogens and growing microbial populations in the environment. The objective of this study was to investigate the efficiency of  the advanced H2O2/ZnO oxidation process in removing ceftriaxone from aqueous solutions. For this purpose, an experimental study was conducted in which the SEM, XRD, and TEM techniques were employed to determine the size of Zinc oxide nano-particles. Additionally, the oxidation process parameters of pH (3-11, molar ratio of H2O2/ZnO (1.5-3, initial concentration of ceftriaxone (5–15 mg/L, and contact time (30-90 min were investigated. Teh data thus obntained were subjected top statistical analysis using the SPSS (ANOVA test. XRD results revealeda hexagonal crystal structure for the nano-ZnO. TEM images confirmed the spherical shape of the nanoparticles. Finally, SEM images revealed that the Zn nanoparticles used in this study were less than 30 nanometers in diameter. Based on the results, an optimum pH of 11, a contact time of 90 minutes, and a H2O2/ZnO molar ratio equal to 1.5 were the optimum conditions to achieve a ceftriaxone removal efficiency of 92%. The advance H2O2/ZnO oxidation process may thus be claimed to be highly capable of removing ceftriaxone from aqueous solutions.

  2. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    Science.gov (United States)

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Towards environmentally sustainable aquaculture: Exploiting fermentation products from anaerobic sludge digestion for fueling nitrate removal in RAS

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Pedersen, Per Bovbjerg

    2011-01-01

    is by production in recirculating aquaculture systems (RAS). In Denmark, more than 50 % of total fresh-water rainbow trout production is made in semi-intensive RAS, called ModelTroutFarms (MTF). MTF efficiently removes organic matter (93%), phosphorous (76%), and nitrogen (50%) (Svendsen et al., 2008). This makes...... being the final cleaning component of the MTF set-up. No specific denitrification filter has so far been implemented in Danish MTFs. An in-situ study was conducted at a commercial MTF (1000 ton/year) for evaluating the potential of using the fermentation products from anaerobic digestion in the sludge...... time (HRT) from 50 to 180 min. The highest removal rate recorded, 125 g NO3-N/m3reactor/d, was found in treatments at the design center point, and multivariate response surface analysis modeled a maximum N-removal at C/N ratio of 8.8 and HRT of 114 min. The effect of C/N ratio depended on the HRT...

  4. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  5. Recoiling black holes in static and evolving dark matter halo potential

    Directory of Open Access Journals (Sweden)

    Smole M.

    2015-01-01

    Full Text Available We follow trajectories of kicked black holes in static and evolving dark matter halo potential. We explore both NFW and Einasto dark matter density distributions. Considered dark matter halos represent hosts of massive spiral and elliptical field galaxies. We study critical amplitude of kick velocity necessary for complete black hole ejection at various redshifts and find that ~40% lower kick velocities can remove black holes from their host haloes at z = 7 compared to z = 1. The greatest difference between static and evolving potential occurs near the critical velocity for black hole ejection and at high redshifts. When NFW and Einasto density distributions are compared ~30% higher kick velocities are needed for complete removal of BHs from dark matter halo described by NFW profile. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: Theory and observations

  6. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Abstract: Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to activity of fungi.

  7. Characterization of Natural Organic Matter by FeCl3 Coagulation

    Science.gov (United States)

    Cahyonugroho, O. H.; Hidayah, E. N.

    2018-01-01

    Natural organic matter (NOM) is heterogenous mixture of organic compounds that enter the water from various decomposition and metabolic reactions, including animal, plant, domestic and industrial wastes. NOM refers to group of carbon-based compounds that are found in surface water and ground water. The aim of the study is to assess organic matter characteristics in Jagir River as drinking water source and to characterize the organic components that could be removed during coagulation. Coagulation is the common water treatment process can be used to remove NOM with FeCl3 coagulant in various dosage. NOM surrogates, including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) were chosen to assess the organic removal. Results of jar test experiments showed that NOM can be removed about 40% of NOM surrogates with 200 mg/L FeCl3. About 60% removal of total organic fraction, which is mainly humic substances, as detected by size exclusion chromatography (SEC).

  8. Muscle activity and masticatory efficiency with bilateral extension base removable partial dentures with different cusp angles.

    Science.gov (United States)

    Al-Omiri, Mahmoud K

    2018-03-01

    Whether masticatory efficiency and electromyographic activity are influenced by type of artificial teeth and food is unclear. The purpose of this clinical study was to evaluate the influence of extension base removable partial dentures (RPDs) with different cusp angles: anatomic (33 degrees), semianatomic (20 degrees), and nonanatomic (0 degrees) teeth on masticatory efficiency and muscle activity during the mastication of test foods with different textures. Twelve participants with RPDs were selected to perform masticatory efficiency and electromyographic tests. Surface electromyograms (EMGs) were used to record the activities of the masseter and temporalis muscles during the mastication of different types of test foods. The maximal voltage and duration were measured on the integrated EMG signal in each muscle during food mastication, and the mean reading of both sides was then recorded. Analysis of variance and the Tukey post hoc test were used to perform statistical analyses (α=.05). The masticatory efficiency of RPDs with nonanatomic teeth was significantly inferior to that of RPDs with anatomic and semianatomic teeth (P.05). Also, muscle activity (according to EMG) with RPDs with NA teeth was significantly higher than that with anatomic and semianatomic teeth (P<.05). RPDs with NA teeth were associated with higher EMG muscle activity and reduced masticatory efficiency than anatomic or semianatomic teeth. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Characterization of sludge properties for sewage treatment in a practical-scale down-flow hanging sponge reactor: oxygen consumption and removal of organic matter, ammonium, and sulfur.

    Science.gov (United States)

    Nomoto, Naoki; Hatamoto, Masashi; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-02-01

    The characteristics of sludge retained in a down-flow hanging sponge reactor were investigated to provide a better understanding of the sewage treatment process in the reactor. The organic removal and sulfur oxidation conditions were found to differ between the first layer and the following three layers. It was found that 63% and 59% of the organic matter was removed in the first layer, even though the hydraulic retention time was only 0.2 h. It is thought that the organic removal resulted from aerobic and anaerobic biodegradation on the sponge medium. The sulfate concentration increased 1.5-1.9-fold in the first layer, with almost no subsequent change in the second to fourth layers. It was shown that oxidation of sulfide in the influent was completed in the first layer. The result of the oxygen uptake rate test with an ammonium nitrogen substrate suggested that the ammonium oxidation rate was affected by the condition of dissolved oxygen (DO) or oxidation-reduction potential (ORP).

  10. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

    Science.gov (United States)

    Cotrufo, M Francesca; Wallenstein, Matthew D; Boot, Claudia M; Denef, Karolien; Paul, Eldor

    2013-04-01

    The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.

  11. Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zenga, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Ou, Xiao-Ming [China National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014 (China); Jiang, Yan; Chang, Ying-Na; Guo, Min; Zhang, Chang; Liu, Hong-Yu [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China)

    2016-05-01

    Highlights: • Magnetic graphene oxide was synthesized and used to simultaneously remove HA/FA and Pb(II) from landfill leachate. • In HA-Pb(II) system, Pb(II) removal rapidly increased to the maximum (about 87%) and considerably decreased with increasing HA concentration. However, in FA-Pb(II) system, Pb(II) removal slightly increased and remained constant as FA concentration increased. • In binary system, the removal efficiency of HA/FA by MGO was enhanced due to the increase of Pb(II) concentration. • In landfill leachate, MGO showed considerable removal efficiency for both Pb(II) and HA/FA. - Abstract: The elimination of organic matters and heavy metals in landfill leachate remains a longstanding challenge in wastewater treatment. In this study, magnetic graphene oxide (MGO) was synthesized and investigated to explore the possibility of applying in the simultaneous removal of HA/FA and Pb(II) from landfill leachate. MGO was characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscope. In single system, the sorption isotherm for FA on MGO at 25 °C were better described by Freundlich model than Langmuir and Temkin models with a maximum adsorption capacity of 72.38 mg/g. The isotherm data for HA at 25 °C was fitted well both Freundlich and Temkin models with a maximum adsorption capacity of 98.82 mg/g, while the isotherm data for Pb(II) at 25 °C was fitted well both Langmuir and Temkin models with a maximum adsorption capacity of 58.43 mg/g. In binary system, results showed that TOC removal (both in HA and FA) enhanced with increasing Pb(II). Furthermore, TOC removal enhancement caused by the increase of Pb(II) in HA-Pb(II) system was greater than that in FA-Pb(II), which was caused by HA possessing more substantial aromatic rings than FA. Noticeably, Pb(II) removal steeply increased to the maximum (about 87%) with increasing

  12. Profiles and removal efficiency of polybrominated diphenyl ethers by two different types of sewage treatment work in Hong Kong.

    Science.gov (United States)

    Man, Yu Bon; Chow, Ka Lai; Man, Ming; Lam, James Chung Wah; Lau, Frankie Tat Kwong; Fung, Wing Cheong; Wong, Ming Hung

    2015-02-01

    This study was to investigate removal efficiencies and profiles of 14 polybrominated diphenyl ether (PBDE) congeners by two different types of sewage treatment work (STW) in Hong Kong: Stonecutters Island STW (SCISTW) which uses chemically enhanced primary treatment (CEPT) process and Sha Tin STW (STSTW) which adopts biological treatment. The results indicated that both SCISTW and STSTW had a high total removal efficiency for BDE-47, BDE-99 BDE-209 and total PBDEs (SCISTW: 71.6 ± 15.8, 84.7 ± 12.3, 96.0 ± 2.62 and 87.4 ± 8.02%, respectively; STSTW: 74.8 ± 9.5, 90.7 ± 9.14, 96.2 ± 2.41 and 89.3 ± 2.62%, respectively) and PBDEs were chiefly removed by sorption. However, the profile of PBDEs demonstrated that the relative proportions of BDE-28 and BDE-47 in total PBDEs markedly increased, while that of BDE-209 decreased in the effluent samples of the two sewage treatment works, especially in STSTW. The percentage of BDE-209 in total PBDEs in effluent (49.3%) of SCISTW was 21.2% lower than that in influent (70.5%), and the percentage of BDE-209 in total PBDEs in effluent (13.8%) of STSTW was 34.1% reduced from influent (47.9%). Despite overall removal, the percentage of BDE-47 in total PBDEs in effluent (17.6%) of SCISTW was 6.85% higher than that in influent (10.7%), and the percentage of BDE-47 in total PBDEs in effluent (33.5%) of STSTW was 18.1% increased from influent (16.8%). The increase in proportion of BDE-47 in the effluent might raise environmental and public health concerns. Our study is a first attempt in reporting the PBDE congener profiles in different phases of sewage treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Science.gov (United States)

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  14. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain.

    Science.gov (United States)

    Garfí, Marianna; Pedescoll, Anna; Bécares, Eloy; Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; García, Joan

    2012-10-15

    The aim of this study was to examine the effects of climate, season and wastewater quality on contaminant removal efficiency of constructed wetlands implemented in Mediterranean and continental-Mediterranean climate region of Spain. To this end, two experimental horizontal subsurface flow constructed wetlands located in Barcelona and León (Spain) were compared. The two constructed wetland systems had the same experimental set-up. Each wetland had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium of D(60)=7.3 mm, and was planted with Phragmites australis. Both systems were designed in order to operate with a maximum organic loading rate of 6 g(DBO) m(-2) d(-1). Experimental systems operated with a hydraulic loading rate of 28.5 and 98 mm d(-1) in Barcelona and León, respectively. Total suspended solids, biochemical oxygen demand and ammonium mass removal efficiencies followed seasonal trends, with higher values in the summer (97.4% vs. 97.8%; 97.1% vs. 96.2%; 99.9% vs. 88.9%, in Barcelona and León systems, respectively) than in the winter (83.5% vs. 74.4%; 73.2% vs. 60.6%; 19% vs. no net removal for ammonium in Barcelona and León systems, respectively). During the cold season, biochemical oxygen demand and ammonium removal were significantly higher in Barcelona system than in León, as a result of higher temperature and redox potential in Barcelona. During the warm season, statistical differences were observed only for ammonium removal. Results showed that horizontal subsurface flow constructed wetland is a successful technology for both regions considered, even if winter seemed to be a critical period for ammonium removal in continental climate regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2016-06-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  16. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  17. 33 CFR 159.85 - Sewage removal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sewage removal. 159.85 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The device must be designed for efficient removal of nearly all of the liquid and solids in the sewage retention...

  18. Selective depletion of organic matter in mottled podzol horizons

    NARCIS (Netherlands)

    Buurman, P.; Schellekens, J.F.P.; Fritze, H.; Nierop, K.G.J.

    2007-01-01

    Some well-drained podzols on quartz sands in the Netherlands and neighbouring Belgium and Germany show mottling in all horizons due to selective removal of organic matter. Phospholipid analysis and morphology of the mottles suggests that this removal is due to a combination of bacteria, fungi, and

  19. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    Science.gov (United States)

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  1. High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode

    Science.gov (United States)

    Dan, ZHAO; Feng, YU; Amin, ZHOU; Cunhua, MA; Bin, DAI

    2018-01-01

    With the rapid increase in the number of cars and the development of industry, nitrogen oxide (NOx) emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOx removal at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO2, ZrO2, or Fe2O3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency (28.8%) than that obtained using quartz tube (14.1%) at a frequency of 8 kHz with an input voltage of 6.8 kV. Furthermore, under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.

  2. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  3. The investigation of parameters affecting boron removal by electrocoagulation method

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Keskinler, Buelent

    2005-01-01

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm 2 . The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl 2 . Added CaCl 2 increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions

  4. Efficient removal of methyl orange using Cu2O as a dual function catalyst

    Science.gov (United States)

    Zhang, Fan; Dong, Guohui; Wang, Mian; Zeng, Yubin; Wang, Chuanyi

    2018-06-01

    In this study, we synthesized Cu2O particles with rough surfaces by a facile solvothermal method as a dual-function material that can degrade contaminants not only under light irradiation but also in dark circumstance. Both the as-prepared Cu2O and commercial Cu2O exhibited excellent performance for the removal of methyl orange under visible light irradiation through a photocatalysis-based strategy. However, the former was found to show remarkable capability under dark circumstances by means of molecular oxygen activation, while the latter performed poor efficiently under the same condition. This significant difference of performances under dark circumstances was related to rich oxygen vacancies existed on the as-prepared Cu2O surfaces that are associated with the single-electron reduction of O2 to generate radO2-, which play a dominant role in the generation of Cu+. In addition, Cu+ was identified to play key roles in the broken of azo bond. Then, the generated intermediates were mineralized by radOH generated through molecular oxygen activation process. This study could not only deep the understanding of the MO removal mechanism by Cu2O but also show a novel direction of amphibious application for photocatalytic materials.

  5. Efficient removal of disperse dye by mixed culture of ganoderma lucidum and coriolus versicolor

    International Nuclear Information System (INIS)

    Sadaf, S.; Bhatti, H.N.; Bibi, I.

    2013-01-01

    In the current study, an attempt was made to check the potential of aerobic mixed culture of two indigenous white rot fungi for the decolorization of different disperse dyes in batch culture mode and optimization of different conditions to enhance the biotransformation of dyes. Initial screening trial with six disperse dyes, viz. (Foron Yellow RD5GL, Foron Red RDRBLS, Foron Rubine RDGFL, Foron Black RD3GRN, Foron Blue RDGLN and Foron Turquoise SBLN), was carried out using mixed culture of Ganoderma lucidum and Coriolus versicolor. From all the tested dyes, the mixed culture showed better removal efficiency (93 %) with Foron Turquoise SBLN dye after 8 days of incubation period as compared to other tested dyes. Enhanced color removal (98 %) was observed when the medium was amended by ammonium tartarate, maltose, MnSO/sub 4/ at pH 4.5 and 30 degree C with 2 mL fungal culture during 2nd day of incubation period. Enzyme profile showed that the mixed culture produced three liginolytic enzymes like lignin peroxidase (LiP), manganase peroxidase (MnP) and laccase but MnP was found to be the major enzyme. The results indicated that white rot fungi (WRF) could be used to treat wastewater containing disperse dyes. (author)

  6. Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants

    Science.gov (United States)

    Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek

    2017-04-01

    Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.

  7. Energy Matters, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, E.

    1999-07-09

    This issue of Energy Matters focuses on selling an energy-efficient project to management. There are also articles on combined heat and power systems, inspecting steam traps for efficient system, root cause failure analysis on AC induction motors, and performance optimization tips.

  8. Removal of radionuclides from household water; Metoder foer avlaegsnande av radionuklider fraan hushaallsvatten

    Energy Technology Data Exchange (ETDEWEB)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2007-02-15

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2 - 3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller

  9. Total organic carbon removal from a chemical lab’s wastewater using Fenton’s reagent

    Directory of Open Access Journals (Sweden)

    Oscar Mauricio Martínez Ávila

    2013-05-01

    Full Text Available Treating industrial wastewater represents a serious problem nowadays; it requires a strong understanding of the particular systems and (in most of cases ad hoc solutions. This work describes the use of Fenton’s reagent (reaction between H2O2 and Fe(II for removing total organic carbon (TOC from a particular chemical laboratory’s lab-scale batch reactor wastewater. Some operating variables (hydrogen peroxide and ferrous ion concentration, temperature and pH were evaluated regarding final TOC removal. An economic optimisation was made by means of a second order polynomial model representing these variables’ behaviour regarding TOC removal (0.94 R2. The highest experimentally reached TOC removal was 88.8% at 50 mg/L [Fe(II]0, 50 mM [H2O2]0 , pH=2.8 at 80oC, while 53.9% was obtained in optimised conditions, i.e. 36 mg/L [Fe(II]0 , 45.5 mM [H2O2]0 , pH=2.6 at 20°C. It was found that the Fenton process could achieve 41% removal, even in adverse conditions (pH close to 6. It was noted from the analysis that both H2O2 concentration and temperature had a powerful effect on organic matter degradation efficiency, as well as on total treatment cost.

  10. Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2017-11-01

    Full Text Available This study applied a multi-level contact oxidation process system in a pilot-scale experiment to treat automobile painting wastewater. The experimental wastewater had been pre-treated through a series of physicochemical methods, but the water still contained a high concentration of chemical oxygen demand (COD and had poor biodegradability. After the biological treatment, the COD concentration of effluent could stay below 300 mg/L. The study analyzed the effects of hydraulic residence time (HRT on COD, ammonia nitrogen (NH4+-N, and total nitrogen (TN. The optimal HRT was 8 h; at that time, removal efficiencies of COD, ammonia nitrogen, and total nitrogen were 83.8%, 86.3%, and 65%, respectively. The system also greatly reduced excess sludge production; the removal efficiency was 82.8% with a HRT of 8 h. The study applied high-throughput pyrosequencing technology to evaluate the microbial diversity and community structures in distinct stages of the biological reactor. The relevance between process performance and microbial community structure was analyzed at the phylum and class level. The abundant Firmicutes made a large contribution to improving the biodegradability of painting wastewater through hydrolysis acidification and reducing sludge production through fermentation in the biological reactor.

  11. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    Science.gov (United States)

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  12. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Science.gov (United States)

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  13. Investigations to increase the efficiency of fluorine and boron removal from groundwater using radiation-induced graft polymerization adsorbent

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2010-01-01

    The Japan Atomic Energy Agency is performing a research project in the Mizunami Underground Research Laboratory (MIU) to build a firm scientific and technological basis for the studies of the deep underground environment in crystalline rock. In the project, it is necessary to reduce the fluorine and boron concentrations in groundwater pumped from the MIU shafts to levels below the environmental standards. This is done at the MIU water treatment facility using coagulation and ion exchange treatment for fluorine and boron, respectively. In addition, in 2006, research started on the efficient treatment of groundwater for removal of fluorine and boron using a radiation-induced graft polymerization adsorbent. The adsorbent removed boron at a flow rate (space velocity (SV)=120 h -1 ) higher than that of a general ion exchange resin (SV=10 h -1 ) and the adsorbent could be used repeatedly. It was also apparent that the pH of groundwater had an influence on adsorption performance. With respect to fluorine removal, more than 90% of fluorine was removed. However, the adsorbent for fluorine showed a lower adsorption capacity than that for boron. The reason for this difference is considered to be related to the initial concentration difference between fluorine and boron in the groundwater. Therefore, it is necessary to define the initial concentrations of dissolved materials, which can be used as better indicators of the performance of the adsorbent. (author)

  14. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    Science.gov (United States)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  16. A comparative assessment of chemical contaminant removal by ...

    African Journals Online (AJOL)

    This study was aimed at modifying the design of, constructing, evaluating and comparing chemical contaminant removal efficiency by, 3 household water treatment filters. The filters were: 1) biosand filter (BSF); 2) the ceramic candle filter (CCF); 3) bucket filter (BF). The filters were evaluated for their efficiency in removal of ...

  17. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite

    International Nuclear Information System (INIS)

    Li, Zi-Jie; Wang, Lin; Yuan, Li-Yong; Xiao, Cheng-Liang; Mei, Lei; Zheng, Li-Rong; Zhang, Jing; Yang, Ju-Hua; Zhao, Yu-Liang; Zhu, Zhen-Tai; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-01-01

    Highlights: • Uranium removal by ZVI-nps: independent of pH, the presence of CO 3 2− , humic acid, or mimic groundwater constituents. • Rapid removal kinetics and sorption capacity of ZVI-nps is 8173 mg U/g. • Two reaction mechanisms: sufficient Fe 0 → reductive precipitation as U 3 O 7 ; insufficient Fe 0 → hydrolysis precipitation of U(VI). • Fe/graphene composites: improved kinetics and higher U(VI) reduction ratio. - Abstract: Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO 3 , humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C 0 (U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C 0 (U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH 4 ) 2 CO 3 solution. Partially reductive precipitation of U(VI) as U 3 O 7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe 2+ ions. The dissolution of Fe 0 cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment

  18. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    Science.gov (United States)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  20. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine Bondo; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    , dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating...... that the targeted heavy,metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean...

  1. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  2. A study on removal of elemental mercury in flue gas using fenton solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Yongchun [Jiangsu Province Special Equipment Safety Supervision Inspection Institute (Branch of Wuxi), Wuxi 214000 (China); Zhou, Jianfei [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Jun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2015-07-15

    Highlights: • A novel technique on oxidation of Hg{sup 0} using Fenton was proposed. • The effects of several process parameters on Hg{sup 0} removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg{sup 0} removal was studied. • Simultaneous removal of Hg{sup 0}, NO and SO{sub 2} was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg{sup 0}) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H{sub 2}O{sub 2} concentration, Hg{sup 0} inlet concentration, Fe{sup 2+} concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO{sub 2}, O{sub 2}, CO{sub 2}, inorganic ions and particulate matters on Hg{sup 0} removal were studied. The results indicate that H{sub 2}O{sub 2} concentration, Fe{sup 2+} concentration, solution pH and gas flow have great effects on Hg{sup 0} removal. Solution temperature, Hg{sup 0}, NO, SO{sub 2}, CO{sub 3}{sup 2−} and HCO{sub 3}{sup −} concentrations also have significant effects on Hg{sup 0} removal. However, Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, O{sub 2} and CO{sub 2} concentrations only have slight effects on Hg{sup 0} removal. Furthermore, reaction mechanism of Hg{sup 0} removal and simultaneous removal process of Hg{sup 0}, NO and SO{sub 2} were also studied. Hg{sup 0} is removed by oxidation of ·OH and oxidation of H{sub 2}O{sub 2}. The simultaneous removal efficiencies of 100% for SO{sub 2}, 100% for Hg{sup 0} and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg{sup 0} removal and simultaneous removal of Hg{sup 0}, SO{sub 2} and NO using Fenton solution in a bubbling reactor.

  3. Track theory and nuclear photographic emulsions for Dark Matter searches

    International Nuclear Information System (INIS)

    Ditlov, V.A.

    2013-01-01

    This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow

  4. Investigation the Efficiency of Combined Coagulation and Advanced Oxidation by Fenton Process in the Removal of Clarithromycin Antibiotic COD

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2012-07-01

    Full Text Available Antibiotics are considered among the major pollutants in water environments. In this study, removal of Claritromycine antibiotic has been studied from synthetic wastewater by combined coagulation and advanced oxidation processes. This study, was done in laboratory scale .  Samples of synthetic wastewater  were prepared from Claritromycin antibiotic. Concentration of samples were 200 mg/l. COD index was selected as a parameter evaluated in this study. In the first stage, coagulation process was done on synthetic wastewater and the proper condition was achieved (proper coagulant, optimum pH, dosage of coagulant. After that, Fenton oxidation process was done, on the effluent of coagulation process. In Fenton process the influence of pH, Fe2+ and hydrogen peroxide were studied on the removal efficiency of Claritromycin antibiotic and the optimum values for each parameter were determined. According to the results of this study, Poly Aluminum Chloride (PAC  is the proper coagulant. With pH equal to 7 and 100 mg/l PAC, 84.37% removal of Claritromycine was achieved.  For fenton process, optimum parameters for the removal of Claritromycin were determined. The optimum condition for fenton process were, pH= 7, Fe2+ equal to 0.45 mmol/ l , hydrogen proxide equal to 0. 16 mmol/l, ratio of H2O2/Fe2+ equal to 0.4 and detention time of 1hour .With Applying of optimum conditions for combined coagulation and Fenton processes, 96.3% removal of Claritromycin was obtained.

  5. Theoretical Study of Methods for Improving the Energy Efficiency of NOx Removal from Diesel Exhaust Gases by Silent Discharge

    Science.gov (United States)

    Shoyama, Taiji; Yoshioka, Yoshio

    To improve the NO removal performance in silent discharge process, we investigated the influence of the physical parameters such as current density, channel radius and pulse duration of the one micro discharge under the constant reduced electric field strength. And influence of the micro discharges occurrence locations were also discussed. In order to analyze the NO removal process, we assumed that the pulse micro discharges occur repeatedly at the same location in static gas and that the chemical reactions induced by micro discharge forms many radicals, which react with pollutants and by-products. The conclusions we obtained are that lower current density, smaller discharge radius and shorter discharge duration improve NO removal efficiency. These results also mean that the lower discharge energy of the one micro discharge and the larger number of parallel micro discharges increase the NO removal performance. Therefore, to make the area of one micro discharge small is a desirable way to improve the NO removal performance. So we think that the glow like discharge might be more effective than the streamer like discharge mode. Next, using the two-dimensional model, which considered the influence of gas flow, we obtained a conclusion that the repeated micro discharges at different positions are very effective to increase the De-NOx performance. The reason is that the reaction of NO2+O→NO+O2 and ozone dissociation reactions are suppressed by the movement of the location of micro discharges.

  6. Removal of heavy metals from sludge of Sanaru-Lake by electrokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Seno, T.; Shiba, S.; Hirata, Y. [Dept. of Systems Engineering, Shizuoka Univ., Hamamatsu (Japan)

    2001-07-01

    Two kinds of experiments were carried out for the removal of heavy metals from soils by electrokinetic technique. One was the removal of lead from kaolinite by using a small-sized test cell. The effect of the kind of purging solutions (such as distilled water, tap water, acetic acid and nitric acid) on removal efficiency was examined. High removal efficiency was obtained for the acetic acid solution. It was found that the controlling pH of solution surrounding cathode had a significant influence on the removal efficiency. The other experiment was the removal of heavy metals from the bottom sludge of Sanaru Lake. Zinc, nickel and copper in the sludge were successfully removed, but lead and chromium were hardly able to remove from the sludge. The simplified one-dimensional mathematical model was proposed. The prediction by the model was qualitatively agreed with the experimental result. (orig.)

  7. Effect of halide impregnation on elemental mercury removal of activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Yoon Ji; Park, Soo Jin [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    Activated carbons (ACs) were impregnated with potassium halides (KX) to enhance the removal efficiency of elemental mercury (Hg{sup 0}). In this work, the impregnation effect of potassium bromide (KBr) and potassium iodine (KI) were investigated. The surface properties of KX-ACs were determined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The pore structures and total pore volumes of the KX-ACs were analyzed using the N{sub 2} /77 K adsorption isotherms. The Hg{sup 0} removal efficiency of KBr-ACs and KI-ACs was studied under simulated flue gas conditions. The effects of KI and KBr loading, adsorption temperature, and flue gas components on Hg{sup 0} removal efficiency were also investigated. The results showed that the Hg{sup 0} removal efficiency of the ACs was significantly enhanced by KI or KBr impregnation, and KI-ACs showed higher Hg{sup 0} removal efficiency than KBr-ACs under the same conditions. An increase in KI or KBr loading and higher adsorption temperatures improved the Hg{sup 0} removal efficiency, indicating that chemisorption occurred due to the reaction between X− and Hg{sup 0}. The lower extent of Hg{sup 0} removal exhibited by the KBr-ACs than by the KI-ACs was due to the difficulty of Br{sub 2} formation on the surfaces.

  8. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    Science.gov (United States)

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  9. Chemical sulphate removal for treatment of construction and demolition debris leachate.

    Science.gov (United States)

    Kijjanapanich, Pimluck; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2014-08-01

    Construction and demolition debris (CDD) is a product of construction, renovation or demolition activities. It has a high gypsum content (52.4% of total gypsum), concentrated in the CDD sand (CDDS) fraction. To comply with the posed limit of the maximum amount of sulphate present in building sand, excess sulphate needs to be removed. In order to enable reuse of CDDS, a novel treatment process is developed based on washing of the CDDS to remove most of the gypsum, and subsequent sulphate removal from the sulphate-rich CDDS leachate. This study aims to assess chemical techniques, i.e. precipitation and adsorption, for sulphate removal from the CDDS leachate. Good sulphate removal efficiencies (up to 99.9%) from the CDDS leachate can be achieved by precipitation with barium chloride (BaCl2) and lead(II) nitrate (Pb(NO3)2). Precipitation with calcium chloride (CaCl2), calcium carbonate (CaCO3) and calcium oxide (CaO) gave less efficient sulphate removal. Adsorption of sulphate to aluminium oxide (Al2O3) yielded a 50% sulphate removal efficiency, whereas iron oxide-coated sand as adsorbent gave only poor (10%) sulphate removal efficiencies.

  10. Simultaneous C and N removal from saline salmon effluents in filter reactors comprising anoxic-anaerobic-aerobic processes: effect of recycle ratio.

    Science.gov (United States)

    Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D

    2014-01-01

    Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.

  11. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    Science.gov (United States)

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  12. Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites.

    Science.gov (United States)

    Dinari, Mohammad; Tabatabaeian, Reyhane

    2018-07-15

    Finding effective methodologies for the removal of heavy metals from contaminated water are really significant. Facile and "green" techniques for adsorbents fabrication are in high demand to satisfy a wide range of practical applications. This report presents of an efficient method for preparing Fe 3 O 4 @ layered double hydroxide@ guargum bionanocomposites (GLF-BNCs). First of all, the LDH coated Fe 3 O 4 nanoparticles were simply synthesized, using ultrasonic irradiation. The citrate coated Fe 3 O 4 nanoparticles which were under negative charging and LDH nanocrystals which were charged positively make electrostatic interaction which formed a stable self-assembly component, and then guargum as a biopolymer were linked onto Fe 3 O 4 @LDH via an in situ growth method. Furthermore, the GLF-BNCs had the ability to remove cadmium ions (Cd 2+ ) from the aqueous solutions. Adsorption studies indicate that the Langmuir isotherm model and the kinetic model in pseudo-second order were appropriate for Cd(II) removal. The maximum Cd(II) adsorption capacity of the GLF8% was 258 mg g -1 . The Cd(II) was adsorbed from aqueous solutions very quickly with the contact time of 5 min by the GLF 8%, suggesting that GLF-BNCs may be a promising adsorbent for removing Cd(II) from wastewater. The effect of Fe 3 O 4 @LDH contents (2, 4 and 8 wt.%) on the thermal, physicomechanical, and morphological properties of guargum were investigated by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), field emission scanning electron microscopy, transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy and Brunauer-Emmett-Teller (BET) specific surface area techniques. The TEM results indicated that the LDH platelets are distributed within the polymer matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  14. NOM removal technologies – Norwegian experiences

    Directory of Open Access Journals (Sweden)

    H. Ødegaard

    2010-01-01

    Full Text Available The paper gives an overview of the methods for removal of natural organic matter (NOM in water, particularly humic substances (HS, with focus on the Norwegian experiences. It is demonstrated that humic substances may be removed by a variety of methods, such as; molecular sieving through nanofiltration membranes, coagulation with subsequent floc separation (including granular media or membrane filtration, oxidation followed by biofiltration and sorption processes including chemisorption (ion exchange and physical adsorption (activated carbon. All these processes are in use in Norway and the paper gives an overview of the operational experiences.

  15. Dry matter production, seed yield and water use efficiency of some grain legumes grown under different water regimes using nuclear technique

    International Nuclear Information System (INIS)

    Harb, O.M.S.; Salem, M.S.A.; Abdalla, A.A.; Abd-Elwahed, N.M.

    2007-01-01

    Two field experiments were performed in the experimental farm at the Atomic Energy Authority, Inshas, Egypt, during 2002 and 2004 growing seasons to evaluate the responses of dry matter production, seed yield, water use efficiency and root characteristics for three legumes species, i.e. soybean (Glycine max cv. clark), cowpea (Vigna unguiculata cv. Kafr El-Sheikh) and mungbean (Vigna radiate cv. kawmy 1) grown on a new reclaimed sandy soil under different water regimes. The experiments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation water, i.e. full irrigation (W1), medium water stress (W2) and severe water stress (W3). The obtained results indicated that normal irrigation (W1) gave the highest above ground dry matter production at flowering stage and total dry matter yield at maturity for the tested legumes. Water stress decreased significantly seed yields for all the tested legume seeds. The seed yield of normal watering condition treatment (W1) out yielded seed yield of those irrigated with medium water stress (W2) and severe water stress (W3). Mungbean and cowpea were more adapted to severe water stress than soybean. Most of the reduction in yield arose from a decrease in pod number. Pod number, number of seeds per pod and the thousand seed weight were significantly affected by water stress. The highest water use efficiency based on seed yield or dry matter yield were obtained by exposing the legume plants to medium water stress (W2), while the lowest value was obtained by exposing the plants to severe water stress (W3). There were significant differences in WUE among the tested species, whereas, mungbean showed the highest value in response to water stress, followed by soybean while cowpea showed the lowest value of water use efficiency. Rooting depth was increased under the severe water stress treatment as compared with well watered condition in the tested legume plants. Mungbean had the

  16. Using decomposition kinetics to model the removal of mine water pollutants in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Tarutis, W J; Unz, R F [Pennsylvania State University, University Park, PA (United States)

    1994-01-01

    Although numerous mathematical models have been used to describe decomposition, few, if any, have been used to model the removal of pollutants in constructed wetlands. A steady state method based on decomposition kinetics and reaction stoichiometry has been developed which simulates the removal of ferrous iron entering wetlands constructed for mine drainage treatment. Input variables for the model include organic matter concentration, reaction rate coefficient, porosity and dry density, and hydraulic detection time. Application of the model assumes complete anaerobic conditions within the entire substrate profile, constant temperature, no additional organic matter input, and subsurface flow only. For these ideal conditions, model simulations indicate that wetlands constructed with readily decomposable substrates rich in organic carbon are initially capable of removing far greater amounts of iron than wetlands built with less biodegradable substrates. However, after three to five years of operation this difference becomes negligible. For acceptable long-term treatment performance, therefore, periodic additions of decomposable organic matter will be required.

  17. Arsenic removal in water by means of coagulation-flocculation processes

    International Nuclear Information System (INIS)

    Franco, M. F.; Carro P, M. E.

    2014-01-01

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  18. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  19. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  20. Removal of Chromium from Industrial Wastewater Using Silicon Nanoparticle

    Directory of Open Access Journals (Sweden)

    Laleh Ranandeh Kalankesh

    2015-03-01

    Full Text Available Hexavalent chromium is a pollutant found in surface and underground waters that causes serious environmental hazards. Chromium enters water as a result of industrial activities such as electroplating, dyeing, leather tanning, and metal manufacturing. The objective of the present laboratory-experimental study was to remove chromate from industrial effluents using silicon nanoparticles. The experiments were performed with both simulated synthetic wastewater and true wastewater. Various parameters such as pH, contact time, and different concentrations of Cr(VI and SiO2 were examined. The data obtained were analyzed using the Excel and SPSS Ver. 16. It was found that Cr(VI removal increased with decreasing pH and increasing contact time. The highest Cr(VI removal was achieved at pH=3 and a contact time of 120 minutes. It was also observed that removal observed to obey the Langmuir isotherm and pseudo second-order kinetic models, respectively. The findings indicate that silicon nanoparticles are capable of removeing Cr(VI from industrial effluents. Given the Cr(VI removal efficiency of 93.6% achieved under optimum conditions and  the removal efficiency of 88.6% achieved in real samples, the method may be recommended as a highly efficient one for removing Cr(VI from industrial wastewaters.