WorldWideScience

Sample records for matter pm exposure

  1. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  2. Respiratory health risks and exposure to particulate matter (PM 2.5 ...

    African Journals Online (AJOL)

    A validated questionnaire for respiratory health was administered to 102 waste pickers and exposure to environmental and personal PM2.5 was evaluated. There was a relatively high prevalence of chronic cough and wheeze amongst all participants (57% and 51% respectively). Males reported a higher frequency of cough ...

  3. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM{sub 10})

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Bai, Ni [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver (Canada); Vincent, Renaud [Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa (Canada); Francis, Gordon A.; Sin, Don D. [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada); Van Eeden, Stephan F., E-mail: Stephan.vanEeden@hli.ubc.ca [UBC James Hogg Research Centre, St. Paul' s Hospital, University of British Columbia, Vancouver (Canada)

    2013-10-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{sub 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal

  4. Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10)

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih; Bai, Ni; Vincent, Renaud; Francis, Gordon A.; Sin, Don D.; Van Eeden, Stephan F.

    2013-01-01

    Exposure to ambient air particulate matter (particles less than 10 μm or PM 10 ) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM 10 . New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM 10 /saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM 10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM 10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM 10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM 10 . Taken together, statins protect against PM 10 -induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM 10 ) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and

  5. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  6. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  7. Electrocardiographic, hemodynamic, and biochemical responses to acute particulate matter (PM) exposure in aged heart failure-prone rats

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiac disease-especially heart failure (HF). The mechanisms explaining PM-induced exacerbation ofHF are unclear. Some o...

  8. Acute Exposure to Particulate Matter (PM) Alters Physiologic and Toxicologic Endpoints in a Rat Model of Heart Failure

    Science.gov (United States)

    Human exposure to ambient PM from fossil-fuel emissions is linked to cardiovascular disease and death. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). We previously examined the effects of PM on HF by exposing Sponta...

  9. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    Science.gov (United States)

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  10. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  11. Particulate matter 2.5 (PM2.5) personal exposure evaluation on mechanics and administrative officers at the motor vehicle testing center at Pulo Gadung, DKI Jakarta.

    Science.gov (United States)

    Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat

    2016-03-01

    Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).

  12. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  13. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neighborhood Perceptions and Cumulative Impacts of Low Level Chronic Exposure to Fine Particular Matter (PM2.5 on Cardiopulmonary Health

    Directory of Open Access Journals (Sweden)

    Kristen M. C. Malecki

    2018-01-01

    Full Text Available Adverse perceptions of neighborhood safety, aesthetics and quality including access to resources can induce stress and may make individuals more sensitive to cardiopulmonary effects of air pollution exposure. Few studies have examined neighborhood perceptions as important and modifiable non-chemical stressors of the built environment that may exacerbate effects of air pollution on cardiopulmonary health outcomes, particularly among general population based cohorts. This study examined associations between low-level chronic exposure to fine particulate matter (PM2.5 and cardiopulmonary health, and the potential mediating or modifying effects of adverse neighborhood perceptions. Using data from the Survey of the Health of Wisconsin (SHOW, 2230 non-asthmatic adults age 21–74 were included in the analyses. The overall goals of this study were to assess if individuals who experience stress from neighborhood environments in which they live were more sensitive to low levels of fine particular matter (PM2.5 μg/m3. Demographic predictors of air pollution exposure included younger age, non-White race, lower education and middle class income. After adjustments, objective lung function measures (FEV1 and FEV1 to FVC ratio were the only cardiopulmonary health indicators significantly associated with chronic three-year annual averages of PM2.5. Among all non-asthmatics, a ten unit increase in estimated three year annual average PM2.5 exposure was significantly associated with lower forced expiratory volume (L in one second FEV1 (β = −0.40 μg/L; 95% CI −0.45, −0.06. Among all individuals, adverse perceptions of the neighborhood built environment did not appear to statistically moderate or mediate associations. However, stratified analysis did reveal significant associations between PM2.5 and lung function (FEV1 only among individuals with negative perceptions and increased reports of neighborhood stressors. These findings included individuals who

  15. Neighborhood Perceptions and Cumulative Impacts of Low Level Chronic Exposure to Fine Particular Matter (PM2.5) on Cardiopulmonary Health.

    Science.gov (United States)

    Malecki, Kristen M C; Schultz, Amy A; Bergmans, Rachel S

    2018-01-06

    Adverse perceptions of neighborhood safety, aesthetics and quality including access to resources can induce stress and may make individuals more sensitive to cardiopulmonary effects of air pollution exposure. Few studies have examined neighborhood perceptions as important and modifiable non-chemical stressors of the built environment that may exacerbate effects of air pollution on cardiopulmonary health outcomes, particularly among general population based cohorts. This study examined associations between low-level chronic exposure to fine particulate matter (PM 2.5 ) and cardiopulmonary health, and the potential mediating or modifying effects of adverse neighborhood perceptions. Using data from the Survey of the Health of Wisconsin (SHOW), 2230 non-asthmatic adults age 21-74 were included in the analyses. The overall goals of this study were to assess if individuals who experience stress from neighborhood environments in which they live were more sensitive to low levels of fine particular matter (PM 2.5 μg/m³). Demographic predictors of air pollution exposure included younger age, non-White race, lower education and middle class income. After adjustments, objective lung function measures (FEV1 and FEV1 to FVC ratio) were the only cardiopulmonary health indicators significantly associated with chronic three-year annual averages of PM 2.5 . Among all non-asthmatics, a ten unit increase in estimated three year annual average PM 2.5 exposure was significantly associated with lower forced expiratory volume (L) in one second FEV1 (β = -0.40 μg/L; 95% CI -0.45, -0.06). Among all individuals, adverse perceptions of the neighborhood built environment did not appear to statistically moderate or mediate associations. However, stratified analysis did reveal significant associations between PM 2.5 and lung function (FEV1) only among individuals with negative perceptions and increased reports of neighborhood stressors. These findings included individuals who felt their

  16. Spatiotemporal patterns of particulate matter (PM and associations between PM and mortality in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Fengying Zhang

    2016-03-01

    Full Text Available Abstract Background Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. Methods We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10 with aerodynamic diameters of 2.5 (10 μm or less (or less (including particles with a diameter that equals to 2.5 (10 μm are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Results Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m3 in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m3 increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50–0.72 for PM10, and 0.69 % (95 % CI: 0.55–0.83 for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0–65 years, and L02 for males and the elder (>65

  17. The associations between birth weight and exposure to fine particulate matter (PM_2_._5) and its chemical constituents during pregnancy: A meta-analysis

    International Nuclear Information System (INIS)

    Sun, Xiaoli; Luo, Xiping; Zhao, Chunmei; Zhang, Bo; Tao, Jun; Yang, Zuyao; Ma, Wenjun; Liu, Tao

    2016-01-01

    We performed this meta-analysis to estimate the associations of maternal exposure to PM_2_._5 and its chemical constituents with birth weight and to explore the sources of heterogeneity in regard to the findings of these associations. A total of 32 studies were identified by searching the MEDLINE, PUBMED, Embase, China Biological Medicine and Wanfang electronic databases before April 2015. We estimated the statistically significant associations of reduced birth weight (β = −15.9 g, 95% CI: −26.8, −5.0) and LBW (OR = 1.090, 95% CI: 1.032, 1.150) with PM_2_._5 exposure (per 10 μg/m"3 increment) during the entire pregnancy. Trimester-specific analyses showed negative associations between birth weight and PM_2_._5 exposure during the second (β = −12.6 g) and third (β = −10.0 g) trimesters. Other subgroup analyses indicated significantly different pooled-effect estimates of PM_2_._5 exposure on birth weight in studies with different exposure assessment methods, study designs and study settings. We further observed large differences in the pooled effect estimates of the PM_2_._5 chemical constituents for birth weight decrease and LBW. We concluded that PM_2_._5 exposure during pregnancy was associated with lower birth weight, and late pregnancy might be the critical window. Some specific PM_2_._5 constituents may have larger toxic effects on fetal weight. Exposure assessment methods, study designs and study settings might be important sources of the heterogeneity among the included studies. - Highlights: • Effects of prenatal PM_2_._5 exposure on birth weight were assessed. • A meta-analysis was performed on studies published before March 2015. • PM_2_._5 exposure during pregnancy might induce lower birth weight. • Late pregnancy might be the critical window of PM_2_._5 effects. • Some specific PM_2_._5 constituents may have larger toxic effects on fetal weight. - PM_2_._5 exposure during pregnancy was associated with lower birth

  18. The exposure assessment of airborne particulates matter (PM10 and PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    International Nuclear Information System (INIS)

    Mohddin, S A; Aminuddin, N M

    2014-01-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m 3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m 3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m 3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM 2.5 as one of the crucial parameters is highly recommended

  19. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  20. Danish emission inventory for particular matter (PM)

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Winther, M; Illerup, J B; Hjort Mikkelsen, M

    2003-11-01

    The first Danish emission inventory that was reported in 2002 was a provisional-estimate based on data presently available. This report documents methodology, emission factors and references used for an improved Danish emission inventory for particulate matter. Further results of the improved emission inventory for the year 2000 are shown. The particulate matter emission inventory includes TSP, PM,, and PM, The report covers emission inventories for transport and stationary combustion. An appendix covering emissions from agriculture is also included. For the transport sector, both exhaust and non-exhaust emission such as tyre and break wear and road abrasion are included. (au)

  1. Challenges in evaluating PM concentration levels, commuting exposure, and mask efficacy in reducing PM exposure in growing, urban communities in a developing country.

    Science.gov (United States)

    Patel, Disa; Shibata, Tomoyuki; Wilson, James; Maidin, Alimin

    2016-02-01

    Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124 μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50 μg/m(3)). While average PM2.5 levels (9±14 μg/m(3)) were below the WHO's guideline (25 μg/m(3)), measurements up to 139 μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (pmasks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Exposure to particulate matters (PM2.5) and airborne nicotine in computer game rooms after implementation of smoke-free legislation in South Korea.

    Science.gov (United States)

    Kim, Sungroul; Sohn, Jongryeul; Lee, Kiyoung

    2010-12-01

    In South Korea, computer game rooms are subject to regulations mandating a designated nonsmoking area pursuant to Article 7 of the Enforcement Rules of the National Health Promotion Act; nonsmoking areas must be enclosed on all sides by solid and impermeable partitions. Using PM(2.5) monitors (SidePak AM510) and airborne nicotine monitors, we measured concentrations in smoking and nonsmoking areas to examine whether separation of the nonsmoking areas as currently practiced is a viable way to protect the nonsmoking area from secondhand smoke exposure. Convenient samplings were conducted at 28 computer game rooms randomly selected from 14 districts in Seoul, South Korea between August and September 2009. The medians (interquartile range) of PM(2.5) concentrations in smoking and nonsmoking areas were 69.3 μg/m(3) (34.5-116.5 μg/m(3)) and 34 μg/m(3) (15.0-57.0 μg/m(3)), while those of airborne nicotine were 0.41 μg/m(3) (0.25-0.69 μg/m(3)) and 0.12 μg/m(3) (0.06-0.16 μg/m(3)), respectively. Concentrations of airborne nicotine and PM(2.5) in nonsmoking areas were substantially positively associated with those in smoking areas. The Spearman correlation coefficients for them were 0.68 (p = .02) and 0.1 (p = 0.7), respectively. According to our modeling result, unit increase of airborne nicotine concentration in a smoking area contributed to 7 (95% CI = 2.5-19.8) times increase of the concentration in the adjacent nonsmoking area after controlling for the degree of partition left closed and the indoor space volume. Our study thus provides evidence for the introduction of more rigorous policy initiatives aimed at encouraging a complete smoking ban in such venues.

  3. Analysis of Particulate matter (PM 10 and PM 2.5 concentration in Khorramabad city

    Directory of Open Access Journals (Sweden)

    Seyed Hamed Mirhosseini

    2013-01-01

    Full Text Available Aims: In this study, the concentration of PM10 and PM2.5 in eight station of Khorramabad city was analyzed. Materials and Methods: For this study, the data were taken from April 2010 to March 2011. The eight sampling point were chosen in account to Khorramabad maps. During this period, 240 daily PM samples including coarse particle (PM 10 and fine particle (PM 2.5 were collected. A two-part sampler was used to collect samples of PM. According to one-way ANOVA, multiple comparisons Scheffe, the obtained data were analyzed and then compared with the Environment protection organization standard rates. Khorramabad Results: The results revealed that during measuring the maximum concentration of PM 10 and PM 2.5 was respectively 120.9 and 101.09 μ/m 3 at Shamshirabad station. There was a significant difference between the mean values of PM 10 concentration (μg/m 3 in the seasons of summer. In addition, the mean concentrations of PM 10 in warmer months exceeded to the maximum permissible concentration. Conclusions: Year comparison of PM 10 and PM 2.5 concentration with standard were revealed particle matter concentration in summer season was higher than standard. Although total mean of particle matter was less than standard concentration.

  4. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  5. Modeling individual exposures to ambient PM2.5 in the diabetes and the environment panel study (DEPS)

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates, which can induce exposure error. The goal of this study was to improve ambient PM2.5 exposure assessments for a repeated measurements study with ...

  6. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    Science.gov (United States)

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  7. Exposure to urban PM1 in rats: development of bronchial inflammation and airway hyperresponsiveness.

    Science.gov (United States)

    Filep, Ágnes; Fodor, Gergely H; Kun-Szabó, Fruzsina; Tiszlavicz, László; Rázga, Zsolt; Bozsó, Gábor; Bozóki, Zoltán; Szabó, Gábor; Peták, Ferenc

    2016-03-10

    Several epidemiological and laboratory studies have evidenced the fact that atmospheric particulate matter (PM) increases the risk of respiratory morbidity. It is well known that the smallest fraction of PM (PM1 - particulate matter having a diameter below 1 μm) penetrates the deepest into the airways. The ratio of the different size fractions in PM is highly variable, but in industrial areas PM1 can be significant. Despite these facts, the health effects of PM1 have been poorly investigated and air quality standards are based on PM10 and PM2.5 (PM having diameters below 10 μm and 2.5 μm, respectively) concentrations. Therefore, this study aimed at determining whether exposure to ambient PM1 at a near alert threshold level for PM10 has respiratory consequences in rats. Rats were either exposed for 6 weeks to 100 μg/m(3) (alert threshold level for PM10 in Hungary) urban submicron aerosol, or were kept in room air. End-expiratory lung volume, airway resistance (Raw) and respiratory tissue mechanics were measured. Respiratory mechanics were measured under baseline conditions and following intravenous methacholine challenges to characterize the development of airway hyperresponsiveness (AH). Bronchoalveolar lavage fluid (BALF) was analyzed and lung histology was performed. No significant differences were detected in lung volume and mechanical parameters at baseline. However, the exposed rats exhibited significantly greater MCh-induced responses in Raw, demonstrating the progression of AH. The associated bronchial inflammation was evidenced by the accumulation of inflammatory cells in BALF and by lung histology. Our findings suggest that exposure to concentrated ambient PM1 (mass concentration at the threshold level for PM10) leads to the development of mild respiratory symptoms in healthy adult rats, which may suggest a need for the reconsideration of threshold limits for airborne PM1.

  8. In vitro investigations of platinum, palladium, and rhodium mobility in urban airborne particulate matter (PM10, PM2.5, and PM1) using simulated lung fluids.

    Science.gov (United States)

    Zereini, Fathi; Wiseman, Clare L S; Püttmann, Wilhelm

    2012-09-18

    Environmental concentrations of platinum group elements (PGE) have been increasing since the introduction of automotive catalytic converters to control harmful emissions. Assessments of the human health risks of exposures to these elements, especially through the inhalation of PGE-associated airborne particulate matter (PM), have been hampered by a lack of data on their bioaccessibility. The purpose of this study is to apply in vitro methods using simulated human lung fluids [artificial lysosomal fluid (ALF) and Gamble's solution] to assess the mobility of the PGE, platinum (Pt), palladium (Pd), and rhodium (Rh) in airborne PM of human health concern. Airborne PM samples (PM(10), PM(2.5), and PM(1)) were collected in Frankfurt am Main, Germany. For comparison, the same extraction experiments were conducted using the standard reference material, Used Auto Catalyst (monolith) (NIST 2557). Pt and Pd concentrations were measured using isotope dilution ICP-Q-MS, while Rh was measured directly with ICP-Q-MS (in collision mode with He), following established matrix separation and enrichment procedures, for both solid (filtered residues) and extracted sample phases. The mobilized fractions measured for PGE in PM(10), PM(2.5), and PM(1) were highly variable, which can be attributed to the heterogenic nature of airborne PM and its composition. Overall, the mobility of PGE in airborne PM samples was notable, with a mean of 51% Rh, 22% Pt, and 29% Pd present in PM(1) being mobilized by ALF after 24 h. For PM(1) exposed to Gamble's solution, a mean of 44% Rh, 18% Pt, and 17% Pd was measured in solution after 24 h. The mobility of PGE associated with airborne PM was also determined to be much higher compared to that measured for the auto catalyst standard reference material. The results suggest that PGE emitted from automotive catalytic converters are likely to undergo chemical transformations during and/or after being emitted in the environment. This study highlights the need

  9. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2018-07-01

    Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  11. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  12. Personal and ambient PM2.5 exposure assessment in the city of Agra

    Directory of Open Access Journals (Sweden)

    M. Habil

    2016-03-01

    Full Text Available Human exposure to fine particles can have significant harmful effects on the respiratory and cardiovascular system. To investigate daily exposure characteristics to PM2.5 with ambient concentrations in an urban environment, a personal exposure measurements were conducted for school children, office workers and at their residents, in the city of Taj ‘Agra’, India. In order to account for all the sources of particulate matter exposure, measurements on several different days during December 2013 to February 2014 were carried out. Personal environment monitors (PEM and APM 550 were used to measure PM2.5 concentration. The research findings provide insight into possible sources and their interaction with human activities in modifying the human exposure levels. Keywords: Personal exposure, PM2.5, Ambient concentration, Correlation analysis, Health effects

  13. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  14. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.

    Science.gov (United States)

    Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D

    2013-07-01

    Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a

  15. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mettte; Daneshvar, Bahram; Hansen, Max

    2003-01-01

    wAmbient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 mum in diameter (PM2.5) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure...... and the involved mechanisms remain uncertain. We measured personal PM2.5 and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 mug/m(3) for personal PM2.5 exposure...

  16. Personal exposure to PM2.5 and biomarkers of DNA damage

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Hertel, Ole

    2003-01-01

    Ambient particulate air pollution assessed as outdoor concentrations of particulate matter PM(2.5)) has been associated with an increased cancer risk. However, outdoor PM(2.5) concentrations may not be the best measure of the individual particle exposure that is a sum...... of many sources besides outdoor particle levels, e.g., environmental tobacco smoke and cooking. We measured personal PM(2.5) and black smoke exposure in 50 students four times over 1 year and analyzed for biomarkers of different types of DNA damages. Ambient PM(2.5) concentrations were also measured...... collections were analyzed for 8-oxodG and 1-hydroxypyrene. Personal PM(2.5) exposure was found to be a predictor of 8-oxodG in lymphocyte DNA with an 11% increase in 8-oxodG/10 microg/m(3) increase in personal PM(2.5) exposure (P = 0.007). No other associations between exposure markers and biomarkers could...

  17. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    NARCIS (Netherlands)

    Badaloni, Chiara; Cesaroni, Giulia; Cerza, Francesco; Davoli, Marina; Brunekreef, Bert; Forastiere, Francesco

    2017-01-01

    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon,

  18. Personal PM2.5 exposure and markers of oxidative stress in blood

    DEFF Research Database (Denmark)

    Sørensen, Mette; Daneshvar, Bahram; Hansen, Max

    2003-01-01

    Ambient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 micro m in diameter (PM(2.5)) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure...... and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We...... analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 micro g/m(3) for personal PM(2.5...

  19. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  20. Outdoor particulate matter (PM) and associated cardiovascular diseases in the Middle East.

    Science.gov (United States)

    Nasser, Zeina; Salameh, Pascale; Nasser, Wissam; Abou Abbas, Linda; Elias, Elias; Leveque, Alain

    2015-01-01

    Air pollution is a widespread environmental concern. Considerable epidemiological evidence indicates air pollution, particularly particulate matter (PM), as a major risk factor for cardiovascular diseases (CVD) in the developed countries. The main objective of our review is to assess the levels and sources of PM across the Middle East area and to search evidence for the relationship between PM exposure and CVD. An extensive review of the published literature pertaining to the subject (2000-2013) was conducted using PubMed, Medline and Google Scholar databases. We reveal that low utilization of public transport, ageing vehicle fleet and the increasing number of personal cars in the developing countries all contribute to the traffic congestion and aggravate the pollution problem. The annual average values of PM pollutants in the Middle East region are much higher than the World Health Organization 2006 guidelines (PM2.5 = 10 μg/m(3), PM10 = 20 μg/m(3)). We uncover evidence on the association between PM and CVD in 4 Middle East countries: Iran, Kingdom of Saudi Arabia, Qatar and the United Arab Emirates. The findings are in light of the international figures. Ambient PM pollution is considered a potential risk factor for platelet activation and atherosclerosis and has been found to be linked with an increased risk for mortality and hospital admissions due to CVD. This review highlights the importance of developing a strategy to improve air quality and reduce outdoor air pollution in the developing countries, particularly in the Middle East. Future studies should weigh the potential impact of PM on the overall burden of cardiac diseases. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Outdoor particulate matter (PM and associated cardiovascular diseases in the Middle East

    Directory of Open Access Journals (Sweden)

    Zeina Nasser

    2015-08-01

    Full Text Available Air pollution is a widespread environmental concern. Considerable epidemiological evidence indicates air pollution, particularly particulate matter (PM, as a major risk factor for cardiovascular diseases (CVD in the developed countries. The main objective of our review is to assess the levels and sources of PM across the Middle East area and to search evidence for the relationship between PM exposure and CVD. An extensive review of the published literature pertaining to the subject (2000–2013 was conducted using PubMed, Medline and Google Scholar databases. We reveal that low utilization of public transport, ageing vehicle fleet and the increasing number of personal cars in the developing countries all contribute to the traffic congestion and aggravate the pollution problem. The annual average values of PM pollutants in the Middle East region are much higher than the World Health Organization 2006 guidelines (PM2.5 = 10 μg/m3, PM10 = 20 μg/m3. We uncover evidence on the association between PM and CVD in 4 Middle East countries: Iran, Kingdom of Saudi Arabia, Qatar and the United Arab Emirates. The findings are in light of the international figures. Ambient PM pollution is considered a potential risk factor for platelet activation and atherosclerosis and has been found to be linked with an increased risk for mortality and hospital admissions due to CVD. This review highlights the importance of developing a strategy to improve air quality and reduce outdoor air pollution in the developing countries, particularly in the Middle East. Future studies should weigh the potential impact of PM on the overall burden of cardiac diseases.

  2. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin

    International Nuclear Information System (INIS)

    Cachon, Boris Fresnel; Firmin, Stéphane; Verdin, Anthony; Ayi-Fanou, Lucie

    2014-01-01

    After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM 2.5 and PM >2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm 2 ) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm 2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators. Highlights: • The aim of this study was to investigate the toxic potential of collected particles. • Toxicological effects were determined by using human bronchial epithelial cells. • Both particles induced oxidative stress, proinflammatory response and cell alterations. • Metabolizing enzymes were linked to proinflammatory responses and cell alterations. • Oxidative stress was highly correlated to the proinflammatory mediators. -- This study evidences the toxic potential of African fine and coarse particulate matters on respiratory epithelial cells

  3. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  4. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  5. Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM2.5, PM2.5-10, and PM>10).

    Science.gov (United States)

    Xu, Ziran; Wang, Shoubing; Wang, Yuanan; Zhang, Jie

    2018-03-01

    Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM 2.5 , PM 2.5-10 , and PM >10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM 2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (V max ). Moreover, the stimulations in extracellular APA and V max enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM 2.5-10 and PM >10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0 mg/L PM 2.5-10 and 8.0 mg/L PM >10 at 120 h. Furthermore, PM 2.5-10 and PM >10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the V max was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM 2.5-10 and PM >10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM 2.5-10 and PM >10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72 h APA of M. aeruginosa. These results in our study would be meaningful to further

  6. Influence of exposure differences on city-to-city heterogeneity in PM2.5-mortality associations in US cities

    Science.gov (United States)

    Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclass...

  7. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  8. PM Origin or Exposure Duration? Health Hazards from PM-Bound Mercury and PM-Bound PAHs among Students and Lecturers

    Science.gov (United States)

    Majewski, Grzegorz; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja; Kociszewska, Karolina; Rozbicki, Tomasz; Majder-Łopatka, Małgorzata; Niemczyk, Mariusz

    2018-01-01

    This study assessed inhalation exposure to particulate matter (PM1)-bound mercury (Hgp) and PM1-bound polycyclic aromatic hydrocarbons (PAHs) among university students. For this purpose, simultaneous indoor (I) and outdoor (O) measurements were taken from two Polish technical universities (in Gliwice and Warsaw) located in distinct areas with respect to ambient concentrations and major sources of PM. The indoor geometric mean concentrations of Hgp were found to be 1.46 pg·m−3 and 6.38 pg·m−3 in Warsaw and Gliwice, while the corresponding outdoor concentrations were slightly lower at 1.38 pg·m−3 and 3.03 pg·m−3, respectively. A distinct pattern was found with respect to PAH concentrations with estimated I/O values of 22.2 ng·m−3/22.5 ng·m−3 in Gliwice and 10.9 ng·m−3/11.12 ng·m−3 in Warsaw. Hazard quotients (HQs) as a result of exposure to Hgp for students aged 21 ranged from 3.47 × 10−5 (Warsaw) to 1.3 × 10−4 (Gliwice) in terms of reasonable maximum exposure (RME). The non-cancer human health risk value related to Hgp exposure was thus found to be below the acceptable risk level value of 1.0 given by the US EPA. Daily exposure values for lecture hall occupants, adjusted to the benzo(a)pyrene (BaP) toxicity equivalent (BaPeq), were 2.9 and 1.02 ng·m−3 for the Gliwice and Warsaw students, respectively. The incremental lifetime cancer risk (ILCR) values with respect to exposure to PM1-bound PAHs during the students’ time of study were 5.49 × 10−8 (Warsaw) and 1.43 × 10−7 (Gliwice). Thus, students’ exposure to indoor PAHs does not lead to increased risk of lung cancer. PMID:29439524

  9. PM Origin or Exposure Duration? Health Hazards from PM-Bound Mercury and PM-Bound PAHs among Students and Lecturers

    Directory of Open Access Journals (Sweden)

    Grzegorz Majewski

    2018-02-01

    Full Text Available This study assessed inhalation exposure to particulate matter (PM1-bound mercury (Hgp and PM1-bound polycyclic aromatic hydrocarbons (PAHs among university students. For this purpose, simultaneous indoor (I and outdoor (O measurements were taken from two Polish technical universities (in Gliwice and Warsaw located in distinct areas with respect to ambient concentrations and major sources of PM. The indoor geometric mean concentrations of Hgp were found to be 1.46 pg·m−3 and 6.38 pg·m−3 in Warsaw and Gliwice, while the corresponding outdoor concentrations were slightly lower at 1.38 pg·m−3 and 3.03 pg·m−3, respectively. A distinct pattern was found with respect to PAH concentrations with estimated I/O values of 22.2 ng·m−3/22.5 ng·m−3 in Gliwice and 10.9 ng·m−3/11.12 ng·m−3 in Warsaw. Hazard quotients (HQs as a result of exposure to Hgp for students aged 21 ranged from 3.47 × 10−5 (Warsaw to 1.3 × 10−4 (Gliwice in terms of reasonable maximum exposure (RME. The non-cancer human health risk value related to Hgp exposure was thus found to be below the acceptable risk level value of 1.0 given by the US EPA. Daily exposure values for lecture hall occupants, adjusted to the benzo(apyrene (BaP toxicity equivalent (BaPeq, were 2.9 and 1.02 ng·m−3 for the Gliwice and Warsaw students, respectively. The incremental lifetime cancer risk (ILCR values with respect to exposure to PM1-bound PAHs during the students’ time of study were 5.49 × 10−8 (Warsaw and 1.43 × 10−7 (Gliwice. Thus, students’ exposure to indoor PAHs does not lead to increased risk of lung cancer.

  10. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases

    International Nuclear Information System (INIS)

    Leiva G, Manuel A.; Santibañez, Daniela A.; Ibarra E, Sergio; Matus C, Patricia; Seguel, Rodrigo

    2013-01-01

    Cerebrovascular accidents, or strokes, are the second leading cause of mortality and the leading cause of morbidity in both Chile and the rest of the world. However, the relationship between particulate matter pollution and strokes is not well characterized. The association between fine particle concentration and stroke admissions was studied. Data on hospital admissions due to cerebrovascular accidents were collected from the Ministry of Health. Air quality and meteorological data were taken from the Air Quality database of the Santiago Metropolitan Area. Santiago reported 33,624 stroke admissions between January 1, 2002 and December 30, 2006. PM2.5 concentration was markedly seasonal, increasing during the winter. This study found an association between PM2.5 exposure and hospital admissions for stroke; for every PM2.5 concentration increase of 10 μg m −3 , the risk of emergency hospital admissions for cerebrovascular causes increased by 1.29% (95% CI 0.552%–2.03%). Highlights: •Particulate matter pollution – cerebrovascular diseases relationship is not well known. •Cerebrovascular diseases are the second leading cause of mortality and the leading cause of morbidity. •PM2.5 increase 10 μg/m 3 the risk of hospital admissions for stroke causes increases by 1.29%. •The results are similar to that of other cities worldwide. -- Relationship between PM pollution and strokes is not well characterized. In Santiago the risk of the stroke increased by 1.29%; for every increase of 10 μg m −3 in PM2.5

  11. ASSOCIATION OF PARTICULATE MATTER (PM WITH RESPIRATORY SYMPTOMS AMONG CHILDREN IN SELECTED PRIMARY SCHOOLS IN PAHANG

    Directory of Open Access Journals (Sweden)

    Maryam

    2018-01-01

    Full Text Available Particulate matter (PM is one of the primary pollutants found in the indoor environment. It can cause deterioration of the indoor air quality (IAQ and is often linked with adverse health effects especially towards susceptible subgroup of the population like children. School children are exposed to PM inside the classroom, as this indoor PM may originate from both indoor and outdoor sources. Furthermore, ambient surrounding could be one of the major factors that contribute to its high concentration, specifically for school environment like government-subsidized schools in Malaysia whereby the schools are using natural ventilation systems to control the thermal comfort inside the classrooms. Hence the infiltration of outdoor PM into the indoor is probably high and significant. The high concentration of PM may affect the children’s health and learning performances. Due to this reason, it is important to study the effects of PM towards children. Thus, this study aims to assess the concentrations of PM and selected IAQ parameters in the school indoor environment with distinct background characteristics including residential, industrial, and rural areas. PM and IAQ parameters (temperature, relative humidity (RH, carbon monoxide (CO and carbon dioxide (CO2 were assessed for 8-hours duration via DustMate Environmental Dust Detector (Turnkey Instruments, USA and VelociCalc® Multi-Function Ventilation Meter 9565 (TSI®, USA respectively, during occupied and non-occupied time in the classrooms. Second, considering the children’s prolonged and repetitive exposure towards PM in school indoor environment and their body sensitivity, this study also screened for the prevalence of non-specific respiratory disease (NSRD and persistent cough and phlegm (PCP among children via structured questionnaire developed by American Thoracic Society’s Division of Lung Diseases (ATS-DLD-78-C. Higher concentrations of PM and prevalence of respiratory symptoms in the

  12. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  13. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  14. Time Course of Heart Rate Variability Response to PM2.5 Exposure from Secondhand Smoke.

    Directory of Open Access Journals (Sweden)

    Jennifer L Garza

    Full Text Available Exposure to secondhand smoke (SHS has been associated with decreased heart rate variability (HRV. However, the time course of this association is unclear. Therefore, the objective of this study was to investigate the association between 15-240 minute SHS-related fine particulate matter (PM2.5 moving averages and indices of HRV.With a panel study design, we used personal monitors to continuously measure PM2.5 and HRV of 35 participants who were exposed to SHS for approximately 6 hours.We observed negative, significant associations between 5-minute HRV indices and 15 minute PM2.5 moving averages and 240 minute PM2.5 moving averages: there was a significant (p<0.01 7.5% decrease in the 5-minute square root of the mean squared differences of successive normal heart beats associated with (RMSSD, and a significant (p<0.01 14.7% decrease in the 5-minute high frequency (HF power associated with the 15 minute PM2.5 moving averages; there was also a significant (p<0.01 46.9% decrease in the 5-minute RMSSD, and a significant (p<0.01 77.7% decrease in the 5-minute high frequency (HF power associated with the 240 minute PM2.5 moving averages.Our findings that exposure to SHS related PM2.5 was associated with HRV support the hypothesis that SHS can affect the cardiovascular system. The negative associations reported between short and longer term PM2.5 and HRV indicate adverse effects of SHS on the cardiovascular system.

  15. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1 at Shelterbelt Site in Beijing

    Directory of Open Access Journals (Sweden)

    Jungang Chen

    2015-05-01

    Full Text Available Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1 the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2 the particle mass concentration inside shelterbelt is higher than outside; (3 the particle interception efficiency of the two forest belts over the three months in descending order was PM10 > PM1 > PM2.5; and (4 the two shelterbelts captured air pollutants at rates of 1496.285 and 909.075 kg/month and the major atmospheric pollutant in Beijing city is PM10. Future research directions are to study PM mass concentration variation of shelterbelt with different tree species and different configuration.

  16. Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, M.; Keeler, G.J.; Wagner, J.G.; Harkema, J.R. [University of Michigan, Ann Arbor, MI (United States). Air Quality Laboratory

    2006-07-15

    Particulate air pollution is associated with cardiopulmonary morbidity and mortality in heavily populated urban centers of the United States. Because ambient fine particulate matter (aerodynamic diameter {<=} 2.5 {mu}m; PM2.5) is a complex mixture resulting from multiple sources and variable atmospheric conditions, it is difficult to identify specific components of PM2.5 that are responsible for adverse health effects. During four consecutive summers from 2000 to 2003 we characterized the ambient gaseous and PM2.5 air quality in an urban southwest Detroit community where childhood asthma hospitalization rates are more than twice the statewide average. Both integrated and continuous PM measurements together with gaseous air pollution measurements were performed using a mobile air research facility, AirCARE1, in which concurrent toxicological studies were being conducted. Chemical and physical characterizations of PM2.5 as well as receptor modeling using positive matrix factorization (PMF) were completed. Results from PMF indicated that six major sources contributed to the observed ambient PM2.5 mass during the summer months. Primary sources included (1) coal combustion/secondary sulfate aerosol, (2) motor vehicle/urban road dust, (3) municipal waste incinerators, (4) oil combustion/refineries, (5) sewage sludge incinerators, and (6) iron/steel manufacturing. Although the contribution of the coal/secondary sulfate aerosol source was greater than other factors, increased levels of urban PM2.5 from local combustion sources were also observed. In addition to characterization of ambient PM2.5 and their sources in southwest Detroit, this paper discusses possible associations of ambient PM2.5 from local combustion sources, specifically incinerator and refinery emissions and the observed adverse health effects during the inhalation exposure campaigns.

  17. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies

    OpenAIRE

    Liu, Qian; Xu, Cheng; Ji, Guixiang; Liu, Hui; Shao, Wentao; Zhang, Chunlan; Gu, Aihua; Zhao, Peng

    2017-01-01

    The International Agency for Research on Cancer and the World Health Organization have designated airborne particulates, including particulates of median aerodynamic diameter ? 2.5 ?m (PM2.5), as Group 1 carcinogens. It has not been determined, however, whether exposure to ambient PM2.5 is associated with an increase in respiratory related diseases. This meta-analysis assessed the association between exposure to ambient fine particulate matter (PM2.5) and the risk of respiratory tract disease...

  18. PM2.5 metal exposures and nocturnal heart rate variability: a panel study of boilermaker construction workers

    Directory of Open Access Journals (Sweden)

    Herrick Robert F

    2008-07-01

    Full Text Available Abstract Background To better understand the mechanism(s of particulate matter (PM associated cardiovascular effects, research priorities include identifying the responsible PM characteristics. Evidence suggests that metals play a role in the cardiotoxicity of fine PM (PM2.5 and in exposure-related decreases in heart rate variability (HRV. We examined the association between daytime exposure to the metal content of PM2.5 and night HRV in a panel study of boilermaker construction workers exposed to metal-rich welding fumes. Methods Twenty-six male workers were monitored by ambulatory electrocardiogram (ECG on a workday while exposed to welding fume and a non-workday (baseline. From the ECG, rMSSD (square root of the mean squared differences of successive intervals was summarized over the night (0:00–7:00. Workday, gravimetric PM2.5 samples were analyzed by x-ray fluorescence to determine metal content. We used linear mixed effects models to assess the associations between night rMSSD and PM2.5 metal exposures both with and without adjustment for total PM2.5. Matched ECG measurements from the non-workday were used to control for individual cardiac risk factors and models were also adjusted for smoking status. To address collinearity between PM2.5 and metal content, we used a two-step approach that treated the residuals from linear regression models of each metal on PM2.5 as surrogates for the differential effects of metal exposures in models for night rMSSD. Results The median PM2.5 exposure was 650 μg/m3; median metal exposures for iron, manganese, aluminum, copper, zinc, chromium, lead, and nickel ranged from 226 μg/m3 to non-detectable. We found inverse linear associations in exposure-response models with increased metal exposures associated with decreased night rMSSD. A statistically significant association for manganese was observed, with a decline of 0.130 msec (95% CI: -0.162, -0.098 in night rMSSD for every 1 μg/m3 increase in

  19. The relationships between short-term exposure to particulate matter and mortality in Korea: impact of particulate matter exposure metrics for sub-daily exposures

    International Nuclear Information System (INIS)

    Son, Ji-Young; Bell, Michelle L

    2013-01-01

    Most studies of short-term particulate matter (PM) exposure use 24 h averages. However, other pollutants have stronger effects in shorter timeframes, which has influenced policy (e.g., ozone 8 h maximum). The selection of appropriate exposure timeframes is important for effective regulation. The US EPA identified health effects for sub-daily PM exposures as a critical research need. Unlike most areas, Seoul, Korea has hourly measurements of PM 10 , although not PM 2.5 . We investigated PM 10 and mortality (total, cardiovascular, respiratory) in Seoul (1999–2009) considering sub-daily exposures: 24 h, daytime (7 am–8 pm), morning (7–10 am), nighttime (8 pm–7 am), and 1 h daily maximum. We applied Poisson generalized linear modeling adjusting for temporal trends and meteorology. All PM 10 metrics were significantly associated with total mortality. Compared to other exposure timeframes, morning exposure had the most certain effect on total mortality (based on statistical significance). Increases of 10 μg m −3 in 24 h, daytime, morning, nighttime, and 1 h maximum PM 10 were associated with 0.15% (95% confidence interval 0.02–0.28%), 0.14% (0.01–0.27%), 0.10% (0.03–0.18%), 0.12% (0.03–0.22%), and 0.10% (0.00–0.21%) increases in total mortality, respectively. PM 10 was significantly associated with cardiovascular mortality for 24 h, morning, and nighttime exposures. We did not identify significant associations with respiratory mortality. The results support use of a 24 h averaging time as an appropriate metric for health studies and regulation, particularly for PM 10 and mortality. (letter)

  20. Particulate Matter Dispersion (PM10, with interrelation of topographic and meteorological factors

    Directory of Open Access Journals (Sweden)

    Alvaro Javier Arrieta-Fuentes

    2016-07-01

    Full Text Available Mining-industrial processes carried out by anthropic action, bring the generation of impacts to the environment. Between the impacts associated with mining is the involvement of the air quality produced by the release of atmospheric pollutants, being subject to study the behavior of the respirable fraction of particulate matter less than 10 microns (PM10 with respect to meteorological and topographical factors. The analyzed scenarios in the study involved daily and annual exposure times of PM10, in wich modeling with AERMOD View Software was made. The model was carried out in two topographic zones, a complex area, located in the municipality of Socha and a simple area located in the municipality of Sogamoso. It was used meteorological data type satellite, in format .SAM for modeled areas. Three types of emission sources were identified in the areas; considering that the disperse fixed emission sources predominate, followed by the mobile sources and point sources were found in low proportion. PM10 dispersion models made for the zones of simple and complex topography, gave as result that direction and the wind speed is conditioned by the type of zone. It allowed a free flow in the predominant direction in wind rose to the area of simple topography and a turbulent flow in the complex area. It was determined that the sources of emission of PM10 in both cases are local scale; They presented a critical radius of drag and deposition of particles of 200 m approximately.

  1. Photometrically measured continuous personal PM(2.5) exposure: levels and correlation to a gravimetric method.

    Science.gov (United States)

    Lanki, Timo; Alm, Sari; Ruuskanen, Juhani; Janssen, Nicole A H; Jantunen, Matti; Pekkanen, Juha

    2002-05-01

    There is evidence that hourly variations in exposure to airborne particulate matter (PM) may be associated with adverse health effects. Still there are only few published data on short-term levels of personal exposure to PM in community settings. The objectives of the study were to assess hourly and shorter-term variations in personal PM(2.5) exposure in Helsinki, Finland, and to compare results from portable photometers to simultaneously measured gravimetric concentrations. The effect of relative humidity on the photometric results was also evaluated. Personal PM(2.5) exposures of elderly persons were assessed for 24 h every second week, resulting in 308 successful measurements from 47 different subjects. Large changes in concentrations in minutes after cooking or changing microenvironment were seen. The median of daily 1-h maxima was over twice the median of 24-h averages. There was a strong significant association between the two means, which was not linear. Median (95th percentile) of the photometric 24-h concentrations was 12.1 (37.7) and of the 24-h gravimetric concentrations 9.2 (21.3) microg/m3. The correlation between the photometric and the gravimetric method was quite good (R2=0.86). Participants spent 94.1% of their time indoors or in a vehicle, where relative humidity is usually low and thus not likely to cause significant effects on photometric results. Even outdoors, the relative humidity had only modest effect on concentrations. Photometers are a promising method to explore the health effects of short-term variation in personal PM(2.5) exposure.

  2. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  3. Seasonal variation of the metal composition in particulate matter (PM) in Graz determined with ICPMS

    International Nuclear Information System (INIS)

    Hartl, M.; Raber, G.; Goessler, W.; Licbinsky, R.; Pongratz, T.

    2009-01-01

    Full text: Graz, the 2 nd biggest city of Austria, is not only famous for its cultural heritage but is also well known as one of the most heavily air-polluted cities of Austria. Samples of particulate matter (PM 1.0 , PM 2.5 , and PM 10 ), collected in Graz over a one year period, were analyzed for 36 metals by ICPMS following microwave-assisted acid digestion. Accumulation of PM in the city (Graz is located in a basin) and additional emissions (e.g. domestic combustion) during winter caused not only higher PM concentrations but also marked changes in the PM metal composition. (author)

  4. An association between fine particulate matter (PM2.5) levels and emergency ambulance dispatches for cardiovascular diseases in Japan.

    Science.gov (United States)

    Ichiki, Toshihiro; Onozuka, Daisuke; Kamouchi, Masahiro; Hagihara, Akihito

    2016-11-01

    The aim of this study is to determine whether short-term exposure to fine particulate matter (PM 2.5 ) is associated with emergency ambulance dispatches for cardiovascular diseases in Japan. The nationwide data on emergency dispatches of ambulance for cardiovascular diseases classified as I00-I99 by International Classification of Diseases-10th revision in 30 Japanese prefectures between April 1 and December 31, in 2010 were analyzed. Data on weather variability including PM 2.5 , temperature and relative humidity were acquired from ambient air pollution monitoring stations. Conditional Poisson regression models were used to estimate the prefecture-specific effects of PM 2.5 on morbidity, and adjust for confounding factors. A meta-analysis was then applied to pool estimates at the 30-prefecture level. A total of 160,566 emergency ambulance dispatches for cardiovascular diseases were reported during the study period. The risk of emergency ambulance dispatch for cardiovascular diseases significantly increased with an increase in the exposure to PM 2.5 in Fukuoka and Iwate Prefectures. However, we found no statistically significant associations between PM 2.5 and emergency ambulance dispatches in the pooled analysis (odds ratio 1.00, 95 % confidence interval 0.99-1.00). Heterogeneity was not observed between prefectures (Cochran Q test, p = 0.187, I 2  = 18.4 %). Exposure to PM 2.5 is not associated with overall emergency ambulance dispatches for cardiovascular diseases in Japan.

  5. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea.

    Science.gov (United States)

    Kwon, Soon-Bark; Jeong, Wootae; Park, Duckshin; Kim, Ki-Tae; Cho, Kyung Hwa

    2015-10-30

    Given that around eight million commuters use the Seoul Metropolitan Subway (SMS) each day, the indoor air quality (IAQ) of its stations has attracted much public attention. We have monitored the concentration of particulate matters (PMx) (i.e., PM10, PM2.5, and PM1) in six major transfer stations per minute for three weeks during the summer, autumn, and winter in 2014 and 2015. The data were analyzed to investigate the relationship between PMx concentration and multivariate environmental factors using statistical methods. The average PM concentration observed was approximately two or three times higher than outdoor PM10 concentration, showing similar temporal patterns at concourses and platforms. This implies that outdoor PM10 is the most significant factor in controlling indoor PM concentration. In addition, the station depth and number of trains passing through stations were found to be additional influences on PMx. Principal component analysis (PCA) and self-organizing map (SOM) were employed, through which we found that the number of trains influences PM concentration in the vicinity of platforms only, and PMx hotspots were determined. This study identifies the external and internal factors affecting PMx characteristics in six SMS stations, which can assist in the development of effective IAQ management plans to improve public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only.......Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  7. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.

    Science.gov (United States)

    Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H

    2017-10-15

    The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  10. Ambient PM2.5 Exposure in India: Burden, Source-Apportionment and Projection Under Climate Change

    Science.gov (United States)

    Dey, S.; Chowdhury, S.; Upadhyay, A. K.; Smith, K. R.

    2017-12-01

    Air pollution has been identified as one of the leading factors of premature death in India. Absence of adequate in-situ monitors led us to use satellite retrieved aerosol optical depth (AOD) data to infer surface fine particulate matter (PM2.5). Annual premature mortality burden due to ambient PM2.5 exposure is estimated to be 1.17 (0.42-2.7) million for India. A chemical transport model WRF-Chem is utilized to estimate source-apportioned PM2.5 exposure. We estimate the exposure for four major sources - transport, residential, energy and industrial and found that the largest contribution to ambient PM2.5 exposure in India is contributed by residential sources. We estimate that if all the solid fuel use at households is replaced by clean fuel, ambient PM2.5 exposure would reduce by 30-45%, leading to 170,000 (14.5% of total burden) averted premature deaths annually. To understand how the air quality is projected to change under climate change scenarios, we analyze 13 CMIP5 models. We calculate the relative changes in PM2.5 (ensemble mean) in future relative to the baseline period (2001-2005) and apply the factor to satellite-derived PM2.5 exposure in baseline period to project future PM2.5 exposure. Ambient PM2.5 is expected to reach a maxima in 2030 under RCP4.5 (15.5% rise from baseline period) and in 2040 (25.5% rise) under RCP8.5 scenario. The projected exposure under RCP4.5 and RCP8.5 scenarios are further used to estimate premature mortality burden till the end of the century by considering population distribution projections from five shared socio-economic pathways (SSP) scenarios. We separate the burden due to ambient PM2.5 exposure in future attributable to change in meteorology due to climate change and change in demographic and epidemiological transitions. If all-India average PM2.5 exposure meets WHO interim target 1 (35 µg/m3) by 2031-40, 28000-38000 and 41100-60100 premature deaths can be averted every year under RCP4.5 and RCP8.5 respectively. Even

  11. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  12. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ

  13. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers.

    Science.gov (United States)

    Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis

    2007-11-01

    This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.

  14. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  15. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    Science.gov (United States)

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  16. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    Science.gov (United States)

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  17. On the use of a PM2.5 exposure simulator to explain birthweight

    Science.gov (United States)

    Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.; Burke, Janet; Miranda, Marie Lynn

    2010-01-01

    In relating pollution to birth outcomes, maternal exposure has usually been described using monitoring data. Such characterization provides a misrepresentation of exposure as it (i) does not take into account the spatial misalignment between an individual’s residence and monitoring sites, and (ii) it ignores the fact that individuals spend most of their time indoors and typically in more than one location. In this paper, we break with previous studies by using a stochastic simulator to describe personal exposure (to particulate matter) and then relate simulated exposures at the individual level to the health outcome (birthweight) rather than aggregating to a selected spatial unit. We propose a hierarchical model that, at the first stage, specifies a linear relationship between birthweight and personal exposure, adjusting for individual risk factors and introduces random spatial effects for the census tract of maternal residence. At the second stage, our hierarchical model specifies the distribution of each individual’s personal exposure using the empirical distribution yielded by the stochastic simulator as well as a model for the spatial random effects. We have applied our framework to analyze birthweight data from 14 counties in North Carolina in years 2001 and 2002. We investigate whether there are certain aspects and time windows of exposure that are more detrimental to birthweight by building different exposure metrics which we incorporate, one by one, in our hierarchical model. To assess the difference in relating ambient exposure to birthweight versus personal exposure to birthweight, we compare estimates of the effect of air pollution obtained from hierarchical models that linearly relate ambient exposure and birthweight versus those obtained from our modeling framework. Our analysis does not show a significant effect of PM2.5 on birthweight for reasons which we discuss. However, our modeling framework serves as a template for analyzing the relationship

  18. Health and Environmental Effects of Particulate Matter (PM)

    Science.gov (United States)

    Particles less than 10 micrometers in diameter pose the greatest problems, because they can get deep into your lungs, and some may even get into your bloodstream. Fine particles (PM2.5) are the main cause of reduced visibility (haze).

  19. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    Science.gov (United States)

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  20. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  1. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China

    International Nuclear Information System (INIS)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-01-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8–14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10–24%. - Highlights: • High inhalation exposure of fine PM 2.5 and PM 1.0 among rural residents. • Smoking prevails on cooking in increasing exposure to finer particles. • PM exposure could be reduced by

  2. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  3. Elevated personal exposure to particulate matter from human activities in a residence.

    Science.gov (United States)

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-01-01

    Continuous laser particle counters collocated with time-integrated filter samplers were used to measure personal, indoor, and outdoor particulate matter (PM) concentrations for a variety of prescribed human activities during a 5-day experimental period in a home in Redwood City, CA, USA. The mean daytime personal exposures to PM(2.5) and PM(5) during prescribed activities were 6 and 17 times, respectively, as high as the pre-activity indoor background concentration. Activities that resulted in the highest exposures of PM(2.5), PM(5), and PM(10) were those that disturbed dust reservoirs on furniture and textiles, such as dry dusting, folding clothes and blankets, and making a bed. The vigor of activity and type of flooring were also important factors for dust resuspension. Personal exposures to PM(2.5) and PM(5) were 1.4 and 1.6 times, respectively, as high as the indoor concentration as measured by a stationary monitor. The ratio of personal exposure to the indoor concentration was a function of both particle size and the distance of the human activity from the stationary indoor monitor. The results demonstrate that a wide variety of indoor human resuspension activities increase human exposure to PM and contribute to the "personal cloud" effect.

  4. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Wang Yingsong; Li Delu; Li Aiguo; Li Yan; Zhang Guilin

    2006-01-01

    The samples of PM2.5 and PM10 inhalable particulate matter had been collected during the period of December 2002-January 2003 at nineteen representative sites of Shanghai urban and suburb area in order to investigate the chemical characterization of aerosol particle in winter. The samples were analyzed to determine the average concentrations for up to twenty elements by means of particle induced X-ray emission (PIXE). It was found that the average elemental concentrations in the urban center are higher than those in the suburb, except for Ti and P. The particulate mass data demonstrate that the ratio range of PM2.5/PM10 is from 0.32 to 0.85 and its average ratio is 0.6. The result of the enrichment factor shows that the inhalable particles may be divided into two categories, i.e., soil elements from the earth crust and anthropogenic pollution elements. It is noticed that toxic or harmful elements such as S, As, Pb, Ni, Mn and Se are enriched mainly in fine particles with diameter less than 2.5 μm. The fingerprints of major pollution sources such as coal (or oil) burning, vehicle exhaust emission and industry are also presented and discussed. (author)

  5. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers

    Directory of Open Access Journals (Sweden)

    Paris Christophe

    2007-11-01

    Full Text Available Abstract Background This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Methods Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter" period, and the other during a hot ("summer" period. Results Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p 10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83] than in summer (0.63 mg.m-3 [0.36]. While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3. Over half the facilities had no ventilation system. Conclusion Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation.

  6. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials

    DEFF Research Database (Denmark)

    Møller, Peter; Christophersen, Daniel Vest; Raun Jacobsen, Nicklas

    2016-01-01

    Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient......O2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM....

  7. Source of Personal Exposure to PM2.5 among College Students in Beijing, China

    Science.gov (United States)

    Xie, Qiaorong; Zhu, Xianlei; Li, Xiang; Hui, Fan; Fu, Xianqiang; Zhang, Qiangbin

    2015-04-01

    The health risk from exposure to airborne particles arouses increasing public concern in Beijing, a megacity in China, where concentration of PM2.5 frequently exceeds the guideline values of World Health Organization (WHO). To investigate daily exposure to PM2.5, a personal exposure study was conducted for college students. The purpose of this study was to measure the daily PM2.5 personal exposures of students, to quantify the contributions of various microenvironments to personal exposure since students spend more than 85% of their time indoors, and to apportion the contributions of PM2.5 indoors origin and outdoor origin. In this work, a total of 320 paired indoor and outdoor PM2.5 samples were collected at eight types of microenvironments in both China University of Petroleum (suburban area) and Tsinghua University (urban area). The microenvironments were selected based on the time-activity diary finished by 1500 students from both universities. Simultaneously, the air exchange rate was measured in each microenvironment. PM2.5, elements, inorganic ions and polycyclic aromatic hydrocarbons in the samples were determined. The peak concentrations were observed in dinning halls, whereas PM2.5 in dormitories was the largest contributor to personal exposure because students spend more than half of a day there. Furthermore, source apportionment by positive matrix factorization (PMF) will be carried out to understand the source of personal exposure to PM2.5. Especially, efforts will be put on determing the contributions of primary combustion, secondary sulfate and organics, secondary nitrate, and mechanically generated PM, which present different infiltration behavior and are indoor PM2.5 of ambient origin, with help of air exchange rate data. The results would be benefit for refining the understanding of the contribution of PM2.5 of ambient (outdoor) origin to the daily PM2.5 personal exposures. Acknowledgments:This study has been funded by Beijing Municipal Commission

  8. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    Science.gov (United States)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  9. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  10. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  11. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  12. Mobile air quality studies (MAQS in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    Directory of Open Access Journals (Sweden)

    Uibel Stefanie

    2012-10-01

    Full Text Available Abstract Background Particulate matter (PM is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.

  13. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA

  14. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  15. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture

    International Nuclear Information System (INIS)

    Dagher, Zeina; Garcon, Guillaume; Billet, Sylvain; Gosset, Pierre; Ledoux, Frederic; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2006-01-01

    Epidemiological studies have associated the increase of respiratory and cardiovascular mortality and morbidity with high levels of air pollution particulate matter (PM). However, the underlying mechanisms of actions by which PM induce adverse health effects are still unclear. We have recently undertaken an extensive investigation of the adverse health effects of air pollution PM 2.5 , and shown that in vitro short-term exposure to PM 2.5 induced oxidative stress and inflammation in human lung epithelial cells (L132). Hence, it was convenient to complete the physical and chemical characterization of PM and to investigate whether in vitro short-term exposure to PM could be imply in the activation of apoptosis. Accordingly, we found that 92.15% of PM were equal or smaller than 2.5 μm and their specific surface area was 1 m 2 /g. Inorganic (i.e. Fe, Al, Ca, Na, K, Mg, Pb, etc.) and organic (i.e. polycyclic aromatic hydrocarbons) chemicals were found in PM, suggesting that much of them derived from wind-borne dust from the industrial complex and the heavy motor vehicle traffic. In other respects, we showed that PM exposure induced apoptosis by activating not only the tumor necrosis factor-alpha (TNF-α)-induced pathway (i.e. TNF-α secretion, caspase-8 and -3 activation), but also the mitochondrial pathway (i.e. 8-hydroxy-2'-desoxyguanosine formation, cytochrome c release from mitochondria, caspase-9 and -3 activation). Moreover, changes in the transcription rates of p53, bcl-2, and bax genes, on the one hand, and DNA fragmentation, on the other hand, were reported in PM-exposed proliferating L132 cells, revealing the occurrence of apoptotic events. Taken together, these findings suggested that in vitro short-term exposure to PM 2.5 induced apoptosis in L132 cells

  16. Effect of Exposure to PM10 on Cardiovascular Diseases Hospitalizations in Ahvaz, Khorramabad and Ilam, Iran During 2014

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Daryanoosh

    2016-01-01

    Full Text Available Particulate matter with an aerodynamic diameter less than or equal to 10μm (PM10 has the great adverse endpoints on human health. The aim of this study was to assess the hospital admissions (HA due to cardiovascular diseases (CVD attributed to PM10 among people living in the cities of Ahvaz, Khorramabad and Ilam, during 2014. In this study, Air Quality Health Impact Assessment (AirQ2.2.3 software proposed by the World Health Organization (WHO to assess of health impacts of atmospheric pollutants was used. To evaluate human exposure and health outcome of PM10, 24-hour data was taken from the Departments of Environment of Ahvaz, Khorramabad and Ilam. We acquired an input file for the software from raw data and quantified PM10 by the AirQ2.2.3 model. The annual averages in three study areas illustrated that PM10 concentration in Ahvaz and Ilam with values of 534.77 and 60.45μg/m3, were the highest and lowest in 2014, respectively. The number of excess cases for HA due to CVD in Ahvaz, Khorramabad, and Ilam was estimated 508, 144 and 66 persons, respectively. The most percentage of person-days was attributable to the concentration interval of 130-139µg/m3 of PM10, whereas this was for Khorramabad and Ilam 60-69 and 40-49µg/m3, respectively. The comparison of PM10 concentrations with NAAQS standard was revealed the annual average of particulate matter concentrations in Ahvaz was higher than standard. Therefore, the efforts should be conducted in the governmental scale to prevent pollution and reduce PM10 emission from various sources, such as transport and industries and also control dust entering the country by spreading mulch and development of green space.

  17. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  18. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  19. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California

    Science.gov (United States)

    Ham, Walter; Vijayan, Abhilash; Schulte, Nico; Herner, Jorn D.

    2017-10-01

    This study was designed to estimate and compare the air pollution exposures experienced by commuters in six common transportation modes utilized by California residents, and to evaluate the impact of practical exposure mitigation strategies in reducing commute exposures. We measured concentrations of fine particle matter (PM2.5), black carbon (BC), and ultrafine particles (UFP) for 161 commutes between April 2014 and November 2015 in Sacramento, CA. We collected measurements for six modes including single occupancy vehicles, high occupancy vehicles (multiple occupants), buses, light rail, train, and bicycling. The largest average concentrations for most pollutants were measured during train commutes and the lowest average concentrations were observed during light-rail commutes. Mitigation options were explored for personal vehicles, bicycling, and train commute modes. We found that ventilation settings of personal vehicles can reduce in-vehicle PM2.5, BC, and UFP concentrations by up to 75%. Similarly, bicycle route choice can reduce exposures by 15-75% with the lowest concentrations observed during commutes on dedicated bicycle paths away from traffic sources. Train commuters experienced UFP concentrations an order of magnitude greater when the locomotive engine was pulling the rail cars versus pushing the rail cars. We found that UFP concentrations during bus, bicycling, and train commutes were 1.6-5.3 times greater than personal vehicle commutes, while light rail commutes had 30% lower UFP concentrations than personal vehicle commutes. The largest exposure per mile occurred during bicycle commutes with PM2.5, BC, and UFP exposures of 1.312 μg/mile, 0.097 μg/mile, and 3.0 × 109 particles/mile, respectively. Train commutes experienced the largest exposure per mile of all of the combustion-derived transportation commute modes. BC accounted for 5-20% of total PM mass across all commute modes with an average fraction of ∼7% of PM2.5.

  20. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  1. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts

    Directory of Open Access Journals (Sweden)

    Kloog Itai

    2012-06-01

    Full Text Available Abstract Background Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. Methods We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM2.5 levels during pregnancy in Massachusetts for a 9-year period (2000–2008. Building on a novel method we developed for predicting daily PM2.5 at the spatial resolution of a 10x10km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM2.5 exposure and birth weight (among full term births and PM2.5 exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Results Birth weight was negatively associated with PM2.5 across all tested periods. For example, a 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI = −21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI = 1.01–1.13 for each 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy period. Conclusions The presented study suggests that exposure to PM2.5 during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in

  2. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts

    Science.gov (United States)

    2012-01-01

    Background Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. Methods We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM2.5) levels during pregnancy in Massachusetts for a 9-year period (2000–2008). Building on a novel method we developed for predicting daily PM2.5 at the spatial resolution of a 10x10km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM2.5 exposure and birth weight (among full term births) and PM2.5 exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Results Birth weight was negatively associated with PM2.5 across all tested periods. For example, a 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = −21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01–1.13) for each 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy period. Conclusions The presented study suggests that exposure to PM2.5 during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants. PMID:22709681

  3. The relationship between fine particulate matter (PM2.5) and schizophrenia severity.

    Science.gov (United States)

    Eguchi, Rika; Onozuka, Daisuke; Ikeda, Kouji; Kuroda, Kenji; Ieiri, Ichiro; Hagihara, Akihito

    2018-04-23

    Although particulate matter (PM) is reported to affect the rate of emergency admissions for schizophrenia, no study has examined the relationship between particulate matter less than 2.5 μm in diameter (PM 2.5 ) and the severity of schizophrenia. We obtained data on patients with schizophrenia at a psychiatric hospital, and on air pollution in Sakai, Japan between Feb 1, 2013 and April 30, 2016. Multivariate logistic regression analyses were used to estimate the relationship between PM 2.5 concentrations and scores on the Brief Psychiatric Rating Scale (BPRS) of schizophrenia patients at admission, with a lag of up to 7 days. During the study period, there were 1193 schizophrenia cases. The odds ratio (OR) for a BPRS score ≥ 50 at admission was 1.05 [95% confidence interval 1.00-1.10] and the effect of PM 2.5 concentration was significant for lag period of 2 days. The ORs associated with PM 2.5 concentration increased substantially for patients over 65 years of age. Ambient PM 2.5 concentration was associated with exacerbation of schizophrenia. Our results suggest that protection for several days should be considered for controlling PM 2.5 -related schizophrenia, especially among elderly patients.

  4. Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats

    International Nuclear Information System (INIS)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing; Cai, Zongwei; Dong, Chuan

    2015-01-01

    Highlights: • PM 2.5 induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM 2.5 ) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM 2.5 -induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM 2.5 with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM 2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM 2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na + K + -ATPase and Ca 2+ -ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM 2.5 -induced heart injury, and may have relations with cardiovascular disease

  5. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China.

    Science.gov (United States)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-12-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8-14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10-24%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Personal exposure to PM2.5, genetic variants and DNA damage: a multi-center population-based study in Chinese.

    Science.gov (United States)

    Chu, Minjie; Sun, Chongqi; Chen, Weihong; Jin, Guangfu; Gong, Jianhang; Zhu, Meng; Yuan, Jing; Dai, Juncheng; Wang, Meilin; Pan, Yun; Song, Yuanchao; Ding, Xiaojie; Guo, Xuejiang; Du, Mulong; Xia, Yankai; Kan, Haidong; Zhang, Zhengdong; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing

    2015-06-15

    Exposure to particulate matter (e.g., PM2.5) may result in DNA damage, a major culprit in mutagenesis and environmental toxicity. DNA damage levels may vary among individuals simultaneously exposed to PM2.5, however, the genetic determinants are still unclear. To explore whether PM2.5 exposure and genetic variants contribute to the alteration in DNA damage, we recruited 328 subjects from three independent cohorts (119 from Zhuhai, 123 from Wuhan and 86 from Tianjin) in southern, central and northern China with different PM2.5 exposure levels. Personal 24-h PM2.5 exposure levels and DNA damage levels of peripheral blood lymphocytes were evaluated. Genotyping were performed using Illumina Human Exome BeadChip with 241,305 single nucleotide variants (SNVs). The DNA damage levels are consistent with the PM2.5 exposure levels of each cohort. A total of 35 SNVs were consistently associated with DNA damage levels among the three cohorts with pooled P values less than 1.00×10(-3) after adjustment for age, gender, smoking status and PM2.5 exposure levels, of which, 18 SNVs together with gender and PM2.5 exposure levels were independent factors contributing to DNA damage. Gene-based test revealed 3 genes significantly associated with DNA damage levels (P=5.11×10(-3) for POLH, P=2.88×10(-3) for RIT2 and P=2.29×10(-2) for CNTN4). Gene ontology (GO) analyses indicated that the identified variants were significantly enriched in DNA damage response pathway. Our findings highlight the importance of genetic variation as well as personal PM2.5 exposure in modulating individual DNA damage levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Hydrophobic and porous cellulose nanofibrous screen for efficient particulate matter (PM2.5) blocking

    International Nuclear Information System (INIS)

    Chen, Liping; Guo, Yi; Peng, Xinsheng

    2017-01-01

    Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µ m) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions. (paper)

  8. Hydrophobic and porous cellulose nanofibrous screen for efficient particulate matter (PM2.5) blocking

    Science.gov (United States)

    Chen, Liping; Guo, Yi; Peng, Xinsheng

    2017-10-01

    Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.

  9. Estimation of health effects (morbidity and mortality attributed to PM10 and PM2.5 exposure using an Air Quality model in Bukan city, from 2015-2016 exposure using air quality model

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2017-08-01

    Full Text Available Background: Air Quality software is a useful tool for assessing the health risks associated with air pollutants. Quantifying the effects of exposure to air pollutants in terms of public health has become a critical component of policy discussion. The present study purposed to quantify the health effects of particulate matters on mortality and morbidity in a Bukan city hospital from 2015-2016. Methods: Information regarding coordinates, exposed population, number of stations used in profiling, mean and maximum concentrations (annual, winter, and summer, annual 98th percentile, baseline incidence (BI per 100 000 per year, and relative risk was needed for use with the software. Results: The average particulate matter concentration was higher in summer than in winter. The concentrations of PM10 in summer and winter were 84.37 and 74.86 μg m-3, respectively. The Air Quality model predicted that total mortality rates related to PM10 and PM2.5 were 33.3 and 49.8 deaths, respectively. As a result, 3.79% of the total mortality was due to PM10. In Bukan city, 2.004% of total deaths were due to cardiovascular mortality. The Air Quality model predicted that the deaths of 92.2 people were related to hospital admissions for respiratory disease. Conclusion: The continual evaluation of air quality data is necessary for investigating the effect of pollutants on human health.

  10. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  11. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  12. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    Science.gov (United States)

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  13. Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China.

    Science.gov (United States)

    Liu, Weijian; Shen, Guofeng; Chen, Yuanchen; Shen, Huizhong; Huang, Ye; Li, Tongchao; Wang, Yilong; Fu, Xiaofang; Tao, Shu; Liu, Wenxin; Huang-Fu, Yibo; Zhang, Weihao; Xue, Chunyu; Liu, Guangqing; Wu, Fuyong; Wong, Minghung

    2018-01-01

    Household air pollution is considered to be among the top environmental risks in China. To examine the performance of improved stoves for reduction of indoor particulate matter (PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China. Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM 0.25 . The daily averaged exposure concentrations of PM 0.25 , PM 1.0 , PM 2.5 and total suspended particle for all the surveyed residents were 74.4±41.1, 159.3±74.3, 176.7±78.1 and 217.9±78.1μg/m 3 , respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25μg/m 3 . Submicron particles PM 1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure. Copyright © 2017. Published by Elsevier B.V.

  14. Influence of background particulate matter (PM) on urban air quality in the Pacific Northwest.

    Science.gov (United States)

    Timonen, H; Wigder, N; Jaffe, D

    2013-11-15

    Elevated particulate matter concentrations due to Asian long-range transport (LRT) are frequently observed in the free troposphere (FT) above the Pacific Northwest, U.S. Transport of this aerosol from the FT to the boundary layer (BL) and its effect to local air quality remain poorly constrained. We used data collected at the Mount Bachelor observatory (MBO, 2.8 km a.s.l) and from ground stations in the Pacific Northwest to study transport of fine particulate matter (PM) from the FT to the BL. During Asian LRT episodes PM concentrations were clearly elevated above the corresponding monthly averages at MBO as well as at low elevation sites across Washington and Oregon. Also, a clear correlation between MBO and low elevation sites was observed, indicating that LRT episodes are seen in both the FT and BL. In addition, drum impactor measurements show that the chemical composition of PM at MBO was similar to that measured at the BL sites. Using a simple regression model, we estimate that during springtime, when the transport from Asia is most effective, the contribution of Asian sources to PM2.5 in clean background areas of the Pacific Northwest was on average 1.7 μg m(-3) (representing approximately 50-80% of PM). The influence of LRT PM was also seen in measurement stations situated in the urban and urban background areas. However, the fraction of LRT PM was less pronounced (36-50% of PM) due to larger local emissions in the urban areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States

    Science.gov (United States)

    Ebisu, Keita

    2012-01-01

    Background: Growing evidence indicates that toxicity of fine particulate matter ≤ 2.5 μm in diameter (PM2.5) differs by chemical component. Exposure to components may differ by population. Objectives: We investigated whether exposures to PM2.5 components differ by race/ethnicity, age, and socioeconomic status (SES). Methods: Long-term exposures (2000 through 2006) were estimated for 215 U.S. census tracts for PM2.5 and for 14 PM2.5 components. Population-weighted exposures were combined to generate overall estimated exposures by race/ethnicity, education, poverty status, employment, age, and earnings. We compared population characteristics for tracts with and without PM2.5 component monitors. Results: Larger disparities in estimated exposures were observed for components than for PM2.5 total mass. For race/ethnicity, whites generally had the lowest exposures. Non-Hispanic blacks had higher exposures than did whites for 13 of the 14 components. Hispanics generally had the highest exposures (e.g., 152% higher than whites for chlorine, 94% higher for aluminum). Young persons (0–19 years of age) had levels as high as or higher than other ages for all exposures except sulfate. Persons with lower SES had higher estimated exposures, with some exceptions. For example, a 10% increase in the proportion unemployed was associated with a 20.0% increase in vanadium and an 18.3% increase in elemental carbon. Census tracts with monitors had more non-Hispanic blacks, lower education and earnings, and higher unemployment and poverty than did tracts without monitors. Conclusions: Exposures to PM2.5 components differed by race/ethnicity, age, and SES. If some components are more toxic than others, certain populations are likely to suffer higher health burdens. Demographics differed between populations covered and not covered by monitors. PMID:22889745

  16. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing.

    Science.gov (United States)

    Zuo, JinXing; Ji, Wei; Ben, YuJie; Hassan, Muhammad Azher; Fan, WenHong; Bates, Liam; Dong, ZhaoMin

    2018-05-19

    Due to time- and expense- consuming of conventional indoor PM 2.5 (particulate matter with aerodynamic diameter of less than 2.5 μm) sampling, the sample size in previous studies was generally small, which leaded to high heterogeneity in indoor PM 2.5 exposure assessment. Based on 4403 indoor air monitors in Beijing, this study evaluated indoor PM 2.5 exposure from 15th March 2016 to 14th March 2017. Indoor PM 2.5 concentration in Beijing was estimated to be 38.6 ± 18.4 μg/m 3 . Specifically, the concentration in non-heating season was 34.9 ± 15.8 μg/m 3 , which was 24% lower than that in heating season (46.1 ± 21.2 μg/m 3 ). A significant correlation between indoor and ambient PM 2.5 (p < 0.05) was evident with an infiltration factor of 0.21, and the ambient PM 2.5 contributed approximately 52% and 42% to indoor PM 2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor (I/O) ratio was estimated to be 0.73 ± 0.54. Finally, the adjusted PM 2.5 exposure level integrating the indoor and outdoor impact was calculated to be 46.8 ± 27.4 μg/m 3 , which was approximately 42% lower than estimation only relied on ambient PM 2.5 concentration. This study is the first attempt to employ big data from commercial air monitors to evaluate indoor PM 2.5 exposure and risk in Beijing, which may be instrumental to indoor PM 2.5 pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Development of methods to examine the effects of atmospheric particulate matter (PM) on human peripheral blood leukocytes

    Science.gov (United States)

    Zussman, Lisa Ann

    In vitro methods to study the effect of atmospheric particulate matter (PM) on leukocyte function using human peripheral blood were developed. These methods were demonstrated using the blood of 1-5 individuals and National Institute of Standards and Technology (NIST) urban PM #1648, diesel PM #1650, silica PM, and a locally collected PM sample (New Jersey PM10). For the blood samples analyzed in this study NIST urban PM and New Jersey PM10 treatment mediated the release of granule contents from peripheral blood leukocytes and induced structural changes associated with degranulation. Flow cytometry revealed PM-induced changes in phagocytosis and cell structure associated with degranulation. Transmission electron microscopy confirmed NIST urban PM-induced cell structure changes were associated with PM internalization. Colorametric and electrophoretic methods showed no PM-induced release of primary granules and a slight PM-induced release of secondary granules associated with only NIST urban PM. Enzyme Immunosorbent Assays detected increased histamine release from basophils treated with NIST urban PM, a locally collected PM, and the soluble and insoluble components of these particles. NIST urban PM was found to be a potent inducer of histamine release in 4 out of 6 individuals tested. Fractionation studies revealed that soluble (aqueous) and insoluble fractions of NIST urban PM contain histamine-releasing activity. This was also demonstrated for the New Jersey PM10 sample for which the soluble fraction exhibited the most activity. Complementary studies with inhibitors of IgE-mediated histamine release conducted on one test subject suggest that PM-induced histamine release was partially mediated by IgE. A new hypothesis has been formed, suggesting that particle toxicity is related to PM-induced histamine release. Due to the bioactive nature of histamine and its association with many cardiopulmonary responses, the PM- mediated release of histamine should be investigated

  18. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter.

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-06-14

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  19. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    Directory of Open Access Journals (Sweden)

    Oyewale Mayowa Morakinyo

    2016-06-01

    Full Text Available Particulate matter (PM is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.

  20. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  1. Exposure levels of farmers and veterinarians to particulate matter and gases uring operational tasks in pig-fattening houses

    Directory of Open Access Journals (Sweden)

    Nele Van Ransbeeck

    2014-09-01

    Full Text Available The main objective of the study was to assess particulate matter (PM exposure levels for both the farmer and the veterinarian during different operational tasks in pig-fattening houses, and to estimate their exposure levels on a daily working basis (time-weighted average (TWA. The measured PM fractions were: inhalable and respirable PM, PM10, PM2.5 and PM1. The effects of pig age, pen floor type (conventional or low emission surface and cleaning of the pens on the personal PM exposure were also investigated. Indoor concentrations of NH[sub]3[/sub], CH[sub]4[/sub], and CO[sub]2[/sub] were additionally measured during some operational tasks. The results showed that personal exposure levels can become extremely high during some operational tasks performed by the farmer or veterinarian. The highest concentration levels were observed during feed shovelling and blood sampling, the lowest during the weighing of the pigs. For the farmer, the estimated TWA exposure levels of inhalable and respirable PM were 6.0 and 0.29 mg m[sup] -3[/sup] , respectively. These exposure levels for the veterinarian were, respectively, 10.6 and 0.74 mg m[sup] -3[/sup] . The PM concentration levels were mainly determined by the performed operational tasks. There was no significant effect of pig age, pen floor type, nor cleaning of the pens on the personal exposure levels.

  2. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  3. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...

  4. Experimental Investigation of the Effects of Some Operating Diesel Engine Variables on Emitted Particulate Matters (PM

    Directory of Open Access Journals (Sweden)

    Adel M. Saleh

    2012-03-01

    Full Text Available The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world’s goods, power much of the world’s equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population. This experimental study has been conducted with direct injection diesel engine and particulate matters (PM concentrations were measured at variable operating variables. The results show that PM concentrations influence by changing equivalence ratio, load, engine speed and injection timing

  5. A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5.

    Science.gov (United States)

    Strand, Matthew; Hopke, Philip K; Zhao, Weixiang; Vedal, Sverre; Gelfand, Erwin; Rabinovitch, Nathan

    2007-09-01

    Various methods have been developed recently to estimate personal exposures to ambient particulate matter less than 2.5 microm in diameter (PM2.5) using fixed outdoor monitors as well as personal exposure monitors. One class of estimators involves extrapolating values using ambient-source components of PM2.5, such as sulfate and iron. A key step in extrapolating these values is to correct for differences in infiltration characteristics of the component used in extrapolation (such as sulfate within PM2.5) and PM2.5. When this is not done, resulting health effect estimates will be biased. Another class of approaches involves factor analysis methods such as positive matrix factorization (PMF). Using either an extrapolation or a factor analysis method in conjunction with regression calibration allows one to estimate the direct effects of ambient PM2.5 on health, eliminating bias caused by using fixed outdoor monitors and estimated personal ambient PM2.5 concentrations. Several forms of the extrapolation method are defined, including some new ones. Health effect estimates that result from the use of these methods are compared with those from an expanded PMF analysis using data collected from a health study of asthmatic children conducted in Denver, Colorado. Examining differences in health effect estimates among the various methods using a measure of lung function (forced expiratory volume in 1 s) as the health indicator demonstrated the importance of the correction factor(s) in the extrapolation methods and that PMF yielded results comparable with the extrapolation methods that incorporated correction factors.

  6. Association between airborne PM2.5 chemical constituents and birth weight—implication of buffer exposure assignment

    International Nuclear Information System (INIS)

    Ebisu, Keita; Bell, Michelle L; Belanger, Kathleen

    2014-01-01

    Several papers reported associations between airborne fine particulate matter (PM 2.5 ) and birth weight, though findings are inconsistent across studies. Conflicting results might be due to (1) different PM 2.5 chemical structure across locations, and (2) various exposure assignment methods across studies even among the studies that use ambient monitors to assess exposure. We investigated associations between birth weight and PM 2.5 chemical constituents, considering issues arising from choice of buffer size (i.e. distance between residence and pollution monitor). We estimated the association between each pollutant and term birth weight applying buffers of 5 to 30 km in Connecticut (2000–2006), in the New England region of the USA. We also investigated the implication of the choice of buffer size in relation to population characteristics, such as socioeconomic status. Results indicate that some PM 2.5 chemical constituents, such as nitrate, are associated with lower birth weight and appear more harmful than other constituents. However, associations vary with buffer size and the implications of different buffer sizes may differ by pollutant. A homogeneous pollutant level within a certain distance is a common assumption in many environmental epidemiology studies, but the validity of this assumption may vary by pollutant. Furthermore, we found that areas close to monitors reflect more minority and lower socio-economic populations, which implies that different exposure approaches may result in different types of study populations. Our findings demonstrate that choosing an exposure method involves key tradeoffs of the impacts of exposure misclassification, sample size, and population characteristics. (letter)

  7. Association between airborne PM2.5 chemical constituents and birth weight—implication of buffer exposure assignment

    Science.gov (United States)

    Ebisu, Keita; Belanger, Kathleen; Bell, Michelle L.

    2014-08-01

    Several papers reported associations between airborne fine particulate matter (PM2.5) and birth weight, though findings are inconsistent across studies. Conflicting results might be due to (1) different PM2.5 chemical structure across locations, and (2) various exposure assignment methods across studies even among the studies that use ambient monitors to assess exposure. We investigated associations between birth weight and PM2.5 chemical constituents, considering issues arising from choice of buffer size (i.e. distance between residence and pollution monitor). We estimated the association between each pollutant and term birth weight applying buffers of 5 to 30 km in Connecticut (2000-2006), in the New England region of the USA. We also investigated the implication of the choice of buffer size in relation to population characteristics, such as socioeconomic status. Results indicate that some PM2.5 chemical constituents, such as nitrate, are associated with lower birth weight and appear more harmful than other constituents. However, associations vary with buffer size and the implications of different buffer sizes may differ by pollutant. A homogeneous pollutant level within a certain distance is a common assumption in many environmental epidemiology studies, but the validity of this assumption may vary by pollutant. Furthermore, we found that areas close to monitors reflect more minority and lower socio-economic populations, which implies that different exposure approaches may result in different types of study populations. Our findings demonstrate that choosing an exposure method involves key tradeoffs of the impacts of exposure misclassification, sample size, and population characteristics.

  8. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  9. TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content

    Science.gov (United States)

    Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.

    2015-01-01

    Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some

  10. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  12. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies.

    Science.gov (United States)

    Liu, Qian; Xu, Cheng; Ji, Guixiang; Liu, Hui; Shao, Wentao; Zhang, Chunlan; Gu, Aihua; Zhao, Peng

    2017-01-19

    The International Agency for Research on Cancer and the World Health Organization have designated airborne particulates, including particulates of median aerodynamic diameter ≤ 2.5 μm (PM 2.5 ), as Group 1 carcinogens. It has not been determined, however, whether exposure to ambient PM 2.5 is associated with an increase in respiratory related diseases. This meta-analysis assessed the association between exposure to ambient fine particulate matter (PM 2.5 ) and the risk of respiratory tract diseases, using relevant articles extracted from PubMed, Web of Science, and Embase. In results, of the 1,126 articles originally identified, 35 (3.1%) were included in this meta-analysis. PM 2.5 was found to be associated with respiratory tract diseases. After subdivision by age group, respiratory tract disease, and continent, PM 2.5 was strongly associated with respiratory tract diseases in children, in persons with cough, lower respiratory illness, and wheezing, and in individuals from North America, Europe, and Asia. The risk of respiratory tract diseases was greater for exposure to traffic-related than non-traffic-related air pollution. In children, the pooled relative risk (RR) represented significant increases in wheezing (8.2%), cough (7.5%), and lower respiratory illness (15.3%). The pooled RRs in children were 1.091 (95%CI: 1.049, 1.135) for exposure to respiratory tract diseases, especially in children exposed to high concentrations of PM 2.5 .

  13. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  14. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments

    DEFF Research Database (Denmark)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive E

    2015-01-01

    to define six microenvironments (MEs) to assess everyday exposure of individuals to short-term PM2.5 concentrations. The Dylos was combined with a GPS receiver to track movement and exposure of individuals across the MEs. Seventeen volunteers collected 35 profiles. Profiles may have a different overall...

  15. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon

    2008-06-15

    The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).

  17. Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure

    Directory of Open Access Journals (Sweden)

    Mantecca Paride

    2012-01-01

    Full Text Available The results presented summarise the ones obtained in the coordinated research project Tosca, which extensively analysed the impact of Milan urban PM on human health. The molecular markers of exposure and effects of seasonally and size-fractionated PMs (summer and winter PM10, PM2.5 were investigated in in vitro (human lung cell lines and in vivo (mice systems. The results obtained by the analyses of cytotoxic, pro-inflammatory and genotoxic parameters demonstrate that the biological responses are strongly dependent upon the PM samples seasonal and dimensional variability, that ultimately reflect their chemical composition and source. In fact summer PM10, enriched in crustal elements and endotoxins, was the most cytotoxic and pro-inflammatory fraction, while fine winter PMs induced genotoxic effects and xenobiotic metabolizing enzymes (like CYP1B1 production, likely as a consequence of the higher content in combustion derived particles reach in PAHs and heavy toxic metals. These outcomes outline the need of a detailed knowledge of the PMs physico-chemical composition on a local scale, coupled with the biological hazard directly associated to PM exposure. Apparently this is the only way allowing scientists and police-makers to establish the proper relationships between the respirable PM quantity/quality and the health outcomes described by clinicians and epidemiologists.

  18. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-01-15

    Recent studies have reported adverse health effects of short-term exposure to coarse particles independent of particulate matter less than 2.5 μm in diameter (PM2.5), but evidence in Asian countries is limited. We therefore evaluated associations between short-term exposure to particulate matter (PM) and mortality among older people in Tokyo, Japan. We used a time-stratified, case-crossover design. Study participants included 664,509 older people (≥65 years old) in the 23 urbanized wards of the Tokyo Metropolitan Government, who died between January 2002 and December 2013. We obtained PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM to account for coarse particles. We then used conditional logistic regression to estimate odds ratios (ORs) and 95 confidence intervals (CIs). Same-day PM2.5 and PM7-2.5 were independently associated with all-cause and cause-specific mortality related to cardiovascular and respiratory diseases; for example, both pollutants were positively associated with increased risk of all-cause mortality even after simultaneous adjustment for each pollutant: OR of 1.006 (95% CI: 1.003, 1.009) for PM2.5 and 1.016 (95% CI: 1.011, 1.022) for PM7-2.5. Even below concentrations stipulated by the Japanese air quality guidelines for PM2.5 and SPM (PM7), we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles is associated with increased risk of mortality among older people. Rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles should be continued. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO2, PM10 and PM2,5 for the winter 1995 to 1996

    International Nuclear Information System (INIS)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO 2 , PM 1 0 and PM 2 ,5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km 2 level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO 2 these threshold figures are 100 microgram/m 3 for hour values and 75 microgram/m 3 for day values. For PM 1 0 and PM 2 ,5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m 3 for PM 1 0 and 20 microgram/m 3 for PM 2 ,5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO 2 , PM 1 0 and PM 2 ,5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO 2 is largest in Bergen. The PM 1 0 and PM 2 ,5 i.e. particle exposure, is greater than for NO 2 and is largest in Oslo

  20. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  1. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers

    Science.gov (United States)

    Wu, Chang-Fu; Delfino, Ralph J.; Floro, Joshua N.; Quintana, Penelope J. E.; Samimi, Behzad S.; Kleinman, Michael T.; Allen, Ryan W.; Sally Liu, L.-J.

    It has been shown that acute exposures to particulate matter (PM) may exacerbate asthma in children. However, most epidemiological studies have relied on time-integrated PM measurements taken at a centrally located stationary monitoring sites. In this article, we characterized children's short-term personal exposures to PM 2.5 (PM with aerodynamic diameters size-selective inlet was used to estimate real-time PM 2.5 concentrations on 20 asthmatic children, inside and outside of their residences, and at a central site. The personal and indoor pDRs were operated passively, while the home outdoor and central site instruments were operated actively. The subjects received 29.2% of their exposures at school, even though they only spent 16.4% of their time there. More precise personal clouds were estimated for the home-indoor and home-outdoor microenvironments where PM concentrations were measured. The personal cloud increased with increasing activity levels and was higher during outdoor activities than during indoor activities. We built models to predict personal PM exposures based on either microenvironmental or central-site PM 2.5 measurements, and evaluated the modeled exposures against the actual personal measurements. A multiple regression model with central site PM concentration as the main predictor had a better prediction power ( R2=0.41) than a three-microenvironmental model ( R2=0.11). We further constructed a source-specific exposure model utilizing the time-space-activity information and the particle infiltration efficiencies (mean=0.72±0.15) calculated from a recursive mass balance model. It was estimated that the mean hourly personal exposures resulting from ambient, indoor-generated, and personal activity PM 2.5 were 11.1, 5.5, and 10.0 μg/m 3, respectively, when the modeling error was minimized. The high PM 2.5 exposure to personal activities reported in our study is likely due to children's more active lifestyle as compared with older adult subjects in

  2. PM2.5 exposure in highly polluted cities: A case study from New Delhi, India.

    Science.gov (United States)

    Pant, Pallavi; Habib, Gazala; Marshall, Julian D; Peltier, Richard E

    2017-07-01

    Personal exposure (PE) to air pollutants is driven by a combination of pollutant concentrations in indoor and outdoor environments, and time-activity pattern of individuals. The objectives of this study were to estimate personal exposure to PM 2.5 and black carbon (BC), and assess the representability of ambient air quality monitoring stations to serve as surrogates for PE in New Delhi. Personal exposure to air pollutants (PM 2.5-PE and BC PE ) was measured using portable, battery-operated instruments (PM 2.5 - pDR1500 and BC- microAethalometer AE51) in a small cohort of healthy adults (n=12 in summer, n=6 in winter) with no occupational exposure. Average PM 2.5-PE and BC PE (µg/m 3 ) were 53.9±136 and 3.71±4.29 respectively, in summer and 489.2±209.2 and 23.3±14.9 respectively, in winter. Activities associated with highest exposure levels were cooking and indoor cleaning for PM 2.5 , and commuting for BC. Within transport microenvironments, autorickshaws were found to be the most polluted, and lowest BC exposure was registered in public buses. Comparison of fixed-site ambient monitoring data showed a higher correlation with personal exposure dataset in winter compared to summer (r 2 of 0.51 (winter) and 0.21 (summer); 51% (winter) and 20% (summer)). This study highlights the need for detailed assessment of PE to air pollutants in Indian cities, and calls for a denser network of monitoring stations for better exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  4. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  5. Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation.

    Science.gov (United States)

    Sørensen, Mette; Loft, Steffen; Andersen, Helle Vibeke; Raaschou-Nielsen, Ole; Skovgaard, Lene Theil; Knudsen, Lisbeth E; Nielsen, Ivan V; Hertel, Ole

    2005-09-01

    Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background concentrations of PM(2.5), black smoke (BS), and nitrogen dioxide (NO(2)) were measured during 2-day periods in 30 subjects (20-33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental tobacco smoke (ETS) and burning of candles was collected by questionnaires. The personal exposure, the bedroom concentration and the front door concentration was set as outcome variable in separate models and analysed by mixed effect model regression methodology, regarding subject levels as a random factor. Seasons were defined as a dichotomised grouping of outdoor temperature (above and below 8 degrees C). For NO(2) there was a significant association between personal exposure and both the bedroom, the front door and the background concentrations, whereas for PM(2.5) and BS only the bedroom and the front door concentrations, and not the background concentration, were significantly associated to the personal exposure. The bedroom concentration was the strongest predictor of all three pollution measurements. The association between the bedroom and front door concentrations was significant for all three measurements, and the association between the front door and the background concentrations was significant for PM(2.5) and NO(2), but not for BS, indicating greater spatial variation for BS than for PM(2.5) and NO(2). For NO(2), the relationship between the personal exposure and the front door concentration was dependent upon the "season", with a stronger association in the warm season compared with the cold season, and for PM(2.5) and BS the same tendency was seen. Time exposed to

  6. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China

    Science.gov (United States)

    Li, Xiaolan; Ma, Yanjun; Wang, Yangfeng; Liu, Ningwei; Hong, Ye

    2017-12-01

    Temporal and spatial characteristics of atmospheric particulate matter (PM10 and PM2.5) and its relationship with meteorology over Shenyang, a city in northeast China, were statistically analyzed using hourly and daily averaged PM mass concentrations measured at 11 locations and surface meteorological parameters, from January 2014 to May 2016. Using averaged data from 11 stations in Shenyang, it was found that the monthly mean PM2.5 mass concentrations were higher in winter (97.2 ± 11.2 μg m- 3) and autumn (85.5 ± 42.9 μg m- 3), and lower in spring (62.0 ± 14.0 μg m- 3) and summer (42.5 ± 8.4 μg m- 3), similar to the seasonal variation in PM10 concentrations. The monthly ratios of PM2.5/PM10 ranged from 0.41 to 0.87, and were larger in autumn and winter but lowest in spring due to dust activities. PM pollution was concentrated mainly in the central, northern, and western areas of Shenyang in most seasons mainly due to anthropogenic activities such as traffic and residential emission and construction activity as well as natural dust emission. PM concentrations observed over different areas in all seasons generally exhibited two peaks, at 08:00-10:00 local time (LT) and 21:00-23:00 LT, with the exception of PM2.5 in summer, which showed only one peak during the daytime. In addition, PM10 concentrations peaked around 14:00 LT during spring in the western area of Shenyang because of strong thermal and dynamic turbulence, resulting in elevated dust emissions from adjacent dust sources. The relationship between daily PM concentrations and meteorological parameters showed both seasonal and annual variation. Overall, both PM2.5 and PM10 concentrations were negatively correlated with atmospheric visibility, with correlation coefficients (R) of 0.71 and 0.56, respectively. In most seasons, PM concentrations also exhibited negative correlations with wind speed, but showed positive correlations with air pressure, air temperature, and relative humidity. Strong wind

  7. Assessment of social losses of pollution's health caused by man-made pollution of atmospheric air with emissions of particulate matters (PM10

    Directory of Open Access Journals (Sweden)

    Turos Ye.I.

    2017-04-01

    Full Text Available According to available estimates, about 3% of lethal outcomes from cardiac-pulmonary pathology and 5% from lung cancer are related to the impact of patriculate matters (PM. In the course of the study there were assessed social losses of population’s health (additional death cases caused by risk conditions of atmospheric air pollution with PM of various air-dynamic diameter (PM10, proper to emissions of various industrial enterprises. It was established that 90% of population of cities under study live under high exposures (≥50 µg/m3 health and risks for population (IRM=10-3÷10-4, caused by PM10 emissions. Results showed that metallurgical industry is responsible for 7,2 to 2193 additional mortality cases. The impact of machine building enterprises – from 0.06 to 21 cases; coke and chemical – from 1.5 to 36 cases; mining – from 1.1 to 14,6 cases. The findings revealed 0.6 % increase in lifetime mortality for each 10 µg/m3 in 24-hour average PM10 concentration. Based on research outcomes, a set of instruments was developed for implementation of air pollution risk management programs aimed at mitigation of health risks from (PM10 in highly exposed groups.

  8. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort.

    Science.gov (United States)

    Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B

    2016-04-01

    Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M

  9. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers

    Science.gov (United States)

    Int Panis, Luc; de Geus, Bas; Vandenbulcke, Grégory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain

    2010-06-01

    Emerging evidence suggests that short episodes of high exposure to air pollution occur while commuting. These events can result in potentially adverse health effects. We present a quantification of the exposure of car passengers and cyclists to particulate matter (PM). We have simultaneously measured concentrations (PNC, PM2.5 and PM10) and ventilatory parameters (minute ventilation (VE), breathing frequency and tidal volume) in three Belgian locations (Brussels, Louvain-la-Neuve and Mol) for 55 persons (38 male and 17 female). Subjects were first driven by car and then cycled along identical routes in a pairwise design. Concentrations and lung deposition of PNC and PM mass were compared between biking trips and car trips. Mean bicycle/car ratios for PNC and PM are close to 1 and rarely significant. The size and magnitude of the differences in concentrations depend on the location which confirms similar inconsistencies reported in literature. On the other hand, the results from this study demonstrate that bicycle/car differences for inhaled quantities and lung deposited dose are large and consistent across locations. These differences are caused by increased VE in cyclists which significantly increases their exposure to traffic exhaust. The VE while riding a bicycle is 4.3 times higher compared to car passengers. This aspect has been ignored or severely underestimated in previous studies. Integrated health risk evaluations of transport modes or cycling policies should therefore use exposure estimates rather than concentrations.

  10. Ambient PM2.5 exposure and premature mortality burden in the holy city Varanasi, India

    International Nuclear Information System (INIS)

    Jain, Vaishali; Dey, Sagnik; Chowdhury, Sourangsu

    2017-01-01

    More than 3 million population residing in the holy city Varanasi and sub-urban areas is exposed to very high level of fine particulate matter (PM 2.5 ) from various sources. Continuous monitoring by Central Pollution Control Board started only in 2015; therefore what was the pollution level in the past and how it has changed over the years are not known. We use MODIS aerosol products to infer PM 2.5 and examine 15-year climatology. Data shows a rapid (1.5–3% per year) increase in PM 2.5 in the last 15 years and high (87% days in a year) persistence of PM 2.5 above the national air quality standard. It translates to a burden of 5700 (2800–7500) annual premature deaths (0.16% of the population), of which 29%, 18%, 33%, 19% and remaining 1% are attributed to ischemic heart disease, stroke, chronic obstructive pulmonary disease, acute lower respiratory infection and lung cancer respectively. If the region achieves the Indian (WHO) air quality standard, 1900 (3800) premature deaths can be avoided every year. - Highlights: • MODIS AOD data are used to infer surface PM 2.5 in the holy city Varanasi, India. • PM 2.5 increases rapidly (1.5–3% per year) in the last 15 years. • 87% days in a year, daily PM 2.5 exceeds national standard. • 5700 annual premature death is estimated, of which 1900 can be saved if Indian standard is met. • COPD has the largest share in the burden. - This study presents 15-year ambient PM 2.5 statistics in Varanasi using satellite data (in absence of long-term in-situ data) and the associated premature mortality burden.

  11. Exposure to ambient PM2.5 concentrations and cognitive function among older Mexican adults.

    Science.gov (United States)

    Salinas-Rodríguez, Aarón; Fernández-Niño, Julián Alfredo; Manrique-Espinoza, Betty; Moreno-Banda, Grea Litai; Sosa-Ortiz, Ana Luisa; Qian, Zhengmin Min; Lin, Hualiang

    2018-04-25

    Recent epidemiological research has shown that exposure to fine particulate pollution (PM 2.5 ) is associated with a reduction in cognitive function in older adults. However, primary evidence comes from high-income countries, and no specific studies have been conducted in low and middle-income countries where higher air pollution levels exist. To estimate the association between the exposure to PM 2.5 and cognitive function in a nationally representative sample of older Mexican adults and the associated effect modifiers. Data for this study were taken from the National Survey of Health and Nutrition in Mexico carried out in 2012. A total of 7986 older adults composed the analytical sample. Cognitive function was assessed using two tests: semantic verbal fluency and three-word memory. The annual concentration of PM 2.5 was calculated using satellite data. Association between exposure to PM 2.5 and cognitive function was estimated using two-level logistic and linear regression models. In adjusted multilevel regression models, each 10 μg/m 3 increase in ambient PM 2.5 raised the odds of a poorer cognitive function using the three-word memory test (OR = 1.37, 95% CI: 1.08, 1.74), and reduced the number of valid animal named in the verbal fluency test (β = -0.72, 95% CI: -1.05, -0.40). Stratified analyses did not yield any significant modification effects of age, sex, indoor pollution, urban/rural dwelling, education, smoking and other factors. This study supports an association between exposure to PM 2.5 concentrations and cognitive function in older adults. This is particularly relevant to low- and middle-income countries, which are marked by a rapid growth of their aging population and high levels of air pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Spatial modelling of population at risk and PM 2.5 exposure index: A ...

    African Journals Online (AJOL)

    However, monitoring, spatial representation and development of associated risk indicators have been major problems undermining formulation of relevant policy on air quality. This study used ... to environmental health. Key Words: Population at risk, PM2.5; Spatial modeling, GIS, Exposure index, environmental health ...

  13. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Personal exposure to PM2,5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation

    DEFF Research Database (Denmark)

    Sørensen, M.; Loft, S.; Andersen, H. V.

    2005-01-01

    concentrations of PM(2.5), black smoke (BS), and nitrogen dioxide (NO(2)) were measured during 2-day periods in 30 subjects (20-33 years old) living and studying in central parts of Copenhagen. The measurements were repeated in the four seasons. Information on indoor exposure sources such as environmental......Epidemiological studies have found negative associations between human health and particulate matter in urban air. In most studies outdoor monitoring of urban background has been used to assess exposure. In a field study, personal exposure as well as bedroom, front door and background...

  15. Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs.

    Science.gov (United States)

    Trasande, Leonardo; Malecha, Patrick; Attina, Teresa M

    2016-12-01

    Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States. We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010. Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07-1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars. An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43-9.66 B], of which $760 million were spent for medical care (SA: $362 M-1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States. PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy. Citation: Trasande L, Malecha P, Attina TM. 2016

  16. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    OpenAIRE

    Weichenthal, Scott; Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between ...

  17. Histological changes in lung tissues related with sub-chronic exposure to ambient urban levels of PM2.5 in Córdoba, Argentina

    Science.gov (United States)

    Tavera Busso, Iván; Vera, Anahí; Mateos, Ana Carolina; Amarillo, Ana Carolina; Carreras, Hebe

    2017-10-01

    Concentration of fine particulate matter (PM2.5) is one of the most important environmental parameters to estimate health impacts attributable to air pollution. Despite the fact there are many studies regarding PM2.5 effects on human health, most of them were performed under conditions that do not simulate the natural particles interaction with the organism. In the present paper, we studied the effects of mammals' sub-chronic exposure to PM2.5 on the lower respiratory tract, addressing realistic exposure conditions to normal urban air. Thus, we exposed Wistar rats under controlled settings to the same normal urban air, with and without particles. Next, we analyzed chemical composition of PM2.5 and lungs samples, performed a histologic examination and run the comet assay to assess genotoxic effects. We found a strong agreement between lung tissues and PM2.5 elemental composition suggesting that metals found in lungs came from the particles inhaled. Histological analysis showed a mild to moderate infiltration, with a reduction of alveoli lumen and increment of alveolar macrophages and periodic acid-Schiff (PAS) (+) cells in treated animals. We also observed an increase in the number of nuclei with comets, mostly comets type 3, with a high DNA fragmentation as well. These results provide strong evidence that sub-chronic exposure to low particle levels, even below the 24 h WHO standard, can cause injuries in lungs tissues and DNA damage, as well.

  18. Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Gu, Xing-yu; Chu, Xu; Zeng, Xiao-Li; Bao, Hai-Rong; Liu, Xiao-Ju

    2017-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4 + T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD. - Highlights: • The COPD mice demonstrated Th1 and Th17 dominant immune imbalance. • PM2.5 aggravates the Th1/Th2 and Th

  19. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    Science.gov (United States)

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  20. Year-long continuous personal exposure to PM 2.5 recorded by a fast responding portable nephelometer

    Science.gov (United States)

    Braniš, Martin; Kolomazníková, Jana

    2010-08-01

    Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM 2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM 2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject's movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM 2.5 average was higher (55.7 μg m -3) than the outdoor value (49.8 μg m -3). The highest 5-min PM 2.5 average concentration was detected in restaurant microenvironments (1103 μg m -3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m -3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m -3) and indoors at the monitored person's home (36 μg m -3). Outdoor and indoor concentrations of PM 2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject's home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.

  1. The associations between birth outcomes and satellite-estimated maternal PM2.5 exposure in Shanghai, China

    Science.gov (United States)

    Xiao, Q.; Liu, Y.; Strickland, M. J.; Chang, H. H.; Kan, H.

    2017-12-01

    Background: Satellite remote sensing data have been employed for air pollution exposure assessment, with the intent of better characterizing exposure spatio-temproal variations. However, non-random missingness in satellite data may lead to exposure error. Objectives: We explored the differences in health effect estimates due to different exposure metrics, with and without satellite data, when analyzing the associations between maternal PM2.5 exposure and birth outcomes. Methods: We obtained birth registration records of 132,783 singleton live births during 2011-2014 in Shanghai. Trimester-specific and total pregnancy exposures were estimated from satellite PM2.5 predictions with missingness, gap-filled satellite PM2.5 predictions with complete coverage and regional average PM2.5 measurements from monitoring stations. Linear regressions estimated associations between birth weight and maternal PM2.5 exposure. Logistic regressions estimated associations between preterm birth and the first and second trimester exposure. Discrete-time models estimated third trimester and total pregnancy associations with preterm birth. Effect modifications by maternal age and parental education levels were investigated. Results: we observed statistically significant associations between maternal PM2.5 exposure during all exposure windows and adverse birth outcomes. A 10 µg/m3 increase in pregnancy PM2.5 exposure was associated with a 12.85 g (95% CI: 18.44, 7.27) decrease in birth weight for term births, and a 27% (95% CI: 20%, 36%) increase in the risk of preterm birth. Greater effects were observed between first and third trimester exposure and birth weight, as well as between first trimester exposure and preterm birth. Mothers older than 35 years and without college education tended to have higher associations with preterm birth. Conclusions: Gap-filled satellite data derived PM2.5 exposure estimates resulted in reduced exposure error and more precise health effect estimates.

  2. Exposure to particulate matter in India: A synthesis of findings and future directions.

    Science.gov (United States)

    Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E

    2016-05-01

    Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    International Nuclear Information System (INIS)

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-01-01

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  4. Mitochondrial damage: An important mechanism of ambient PM{sub 2.5} exposure-induced acute heart injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China); Cai, Zongwei, E-mail: zwcai@hkbu.edu.hk [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR (China); Dong, Chuan, E-mail: dc@sxu.edu.cn [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China)

    2015-04-28

    Highlights: • PM{sub 2.5} induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM{sub 2.5}) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM{sub 2.5}-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM{sub 2.5} with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM{sub 2.5} exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM{sub 2.5} exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na{sup +}K{sup +}-ATPase and Ca{sup 2+}-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM{sub 2.5}-induced heart injury, and may have relations with cardiovascular disease.

  5. Exposure to PM2.5 and Blood Lead Level in Two Populations in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Enkhbat, Undarmaa; Rule, Ana M; Resnick, Carol; Ochir, Chimedsuren; Olkhanud, Purevdorj; Williams, D'Ann L

    2016-02-15

    Approximately 60% of the households in Ulaanbaatar live in gers (a traditional Mongolian dwelling) in districts outside the legal limits of the city, without access to basic infrastructure, such as water, sewage systems, central heating, and paved roads, in contrast to apartment residents. This stark difference in living conditions creates different public health challenges for Ulaanbaatar residents. Through this research study we aim to test our hypothesis that women living in gers burning coal in traditional stoves for cooking and heating during the winter are exposed to higher concentrations of airborne PM2.5 than women living in apartments in Ulaanbaatar, Mongolia, and this exposure may include exposures to lead in coal with effects on blood lead levels. This cross-sectional study recruited a total of 50 women, 40-60 years of age, from these two settings. Air sampling was carried out during peak cooking and heating times, 5:00 p.m.-11:00 p.m., using a direct-reading instrument (TSI SidePak™) and integrated polytetrafluoroethylene (PTFE) filters using the SKC Personal Environmental Monitor. Blood lead level (BLL) was measured using a LeadCare II rapid field test method. In our study population, measured PM2.5 geometric mean (GM) concentrations using the SidePak™ in the apartment group was 31.5 (95% CI:17-99) μg/m³, and 100 (95% CI: 67-187) μg/m³ in ger households (p < 0.001). The GM integrated gravimetric PM2.5 concentrations in the apartment group were 52.8 (95% CI: 39-297) μg/m³ and 127.8 (95% CI: 86-190) μg/m³ in ger households (p = 0.004). The correlation coefficient for the SidePak™ PM2.5 concentrations and filter based PM2.5 concentrations was r = 0.72 (p < 0.001). Blood Lead Levels were not statistically significant different between apartment residents and ger residents (p = 0.15). The BLL is statistically significant different (p = 0.01) when stratified by length of exposures outside of the home. This statistically significant difference

  6. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007.

    Science.gov (United States)

    Son, Ji-Young; Lee, Hyung Joo; Koutrakis, Petros; Bell, Michelle L

    2017-12-01

    Many studies have found associations between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and adult mortality. Comparatively few studies evaluated particles and infant mortality, although infants and children are particularly vulnerable to pollution. Moreover, existing studies mostly focused on short-term exposure to larger particles. We investigated PM2.5 exposure during pregnancy and lifetime and postneonatal infant mortality. The study included 465,682 births with 385 deaths in Massachusetts (2001-2007). Exposures were estimated from PM2.5-prediction models based on satellite imagery. We applied extended Cox proportional hazards modeling with time-dependent covariates to total, respiratory, and sudden infant death syndrome mortality. Exposure was calculated from birth to death (or end of eligibility for outcome, at age 1 year) and pregnancy (gestation and each trimester). Models adjusted for sex, birth weight, gestational length, season of birth, temperature, relative humidity, and maternal characteristics. Hazard ratios for total, respiratory, and sudden infant death syndrome mortality per-interquartile-range increase (1.3 μg/m3) in lifetime PM2.5 exposure were 2.66 (95% confidence interval (CI): 2.11, 3.36), 3.14 (95% CI: 2.39, 4.13), and 2.50 (95% CI: 1.56, 4.00), respectively. We did not observe a statistically significant relationship between gestational exposure and mortality. Our findings provide supportive evidence that lifetime exposure to PM2.5 increases risk of infant mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Ambient air quality of karachi city as reflected by atmospheric particulate matter (PM/sub 10/) concentrations

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Shareef, A.

    2016-01-01

    The present study examines the variation of ambient aerosol (PM/sub 10/) concentrations in Karachi, city. Samples were collected from ten different locations, representative of urban background, residential, traffic and industrial areas from 2007 to 2011. At each location, PM/sub 10/) was measured continuously from 08:00 am to 06:00 pm at local time. The maximum 10 h average particulate matter (PM/sub 10/) mass concentrations were found at Tibet Centre (440.1 mg/m/sup 3/) and minimum at PCSIR Campus (21.7 mg/m/sup 3/) during 2008. A rising trend during 2008 may be due to the civil works for bridges and extension of roads at different locations in Karachi. The results also suggest that urban traffic and industrial areas appeared to have higher PM/sub 10/) concentration than residential and background areas. (author)

  8. Air quality in terms of particulate matter (PM10) and element components in Antananarivo city

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Rakotondramanana, H.T.; Rasoazanany, E.O.; Randriamanivo, L.V.; Rasolofonirina, M.; Razafy Andrianarivo, R.

    2001-01-01

    The main objective of this research was to study the size distribution of toxic elements, undesirables ones and PM10 in the aerosols of Antananarivo urban areas using Total reflection X-ray Fluorescence. This work was carried out in the framework of Co-ordinated Research Program organised by the IAEA in 1998. The air sampler DICHOTOMOUS was used for sampling, with which two types of aerosols could be obtained: respirable aerosols or fine particles (aerodynamic diameter below 2.5 μm PM-2 ,5 ) and inhalable or coarse particles (aerodynamic diameter from 2.5 μm to 10μm PM 10 ). Samples were taken from six sampling sites, namely Ambohidahy tunnel, Ambanidia tunnel, Andravoahangy, Soarano, Mahamasina and Ankorondrano. Then, they were digested with acid digestion bomb. The results showed the presence of elements such as sulfur (S), chlorine (Cl), kalium (K), calcium (Ca), titanium (Ti), lead (Pb) in the aerosols. Their concentrations are higher in respirable particles. For classical air pollutant components, particularly lead and PM10, the 1.8 μg.m -3 mean concentration value of lead is largely higher than 0.5μg. m -3 , which is the WHO (World Health organization) adopted value, and above the USEPA (United States Environmental Protection Agency) maximum admissible one (1.5 μg.m -3 ) as well. Regarding the size distribution of lead, the results showed that the small particles were mainly enriched in lead. The same observation can also be stated for PM10 with a 240 μg.m -3 mean concentration value , higher than 150 μg.m - 3 , adopted by the two above-mentioned organizations. Therefore, the Antananarivo urban area is classified as saturated zone for both parameters (lead and particulate matter). In addition, the results of Mason enrichment factors showed that the elements such as sulfur (S), chromium (Cr), copper (Cu), zinc (Zn), bromine (Br), and lead (Pb) are from both natural and anthropogenic sources. The elements such as kalium (K), chlorine (Cl), calcium (Ca

  9. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  10. Evaluation of sampling inhalable PM10 particulate matter (≤ 10 μm) using co-located high volume samplers

    International Nuclear Information System (INIS)

    Rajoy, R R S; Dias, J W C; Rego, E C P; Netto, A D Pereira

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter ≤ 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m −3 . The samplers were considered comparable to each other, as the adopted methodology presented good repeatability

  11. Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes

    Directory of Open Access Journals (Sweden)

    Michael Riediker

    2018-01-01

    Full Text Available Introduction: Heart Rate Variability (HRV reflects the adaptability of the heart to internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality. We previously found in road maintenance workers HRV-increases several hours after exposure to fine particulate matter (PM2.5. This seemed to conflict with studies where PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure to HRV-assessment could explain the differences observed.Methods: On five non-consecutive days, workers carried nephelometers providing 1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of Normal to Normal beat intervals and pNN50 (Percentage of the interval differences exceeding 50 ms were extracted from 24-h electrocardiograms (ECGs. Following 60 min PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually and by regression analysis with control for time at work, at home, and during the night using autoregressive integrating moving average (ARIMA models to account for autocorrelation of the time-series. Additional controls included changing the time windows and including body mass index (BMI and age in the models.Result: Pattern analysis of 12,669 data points showed high modulation of mean, standard deviation (SD, and time trend of HRV (SDNN and pNN50 at low, and much reduced modulation at high PM2.5-exposures. The time trend following exposure was highly symmetrical, resembling a funnel plot. Regression analysis showed significant associations of decreasing SDNN and pNN50 (average, SD, and absolute value of time trend with increasing PM2.5-exposure, which remained significant when controlling for activity phases. Changing time windows did not change the pattern of response. Including BMI and age did not change the results.Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking. It suggests strong interference with homeostatic controls. Such an

  12. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  13. Indoor PM2.5 exposure in London's domestic stock: Modelling current and future exposures following energy efficient refurbishment

    Science.gov (United States)

    Shrubsole, C.; Ridley, I.; Biddulph, P.; Milner, J.; Vardoulakis, S.; Ucci, M.; Wilkinson, P.; Chalabi, Z.; Davies, M.

    2012-12-01

    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3 m3 m-2 h-1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13 μg m-3 decreased to 9 μg m-3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8 μg m-3 (from 28.4 to 9.6 μg m-3) for a typical household member. Also of interest is that a larger reduction of 42.6 μg m-3 (from 60.5 to 17.9 μg m-3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4 μg m-3 for typical household members and 9.8 μg m-3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits.

  14. Exposure to PM2.5 and Blood Lead Level in Two Populations in Ulaanbaatar, Mongolia

    Directory of Open Access Journals (Sweden)

    Undarmaa Enkhbat

    2016-02-01

    Full Text Available Approximately 60% of the households in Ulaanbaatar live in gers (a traditional Mongolian dwelling in districts outside the legal limits of the city, without access to basic infrastructure, such as water, sewage systems, central heating, and paved roads, in contrast to apartment residents. This stark difference in living conditions creates different public health challenges for Ulaanbaatar residents. Through this research study we aim to test our hypothesis that women living in gers burning coal in traditional stoves for cooking and heating during the winter are exposed to higher concentrations of airborne PM2.5 than women living in apartments in Ulaanbaatar, Mongolia, and this exposure may include exposures to lead in coal with effects on blood lead levels. This cross-sectional study recruited a total of 50 women, 40–60 years of age, from these two settings. Air sampling was carried out during peak cooking and heating times, 5:00 p.m.–11:00 p.m., using a direct-reading instrument (TSI SidePak™ and integrated polytetrafluoroethylene (PTFE filters using the SKC Personal Environmental Monitor. Blood lead level (BLL was measured using a LeadCare II rapid field test method. In our study population, measured PM2.5 geometric mean (GM concentrations using the SidePak™ in the apartment group was 31.5 (95% CI:17–99 μg/m3, and 100 (95% CI: 67–187 μg/m3 in ger households (p < 0.001. The GM integrated gravimetric PM2.5 concentrations in the apartment group were 52.8 (95% CI: 39–297 μg/m3 and 127.8 (95% CI: 86–190 μg/m3 in ger households (p = 0.004. The correlation coefficient for the SidePak™ PM2.5 concentrations and filter based PM2.5 concentrations was r = 0.72 (p < 0.001. Blood Lead Levels were not statistically significant different between apartment residents and ger residents (p = 0.15. The BLL is statistically significant different (p = 0.01 when stratified by length of exposures outside of the home. This statistically

  15. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi

    Science.gov (United States)

    Goel, Rahul; Gani, Shahzad; Guttikunda, Sarath K.; Wilson, Daniel; Tiwari, Geetam

    2015-12-01

    PM2.5 pollution in Delhi averaged 150 μg/m3 from 2012 through 2014, which is 15 times higher than the World Health Organization's annual-average guideline. For this setting, we present on-road exposure of PM2.5 concentrations for 11 transport microenvironments along a fixed 8.3-km arterial route, during morning rush hour. The data collection was carried out using a portable TSI DustTrak DRX 8433 aerosol monitor, between January and May (2014). The monthly-average measured ambient concentrations varied from 130 μg/m3 to 250 μg/m3. The on-road PM2.5 concentrations exceeded the ambient measurements by an average of 40% for walking, 10% for cycle, 30% for motorised two wheeler (2W), 30% for open-windowed (OW) car, 30% for auto rickshaw, 20% for air-conditioned as well as for OW bus, 20% for bus stop, and 30% for underground metro station. On the other hand, concentrations were lower by 50% inside air-conditioned (AC) car and 20% inside the metro rail carriage. We find that the percent exceedance for open modes (cycle, auto rickshaw, 2W, OW car, and OW bus) reduces non-linearly with increasing ambient concentration. The reduction is steeper at concentrations lower than 150 μg/m3 than at higher concentrations. After accounting for air inhalation rate and speed of travel, PM2.5 mass uptake per kilometer during cycling is 9 times of AC car, the mode with the lowest exposure. At current level of concentrations, an hour of cycling in Delhi during morning rush-hour period results in PM2.5 dose which is 40% higher than an entire-day dose in cities like Tokyo, London, and New York, where ambient concentrations range from 10 to 20 μg/m3.

  16. Selective ATP-Binding Cassette Subfamily C Gene Expression and Proinflammatory Mediators Released by BEAS-2B after PM2.5, Budesonide, and Cotreated Exposures

    Directory of Open Access Journals (Sweden)

    Jarline Encarnación-Medina

    2017-01-01

    Full Text Available ATP-binding cassette subfamily C (ABCC genes code for phase III metabolism proteins that translocate xenobiotic (e.g., particulate matter 2.5 (PM2.5 and drug metabolites outside the cells. IL-6 secretion is related with the activation of the ABCC transporters. This study assesses ABCC1–4 gene expression changes and proinflammatory cytokine (IL-6, IL-8 release in human bronchial epithelial cells (BEAS-2B exposed to PM2.5 organic extract, budesonide (BUD, used to control inflammation in asthmatic patients, and a cotreatment (Co-T: PM2.5 and BUD. A real-time PCR assay shows that ABCC1 was upregulated in BEAS-2B exposed after 6 and 7 hr to PM2.5 extract or BUD but downregulated after 6 hr of the Co-T. ABCC3 was downregulated after 6 hr of BUD and upregulated after 6 hr of the Co-T exposures. ABCC4 was upregulated after 5 hr of PM2.5 extract, BUD, and the Co-T exposures. The cytokine assay revealed an increase in IL-6 release by BEAS-2B exposed after 5 hr to PM2.5 extract, BUD, and the Co-T. At 7 hr, the Co-T decreases IL-6 release and IL-8 at 6 hr. In conclusion, the cotreatment showed an opposite effect on exposed BEAS-2B as compared with BUD. The results suggest an interference of the BUD therapeutic potential by PM2.5.

  17. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    Science.gov (United States)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  18. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting

    2014-02-01

    Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.

  19. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    Science.gov (United States)

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  20. Source identification and long-term monitoring of airborne particulate matter (PM2.5/PM10) in an urban region of Korea

    International Nuclear Information System (INIS)

    Yong-Sam Chung; Sun-Ha Kim; Jong-Hwa Moon; Young-Jin Kim; Jong-Myoung Lim; Jin-Hong Lee

    2006-01-01

    For the identification of air pollution sources, about 500 airborne particulate matter (PM 2.5 and PM 10 ) samples were collected by using a Gent air sampler and a polycarbonate filter in an urban region in the middle of Korea from 2000 to 2003. The concentrations of 25 elements in the samples were measured by using instrumental neutron activation analysis (INAA). Receptor modeling was performed on the air monitoring data by using the positive matrix factorization (PMF2) method. According to this analysis, the existence of 6 to 10 PMF factors, such as metal-alloy, oil combustion, diesel exhaust, coal combustion, gasoline exhaust, incinerator, Cu-smelter, biomass burning, sea-salt, and soil dust were identified. (author)

  1. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  2. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Directory of Open Access Journals (Sweden)

    Kyong-Hui Lee

    Full Text Available The purposes of this study were to determine the following: 1 the exposure levels of municipal household waste (MHW workers to diesel particulate matter (DPM using elemental carbon (EC, organic carbon (OC, total carbon (TC, black carbon (BC, and fine particulate matter (PM 2.5 as indicators; 2 the correlations among the indicators; 3 the optimal indicator for DPM; and 4 factors that influence personal exposure to DPM.A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM.The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (p<0.05. Workers of trucks meeting Euro 3 emission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (p<0.05. Multiple regression analysis revealed that the job task, European engine emission standard, and average driving speed were the most influential factors in determining worker exposure.We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  3. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    Science.gov (United States)

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  4. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: results of an on-farm monitoring program.

    NARCIS (Netherlands)

    Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M.

    2012-01-01

    Air scrubbers are commonly used for removal of ammonia and odor from exhaust air of animal houses in the Netherlands. In addition, air scrubbers remove a part of the particulate matter. In this article, the results of an on-farm monitoring are presented in which PM10 removal was monitored at 24

  5. Design and application of a web-based real-time personal PM2.5 exposure monitoring system.

    Science.gov (United States)

    Sun, Qinghua; Zhuang, Jia; Du, Yanjun; Xu, Dandan; Li, Tiantian

    2018-06-15

    Growing demand from public health research for conduct large-scale epidemiological studies to explore health effect of PM 2.5 was well-documented. To address this need, we design a web-based real-time personal PM 2.5 exposure monitoring system (RPPM2.5 system) which can help researcher to get big data of personal PM 2.5 exposure with low-cost, low labor requirement, and low operating technical requirements. RPPM2.5 system can provide relative accurate real-time personal exposure data for individuals, researches, and decision maker. And this system has been used in a survey of PM 2.5 personal exposure level conducted in 5 cities of China and has provided mass of valuable data for epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A meta-analysis of exposure to particulate matter and adverse birth outcomes

    Directory of Open Access Journals (Sweden)

    Dirga Kumar Lamichhane

    2015-11-01

    Full Text Available Objectives The objective of this study was to conduct a systematic review to provide summarized evidence on the association between maternal exposure to particulate air pollution and birth weight (BW and preterm birth (PTB after taking into consideration the potential confounding effect of maternal smoking. Methods We systematically searched all published cohort and case-control studies examining BW and PTB association with particulate matter (PM, less than or equal to 2.5μm and 10.0 μm in diameter, PM2.5 and PM10, respectively from PubMed and Web of Science, from January 1980 to April 2015. We extracted coefficients for continuous BW and odds ratio (OR for PTB from each individual study, and meta-analysis was used to combine the coefficient and OR of individual studies. The methodological quality of individual study was assessed using a standard protocol proposed by Downs and Black. Forty-four studies met the inclusion criteria. Results In random effects meta-analyses, BW as a continuous outcome was negativelyassociated with 10 μg/m3 increase in PM10 (-10.31 g; 95% confidence interval [CI], -13.57 to -3.13 g; I-squared=0%, p=0.947 and PM2.5 (-22.17 g; 95% CI, -37.93 to -6.41 g; I-squared=92.3%, p <0.001 exposure during entire pregnancy, adjusted for maternal smoking. A significantly increased risk of PTB per 10 μg/m3 increase in PM10 (OR, 1.23; 95% CI, 1.04 to 1.41; I-squared=0%, p =0.977 and PM2.5 (OR, 1.14; 95% CI, 1.06 to 1.22; I-squared=92.5%, p <0.001 exposure during entire pregnancy was observed. Effect size of change in BW per 10 μg/m3 increase in PM tended to report stronger associations after adjustment for maternal smoking. Conclusions While this systematic review supports an adverse impact of maternal exposure to particulate air pollution on birth outcomes, variation in effects by exposure period and sources of heterogeneity between studies should be further explored.

  7. Characterization of an area of reference for inhalable particulate matter (PM2.5) associated with genetic biomonitoring in children.

    Science.gov (United States)

    Silva da Silva, Cristiane; Rossato, Juliana Marzari; Vaz Rocha, Jocelita Aparecida; Vargas, Vera Maria Ferrão

    2015-01-15

    Humans are exposed to health-impairing air pollutants, especially children who are more sensitive to cancer-causing toxins. This study described an area of reference for inhalable particulates (PM2.5) by chemical (polycyclic aromatic hydrocarbons) and mutagenic characterization associated with the genetic biomonitoring of children (aged 5-11 years). The area studied was in a small town in Brazil, used as reference in previous studies. Organic matter of PM2.5 (extracted with dichloromethane) was evaluated for mutagenesis in a Salmonella/microsome (microsuspension) assay, in strains measuring frameshift error (TA98, YG1021 and YG1024) and base pair substitution (TA100) of DNA, in the presence and absence of rat liver metabolization fraction (S9). Exposure was studied analyzing a sample of 45 children using comet assay (peripheral blood lymphocytes) and micronucleus (exfoliated buccal mucosa cells). PM2.5 concentration for the period was 9% (25.89-64.71 μg/m3) events above WHO limit value (25 μg/m3). Mutagenesis responses (revertants/m3) varied from negative (spring) to 8.3±0.69 (autumn) (-S9) and 5.4±0.36 (winter) (+S9), in strain TA98, and for TA100, in spring, from negative to 14.8±4.23 (-S9) and 17.5±2.72 (+S9). YG strain results show mononitroarenes and aromatic amines. Mean biomonitoring values were established for MN, 0.3±0.41 (‰) and for other cell types a variation from 0.6±0.73 (‰), nuclear buds to 57.5±24.92 (‰), karyorrhexis. Comet assay means were 23.1±12.44; 7.3±11.66 and 0.9±2.30 for tail length, intensity and moment, respectively. There was no difference for sex and age for the different parameters. A significant difference in confounding factors was observed for passive smoking and MN induction. PAHs and mutagenesis in the air may be related to local vehicular emissions. These results challenge the definition of areas of reference for air pollution associated with human biomonitoring including the region studied. Copyright © 2014

  8. Extractable organic matter in PM10 from LiWan district of Guangzhou City, PR China.

    Science.gov (United States)

    Bi, Xinhui; Sheng, Guoying; Peng, Peng an; Zhang, Zhiqiang; Fu, Jiamo

    2002-12-02

    PM10 (particulate matter with aerodynamic diameter gas chromatography/mass spectrometry analysis. The sigma(n)-alkane and sigmaPAHs ranged from 26.4 to 719.2 ng/m3 and 7.4 to 159.4 ng/m3, respectively. A seasonal fluctuation was clearly evident with higher concentrations occurring during the colder months (April). In addition, some compositional differences are observed for the organic compounds in samples collected from different heights above ground level. Higher sites had a significant contribution from vascular plant wax. The presence of petroleum products with no carbon number preference, pristane, phytane and a significant unresolved complex mixture (UCM) with unresolved to resolved components ratio (U/R) of 6.2-13.2 confirm the petroleum component. The relative distribution of n-alkanes and the values of molecular diagnostic ratio, such as carbon preference index (CPI) values ranging from 1.0 to 1.4 (for the whole range of n-alkanes), indicated the importance of petroleum and diesel residues and gasoline emissions, as well as the minor contribution of n-alkanes emitted directly from epicuticular waxes. Indeed, the percent contribution of leaf 'wax' n-alkanes (5.2-19.4%) indicated a low contribution of biogenic sources. The fossil fuel biomarkers, hopanes and steranes were observed in the PM10 samples, which indicate a petroleum origin. The distribution pattern of PAHs was characteristic of anthropogenic emissions. Coupling carbon number maximum (Cmax), CPI, U/R values, molecular marker and molecular diagnostic ratios for alkanes and PAHs revealed a classification of natural biogenic and anthropogenic components of atmospheric aerosols. These analyses support the conclusion that vehicular emission was the major source of organic compounds during the study period, while the contribution of epicuticular waxes emitted by terrestrial plants was minor.

  9. The association of LUR modeled PM2.5 elemental composition with personal exposure

    International Nuclear Information System (INIS)

    Montagne, Denise; Hoek, Gerard; Nieuwenhuijsen, Mark; Lanki, Timo; Pennanen, Arto; Portella, Meritxell; Meliefste, Kees; Wang, Meng; Eeftens, Marloes; Yli-Tuomi, Tarja; Cirach, Marta; Brunekreef, Bert

    2014-01-01

    Background and aims: Land use regression (LUR) models predict spatial variation of ambient concentrations, but little is known about the validity in predicting personal exposures. In this study, the association of LUR modeled concentrations of PM 2.5 components with measured personal concentrations was determined. The elements of interest were copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn). Methods: In Helsinki (Finland), Utrecht (the Netherlands) and Barcelona (Spain) five participants from urban background, five from suburban background and five from busy street sites were selected in each city (15 participants per city). Outdoor, indoor and personal 96-hour PM 2.5 samples were collected by the participants over periods of two weeks in three different seasons (winter, summer and spring/autumn) and the overall average was calculated. Elemental composition was measured by ED-XRF spectrometry. The LUR models for the average ambient concentrations of each element were developed by the ESCAPE project. Results: LUR models predicted the within-city variation of average outdoor Cu and Fe concentrations moderately well (range in R 2 27–67% for Cu and 24–54% for Fe). The outdoor concentrations of the other elements were not well predicted. The LUR modeled concentration only significantly correlated with measured personal Fe exposure in Utrecht and Ni and V in Helsinki. The LUR model predictions did not correlate with measured personal Cu exposure. After excluding observations with an indoor/outdoor ratio of > 1.5, modeled Cu outdoor concentrations correlated with indoor concentrations in Helsinki and Utrecht and personal concentrations in Utrecht. The LUR model predictions were associated with measured outdoor, indoor and personal concentrations for all elements when the data for the three cities was pooled. Conclusions: Within-city modeled variation of elemental composition of PM 2.5 did not predict measured

  10. Effect of particulate matter less than 10μm (PM10 on mortality in Bogota, Colombia: a time-series analysis, 1998-2006

    Directory of Open Access Journals (Sweden)

    Luis Camilo Blanco-Becerra

    2014-07-01

    Full Text Available Objective. To analyze the association between daily mortality from different causes and acute exposure to particulate matter less than 10 microns in aerodynamic diameter (PM10, in Bogota, Colombia. Materials and methods. A time-series ecological study was conducted from 1998 to 2006. The association between mortality (due to different causes and exposure was analyzed using single and distributed lag models and adjusting for potential confounders. Results. For all ages, the cumulative effect of acute mortality from all causes and respiratory causes increased 0.71% (95%CI 0.46-0.96 and 1.43% (95%CI 0.85-2.00, respectively, per 10μg/m3 increment in daily average PM10 with a lag of three days before death. Cumulative effect of mortality from cardiovascular causes was -0.03% (95%CI -0.49-0.44% with the same lag. Conclusions. The results suggest an association between an increase in PM10 concentrations and acute mortality from all causes and respiratory causes.

  11. The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources

    Science.gov (United States)

    Taylor, J; Shrubsole, C; Davies, M; Biddulph, P; Das, P; Hamilton, I; Vardoulakis, S; Mavrogianni, A; Jones, B; Oikonomou, E

    2014-01-01

    A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5, with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. PMID:24713025

  12. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  13. Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio

    Directory of Open Access Journals (Sweden)

    Aline Sfalcin Mai

    2017-01-01

    Full Text Available Fine particulate matter (PM2.5 promotes heart oxidative stress (OS and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70. Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70, which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index, a biomarker of inflammatory status. Male mice (n=32, 30 days old, were divided into six groups for 12 weeks: control (CON, moderate (MIT and high intensity training (HIT, exposure to 5 μg of PM2.5 daily (PM2.5, and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups. The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index. High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.

  14. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona).

    Science.gov (United States)

    Mesquita, Sofia R; van Drooge, Barend L; Dall'Osto, Manuel; Grimalt, Joan O; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2017-06-01

    Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.

  15. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

    Directory of Open Access Journals (Sweden)

    Artur Badyda

    2016-11-01

    Full Text Available It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008–2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO2 and PM10 were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM10 in the considered city and rural areas was over 17 μg/m3, each increase of PM10 by 10 μg/m3 is associated with the decline in FEV1 (forced expiratory volume during the first second of expiration by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases.

  16. The effect of composition, size, and solubility on acute pulmonary injury in rats following exposure to Mexico city ambient particulate matter samples.

    Science.gov (United States)

    Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P

    2014-01-01

    Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.

  17. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM)

    International Nuclear Information System (INIS)

    Wang, Dongbin; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2015-01-01

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5–10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2–4 h) without obvious shortcomings. - Highlights: • A novel only PM sampling and Cu measuring technology is developed. • Very good particle collection efficiency for coarse PM is observed. • Excellent agreement is obtained between Cu ISE and offline ICP-MS measurements. • The new system can be continuously operated for at least 6 consecutive days. - A new technique for online measurements of Cu in coarse PM is described

  18. Comparison of particulate matter exposure estimates in young children from personal sampling equipment and a robotic sampler.

    Science.gov (United States)

    Sagona, Jessica A; Shalat, Stuart L; Wang, Zuocheng; Ramagopal, Maya; Black, Kathleen; Hernandez, Marta; Mainelis, Gediminas

    2017-05-01

    Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 μg/m 3 , with a median value of 331 μg/m 3 . PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 μg/m 3 with a median value of 56 μg/m 3 . Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.

  19. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-13

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.

  1. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  2. Efecto del tiempo de exposición a PM10 en las urgencias por bronquitis aguda Effect of exposure time to PM10 on emergency admissions for acute bronchitis

    Directory of Open Access Journals (Sweden)

    Franz Muñoz

    2009-03-01

    Full Text Available Este trabajo analiza el efecto de las horas de exposición a PM10 en las urgencias diarias por bronquitis aguda, controlando por temperatura y humedad. El estudio fue realizado en seis sectores de la ciudad de Santiago, Chile, durante el período de invierno de los años 2002 al 2004, para lactantes ( 65 años. Analizamos el retraso de la respuesta mediante una función polinomial distributiva (pdl, incluida en un modelo lineal generalizado (GLM-pdl, y la estructura del efecto de la exposición, mediante modelos aditivos generalizados (GAM, utilizando regresión spline como técnica de estimación. Los resultados mostraron que al cuarto día de retardo, el efecto de la exposición fue mayor, especialmente en lactantes, y varió en la medida que incrementó la concentración atmosférica de PM10. El efecto de las horas de exposición a PM10 mostró una variación significativa, según el sector geográfico. Al estimar linealmente este efecto en el sector Oeste, notamos que el incremento de consultas diarias en lactantes fue de 3% por cada hora de exposición sobre os 150µg/m³.To study the health effect of air pollution, measured as particulate matter greater than 10mm in diameter (PM10, we analyzed the effect of daily hours of exposure on the number of urgency admissions for acute bronchitis, adjusting for temperature and humidity on the same day. The study was conducted in six regions of Santiago, Chile, during the winter of years 2002 to 2004, for infants and elders. The delay between pollution time series and disease was modeled using a polynomial distributed lag (PDL function included in a generalized linear model. The linearity assumption was evaluated using a smooth-spline model approach. The highest effect for exposure to PM10 was detected with 4 days of delay. For both groups, the effect of temperature was linear, but that of humidity was not. Air pollution effect varied according to level of exposure and geographic region, increasing

  3. Exposure to in-vehicle respirable particulate matter in passenger vehicles under different ventilation conditions and seasons

    Directory of Open Access Journals (Sweden)

    Suresh Jain

    2017-03-01

    Full Text Available This study presents the in-vehicle particulate matter (PM concentration in a number of passenger vehicles under various ventilation modes, land use land cover (LULC in different seasons in megacity Delhi, India. In-vehicle monitoring was conducted in buses, cars and autos (three-wheeler using air-conditioned (AC and Non-AC during peak and off-peak hours. The site selected is a ∼15 km long stretch from Punjabi Bagh to Safdarjung Hospital, based on diversity in LULC, availability of vehicles and heavy traffic flow along the direction of travelling. In-vehicle PM was measured using GRIMM aerosol spectrometer and categorised in three classes (PM1, PM2.5 and PM10. The study found that concentration of PM1, PM2.5 and PM10 were significantly (p ≤ 0.05 higher in winters as compared to summers. It was observed that PM concentration was significantly (p ≤ 0.05 higher in Non-AC travel modes compared to AC modes. PM concentrations were high near industrial and commercial areas and during traffic congestion showing the influence of LULC. It is also important to highlight that PM1, PM2.5 and PM10 concentrations were significantly (p ≤ 0.05 higher in case of taxis (cars compared to personal cars which varied from 2.5 to 3.5 times higher in case of AC mode and ∼1.5 times in case of Non-AC mode. Exposures to PM concentration were highest in case of Non-AC bus compared AC-Bus, Non-AC cars, autos and AC-cars. PM concentrations in case of autos and Non-AC cars were almost comparable without any significant (p > 0.05 difference. Regression analysis showed significant correlation between ambient and in-vehicle concentration for PM2.5. Regional deposition fractions were calculated using International Commission on Radiological Protection model to show the deposition in head air-pass, trachea-bronchial and alveolar regions. It was found that deposition of PM1 was highest in the alveolar region.

  4. Maternal exposure to ozone and PM{sub 2.5} and the prevalence of orofacial clefts in four U.S. states

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou2@cdc.gov [Environmental Health Tracking Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Gilboa, Suzanne M. [Birth Defects Branch, Division of Congenital and Developmental Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA (United States); Herdt, Michele L. [New York State Department of Health, Center for Environmental Health, Albany, NY (United States); State University of New York at Albany, Department of Epidemiology and Biostatistics, Rensselaer, NY (United States); Lupo, Philip J. [Baylor College of Medicine, Department of Pediatrics, Section of Hematology-Oncology, Houston, TX (United States); Flanders, W. Dana [Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (United States); Liu, Yang [Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA (United States); Shin, Mikyong [Environmental Health Tracking Branch, Division of Environmental Hazards and Health Effects, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Canfield, Mark A. [Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, TX (United States); Kirby, Russell S. [Department of Community and Family Health, College of Public Health, University of South Florida, Tampa, FL (United States)

    2017-02-15

    Background: While there is some evidence that maternal exposure to ambient air pollution is associated with orofacial clefts in offspring, the epidemiologic studies have been largely equivocal. We evaluated whether maternal exposure to elevated county-level ambient fine particulate matter with aerodynamic diameter ≤2.5 µm (PM{sub 2.5}) and ozone during early gestation was associated with a higher prevalence of orofacial clefts. Methods: Birth data consisting of 4.7 million births from 2001 to 2007 were obtained from National Birth Defects Prevention Network for four states — Arizona, Florida, New York (excluding New York City), and Texas. The air pollution exposure assessment for gestational weeks 5–10 was based on county-level average concentrations of PM{sub 2.5} and ozone data generated using a Bayesian fusion model available through CDC's Environmental Public Health Tracking Network. Two outcomes were analyzed separately: cleft lip with or without cleft palate, cleft palate alone. In logistic regression analyses, we adjusted for factors that were suspected confounders or modifiers of the association between the prevalence of orofacial clefts and air pollution, i.e., infant sex, race-ethnicity, maternal education, smoking status during pregnancy, whether this was mother's first baby, maternal age. Results: Each 10 µg/m{sup 3} increase in PM{sub 2.5} concentration was significantly associated with cleft palate alone (OR =1.43, 95% CI: 1.11–1.86). There was no significant association between PM{sub 2.5} concentration and cleft lip with or without cleft palate. No associations were observed between ozone exposure and the two outcomes of orofacial clefts. Conclusions: Our study suggests that PM{sub 2.5} significantly increased the risk of cleft palate alone, but did not change the incidence of cleft lip with or without palate. Ozone levels did not correlate with incidence of orofacial clefts. - Highlights: • This is a large study with about 4

  5. Maternal exposure to ozone and PM2.5 and the prevalence of orofacial clefts in four U.S. states

    International Nuclear Information System (INIS)

    Zhou, Ying; Gilboa, Suzanne M.; Herdt, Michele L.; Lupo, Philip J.; Flanders, W. Dana; Liu, Yang; Shin, Mikyong; Canfield, Mark A.; Kirby, Russell S.

    2017-01-01

    Background: While there is some evidence that maternal exposure to ambient air pollution is associated with orofacial clefts in offspring, the epidemiologic studies have been largely equivocal. We evaluated whether maternal exposure to elevated county-level ambient fine particulate matter with aerodynamic diameter ≤2.5 µm (PM 2.5 ) and ozone during early gestation was associated with a higher prevalence of orofacial clefts. Methods: Birth data consisting of 4.7 million births from 2001 to 2007 were obtained from National Birth Defects Prevention Network for four states — Arizona, Florida, New York (excluding New York City), and Texas. The air pollution exposure assessment for gestational weeks 5–10 was based on county-level average concentrations of PM 2.5 and ozone data generated using a Bayesian fusion model available through CDC's Environmental Public Health Tracking Network. Two outcomes were analyzed separately: cleft lip with or without cleft palate, cleft palate alone. In logistic regression analyses, we adjusted for factors that were suspected confounders or modifiers of the association between the prevalence of orofacial clefts and air pollution, i.e., infant sex, race-ethnicity, maternal education, smoking status during pregnancy, whether this was mother's first baby, maternal age. Results: Each 10 µg/m 3 increase in PM 2.5 concentration was significantly associated with cleft palate alone (OR =1.43, 95% CI: 1.11–1.86). There was no significant association between PM 2.5 concentration and cleft lip with or without cleft palate. No associations were observed between ozone exposure and the two outcomes of orofacial clefts. Conclusions: Our study suggests that PM 2.5 significantly increased the risk of cleft palate alone, but did not change the incidence of cleft lip with or without palate. Ozone levels did not correlate with incidence of orofacial clefts. - Highlights: • This is a large study with about 4.7 million births and 7000

  6. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model.

    Science.gov (United States)

    Xu, Xiaohua; Rao, Xiaoquan; Wang, Tse-Yao; Jiang, Silis Y; Ying, Zhekang; Liu, Cuiqing; Wang, Aixia; Zhong, Mianhua; Deiuliis, Jeffrey A; Maiseyeu, Andrei; Rajagopalan, Sanjay; Lippmann, Morton; Chen, Lung-Chi; Sun, Qinghua

    2012-11-05

    It has been well recognized that toxicity of fine ambient air particulate matter (PM(2.5)) may depend on its chemical constituents, including components such as soluble metals that may theoretically exert distinctive effects. We have recently demonstrated an important effect of PM(2.5) on metabolic function. Since transition metals, such as nickel (Ni), represent an important component of exposure in certain environments, and may significantly influence the toxicity of inhalational exposure, we investigated the effects of Ni as a variable component of ambient PM(2.5) exposure. Male ApoE knockout mice were exposed to filtered air (FA), fine-sized nickel sulfate particles alone (Ni) at 0.44 μg/m(3), concentrated ambient air PM(2.5) (CAPs) at a mean of 70 μg/m(3), or CAPs+Ni in Tuxedo, NY, 6 hours/day, 5 days/week, for 3 months. Exposure to Ni, irrespective of co-exposure to CAPs, resulted in body weight gain, while exposure to CAPs+Ni significantly enhanced fasting glucose and worsened insulin resistance measures (HOMA-IR), when compared with exposure to CAPs alone. CAPs+Ni exposure induced a significant decrease in phosphorylation of AMP-activated protein kinase (AMPK) α. Exposure to Ni or CAPs+Ni significantly induced microcirculatory dysfunction and increased monocytic cell infiltration into lung and adipose, and decreased uncoupling protein 1 expression at gene and protein levels and several brown adipocyte-specific genes in adipose tissue. Ni exposure has effects on metabolic and inflammatory parameters that are comparable to that of CAPs. Additionally, Ni synergistically exacerbates CAPs-induced adverse effects on some of, but not all of, these parameters, that may be mediated via the AMPK signaling pathway. These findings have important implications for inhaled transition metal toxicity that may exert synergistic effects with other PM(2.5) components.

  7. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L; Pabroa, Preciosa Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurements Research Group, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2007-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project {sup P}articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques{sup .} Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the

  8. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2007-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project P articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques . Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the air

  9. Assessing the importance of different exposure metrics and time-activity data to predict 24-H personal PM2.5 exposures.

    Science.gov (United States)

    Chang, Li-Te; Koutrakis, Petros; Catalano, Paul J; Suh, Helen H

    Personal PM(2.5) data from two recent exposure studies, the Scripted Activity Study and the Older Adults Study, were used to develop models predicting 24-h personal PM(2.5) exposures. Both studies were conducted concurrently in the summer of 1998 and the winter of 1999 in Baltimore, MD. In the Scripted Activity Study, 1-h personal PM(2.5) exposures were measured. Data were used to identify significant factors affecting personal exposures and to develop 1-h personal exposure models for five different micro-environments. By incorporating the time-activity diary data, these models were then combined to develop a time-weighted microenvironmental personal model (model M1AD) to predict the 24-h PM(2.5) exposures measured for individuals in the Older Adults Study. Twenty-four-hour time-weighted models were also developed using 1-h ambient PM(2.5) levels and time-activity data (model A1AD) or using 24-h ambient PM(2.5) levels and time-activity data (model A24AD). The performance of these three models was compared to that using 24-h ambient concentrations alone (model A24). Results showed that factors affecting 1-h personal PM(2.5) exposures included air conditioning status and the presence of environmental tobacco smoke (ETS) for indoor micro-environments, consistent with previous studies. ETS was identified as a significant contributor to measured 24-h personal PM(2.5) exposures. Staying in an ETS-exposed microenvironment for 1 h elevated 24-h personal PM(2.5) exposures by approximately 4 microg/m 3 on average. Cooking and washing activities were identified in the winter as significant contributors to 24-h personal exposures as well, increasing 24-h personal PM(2.5) exposures by about 4 and 5 microg/m 3 per hour of activity, respectively. The ability of 3 microenvironmental personal exposure models to estimate 24-h personal PM(2.5) exposures was generally comparable to and consistently greater than that of model A24. Results indicated that using time-activity data with 1

  10. Effect of Ambient Particulate Matter 2.5 Micrometer (PM2.5 to Prevalence of Impaired Lung Function and Asthma in Tangerang and Makassar

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2016-06-01

    Full Text Available Particulate matter 2.5 micrometer (PM2.5 emission increased with increasing number of urban population as a result of increasing number of motor vehicles for their daily transportation. This study aimed to determine the level of impaired lung function and asthma and its relation to ambient levels of PM2.5 among migrant communities in Tangerang and Makassar and socioeconomic conditions. A cross-sectional design was implemented by involving 4,250 and 2,900 respondents in Tangerang and Makassar respectively on April to September 2010. Cluster sampling approach was applied. PM2.5 ambient measurements in each city were based on the coordinates of 40 global positioning system locations. The PM2.5 levels found higher in the morning than afternoon in both cities, with average about six folds of WHO guideline of 35 mg/m3. Asthma prevalence was found similar in both cities (1.3% and impaired lung function prevalence in Makassar was higher (24% than Tangerang (21%. Data showed there was no association between PM2.5 levels to the prevalence of asthma and impaired lung function in both cities. The study confirmed that exposure to PM2.5 is associated with prevalence of asthma and impaired lung function and provided evidence showed that the effect of air pollution was modified by certain living environment characteristics. These findings suggest the improvement of housing ventilations and larger space of living room for better oxygen circulation. AbstrakEmisi partikel debu 2,5 mikrometer (PM2.5 meningkat dengan bertambahnya jumlah penduduk kota akibat peningkatan angka kendaraan bermotor sebagai transportasi penduduk sehari-hari. Penelitian ini bertujuan untuk mengetahui tingkat gangguan fungsi paru dan asma serta hubungannya dengan kadar ambien PM2.5 pada masyarakat migran di Tangerang dan Makassar dan kondisi sosial ekonomi. Desain potong lintang digunakan dengan melibatkan 4.250 dan 2.900 responden di Tangerang dan Makassar pada bulan April sampai September

  11. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  12. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  13. Personal Exposure to PM2.5 in the Megacity of Mexico: A Multi-Mode Transport Study

    Directory of Open Access Journals (Sweden)

    Iván Y. Hernández-Paniagua

    2018-02-01

    Full Text Available Recurrent personal exposure to ambient PM2.5 is associated with adverse human health effects, in particular on the respiratory and cardiovascular systems. Here, we present an assessment of personal exposure and inhalation of PM2.5 for five modes of transport (walking, cycling, public bus (trolleybus and diesel bus, conventional car (CC and hybrid-electric car (HEC and two routes of similar distance, along a major road in the Mexico City metropolitan area (MCMA. Arithmetic average exposure concentrations ranged from 16.5 ± 6.5 µg m−3 for walking to 81.7 ± 9.1 µg m−3 for cycling (henceforth shown as average ±1 SD, with no significant differences with geometric averages. The maximum exposure concentration of 110.9 µg m−3 was observed for the conventional car. The highest exposure concentrations depended on route and the mode of transport, being observed for cycling and walking. The PM2.5 measurements showed large spatial heterogeneity in the exposure levels for walking and cycling, while public buses and private transport showed less spatial heterogeneity. The greatest peaks in PM2.5 coincided with 4-way intersections for all modes of transport, being positively influenced by traffic density. The mass of PM2.5 inhaled depended mostly on the mode of transport, and ranged between 1.0 ± 0.3 and 30.1 ± 14.2 µg km−1 for the HEC and bicycle, respectively. Local area PM2.5 increments identified as ‘residuals’ after subtraction of data recorded at the closest fixed monitoring site from exposure concentrations along the studied road suggested that inhalation for bicycle and diesel buses is strongly influenced by vehicular emissions. Residuals estimated for the trolleybus, CC and HEC confirmed a lower inhalation than for the other modes of transport evaluated due to protection by the cabin.

  14. Exposure to airborne particulate matter in the subway system.

    Science.gov (United States)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. Copyright © 2014 The Authors. Published by

  15. Indoor exposures to particulate matter emissions in various types of households using different cooking fuels in rural areas of south India

    Science.gov (United States)

    Deepthi, Y.; Nagendra, S. S.; Gummadi, S. N.

    2017-12-01

    Exposure to Particulate Matter (PM) that are typically generated from heavy biomass usage in cooking and from unpaved roads is a major health risk in the rural areas of developing countries. To understand the exposure levels in such areas, PM (PM10, PM2.5 and PM1) characterizations was carried out through indoor monitoring in a rural site of south India with varied cooking fuels such as only biomass, biomass plus LPG and only LPG in different types of housing namely indoor kitchen without partition (IKWO), indoor kitchen with partition (IKWP), separate enclosed kitchen outside house (SEKO) and open kitchen (OK). Results indicated that use of biomass resulted in the highest PM10 concentrations of 179.51±21µg/m3 followed by combination of biomass and LPG (101.99±21 µg/m3) and LPG (77.48±9µg/m3). Similar patterns were observed in PM2.5 and PM1 with highest emissions from biomass burning. The PM concentrations of biomass households and combination of biomass and LPG households were 233.7 % and 80.2 % respectively higher than those using cleaner fuels (LPG). The monitoring also revealed that kitchen configuration is an important determinant for indoor exposures especially for biomass households. Among biomass users, average PM10, PM2.5 and PM1 concentrations in all type of houses were above the human permissible limit with IKWP having highest concentrations followed by IKWO>SEKO>OK. Thus, biomass household have high concentrations compared to LPG because of nature of combustion of solid biomass. Also, PM concentrations were higher in enclosed indoor kitchens (IKWO and IKWP) compared to SEKO and OK type kitchen configurations. It is evident from above discussions that type of fuel and kitchen setups are major attributes impacting Indoor air pollution (IAP) in rural areas and any policy intervention to minimize IAP must give due consideration to these two factors.

  16. Mast cells contribute to alterations in vascular reactivity and exacerbation of ischemia reperfusion injury following ultrafine PM exposure

    Science.gov (United States)

    Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...

  17. Exposure assessment of a cyclist to PM10 and ultrafine particles.

    Science.gov (United States)

    Berghmans, P; Bleux, N; Int Panis, L; Mishra, V K; Torfs, R; Van Poppel, M

    2009-02-01

    Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.

  18. Study on sandstorm PM10 exposure assessment in the large-scale region: a case study in Inner Mongolia.

    Science.gov (United States)

    Wang, Hongmei; Lv, Shihai; Diao, Zhaoyan; Wang, Baolu; Zhang, Han; Yu, Caihong

    2018-04-12

    The current exposure-effect curves describing sandstorm PM 10 exposure and the health effects are drawn roughly by the outdoor concentration (OC), which ignored the exposure levels of people's practical activity sites. The main objective of this work is to develop a novel approach to quantify human PM 10 exposure by their socio-categorized micro-environment activities-time weighed (SCMEATW) in strong sandstorm period, which can be used to assess the exposure profiles in the large-scale region. Types of people's SCMEATW were obtained by questionnaire investigation. Different types of representatives were trackly recorded during the big sandstorm. The average exposure levels were estimated by SCMEATW. Furthermore, the geographic information system (GIS) technique was taken not only to simulate the outdoor concentration spatially but also to create human exposure outlines in a visualized map simultaneously, which could help to understand the risk to different types of people. Additionally, exposure-response curves describing the acute outpatient rate odds by sandstorm were formed by SCMEATW, and the differences between SCMEATW and OC were compared. Results indicated that acute outpatient rate odds had relationships with PM 10 exposure from SCMEATW, with a level less than that of OC. Some types of people, such as herdsmen and those people walking outdoors during a strong sandstorm, have more risk than office men. Our findings provide more understanding of human practical activities on their exposure levels; they especially provide a tool to understand sandstorm PM 10 exposure in large scale spatially, which might help to perform the different categories population's risk assessment regionally.

  19. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  20. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring

    International Nuclear Information System (INIS)

    Hong, Xinru; Liu, Chaobin; Chen, Xiaoqiu; Song, Yanfeng; Wang, Qin; Wang, Ping; Hu, Dian

    2013-01-01

    Evidence suggests that prenatal exposure to air pollution affects the ontogeny and development of the fetal immune system. The aim of this study was to investigate the effect of maternal exposure to airborne particulate matter (PM) on immune function in postnatal offspring. Pregnant female ICR mice were intralaryngopharyngeally administered with 30 μl of phosphate buffered solution (the control group) or resuspended PM of Standard Reference Material 1649a at 0.09 (low), 0.28 (medium), 1.85 (high) or 6.92 (overdose) μg/μl once every three days from day 0 to 18 of pregnancy (n = 8–10). Offspring were sacrificed on postnatal day 30. Interleukin-4 and interferon-γ levels in plasma and splenocytes, splenic lymphocyte proliferation, and expressions of GATA-3 and T-bet mRNA in the spleen were tested. The spleen and thymus were histopathologically examined. The offspring of the medium, high and overdose PM-exposed dams showed significantly suppressed splenocyte proliferation. Decreased interferon-γ and increased interleukin-4 levels in the blood and splenocytes, and lowered T-bet and elevated GATA-3 mRNA expressions were found in the spleen in the medium, high and overdose groups when compared with the control or low dose group (P < 0.05). Histopathology revealed prominent tissue damage in the spleen and thymus in the overdose group. These results suggest that exposure of pregnant mice to PM modulates the fetal immune system, resulting in postnatal immune dysfunction by exacerbation of Thl/Th2 deviation. This deviation is associated with altered T-bet and GATA-3 gene expressions

  1. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  2. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  3. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines

  4. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  5. Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios

    Science.gov (United States)

    Goto, Daisuke; Ueda, Kayo; Ng, Chris Fook Sheng; Takami, Akinori; Ariga, Toshinori; Matsuhashi, Keisuke; Nakajima, Teruyuki

    2016-09-01

    Particulate matter with a diameter of less than 2.5 μm, known as PM2.5, can affect human health, especially in elderly people. Because of the imminent aging of society in the near future in most developed countries, the human health impacts of PM2.5 must be evaluated. In this study, we used a global-to-regional atmospheric transport model to simulate PM2.5 in Japan with a high-resolution stretched grid system (∼10 km for the high-resolution model, HRM) for the present (the 2000) and the future (the 2030, as proposed by the Representative Concentrations Pathway 4.5, RCP4.5). We also used the same model with a low-resolution uniform grid system (∼100 km for the low-resolution model, LRM). These calculations were conducted by nudging meteorological fields obtained from an atmosphere-ocean coupled model and providing emission inventories used in the coupled model. After correcting for bias, we calculated the excess mortality due to long-term exposure to PM2.5 among the elderly (over 65 years old) based on different minimum PM2.5 concentration (MINPM) levels to account for uncertainty using the simulated PM2.5 distributions to express the health effect as a concentration-response function. As a result, we estimated the excess mortality for all of Japan to be 31,300 (95% confidence intervals: 20,700 to 42,600) people in 2000 and 28,600 (95% confidence intervals: 19,000 to 38,700) people in 2030 using the HRM with a MINPM of 5.8 μg/m3. In contrast, the LRM resulted in underestimates of approximately 30% (for PM2.5 concentrations in the 2000 and 2030), approximately 60% (excess mortality in the 2000) and approximately 90% (excess mortality in 2030) compared to the HRM results. We also found that the uncertainty in the MINPM value, especially for low PM2.5 concentrations in the future (2030) can cause large variability in the estimates, ranging from 0 (MINPM of 15 μg/m3 in both HRM and LRM) to 95,000 (MINPM of 0 μg/m3 in HRM) people.

  6. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    Science.gov (United States)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( ptransportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  7. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    International Nuclear Information System (INIS)

    Alfaro-Moreno, Ernesto; Torres, Victor; Miranda, Javier; Martinez, Leticia; Garcia-Cuellar, Claudia; Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter; Ramirez-Lopez, Pavel; Rosas, Irma; Nemery, Benoit; Osornio-Vargas, Alvaro Roman

    2009-01-01

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 μm (PM 10 and PM 2.5 , respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 μg/cm 2 ) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 μg/mL) or silica (10-160 μg/cm 2 ). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM 10 presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM 2.5 . In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  8. Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro-Moreno, Ernesto, E-mail: ealfaro.incan@gmail.com [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico); Torres, Victor [Departamento Farmacologia, Facultad de Medicina, U.N.A.M. (Mexico); Miranda, Javier [Departamento de Fisica Experimental, Instituto de Fisca, U.N.A.M. (Mexico); Martinez, Leticia [Deparatmento de Aerobiologia, Centro de Ciencias de la Atmosfera - Facultad de Medicina, U.N.A.M. (Mexico); Garcia-Cuellar, Claudia [Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico); Nawrot, Tim S.; Vanaudenaerde, Bart; Hoet, Peter [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Ramirez-Lopez, Pavel [Escuela Superior de Ingenieria Quimica e Industrias Extractivas, I.P.N. (Mexico); Rosas, Irma [Deparatmento de Aerobiologia, Centro de Ciencias de la Atmosfera - Facultad de Medicina, U.N.A.M. (Mexico); Nemery, Benoit [Lung Toxicology Unit, Pneumology Section, K.U. Leuven (Belgium); Osornio-Vargas, Alvaro Roman [Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Avenida San Fernando 22, C.P. 14080, Mexico D.F. (Mexico)

    2009-07-15

    Exposure to particulate matter (PM) induces inflammatory cytokines. In the present study, we evaluated the secretion of IL-6 and IL-8 by an airway cell line exposed to PM with a mean aerodynamic size equal to or less than 10 or 2.5 {mu}m (PM{sub 10} and PM{sub 2.5}, respectively) collected in Mexico City, using a modified high-volume sampling method avoiding the use of solvents or introducing membrane components into the samples. PM was collected on cellulose-nitrate (CN) membranes modified for collection on high-volume samplers. Composition of the particles was evaluated by particle-induced X-ray emission (PIXE) and scanning electron microscopy. The particles (10-160 {mu}g/cm{sup 2}) were tested on Calu-3 cells. Control cultures were exposed to LPS (10 ng/mL to 100 {mu}g/mL) or silica (10-160 {mu}g/cm{sup 2}). IL-6 and IL-8 secretions were evaluated by ELISA. An average of 10 mg of PM was recovered form each cellulose-nitrate filter. No evidence of contamination from the filter was found. Cells exposed to PM{sub 10} presented an increase in the secretion of IL-6 (up to 400%), while IL-8 decreased (from 40% to levels below the detection limit). A similar but weaker effect was observed with PM{sub 2.5}. In conclusion, our modified sampling method provides a large amount of urban PM free of membrane contamination. The urban particles induce a decrease in IL-8 secretion that contrasts with the LPS and silica effects. These results suggest that the regulation of IL-8 expression is different for urban particles (complex mixture containing combustion-related particles, soil and biologic components) than for biogenic compounds or pure mineral particles.

  9. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico

    International Nuclear Information System (INIS)

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-01-01

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM 2.5 ) in Puerto Rico. Organic extracts from PM 2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM 2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM 2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM 2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  10. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  11. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke

    Science.gov (United States)

    Kelleher, Scott; Quinn, Casey; Miller-Lionberg, Daniel; Volckens, John

    2018-02-01

    Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated) monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS) - a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS) technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally) and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges), and diurnal weather patterns

  12. A low-cost particulate matter (PM2.5 monitor for wildland fire smoke

    Directory of Open Access Journals (Sweden)

    S. Kelleher

    2018-02-01

    Full Text Available Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS – a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges, and

  13. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  14. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  15. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0 and Coarse (PM10–2.5 Particulate Matter in Seoul (Korea by Computer-Controlled Scanning Electron Microscopy (CCSEM

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Byeon

    2015-02-01

    Full Text Available Outdoor and indoor (subway samples were collected by passive sampling in urban Seoul (Korea and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX. Soil/road dust particles accounted for 42%–60% (by weight of fine particulate matter larger than 1 µm (PM2.5–1.0 in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5 with soil/road dust particles dominating outdoor samples (66%–83% and iron-containing particles contributing most to subway PM10–2.5 (44%. As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations.

  16. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  17. Association Between Satellite-based Estimates of Long-term PM2.5 Exposure and Coronary Artery Disease

    Science.gov (United States)

    Background: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. Methods: We utilized a cohort of 5679 patients who had undergone cardiac ...

  18. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  19. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  20. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    Science.gov (United States)

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  1. A national prediction model for PM2.5 component exposures and measurement error-corrected health effect inference.

    Science.gov (United States)

    Bergen, Silas; Sheppard, Lianne; Sampson, Paul D; Kim, Sun-Young; Richards, Mark; Vedal, Sverre; Kaufman, Joel D; Szpiro, Adam A

    2013-09-01

    Studies estimating health effects of long-term air pollution exposure often use a two-stage approach: building exposure models to assign individual-level exposures, which are then used in regression analyses. This requires accurate exposure modeling and careful treatment of exposure measurement error. To illustrate the importance of accounting for exposure model characteristics in two-stage air pollution studies, we considered a case study based on data from the Multi-Ethnic Study of Atherosclerosis (MESA). We built national spatial exposure models that used partial least squares and universal kriging to estimate annual average concentrations of four PM2.5 components: elemental carbon (EC), organic carbon (OC), silicon (Si), and sulfur (S). We predicted PM2.5 component exposures for the MESA cohort and estimated cross-sectional associations with carotid intima-media thickness (CIMT), adjusting for subject-specific covariates. We corrected for measurement error using recently developed methods that account for the spatial structure of predicted exposures. Our models performed well, with cross-validated R2 values ranging from 0.62 to 0.95. Naïve analyses that did not account for measurement error indicated statistically significant associations between CIMT and exposure to OC, Si, and S. EC and OC exhibited little spatial correlation, and the corrected inference was unchanged from the naïve analysis. The Si and S exposure surfaces displayed notable spatial correlation, resulting in corrected confidence intervals (CIs) that were 50% wider than the naïve CIs, but that were still statistically significant. The impact of correcting for measurement error on health effect inference is concordant with the degree of spatial correlation in the exposure surfaces. Exposure model characteristics must be considered when performing two-stage air pollution epidemiologic analyses because naïve health effect inference may be inappropriate.

  2. Fine Particulate Matter and Cardiovascular Disease: Comparison of Assessment Methods for Long-term Exposure

    Science.gov (United States)

    Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however...

  3. Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2017-03-01

    Full Text Available Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5 on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m3 in PM2.5 and 0.01 km−1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.

  4. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A comparison of individual exposure, perception, and acceptable levels of PM2.5 with air pollution policy objectives in China.

    Science.gov (United States)

    Huang, Lei; Rao, Chao; van der Kuijp, Tsering Jan; Bi, Jun; Liu, Yang

    2017-08-01

    Atmospheric pollution has emerged as a major public health issue in China. Public perception and acceptable risk levels of air pollution can prompt individual behavioral changes and play a major role in the public's response to health risks. Therefore, to explore these responses and evaluate what constitutes publicly acceptable concentrations of fine particulate matter (PM 2.5 ), questionnaire surveys were conducted in three representative cities of China: Beijing, Nanjing, and Guangzhou. Great differences in public risk perception were revealed. Public perception of the health effects of air pollution (Effect) and familiarity with it (Familiarity) were significantly higher in the winter than in the summer, and also during severe haze days compared with typical days. The public perception of trust in the government (Trust) was consistent across all conditions. Exposure to severe haze pollution and experiencing harms from it were key factors influencing public willingness to respond to haze. These results reflected individual exposure levels correlating closely with risk perception and acceptance of PM 2.5 . However, a crucial gap exists between public acceptable risk levels (PARL) of air pollution and the policy objectives of the State Council's Action Plan. Thus, policymakers can utilize this study to develop more targeted measures to combat air pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Environmental pollution: quantitative analysis of particulate matter (PM10) by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston da Silva; Zucchi, Orgheda Luiza Araujo Domingues; Vives, Ana Elisa Sirito de

    2007-01-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM 10 ). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM 10 concentrations higher than regular air quality established by CETESB (150 μg.m -3 ) was observed. The PM 10 values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  7. PM-10 and heavy metals in particulate matter of the province of Lecce (Apulia, Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Buccolieri, Alessandro; Buccolieri, Giovanni [Lecce Univ., Lecce (Italy). Dipartimento di scienza dei materiali; Cardellicchio, Nicola [CNR-Istituto par l' ambiente marino costiero, Taranto (Italy); Dell' Atti, Angelo [Lecce Univ., Lecce (Italy). Dipartimento di scienza dei materiali; Osservatorio dell' inquinamento dell' atmosfera e dello spazio circumterrestre, Campi Salentina (Italy); Florio, Elena Tiziana [Osservatorio dell' inquinamento dell' atmosfera e dello spazio circumterrestre, Campi Salentina (Italy)

    2005-01-15

    This parer shows the results of a preliminary study of air monitoring in the province of Lecce (Apulia, Southem Italy). In particular, the attention has been focused on the determination of the PM-1O level and of the concentration of nine metals (C d, Cf, Cu, Fe, Mn, Ni, Pb, V and Zn) present on the filters which were collected in two towns (Lecce and Campi Salentina) from 2002 until 2003. The metals have been chosen on the basis of their toxicity and of their possible use as chemical tracers. The results have proved that PM-1O values and metals concentrations did not show substantial difference between the two towns and that PM-1O level and lead concentration are below the limit established by Italian law in force. The experiments have demonstrated a high correlation between iron and manganese in both sampling sites; this could be attributed to pollution of metallurgical origin. Multivariate statistical analysis, carried out by HCA and PCA methods, has been used in order to differentiate samples in relation to sampling sites, sampling period and meteorological conditions.

  8. Environmental pollution: quantitative analysis of particulate matter (PM{sub 10}) by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mails: silvana@fec.unicamp.br; juniorariston@gmail.com; Zucchi, Orgheda Luiza Araujo Domingues [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br

    2007-07-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM{sub 10}). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM{sub 10} concentrations higher than regular air quality established by CETESB (150 {mu}g.m{sup -3}) was observed. The PM{sub 10} values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  9. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    DEFF Research Database (Denmark)

    Vrijens, Karen; Winckelmans, Ellen; Tsamou, Maria

    2017-01-01

    Background: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. Objectives: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. Methods: Microarray analyses were performed in 98...... healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM10 in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women...

  10. GIS-based models for ambient PM exposure and health impact assessment for the UK

    International Nuclear Information System (INIS)

    Stedman, John R; Grice, Susannah; Kent, Andrew; Cooke, Sally

    2009-01-01

    GIS-based models have been developed to map ambient PM 10 and PM 25 mass concentrations across the UK. The resulting maps are used for the assessments of air quality required by the EU ambient air quality directives, health impact assessment and the development of UK air quality policy. Maps are presented for 2006 along with projections to 2020. The largest single contribution to the UK population-weighted mean annual mean background concentrations of PM 10 in 2006 is estimated to be from secondary PM (43%), followed by the contribution from primary PM (24%). Concentrations are predicted to decline by 15% for PM 10 and 13% for PM 25 over the period from 2006 to 2020. The extent of exceedence of the 24-hour limit value is predicted to decline from 1.9% to 0.1% of urban major roads over the same period. The potential health benefits of reductions in ambient PM are large. A reduction in concentration of 0.93 μg m -3 as a result of a possible package of measures has been estimated within the UK Air Quality Strategy to result in a reduction in life years lost of approximately 2 - 4 million over a period of 100 years.

  11. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China.

    Science.gov (United States)

    Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu

    2018-06-01

    China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Pulmonary function response in smokers and patients with chronic obstructive lung diseae (COPD) following exposure to concentrated fine (PM2.5) particles

    Science.gov (United States)

    Population-based studies strongly suggest that smokers and patients with COPD may be susceptible to particulate matter (PM). The reported associations were stronger with fine than coarse PM .These findings, however, have not been supported by laboratory or clinical data. We stu...

  13. ASSOCIATIONS BETWEEN OUTDOOR PARTICULATE (PM2.5) CONCENTRATIONS AND GASEOUS CO-POLLUTANT EXPOSURE LEVELS FOR COPD AND MI COHORTS IN ATLANTA, GA

    Science.gov (United States)

    Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...

  14. Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area.

    Science.gov (United States)

    Greco, Susan L; Wilson, Andrew M; Hanna, Steven R; Levy, Jonathan I

    2007-11-15

    Benefit-cost and regulatory impact analyses often use atmospheric dispersion models with coarse resolution to estimate the benefits of proposed mobile source emission control regulations. This approach may bias health estimates or miss important intra-urban variability for primary air pollutants. In this study, we estimate primary fine particulate matter (PM2.5) intake fractions (iF; the fraction of a pollutant emitted from a source that is inhaled by the population) for each of 23 398 road segments in the Boston Metro Core area to evaluate the potential for intra-urban variability in the emissions-to-exposure relationship. We estimate iFs using the CAL3QHCR line source model combined with residential populations within 5000 m of each road segment. The annual average values for the road segments range from 0.8 to 53 per million, with a mean of 12 per million. On average, 46% of the total exposure is realized within 200 m of the road segment, though this varies from 0 to 93% largely due to variable population patterns. Our findings indicate the likelihood of substantial intra-urban variability in mobile source primary PM2.5 iF that accounting for population movement with time, localized meteorological conditions, and street-canyon configurations would likely increase.

  15. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO{sub 2}, PM{sub 10} and PM{sub 2,5} for the winter 1995 to 1996; Eksponering til luftforurensing i Oslo, Drammen, Bergen og Trondheim. Beregninger av NO{sub 2}, PM{sub 10} og PM{sub 2,5} for vinteren 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km{sub 2} level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO{sub 2} these threshold figures are 100 microgram/m{sup 3} for hour values and 75 microgram/m{sup 3} for day values. For PM{sub 1}0 and PM{sub 2},5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m{sup 3} for PM{sub 1}0 and 20 microgram/m{sup 3} for PM{sub 2},5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO{sub 2} is largest in Bergen. The PM{sub 1}0 and

  16. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.

    Science.gov (United States)

    Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J

    2015-11-01

    Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  18. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  19. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults.

    Science.gov (United States)

    Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang

    2017-08-01

    Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  20. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  1. Assessment of population exposure to particulate matter pollution in Chongqing, China.

    Science.gov (United States)

    Wang, Shuxiao; Zhao, Yu; Chen, Gangcai; Wang, Fei; Aunan, Kristin; Hao, Jiming

    2008-05-01

    To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  2. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Shuxiao Wang; Yu Zhao; Gangcai Chen; Fei Wang; Aunan Kristin; Jiming Hao [Tsinghua University, Beijing (China). Department of Environmental Science and Engineering

    2008-05-15

    To determine the population exposure to PM10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.

  3. Particulate matter (PM 10 ) in Istanbul: Origin, source areas and potential impact on surrounding regions

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Im, U.; Bougiatioti, A.; Yenigun, O.; Mihalopoulos, N.

    2011-12-01

    Water-soluble ions (Cl -, NO3-, SO42-, CO4-, Na +, NH4+, K +, Mg 2+,Ca 2+), water soluble organic carbon (WSOC), organic and elemental carbon (OC, EC) and trace metals (Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb) were measured in aerosol PM 10 samples above the megacity of Istanbul between November 2007 and June 2009. Source apportionment analysis using Positive Matrix Factorization (PMF) indicates that approximately 80% of the PM 10 is anthropogenic in origin (secondary, refuse incineration, fuel oil and solid fuel combustion and traffic). Crustal and sea salt account for 10.2 and 7.5% of the observed mass, respectively. In general, anthropogenic (except secondary) aerosol shows higher concentrations and contributions in winter. Mean concentration and contribution of crustal source is found to be more important during the transitional period due to mineral dust transport from North Africa. During the sampling period, 42 events exceeding the limit value of 50 μg m -3 are identified. A significant percentage (91%; n = 38) of these exceedances is attributed to anthropogenic sources. Potential Source Contribution Function analysis highlights that Istanbul is affected from distant sources from Balkans and Western Europe during winter and from Eastern Europe during summer. On the other hand, Istanbul sources influence western Black Sea and Eastern Europe during winter and Aegean and Levantine Sea during summer.

  4. Mobile Monitoring of Diesel Particulate Matter Exposure within Five Urban Microenvironments, Portland, OR

    Science.gov (United States)

    Orlando, P. J.; Bennett, B. A.; George, L. A.

    2016-12-01

    Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.

  5. Agreement of central site measurements and land use regression modeled oxidative potential of PM{sub 2.5} with personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aileen, E-mail: Yang@uu.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Hoek, Gerard; Montagne, Denise [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Leseman, Daan L.A.C. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Hellack, Bryan [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Kuhlbusch, Thomas A.J. [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Brunekreef, Bert [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Janssen, Nicole A.H. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands)

    2015-07-15

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR}) and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results

  6. Meteorological modes of variability for fine particulate matter (PM2.5 air quality in the United States: implications for PM2.5 sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2012-03-01

    Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing

  7. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  8. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  9. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile.

    Science.gov (United States)

    Suárez, Liliana; Mesías, Stephanie; Iglesias, Verónica; Silva, Claudio; Cáceres, Dante D; Ruiz-Rudolph, Pablo

    2014-05-01

    The objective of this study was to compare personal exposure to particulate matter (fine and ultrafine particles) in commuters using different transport modes (bicycle, bus, car and subway) in a busy, assigned route in downtown Santiago, Chile. Volunteers carrying personal samplers completed scheduled commutes during the morning rush hours, while central site measurements were conducted in parallel. A total of 137 valid commutes were assessed. The impact of central site, traffic and other variables was explored with regression models. PM2.5 personal concentrations were equal to or slightly above central site measurements, while UFP personal concentrations were above them. Regression models showed impacts of both background levels and traffic emissions on personal PM2.5 and UFP exposure. Traffic impacts varied with transport modes. Estimates of traffic impacts on personal PM2.5 exposure were 2.0, 13.0, 16.9 and 17.5 μg m(-3), for car, bicycle, subway and bus, respectively; while for UFP exposure were 8400, 16 200, 25 600 and 30 100 counts per cm(3), for subway, car, bicycle and bus, respectively. After controlling the central site and transport mode, higher temperatures increased PM2.5 exposure and decreased UFP ones, while the wind direction affected UFP personal exposure. In conclusion, we found significant impacts of both central site background measurements and traffic emissions on personal exposure of volunteer commuters in an assigned route in Santiago, with impacts varying with transport modes.

  10. Women's personal and indoor exposures to PM 2.5 in Mysore, India: Impact of domestic fuel usage

    Science.gov (United States)

    Andresen, Penny Rechkemmer; Ramachandran, Gurumurthy; Pai, Pramod; Maynard, Andrew

    In traditional societies, women are more likely to be adversely affected by exposures to fine particulates from domestic fuel combustion due to their role in the family as the primary cooks. In this study, 24-h gravimetric personal and indoor PM 2.5 exposures were measured for 15 women using kerosene and another 15 women using liquefied petroleum gas (LPG) as their main cooking fuel in Mysore, India. The women also answered a detailed questionnaire regarding their residential housing characteristics, health status, cooking practices and socioeconomic status. Repeated measurements were obtained during two seasons. The main objective of this study was to determine whether exposures to PM 2.5 differed according to fuel usage patterns. A repeated-measures general linear model (GLM) was used to analyze the data. Women using kerosene as their primary cooking fuel had significantly higher exposures. During summer, the arithmetic mean (± standard error) for kerosene users personal exposure was 111±13 and 71±15 μg m -3 for LPG users. Kerosene users had higher exposures in winter (177±21 μg m -3) compared to summer exposures. However, for LPG users there was no difference in their seasonal geometric mean exposures at 71±13 μg m -3. Indoor concentrations followed similar patterns. In summer, kerosene-using households had an arithmetic mean concentration of 98±9 μg m -3 and LPG-using households had an arithmetic mean concentration of 71±9 μg m -3. Winter concentrations were significantly higher than summer concentrations for kerosene users (155±13 μg m -3). Again, LPG users showed only slightly higher indoor concentrations (73±6 μg m -3) than kerosene users. Socioeconomic status, age, season and income were significant predictors of cooking fuel choice.

  11. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Rovira, Joaquim [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Nadal, Martí [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Schuhmacher, Marta, E-mail: marta.schuhmacher@urv.cat [Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain)

    2015-11-15

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM{sub 10}, PM{sub 2.5}, and PM{sub 1}) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  13. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas; Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta

    2015-01-01

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM 10 , PM 2.5 , and PM 1 ) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population. - Highlights: • PM deposition in the respiratory tract was evaluated for three population groups. • Activity patterns and different microenvironments were used in our calculation. • Outdoor activities are the main contributors to PM deposited mass. • Children experienced the highest deposition dose in the pulmonary region. • Retired registered the highest deposited mass in the respiratory tract as a whole.

  14. Development of a continuous monitoring system for PM10 and components of PM2.5.

    Science.gov (United States)

    Lippmann, M; Xiong, J Q; Li, W

    2000-01-01

    While particulate matter with aerodynamic diameters below 10 and 2.5 microns (PM10 and PM2.5) correlate with excess mortality and morbidity, there is evidence for still closer epidemiological associations with sulfate ion, and experimental exposure-response studies suggest that the hydrogen ion and ultrafine (PM0.15) concentrations may be important risk factors. Also, there are measurement artifacts in current methods used to measure ambient PM10 and PM2.5, including negative artifacts because of losses of sampled semivolatile components (ammonium nitrate and some organics) and positive artifacts due to particle-bound water. To study such issues, we are developing a semi-continuous monitoring system for PM10, PM2.5, semivolatiles (organic compounds and NH4NO3), particle-bound water, and other PM2.5 constituents that may be causal factors. PM10 is aerodynamically sorted into three size-fractions: (1) coarse (PM10-PM2.5); (2) accumulation mode (PM2.5-PM0.15); and (3) ultrafine (PM0.15). The mass concentration of each fraction is measured in terms of the linear relation between accumulated mass and pressure drop on polycarbonate pore filters. The PM0.15 mass, being highly correlated with the ultrafine number concentration, provides a good index of the total number concentration in ambient air. For the accumulation mode (PM2.5-PM0.15), which contains nearly all of the semivolatiles and particle-bound water by mass, aliquots of the aerosol stream flow into system components that continuously monitor sulfur (by flame photometry), ammonium and nitrate (by chemiluminescence following catalytic transformations to NO), organics (by thermal-optical analysis) and particle-bound water (by electrolytic hygrometer after vacuum evaporation of sampled particles). The concentration of H+ can be calculated (by ion balance using the monitoring data on NO3-, NH4+, and SO4=).

  15. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Directory of Open Access Journals (Sweden)

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  16. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    Science.gov (United States)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more

  17. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    Science.gov (United States)

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  18. Trace Elements Speciation of Submicron Particulate Matter (PM1 Collected in the Surroundings of Power Plants

    Directory of Open Access Journals (Sweden)

    Elwira Zajusz-Zubek

    2015-10-01

    Full Text Available This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se content in highly mobile (F1, mobile (F2, less mobile (F3 and not mobile (F4 fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF and a principal component analysis (PCA. There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  19. Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: A PM 2.5 case study

    Science.gov (United States)

    Özkaynak, Halûk; Frey, H. Christopher; Burke, Janet; Pinder, Robert W.

    Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM 2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3-4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.

  20. Secondhand tobacco smoke exposure in selected public places (PM2.5 and air nicotine) and non-smoking employees (hair nicotine) in Ghana.

    Science.gov (United States)

    Agbenyikey, Wilfred; Wellington, Edith; Gyapong, John; Travers, Mark J; Breysse, Patrick N; McCarty, Kathleen M; Navas-Acien, Ana

    2011-03-01

    Secondhand tobacco smoke (SHS) exposure is a global public health problem. Ghana currently has no legislation to prevent smoking in public places. To provide data on SHS levels in hospitality venues in Ghana the authors measured (1) airborne particulate matter working in smoking venues (median 2.49 [0.46-6.84] ng/mg) compared to those working in non-smoking venues (median 0.16 [0.08-0.79]ng/mg). Hair nicotine concentrations correlated with self-reported hours of SHS exposure (r=0.35), indoor air PM(2.5) concentrations (r=0.47) and air nicotine concentrations (r=0.63). SHS levels were unacceptably high in public places in Ghana where smoking is allowed, despite a relatively low-smoking prevalence in the country. This is one of the first studies to ascertain SHS and hair nicotine in Africa. Levels were comparable to those measured in American, Asian and European countries without or before smoking bans. Implementing a comprehensive smoke-free legislation that protects workers and customers from exposure to secondhand smoke is urgently needed in Ghana.

  1. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  2. Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria Region (Northern Spain)

    International Nuclear Information System (INIS)

    Arruti, A.; Fernandez-Olmo, I.; Irabien, A.

    2011-01-01

    Air pollution by particulate matter is well linked with anthropogenic activities; the global economic crisis that broke out in the last year may be a proper indicator of this close relationship. Some economic indicators show the regional effects of the crisis on the Cantabria Region. The present work aims to evaluate the impact of the economic crisis on PM10 levels and composition at the major city of the region, Santander. Some metals linked to anthropogenic activities were measured at Santander and studied by Positive Matrix Factorization; this statistical analysis allowed to identify three main factors: urban background, industrial and molybdenum-related factor. The main results show that the temporal trend of the levels of the industrial tracers found in the present study are well agree with the evolution of the studied economic indicators; nevertheless, the urban background tracers and PM10 concentration levels are not well correlated with the studied economic indicators. - Highlights: → The impact of the crisis is higher on the PM-bound metal levels than on the PM levels. → The crisis effects on the trace metal associated to the urban background are negligible. → The temporal trend of the industrial trace metals levels and the studied economic indicators is similar. → The crisis effects on the main industrial tracer levels in PM2.5 and PM10 are similar. - The study presents an evaluation of the economic crisis impact on PM levels and composition at a coastal urban area in the Region of Cantabria (Northern Spain).

  3. MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: Results from a mediated moderation analysis.

    Science.gov (United States)

    Motta, Valeria; Favero, Chiara; Dioni, Laura; Iodice, Simona; Battaglia, Cristina; Angelici, Laura; Vigna, Luisella; Pesatori, Angela Cecilia; Bollati, Valentina

    2016-04-01

    Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Concentrations of Platinum Group Elements (Pt, Pd, Rh) in Airborne Particulate Matter (PM2.5 and PM10-2.5) Collected at Selected Canadian Urban Sites: a Case Study

    OpenAIRE

    Celo V.; Zhao J. J.; Dabek-Zlotorzynska E.

    2013-01-01

    Increasing environmental concentrations of platinum group elements (PGEs), in particular platinum (Pt), palladium (Pd) and rhodium (Rh), from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM) is important for...

  5. Respiratory morbidity associated with exposure to particulate matter in the environment

    Directory of Open Access Journals (Sweden)

    Elkin Martínez. L

    2011-11-01

    Full Text Available Introduction: it is assumed that prolonged exposure to airborne pollutants in the areas where people live or work can affect their respiratory systems. In order to demand for control measures aimed at protecting the community’s health, it is necessary to provide evidence for this claim. Methods: the respiratory morbidity of people living or working in urban areas of Medellín was analyzed (high particulate matter pollution. The average of PM10 is 60 µg/m3 and then compared with the respiratory morbidity of a matched sample of inhabitants living in the municipalities located in eastern Antioquia (low pollution. The average of PM10 is 30 µg/m3. Results: the groups that were compared were similar with respect to sociodemographic and other potential confounding variables. Upon comparing the two groups, a higher risk of respiratory signs and symptoms can be observed for subjects from the urban areas of Medellín. Nasal congestion, respiratory distress, and cough are the symptoms that occur in sharper contrast with relative risk of 2.60 95% CI (1.93, 3.62; 2.22 95% CI (1.56, 3.15 and 2.14 95% CI (1.63, 2.81 respectively. Conclusion: high pm10 levels as an indicator of air pollution in urban environments where people live and work contribute to a higher risk of respiratory disease. This implies adverse consequences both in economic and social terms. The control of such a situation hence becomes a social and professional priority.

  6. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities

    International Nuclear Information System (INIS)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM_1_0) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM_1_0-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM_1_0-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM_1_0 concentration and green space per capita could best explain the heterogeneity in PM_1_0-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. - Highlights: • The heterogeneity was examined in PM_1_0-mortality associations among Chinese cities. • Temperature, PM_1_0 and green space could best explain the heterogeneity. • PM_1_0-mortality associations were predicted for 73 Chinese cities. - This study provides a practical way to assess exposure-response associations and evaluate the burden of mortality in areas with insufficient data.

  7. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  8. Association of Exposure to Fine Particulate Matter and Risk Factors of Non-Communicable Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Parinaz Poursafa

    2017-10-01

    Full Text Available Background: Risk factors of non-communicable disease (NCD origin from early life, and exposure to environmental pollutant may be a predisposing factor. This study aimed to investigate the association of air quality index (AQI and fine particulate matter (PM2.5 with some NCD risk factors in a sample of Iranian children and adolescents. Materials and Methods: This cross-sectional study was conducted in 2014 to 2016 among children and adolescents, aged 6-18 years, in Isfahan, Iran. Physical examination, including weight, height, and blood pressure, was conducted by standard methods. Fasting blood sample was obtained for fasting blood glucose, total cholesterol, high density lipoprotein-cholesterol, low-density lipoprotein- cholesterol, and triglycerides. The mean AQI and PM2.5 values from the study time till one year prior to the survey were used. Multiple linear regression analysis was conducted for the association of AQI and PM2.5 with other variables. Results: Participants consisted of 186 children and adolescents with mean (SD age of 10.52(2.38 years. Exposure to higher level of PM2.5 had significant associations with higher levels of systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. It also had positive relationship with other risk factors and inverse association with low-density lipoprotein cholesterol (LDL-C, but these associations were not statistically significant. The corresponding figures were not significant for AQI. Conclusion: At current study results showed that exposure to higher levels of fine particulates was associated with some NCD risk factors in children and adolescents. Early life prevention of NCDs can lead to large reductions in disease risk; adverse effects of ambient pollutants should be considered in this regard.

  9. Biomagnetic monitoring of particulate matter (PM through leaves of an invasive alien plant Lantana camara in an Indo-Burma hot spot region

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2016-03-01

    Full Text Available Present study was performed in urban forests of Aizawl, Mizoram, North East India falling under an Indo-Burma hot spot region of existing ecological relevance and pristine environment. Phyto-sociolology of invasive weeds has been performed and results revealed that Lantana camara was the most dominant invasive weed. Further, the air quality studies revealed high suspended particulate matter (SPM as well as respirable suspended particulate matter (RSPM in ambient air of Aizawl, Mizoram, North East India. Bio-magnetic monitoring through plant leaves has been recognised as recent thrust area in the field of particulate matter (PM science. We aimed to investigate that whether magnetic properties of Lantana camara leaves may act as proxy of PM pollution and hence an attempt towards it's sustainable management. Magnetic susceptibility (χ, Anhyste reticremanent magnetization (ARM and Saturation isothermal remanent magnetization (SIRM of Lantana camara plant leaves were assessed and concomitantly correlated these magnetic properties with ambient PM in order to screen this invasive plant which may act as proxy for ambient PM concentrations. Results revealed high χ, ARM, SIRM of Lantana camara leaves and moreover, these parameters were having significant and positive correlation with ambient SPM as well as RSPM. Therefore, present study recommended the use of Lantana camara as bio-magnetic monitor which may further have sustainable management implications of an invasive plant.

  10. Punicalagin and (-)-Epigallocatechin-3-Gallate Rescue Cell Viability and Attenuate Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10.

    Science.gov (United States)

    Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.

  11. Particulate matter (PM 2.5 levels in ETS emissions of a Marlboro Red cigarette in comparison to the 3R4F reference cigarette under open- and closed-door condition

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2012-06-01

    Full Text Available Abstract Introduction Potential health damage by environmental emission of tobacco smoke (environmental tobacco smoke, ETS has been demonstrated convincingly in numerous studies. People, especially children, are still exposed to ETS in the small space of private cars. Although major amounts of toxic compounds from ETS are likely transported into the distal lung via particulate matter (PM, few studies have quantified the amount of PM in ETS. Study aim The aim of this study was to determine the ETS-dependent concentration of PM from both a 3R4F reference cigarette (RC as well as a Marlboro Red brand cigarette (MRC in a small enclosed space under different conditions of ventilation to model car exposure. Method In order to create ETS reproducibly, an emitter (ETSE was constructed and mounted on to an outdoor telephone booth with an inner volume of 1.75 m3. Cigarettes were smoked under open- and closed-door condition to imitate different ventilation scenarios. PM2.5 concentration was quantified by a laser aerosol spectrometer (Grimm; Model 1.109, and data were adjusted for baseline values. Simultaneously indoor and outdoor climate parameters were recorded. The time of smoking was divided into the ETS generation phase (subset “emission” and a declining phase of PM concentration (subset “elimination”; measurement was terminated after 10 min. For all three time periods the average concentration of PM2.5 (Cmean-PM2.5 and the area under the PM2.5 concentration curve (AUC-PM2.5 was calculated. The maximum concentration (Cmax-PM2.5 was taken from the total interval. Results For both cigarette types open-door ventilation reduced the AUC-PM2.5 (RC: from 59 400 ± 14 600 to 5 550 ± 3 900 μg*sec/m3; MRC: from 86 500 ± 32 000 to 7 300 ± 2 400 μg*sec/m3; p mean-PM2.5 (RC: from 600 ± 150 to 56 ± 40 μg/m3, MRC from 870 ± 320 to 75 ± 25 μg/m3; p max-PM2.5 was reduced by about 80% (RC: from 1 050 ± 230 to

  12. Assessment of population exposure to particulate matter pollution in Chongqing, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shuxiao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: shxwang@tsinghua.edu.cn; Zhao Yu [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Chen Gangcai; Wang Fei [Institute of Environmental Science and Technology of Chongqing, Chongqing 630020 (China); Aunan, Kristin [Center for International Climate and Environmental Research, P.O. Box 1129, Blindern, 0318 Oslo (Norway); Hao Jiming [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2008-05-15

    To determine the population exposure to PM{sub 10} in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM{sub 10} concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM{sub 10} were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 {mu}g/m{sup 3}, respectively, in winter, summer and as the annual average. Indoor PM{sub 10} level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM{sub 10} exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM{sub 10} in Chongqing was estimated to be 211 {mu}g/m{sup 3} with significant contribution from indoor pollution.

  13. Assessment of population exposure to particulate matter pollution in Chongqing, China

    International Nuclear Information System (INIS)

    Wang Shuxiao; Zhao Yu; Chen Gangcai; Wang Fei; Aunan, Kristin; Hao Jiming

    2008-01-01

    To determine the population exposure to PM 10 in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM 10 concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM 10 were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 μg/m 3 , respectively, in winter, summer and as the annual average. Indoor PM 10 level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM 10 exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas. - Using an indirect microenvironment model, the population weighted exposure (PWE) to PM 10 in Chongqing was estimated to be 211 μg/m 3 with significant contribution from indoor pollution

  14. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China.

    Science.gov (United States)

    Liu, Anni; Qian, Naisi; Yu, Huiting; Chen, Renjie; Kan, Haidong

    2017-12-31

    Studies have shown that maternal exposure to particulate matter ≤2.5μm in aerodynamic diameter (PM 2.5 ) was associated with adverse birth outcomes such as preterm birth (PTB) and low birth weight (LBW). However, the burdens of PTB and LBW attributable to PM 2.5 were rarely evaluated, especially in developing countries. To estimate the burdens of PTBs and LBWs attributable to outdoor PM 2.5 in Shanghai, China. We collected annual-average PM 2.5 concentrations, concentration-response relationships between PM 2.5 exposure during pregnancy and PTBs and LBWs, rates of PTB and LBW, number of live births, and population sizes in grids of 10km×10km in Shanghai in 2013. Then, they were combined to estimate the odds ratios (ORs), relative risks (RRs), attributable fractions (AFs), and numbers of PTBs and LBWs associated with PM 2.5 exposure. The population-weighted annual-average concentration of PM 2.5 in Shanghai was 56.19μg/m 3 in 2013. According to the first-class limit of PM 2.5 (15μg/m 3 ) in the Ambient Air Quality Standards of China, the weighted RRs of PTBs or LBWs associated with PM 2.5 in Shanghai were 1.49 [95% confidence interval (CI): 1.16-1.80] and 1.31 (95% CI: 1.04-1.67), respectively. There might be 32.61% (95% CI: 13.93%-44.42%) or 4160 (95% CI: 1778-5667) PTBs and 23.36% (95% CI: 3.86%-40.02%) or 1882 (95% CI: 311-3224) LBWs attributable to PM 2.5 exposure. The estimates varied appreciably among different districts of Shanghai. Our analysis suggested that outdoor PM 2.5 air pollution might have led to considerable burdens of PTBs and LBWs in Shanghai, China. Copyright © 2017. Published by Elsevier B.V.

  15. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    Science.gov (United States)

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate

  16. In vitro short-term exposure to air pollution PM{sub 2.5-0.3} induced cell cycle alterations and genetic instability in a human lung cell coculture model

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Lebanese Atomic Energy Commission – CNRS, Beirut (Lebanon); Verdin, Anthony [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Escande, Fabienne [Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire, Lille (France); Saint-Georges, Françoise [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Cazier, Fabrice [Université de Lille, Lille (France); Centre Commun de Mesures, Université du Littoral-Côte d’Opale, Dunkerque (France); Mulliez, Philippe [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Courcot, Dominique; Shirali, Pirouz [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Gosset, Pierre [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); and others

    2016-05-15

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM{sub 2.5-0.3}-exposed coculture model. PM{sub 2.5-0.3} exposure of human AM from the coculture model induced marked cell cycle alterations after 24 h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM{sub 2.5-0.3} was reported in the L132 cells. Exposure of human AM from the coculture model to PM{sub 2.5-0.3} resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM{sub 2.5-0.3} induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability. - Highlights: • Better knowledge on health adverse effects of air pollution PM{sub 2.5}. • Human alveolar macrophage and normal human epithelial lung cell coculture. • Molecular abnormalities from TP53-RB gene signaling pathway. • Loss of heterozygosity and microsatellite instability. • Pathologic changes in morphology and number of cells in relation to airway remodeling.

  17. A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk.

    Science.gov (United States)

    Kam, Winnie; Delfino, Ralph J; Schauer, James J; Sioutas, C

    2013-01-01

    According to the U.S. Census Bureau, 570000+ commuters in Los Angeles travel for over 60 minutes to work. Studies have shown that a substantial portion of particulate matter (PM) exposure can occur during this commute. This study represents the integration of the results from five commute environments in Los Angeles. Personal PM exposures are discussed for the: (1) METRO gold line, a ground-level light-rail route, (2) METRO red line, a subway line, (3) the 110, a high volume freeway with low heavy-duty vehicle (HDV) fraction, (4) the 710, a major corridor for HDVs from the Port of Los Angeles, and (5) Wilshire/Sunset Boulevards, major surface streets. Chemical analysis including total and water-soluble metals and trace elements, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs) was performed. The focus of this study is to compare the composition and estimated lung cancer risk of PM2.5 (dp subway), most likely from abrasion processes between the rail and brakes; elements associated with tire and brake wear and oil additives (Ca, Ti, Sn, Sb, and Pb) were elevated on roadways. Elemental concentrations on the gold line (light-rail) were the lowest. For water-solubility, metals observed on the red line (subway) were the least soluble. PAHs are primarily derived from vehicular emissions. Overall, the 710 exhibited high levels of PAHs (3.0 ng m−3), most likely due to its high volume of HDVs, while the red and gold lines exhibited low PAH concentrations (0.6 and 0.8 ng m−3 for red and gold lines, respectively). Lastly, lung cancer risk due to inhalation of PAHs was calculated based on a commuter lifetime (45 years for 2 hours per workday). Results showed that lung cancer risk for the 710 is 3.8 and 4.5 times higher than the light-rail (gold line) and subway (red line), respectively. With low levels of both metal and PAH pollutants, our results indicate that commuting on the light-rail (gold line) may have potential health benefits when

  18. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Directory of Open Access Journals (Sweden)

    Lixin Li

    2014-09-01

    Full Text Available Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate

  19. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-01-01

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  20. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter PM2:5 in the contiguous U.S. using parallel programming and k-d tree.

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-09-03

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  1. Assessing the cytotoxicity of ambient particulate matter (PM) using Chinese hamster ovary (CHO) cells and its relationship with the PM chemical composition and oxidative potential

    Science.gov (United States)

    Wang, Yixiang; Plewa, Michael J.; Mukherjee, Ujjal Kumar; Verma, Vishal

    2018-04-01

    We assessed mammalian cell cytotoxicity of ambient PM2.5 and investigated its association with the oxidative potential (OP) and chemical composition of the particles. Sixteen PM samples spanning in various seasons (fall, winter, spring and summer) were collected from an urban site in central Illinois. Cytotoxicity (LC50) in terms of the volume of air that kills 50% of the cells were calculated, which varied from 4.3 to 7.2 m3 of air. The OP was measured by two assays - the dithiothreitol (DTT) and the surrogate lung fluid (SLF) assay. In DTT assay, we measured two endpoints - hydroxyl radicals (•OH) generation and DTT consumption (the conventionally measured endpoint), while only •OH generation was measured in the SLF assay. Although, all three endpoints in the OP assays correlated significantly (P ≤ 0.05) with LC50, the correlation of reactive oxygen species (ROS) generation in DTT and SLF assays was much higher (r > 0.80 for •OH generation versus LC50) than the DTT consumption (r = 0.58). To further understand the components in PM that drive cytotoxicity and OP, concentration of water-soluble metals (Fe, Cu, Co, Cr, Mn, Ni, Pb, V, Hg, and Zn), organic carbon (OC), water soluble organic carbon (WSOC), and elemental carbon (EC) were measured. Among all the chemical components, Fe, Cu and WSOC correlated most (r > 0.70; P ≤ 0.01) with the cytotoxicity. DTT consumption correlated only with OC and WSOC (r > 0.80; P ≤ 0.01), while •OH generation in DTT and SLF assay correlated with both WSOC (r > 0.70; P ≤ 0.01) and metals (i.e. Fe and Cu; r > 0.75; P ≤ 0.01). Our results suggest a strong link between the PM2.5 OP and its cytotoxicity. Furthermore, the synergistic interactions among the organic compounds (i.e. WSOC) and metals (Fe and Cu) to enhance the ROS generation, which are more effectively captured in •OH generation endpoints in DTT and SLF assay than the DTT consumption, appear to be largely responsible for the observed mammalian cell

  2. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  3. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  4. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  5. A weighted higher-order network analysis of fine particulate matter (PM2.5) transport in Yangtze River Delta

    Science.gov (United States)

    Wang, Yufang; Wang, Haiyan; Zhang, Shuhua

    2018-04-01

    Specification of PM2.5 transmission characteristics is important for pollution control, policymaking and prediction. In this paper, we propose weights for motif instances, thereby to implement a weighted higher-order clustering algorithm for a weighted, directed PM2.5 network in the Yangtze River Delta (YRD) of China. The weighted, directed network we create in this paper includes information on meteorological conditions of wind speed and wind direction, plus data on geographic distance and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in the YRD. Major potential PM2.5 contributors and closely interacted clusters are identified in the network of 178 air quality stations in the YRD. To our knowledge, it is the first work to incorporate weight information into the higher-order network analysis to study PM2.5 transport.

  6. Does maternal exposure to benzene and PM10 during pregnancy increase the risk of congenital anomalies? A population-based case-control study

    Science.gov (United States)

    Vinceti, Marco; Malagoli, Carlotta; Malavolti, Marcella; Cherubini, Andrea; Maffeis, Giuseppe; Rodolfi, Rossella; Heck, Julia E.; Astolfi, Gianni; Calzolari, Elisa; Nicolini, Fausto

    2015-01-01

    A few studies have suggested an association between maternal exposure to ambient air pollution from vehicular traffic and risk of congenital anomalies in the offspring, but epidemiologic evidence is neither strong nor entirely consistent. In a population-based case-control study in a Northern Italy community encompassing 228 cases of birth defects and 228 referent newborns, we investigated if maternal exposure to PM10 and benzene from vehicular traffic during early pregnancy, as estimated through a dispersion model, was associated with excess teratogenic risk. In conditional logistic regression analysis, and with adjustment for the other pollutant, we found that higher exposure to PM10 but not benzene was associated with increased risk of birth defects overall. Anomaly categories showing the strongest dose-response relation with PM10 exposure were musculoskeletal and chromosomal abnormalities but not cardiovascular defects, with Down syndrome being among the specific abnormalities showing the strongest association, though risk estimates particularly for the less frequent defects were statistically very unstable. Further adjustment in the regression model for potential confounders did not considerably alter the results. All the associations were stronger for average levels of PM10 than for their maximal level. Findings of this study give some support for an excess teratogenic risk following maternal exposure during pregnancy to PM10, but not benzene. Such association appears to be limited to some birth defect categories. PMID:26410719

  7. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2015-12-30

    emissions demonstration . 46 6 Figure 24. T63 engine with extension pipe to direct exhaust outside of the test cell for exhaust sampling with tip...to assess their effectiveness in conditioning turbine engine exhaust for total PM emissions measurements. Both were designed to promote the... effectively control and mitigate PM emissions. Aircraft PM is formed in the engine combustor due to incomplete combustion of fuel, and in the

  8. Short-term exposure to PM 10, PM 2.5, ultrafine particles and CO 2 for passengers at an intercity bus terminal

    Science.gov (United States)

    Cheng, Yu-Hsiang; Chang, Hsiao-Peng; Hsieh, Cheng-Ju

    2011-04-01

    The Taipei Bus Station is the main transportation hub for over 50 bus routes to eastern, central, and southern Taiwan. Daily traffic volume at this station is about 2500 vehicles, serving over 45,000 passengers daily. The station is a massive 24-story building housing a bus terminal, a business hotel, a shopping mall, several cinemas, offices, private residential suites, and over 900 parking spaces. However, air quality inside this bus terminal is a concern as over 2500 buses are scheduled to run daily. This study investigates the PM 10, PM 2.5, UFP and CO 2 levels inside and outside the bus terminal. All measurements were taken between February and April 2010. Measurement results show that coarse PM inside the bus terminal was resuspended by the movement of large numbers of passengers. The fine and ultrafine PM in the station concourse were from outside vehicles. Moreover, fine and ultrafine PM at waiting areas were exhausted directly from buses in the building. The CO 2 levels at waiting areas were likely elevated by bus exhaust and passengers exhaling. The PM 10, PM 2.5 and CO 2 levels at the bus terminal were lower than Taiwan's EPA suggested standards for indoor air quality. However, UFP levels at the bus terminal were significantly higher than those in the urban background by about 10 times. Therefore, the effects of UFPs on the health of passengers and workers must be addressed at this bus terminal since the levels of UFPs are higher than >1.0 × 10 5 particles cm -3.

  9. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  10. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway.

    Directory of Open Access Journals (Sweden)

    Annah B Wyss

    Full Text Available Few studies have examined particulate matter (PM exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5 for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04 for the 14 homes with wood stove use (15.6 μg/m3 than for the 22 homes without (12.6 μg/m3. Moreover, mean hourly PM2.5 was higher (p = 0.001 for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3, when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3 which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.

  11. Risk estimation by exposure to PM10 particles in the Toluca Valley

    International Nuclear Information System (INIS)

    Flores R, J.H.; Pena G, P.; Balcazar, M.; Lopez M, A.; Morelos M, J.

    2007-01-01

    Full text: Risk estimation to PM10 in the Toluca valley and surrounding areas was estimated, for several return periods, evaluating the occurrence probability to several interval times (1, 5, 10, 12.5, 15, 17.5 and 20 years) using the extreme values of the Gumbel-1 distribution; those intervals were employed to predict and analyze the behaviour of maximum contaminant concentrations in the study region. A high degree of risk to health due to the mean concentration of these particles is obtained from statistical considerations. The evaluation took into consideration the eight monitoring years from the Automatic Atmospheric Monitoring Network (RAMAT) and its output predicts, if present conditions maintain, this statistical relation remain invariant between the next 20 years. Such particles affect the human respiratory system, besides, present a carcinogenic potential due to the volume of hydrocarbons combustion to the atmosphere. (Author)

  12. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    Science.gov (United States)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  13. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke

    International Nuclear Information System (INIS)

    Preisler, Haiganoush K.; Schweizer, Donald; Cisneros, Ricardo; Procter, Trent; Ruminski, Mark; Tarnay, Leland

    2015-01-01

    As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM 2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM 2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM 2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy. - Highlights: • Satellite observed smoke is useful for predicting wildfire impacts on Particulate Matter. • A metric was developed to flag ‘exceptional events’ days as defined by EPA. • We found significant impact of wildfires on PM 2.5 at various sites in Central California. • Fires in most years had no significant impact on compliance with EPA standards. - This work quantifies the skill of satellite observations of smoke plumes in predicting wildfire impacts on PM 2.5 concentrations at ground level monitors

  14. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources

    Science.gov (United States)

    Sagnotti, Leonardo; Macrı, Patrizia; Egli, Ramon; Mondino, Manlio

    2006-12-01

    Environmental problems linked to the concentration of atmospheric particulate matter with dimensions less than 10 μm (PM10) in urban settings have stimulated a variety of scientific researches. This study reports a systematic analysis of the magnetic properties of PM10 samples collected by six automatic stations installed for air quality monitoring through the Latium Region (Italy). We measured the low-field magnetic susceptibility of daily air filters collected during the period July 2004 to July 2005. For each station, we derived an empirical linear correlation linking magnetic susceptibility to the concentration of PM10 produced by local sources (i.e., in absence of significant inputs of exogenous dust). An experimental approach is suggested for estimating the percentage of nonmagnetic PM10 transported from natural far-sided sources (i.e., dust from North Africa and marine aerosols). Moreover, we carried out a variety of additional magnetic measurements to investigate the magnetic mineralogy of selected air filters spanning representative periods. The results indicate that the magnetic fraction of PM10 is composed by a mixture of low-coercivity, magnetite-like, ferrimagnetic particles with a wide spectrum of grain sizes, related to a variety of natural and anthropogenic sources. The natural component of PM10 has a characteristic magnetic signature that is indistinguishable from that of eolian dust. The anthropogenic PM10 fraction is mostly originated from circulating vehicles and is a mixture of prevailing fine superparamagnetic particles and subordinate large multidomain grains; the former are more directly related to exhaust, whereas the latter may be associated to abrasion of metallic parts.

  15. Development of a personal multi-pollutant exposure sampler for particulate matter and criteria gases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, I.T.; Sarnat, J.; Wolfson, J.M.; Rojas-Bracho, L.; Suh, H.H.; Koutrakis, P. [Harvard Univ., Boston, MA (United States). School of Public Health

    1999-12-01

    A novel personal sampler is reported which allows simultaneous measurement of PM{sub 2,5}, and PM{sub 10}, ozone, nitrogen dioxide, and sulfur dioxide. This method combines previously used samplers for personal mass measurement with passive samplers for criteria gases and uses a single pump. Preliminarily results are reported for laboratory chamber tests and field comparisons with reference methods for both mass and criteria gases. These results demonstrate the suitability of this sampler of exposure assessment studies. (authors)

  16. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  17. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science Water A-Z Index Laws & Regulations By Business Sector By Topic Compliance Enforcement Laws and Executive ...

  18. RESPIRATORY EFFECTS OF INHALED METAL-RICH PARTICULATE MATTER (PM) IN RATS: INFLUENCE OF SYSTEMIC ANTIOXIDANT DEPLETION

    Science.gov (United States)

    Metal-mediated generation of reactive oxygen species and resultant oxidative stress has been implicated in the pathogenesis of emission-source PM toxicity. We hypothesized that inducing an antioxidant deficit prior to inhalation of metal-rich PM would worsen adverse health outcom...

  19. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  20. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    Science.gov (United States)

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  1. Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tianchao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-08-01

    recent analysis of health impacts from air pollutant inhalation in homes found that PM2.5 is the most damaging at the population level. Chronic exposure to elevated PM2.5 has the potential to damage human respiratory systems, and may result in premature death. PM2.5 exposures in homes can be mitigated through various approaches including kitchen exhaust ventilation, filtration, indoor pollutant source reduction and designing ventilation systems to reduce the entry of PM2.5 from outdoors. Analysis of the potential benefits and costs of various approaches can be accomplished using computer codes that simulate the key physical processes including emissions, dilution and ventilation. The largest sources of PM2.5 in residences broadly are entry from outdoors and emissions from indoor combustion. The largest indoor sources are tobacco combustion (smoking), cooking and the burning of candles and incense. Data on the magnitude of PM2.5 and other pollutant emissions from these events and processes are required to conduct simulations for analysis. The goal of this study was to produce a database of pollutant emission rates associated with cooking and the burning of candles and incense. The target use of these data is for indoor air quality modeling.

  2. Distribution of atmospheric particulate matter (PM) in rural field, rural village and urban areas of northern China

    International Nuclear Information System (INIS)

    Li, Wei; Wang, Chen; Wang, Hongqijie; Chen, Jiwei; Yuan, Chenyi; Li, Tongchao; Wang, Wentao; Shen, Huizhong; Huang, Ye; Wang, Rong; Wang, Bin; Zhang, Yanyan; Chen, Han; Chen, Yuanchen; Tang, Jianhui; Wang, Xilong; Liu, Junfeng; Coveney, Raymond M.; Tao, Shu

    2014-01-01

    Atmospheric PM 10 were measured for 12 months at 18 sites along a 2500 km profile across northern China. Annual mean PM 10 concentrations in urban, rural village, and rural field sites were 180 ± 171, 182 ± 154, and 128 ± 89 μg/m 3 , respectively. The similarities in PM 10 concentrations between urban and rural village sites suggest that strong localized emissions and severe contamination in rural residential areas are derived from solid fuels combustion in households. High PM 10 concentrations in Wuwei and Taiyuan were caused by either sandstorms or industrial activities. Relatively low PM 10 concentrations were observed in coastal areas of Dalian and Yantai. Particulate air pollution was much higher in winter and spring than in summer and fall. Multiple regression analysis indicates that 35% of the total variance can be attributed to sandstorms, precipitation and residential energy consumption. Over 40% of the measurements in both urban and rural village areas exceeded the national ambient air quality standard. Highlights: • Spatial distribution of PM 10 concentrations in northern China was investigated. • High levels of PM 10 in rural villages were caused by solid fuel emission. • A strong seasonality with high levels of PM 10 in spring and winter was observed. • Influence of sandstorm, energy consumption, and precipitation were evaluated. • Over 40% of the measurements exceeded the national ambient air quality standard. -- PM 10 concentrations in rural villages of China were comparable with those in the cities, indicating severe air pollution in the rural villages caused by coal and biofuel combustion

  3. Different relationships between personal exposure and ambient concentration by particle size.

    Science.gov (United States)

    Guak, Sooyoung; Lee, Kiyoung

    2018-04-06

    Ambient particulate matter (PM) concentrations at monitoring stations were often used as an indicator of population exposure to PM in epidemiological studies. The correlation between personal exposure and ambient concentrations of PM varied because of diverse time-activity patterns. The aim of this study was to determine the relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 with minimal impact of time-activity pattern on personal exposure. Performance of the MicroPEM, v3.2 was evaluated by collocation with central ambient air monitors for PM 10 and PM 2.5 . A field technician repeatedly conducted measurement of 24 h personal exposures to PM 10 and PM 2.5 with a fixed time-activity pattern of office worker over 26 days in Seoul, Korea. The relationship between the MicroPEM and the ambient air monitor showed good linearity. Personal exposure and ambient concentrations of PM 2.5 were highly correlated with a fixed time-activity pattern compared with PM 10 . The finding implied a high infiltration rate of PM 2.5 and low infiltration rate of PM 10 . The relationship between personal exposure and ambient concentrations of PM 10 and PM 2.5 was different for high level episodes. In the Asian dust episode, staying indoors could reduce personal exposure to PM 10 . However, personal exposure to PM 2.5 could not be reduced by staying indoors during the fine dust advisory episode.

  4. Characteristics and source apportionment of organic matter in PM(2.5) from cities in different climatic zones of China

    Science.gov (United States)

    Feng, Jialiang

    For the first time, the dependency of the characteristics of organic matter in PM2.5 on geographical and climatic zones in three metropolitan cities of China was studied. Seasonal samples were collected at suburban and urban sites in Beijing, Shanghai and Guangzhou in 2002 and 2003. To further support the above study, seasonal samples were also collected at Changdao Island, a remote island, in Bohai Sea/Yellow Sea. Concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and solvent-extractable organic compounds (SEOC) were analyzed. The characteristics of the n-alkanes, polycyclic aromatic hydrocarbons, n-fatty acids, n-alkanols and molecular markers such as triterpanes were determined and used for source identification. Source apportionment was complemented by Chemical Mass Balance (CMB) modeling using the measured organic species as tracers. The impact of wind speed and wind direction on air quality was studied by back trajectory calculations and analysis. In general, traffic emissions were the largest contributors of OC followed by coal burning, kitchen emissions, vegetative detritus and biomass burning. However, in the space-heating season in Northern China, coal burning was the most important contributor of OC in the suburban areas of Beijing and at Changdao. Beijing had the highest concentration of organic aerosol followed by Guangzhou and Shanghai, while seasonal variation was in reverse order. Dispersion conditions determined by local topographies and meteorology were responsible for this trend. Contrary to common understanding, pollutant concentrations at the suburban sites were higher than the urban sites in all three cities. The main reason was the rapid urbanization of the suburban areas in the immediate vicinity of urban centers since China opened up for economic development, in addition, large numbers of manufacturing plants were relocated from the cities to the countryside in an attempt to clean up the urban

  5. Assessment of health and economic effects by PM2.5 pollution in Beijing: a combined exposure-response and computable general equilibrium analysis.

    Science.gov (United States)

    Wang, Guizhi; Gu, SaiJu; Chen, Jibo; Wu, Xianhua; Yu, Jun

    2016-12-01

    Assessment of the health and economic impacts of PM2.5 pollution is of great importance for urban air pollution prevention and control. In this study, we evaluate the damage of PM2.5 pollution using Beijing as an example. First, we use exposure-response functions to estimate the adverse health effects due to PM2.5 pollution. Then, the corresponding labour loss and excess medical expenditure are computed as two conducting variables. Finally, different from the conventional valuation methods, this paper introduces the two conducting variables into the computable general equilibrium (CGE) model to assess the impacts on sectors and the whole economic system caused by PM2.5 pollution. The results show that, substantial health effects of the residents in Beijing from PM2.5 pollution occurred in 2013, including 20,043 premature deaths and about one million other related medical cases. Correspondingly, using the 2010 social accounting data, Beijing gross domestic product loss due to the health impact of PM2.5 pollution is estimated as 1286.97 (95% CI: 488.58-1936.33) million RMB. This demonstrates that PM2.5 pollution not only has adverse health effects, but also brings huge economic loss.

  6. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter(PM 10)collected from a subway tunnel in Seoul, Korea.

    Science.gov (United States)

    Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min

    2012-12-12

    Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway

  7. Assessment of diesel particulate matter exposure in the workplace: freight terminals†

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.

    2008-01-01

    A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272

  8. Assessment of life quality in patients with bronchial asthma residing in Krakow in the areas of varying concentrations of particulate matter (PM10

    Directory of Open Access Journals (Sweden)

    Monika Ścibor

    2015-03-01

    Full Text Available Introduction. Asthma is a chronic disease, from which more and more people in the world suffer. It is connected with many bothersome symptoms and limitations, which result in decreased quality of life for the patient. Environmental and individual aspects do not necessarily affect individuals in the same way, so it is necessary to determine which factors have predominantly impacted on an individual, in order to minimize their impact and to take better control over treatment of asthma. The aim of this research was to compare the quality of life among patients with bronchial asthma living in Krakow in the areas where they get exposed to varying concentrations of particulate matter (PM10. Material and methods. The study included 98 adults diagnosed with bronchial asthma. The research was conducted using the AQLQ poll. PM10 concentration was measured in several Malopolska Air Pollution Monitoring Stations located throughout the city. Results. Analyzing the quality of life in the view of symptoms, activity limitations and emotional well being, there was a substantial statistical difference observed in people occupying the areas with different PM10 concentrations. No significant statistical difference was observed in the frequency of asthma symptoms caused by the environmental stimuli between the 2 discussed groups. One group of patients who came to the allergy clinic for control of asthma symptoms and the second group who live in the vicinity of the monitoring stations measuring PM10 concentrations. Conclusions. For many of the cases, the quality of life was not worse for patients with asthma living in an area with slightly elevated concentrations of PM10, and sometimes paradoxically the quality of life was improved. These results show that PM10 concentrations do not correlate with quality of life of asthma patients.

  9. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC with Fine Particulate Matters (PM2.5 in Urban Hotspots of South Korea

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2017-11-01

    Full Text Available We evaluated the spatiotemporal distributions of black carbon (BC and particulate matters with aerodynamic diameters of less than 2.5 m (PM2.5 concentrations at urban diesel engine emission (DEE hotspots of South Korea. Concentrations of BC and PM2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1 and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2 and 500 m (Site 3 away from Site 1 on 4 different days over the season, thrice per day; morning (n = 120 measurements for each day and site, evening (n = 120, and noon (n = 120. The median (interquartile range PM2.5 ranged from 12.6 (11.3–14.3 to 60.1 (47.0–76.0 μg/m3 while those of BC concentrations ranged from 2.6 (1.9–3.7 to 6.3 (4.2–10.3 μg/m3. We observed a strong relationship of PM2.5 concentrations between sites (slopes 0.89–0.9, the coefficient of determination 0.89–0.96 while the relationship for BC concentrations between sites was relatively weak (slopes 0.76–0.85, the coefficient of determination 0.54–0.72. PM2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM2.5, especially at urban DEE related hotspot areas.

  10. Investigating Mitochondrial Dysfunction in Human Lung Cells Exposed to Redox-Active PM Components

    Science.gov (United States)

    Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ incr...

  11. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  12. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  13. Geographic variation in Chinese children' forced vital capacity and its association with long-term exposure to local PM10: a national cross-sectional study.

    Science.gov (United States)

    Wang, Hai-Jun; Li, Qin; Guo, Yuming; Song, Jie-Yun; Wang, Zhiqiang; Ma, Jun

    2017-10-01

    The purpose of this study was to estimate the association between Chinese children's forced vital capacity (FVC) and particulate matter with aerodynamic diameter ≤10 μm (PM 10 ). The FVC data of 71,763 children aged 7 to 18 was collected from 2010 Chinese National Survey on Students' Construction and Health (CNSSCH). The local annual average concentration of PM 10 , relative humidity, ambient temperature, and other air pollutant data of 30 cities was collected from China Meteorological Administration and Ministry of Environment Protection of China. Then, we used generalized additive model (GAM) to estimate the association between children's FVC and PM 10 . The obvious geographic variation in FVC was found in children of 30 Chinese cities ranging from 1647 ml in Xining to 2571 ml in Beijing. The annual average concentration of PM 10 was also different, ranging from 40 μg/m 3 in Haikou to 155 μg/m 3 in Lanzhou. After adjusted individual characteristics, socioeconomic conditions, ambient temperature, relative humidity, and other air pollutants (e.g., NO 2 and SO 2 ) in the generalized additive model, we found that the increase of PM 10 was associated with decrease of FVC in Chinese children. A 10-μg/m 3 increase of PM 10 was associated with 1.33-ml decrease in FVC (95% confidence interval: -2.18 to -0.47). We also found a larger effect estimate of PM 10 on FVC in boys than that in girls. Consistent associations were found in both physically inactive and active children. The increase of PM 10 was associated with decrease of children's FVC. We should develop proper public health policy to protect children's respiratory health during growth and development in polluted areas.

  14. Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin; Hytychova, Adela [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Albertov 6, 128 43 Prague 2 (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of outdoor sports, Jose Martiho 31, 162 52 Prague 6 (Czech Republic)

    2009-06-15

    Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM{sub 2.5} recorded in the gym exceeded the WHO recommended 24-hour limit of 25 {mu}g m{sup -3} in 50% of the days measured. The average 24-h concentrations of PM{sub 2.5} (24.03 {mu}g m{sup -3}) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 {mu}g m{sup -3}) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM{sub 2.5-10}) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity. (author)

  15. Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1.0 and PM2.5 from Shanghai, China.

    Science.gov (United States)

    Zou, Yajuan; Wu, Yizhao; Wang, Yali; Li, Yinsheng; Jin, Chengyu

    2017-08-01

    Exposure to ambient particulate matter (PM) links with a variety of respiratory diseases. However, compared with coarse particles (PM 10 ) and fine particles (PM 2.5 ), submicrometer particles (PM 1.0 ) may be a more important indicator of human health risks. In this study, the cytotoxic and genotoxic effects of PM 1.0 samples from Shanghai were examined using A549 cells, and compared with the effects of PM 2.5 , to better understand the health effects of PM 1.0 in this area. The PM 1.0 and PM 2.5 samples were characterized for morphology, water-soluble inorganic ions, organic and elemental carbon, and metal elements. The cytotoxicity of PMs was measured using cell viability and cell membrane damage assays. The genotoxic effects of PMs were determined using the comet assay, and DNA damage was quantified using olive tail moment (OTM) values. The physicochemical characterization indicated that PM 1.0 was enriched in carbonaceous elements and hazardous metals (Al, Zn, Pb, Mn, Cu, and V), whereas PM 2.5 was more abundant in large, irregular mineral particles. The biological results revealed that both PM 1.0 and PM 2.5 could induce significant cytotoxicity and genotoxicity in A549 cells, and that exposure to PM 1.0 caused more extensive toxic effects than exposure to PM 2.5 . The greater cytotoxic effects of PM 1.0 can be attributed to the combined effects of size and chemical composition, whereas the genotoxic effects of PM 1.0 may be mainly associated with chemical species.

  16. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups.

    Science.gov (United States)

    Agudelo-Castañeda, Dayana M; Teixeira, Elba C; Schneider, Ismael L; Lara, Sheila Rincón; Silva, Luis F O

    2017-05-01

    We investigated the carcinogenic and mutagenic respiratory health risks related to the exposure to atmospheric PAHs in an urban area. Our study focused in the association of these pollutants and their possible effect in human health, principally respiratory and circulatory diseases. Also, we determined a relationship between the inhalation risk of PAHs and meteorological conditions. We validated the hypothesis that in winter PAHs with high molecular weight associated to submicron particles (PM 1 ) may increase exposure risk, especially for respiratory diseases, bronchitis and pneumonia diseases. Moreover, in our study we verified the relationship between diseases and several carcinogenic PAHs (Ind, BbkF, DahA, BaP, and BghiP). These individual PAHs contributed the most to the potential risk of exposure for inhalation of PM 1.0 . Even at lower ambient concentrations of BaP and DahA in comparison with individual concentrations of other PAHs associated to PM 1.0 . Mainly, research suggests to include carcinogenic and mutagenic PAHs in future studies of environmental health risk due to their capacity to associate to PM 10 . Such carcinogenic and mutagenic PAHs are likely to provide the majority of the human exposure, since they originate from dense traffic urban areas were humans congregate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mortality due to Vegetation Fire-Originated PM2.5 Exposure in Europe-Assessment for the Years 2005 and 2008.

    Science.gov (United States)

    Kollanus, Virpi; Prank, Marje; Gens, Alexandra; Soares, Joana; Vira, Julius; Kukkonen, Jaakko; Sofiev, Mikhail; Salonen, Raimo O; Lanki, Timo

    2017-01-01

    Vegetation fires can release substantial quantities of fine particles (PM2.5), which are harmful to health. The fire smoke may be transported over long distances and can cause adverse health effects over wide areas. We aimed to assess annual mortality attributable to short-term exposures to vegetation fire-originated PM2.5 in different regions of Europe. PM2.5 emissions from vegetation fires in Europe in 2005 and 2008 were evaluated based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data on fire radiative power. Atmospheric transport of the emissions was modeled using the System for Integrated modeLling of Atmospheric coMposition (SILAM) chemical transport model. Mortality impacts were estimated for 27 European countries based on a) modeled daily PM2.5 concentrations and b) population data, both presented in a 50 × 50 km2 spatial grid; c) an exposure-response function for short-term PM2.5 exposure and daily nonaccidental mortality; and d) country-level data for background mortality risk. In the 27 countries overall, an estimated 1,483 and 1,080 premature deaths were attributable to the vegetation fire-originated PM2.5 in 2005 and 2008, respectively. Estimated impacts were highest in southern and eastern Europe. However, all countries were affected by fire-originated PM2.5, and even the lower concentrations in western and northern Europe contributed substantially (~ 30%) to the overall estimate of attributable mortality. Our assessment suggests that air pollution caused by PM2.5 released from vegetation fires is a notable risk factor for public health in Europe. Moreover, the risk can be expected to increase in the future as climate change proceeds. This factor should be taken into consideration when evaluating the overall health and socioeconomic impacts of these fires. Citation: Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T. 2017. Mortality due to vegetation fire-originated PM2.5 exposure in Europe

  18. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  19. Indoor exposure to environmental cigarette smoke, but not other inhaled particulates associates with respiratory symptoms and diminished lung function in adults

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise L N; Sigsgaard, Torben

    2010-01-01

    Exposure to particulate matter (PM) can induce airway inflammation and exacerbation of asthma. However, there is limited knowledge about the effects of exposure to indoor sources of PM. We investigated the associations between self-reported exposure to indoor sources of PM and lower airway sympto...

  20. Respiratory hospitalizations in association with fine PM and its ...

    Science.gov (United States)

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5–hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5–2.0% per interquartile range [IQR

  1. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  2. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    Science.gov (United States)

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  3. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland.

    Science.gov (United States)

    Widziewicz, Kamila; Rogula-Kozlowska, Wioletta; Loska, Krzysztof; Kociszewska, Karolina; Majewski, Grzegorz

    2018-01-01

    To check whether health risk impacts of exposure to airborne metals and Benzo(a) Pyrene during episodes of high PM10 concentrations lead to an increased number of lung cancer cases in Poland. In this work, we gathered data from 2002 to 2014 concerning the ambient concentrations of PM10 and PM10-bound carcinogenic Benzo(a)pyrene [B(a)P] and As, Cd, Pb, and Ni. With the use of the criterion of the exceedance in the daily PM10 mass concentration on at least 50% of all the analyzed stations, the PM10 maxima's were selected. Lung cancer occurrences in periods with and without the episodes were further compared. During a 12-year period, 348 large-scale smog episodes occurred in Poland. A total of 307 of these episodes occurred in the winter season, which is characterized by increased emissions from residential heating. The occurrence of episodes significantly (P < 0.05) increased the concentrations of PM10-bound carcinogenic As, Cd, Pb, Ni, and B(a)P. During these events, a significant increase in the overall health risk from those PM10-related compounds was also observed. The highest probability of lung cancer occurrences was found in cities, and the smallest probability was found in the remaining areas outside the cities and agglomerations. The link between PM pollution and cancer risk in Poland is a serious public health threat that needs further investigation. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020.

    Science.gov (United States)

    Maji, Kamal Jyoti; Dikshit, Anil Kumar; Arora, Mohit; Deshpande, Ashok

    2018-01-15

    In past decade of rapid industrial development and urbanization, China has witnessed increasingly persistent severe haze and smog episodes, posing serious health hazards to the Chinese population, especially in densely populated cities. Quantification of health impacts attributable to PM 2.5 (particulates with aerodynamic diameter≤2.5μm) has important policy implications to tackle air pollution. The Chinese national monitoring network has recently included direct measurements of ground level PM 2.5 , providing a potentially more reliable source for exposure assessment. This study reports PM 2.5 -related long-term mortality of year 2015 in 161 cities of nine regions across China using integrated exposure risk (IER) model for PM 2.5 exposure-response functions (ERF). It further provides an estimate of the potential health benefits by year 2020 with a realization of the goals of Air Pollution Prevention and Control Action Plan (APPCAP) and the three interim targets (ITs) and Air Quality Guidelines (AQG) for PM 2.5 by the World Health Organization (WHO). PM 2.5 -related premature mortality in 161 cities was 652 thousand, about 6.92% of total deaths in China during year 2015. Among all premature deaths, contributions of cerebrovascular disease (stroke), ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC) and acute lower respiratory infections (ALRIs) were 51.70, 26.26, 11.77, 9.45 and 0.82%, respectively. The premature mortality in densely populated cities is very high, such as Tianjin (12,533/year), Beijing (18,817/year), Baoding (10,932/year), Shanghai (18,679/year), Chongqing (23,561/year), Chengdu (11,809/year), Harbin (9037/year) and Linyi (9141/year). The potential health benefits will be 4.4, 16.2, 34.5, 63.6 and 81.5% of the total present premature mortality when PM 2.5 concentrations in China meet the APPCAP, WHO IT-1, IT-2, IT-3 and AQG respectively, by the year 2020. In the current situation, by the end of year 2030

  5. Serum cytokine levels related to exposure to volatile organic compounds and PM2.5 in dwellings and workplaces in French farmers – a mechanism to explain nonsmoking COPD

    Directory of Open Access Journals (Sweden)

    Audi C

    2017-05-01

    Full Text Available Christelle Audi,1,* Nour Baïz,1,* Cara N Maesano,1 Ollivier Ramousse,2 Damien Reboulleau,3 Antoine Magnan,3 Denis Caillaud,4 Isabella Annesi-Maesano1 1Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, UMRS 1136, Epidemiology of Allergic and Respiratory Diseases Department, Medical School Saint-Antoine, Paris, 2Mutualité Sociale Agricole, Clermont-Ferrand, Auvergne, 3Centre du Thorax de Nantes INSERM, UMR1087, Institut du thorax, Nantes, 4Respiratory Diseases Department, CHU Clermont-Ferrand, Clermont-Ferrand, Auvergne, France *These authors contributed equally to this work Abstract: Although French farmers smoke less on average than individuals from the general population, they suffer more from COPD. Exposure to biological and chemical air pollutants in the farm may be the cause of these higher COPD rates. This study investigates the role of biocontaminants, including the relationship of exposure to volatile organic compounds (VOCs and fine particulate matter (of diameter of 2.5 µm [PM2.5] objectively measured in the farm settings (dwellings and workplaces to serum cytokines involved in COPD, in a sample of 72 farmers from 50 farms in the Auvergne region, France. Mean concentrations of VOCs were highest inside the home, while levels of PM2.5 were highest in workplaces (stables and granaries. After adjusting for confounders, high exposure to PM2.5 was significantly associated with a decreased level of serum cytokines (among others, IL13: β: –0.94, CI: –1.5 to –0.2, P-value =0.004; IL8: β: –0.82, CI: –1.4 to –0.2, P-value =0.005 and high exposure to VOCs according to a VOC global score with a decreased IL13 level (β: –0.5, CI: –0.9 to –0.1, P-value =0.01. Moreover, respiratory symptoms and diseases, including COPD, were associated with a decreased level of serum cytokines significantly in the case of IL5. An alteration of immune response balance in terms of

  6. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    International Nuclear Information System (INIS)

    Esposito, V.; Lucariello, A.; Savarese, L.; Cinelli, M.P.; Ferraraccio, F.; Bianco, A.; De Luca, A.; Mazzarella, G.

    2012-01-01

    In the recent literature there has been an increased interest in the effects of particulate matter on the respiratory tract. The objective of this study was to use an in vitro model of type II lung epithelium (A549) to evaluate the cell ability to take up sub-micron PM 1.0 particles (PM 1.0 ), Parietaria officinalis (ALL), and PM 1.0 + ALL together. Morphological analysis performed by Transmission Electron Microscope (TEM) showed that PM and ALL interacted with the cell surface, then penetrating into the cytoplasm. Each single treatment was able to point out a specific change in the morphology. The cells treated appear healthy and not apoptotic. The main effect was the increase of: multilamellar bodies, lysosomal enzymes, microvilli, and presence of vesicle/vacuoles containing particles. These observations demonstrate morphological and functional alterations related to the PM 1.0 and P. officinalis and confirm the induction of the inflammatory response in lung cells exposed to the inhalable particles. - Highlights: ► Cell ability to take up PM 1.0 particles, Parietaria officinalis (ALL), PM 1.0 + ALL. ► The cells treated appear healthy and not apoptotic. ► Each single treatment was able to point out a specific change in the morphology. ► Increase of multilamellar bodies lysosomal enzymes microvilli vesicle with particles. ► Induction of inflammatory response in lung cells exposed to the inhalable particles. - The urban environment with the combination of inhalable air pollution and particulate can damage the acinar lung units and activate cells of the immune system.

  8. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: Environmental justice applications of downscaled numerical model output.

    Science.gov (United States)

    Bravo, Mercedes A; Anthopolos, Rebecca; Bell, Michelle L; Miranda, Marie Lynn

    2016-01-01

    Researchers and policymakers are increasingly focused on combined exposures to social and environmental stressors, especially given how often these stressors tend to co-locate. Such exposures are equally relevant in urban and rural areas and may accrue disproportionately to particular communities or specific subpopulations. To estimate relationships between racial isolation (RI), a measure of the extent to which minority racial/ethnic group members are exposed to only one another, and long-term particulate matter with an aerodynamic diameter of poverty. RI is associated with higher 5year estimated PM2.5 concentrations in urban, suburban, and rural census tracts, adding to evidence that segregation is broadly associated with disparate air pollution exposures. Disproportionate burdens to adverse exposures such as air pollution may be a pathway to racial/ethnic disparities in health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Science.gov (United States)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  10. Sources and oxidative potential of water-soluble humic-like substances (HULISWS in fine particulate matter (PM2.5 in Beijing

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2018-04-01

    Full Text Available Water-soluble humic-like substances (HULISWS are a major redox-active component of ambient fine particulate matter (PM2.5; however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( >  59 % to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for  >  70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  11. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

    Science.gov (United States)

    Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Cao, Gang; Fang, Yanhua; Wang, Junxia; Zhu, Tong; Yu, Jianzhen; Hu, Di

    2018-04-01

    Water-soluble humic-like substances (HULISWS) are a major redox-active component of ambient fine particulate matter (PM2.5); however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT) activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( > 59 %) to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for > 70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  12. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for ...

  13. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days ...

  14. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    Science.gov (United States)

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  15. Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources Krakow study in pregnant women.

    Science.gov (United States)

    Jedrychowski, Wieslaw A; Perera, Frederica P; Pac, Agnieszka; Jacek, Ryszard; Whyatt, Robin M; Spengler, John D; Dumyahn, Thomas S; Sochacka-Tatara, Elzbieta

    2006-07-31

    The study is a part of an ongoing prospective cohort study on the relationship between the exposure to environmental factors during pregnancy and birth outcomes and health of newborns. We have measured personal PM(2.5) level in the group of 407 non-smoking pregnant women during the 2nd trimester of pregnancy. On average, the participants from the city center were exposed to higher exposure than those from the outer city area (GM=42.0 microg/m(3), 95% CI: 36.8-48.0 vs. 35.8 microg/m(3), 95% CI: 33.5-38.2 microg/m(3)). More than 20% of study subjects were affected by high level of PM(2.5) pollution (above 65 microg/m(3)). PM(2.5) concentrations were higher during the heating season (GM=43.4 microg/m(3), 95% CI: 40.1-46.9 microg/m(3)) compared to non-heating season (GM=29.8 microg/m(3), 95% CI: 27.5-32.2 microg/m(3)). Out of all potential outdoor air pollution sources (high traffic density, bus depot, waste incinerator, industry etc.) considered in the bivariate analysis, only the proximity of industrial plant showed significant impact on the personal exposure (GM=54.3 microg/m(3), 95% CI: 39.4-74.8 microg/m(3)) compared with corresponding figure for those who did not declare living near the industrial premises (GM=36.2 microg/m(3), 95% CI: 34.1-38.4 microg/m(3)). The subjects declaring high exposure to ETS (>10 cigarettes daily) have shown very high level of personal exposure (GM=88.8 microg/m(3), 95% CI: 73.9-106.7 microg/m(3)) compared with lower ETS exposure (< or =10 cigarettes) (GM=46.3 microg/m(3), 95% CI: 40.0-53.5 microg/m(3)) and no-ETS exposure group (GM=33.9 microg/m(3), 95% CI: 31.8-36.1 microg/m(3)). The contribution of the background ambient PM(10) level was very strong determinant of the total personal exposure to PM(2.5) and it explained about 31% of variance between the subjects followed by environmental tobacco smoke (10%), home heating by coal/wood stoves (2%), other types of heating (2%) and the industrial plant localization in the proximity of

  16. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  17. A panel study of airborne particulate matter concentration and impaired cardiopulmonary function in young adults by two different exposure measurement

    Science.gov (United States)

    Hu, Li-Wen; Qian, Zhengmin (Min); Bloom, Michael S.; Nelson, Erik J.; Liu, Echu; Han, Bin; Zhang, Nan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Komppula, Mika; Leskinen, Ari; Hirvonen, Maija-Riitta; Roponen, Marjut; Jalava, Pasi; Bai, Zhipeng; Dong, Guang-Hui

    2018-05-01

    This study sought to clarify the correlation of individual exposure measurements and PM2.5 measurements collected at regulatory monitoring sites in short-term panel study settings. To achieve this goal, 30 young, healthy adult participants were assigned to three groups with 4 samplers in each group to collect individual exposures during four weekends in March 2016. Participants also completed cardiopulmonary function tests during the same periods. For comparison, ambient air pollution data were obtained from the Air Pollution Surveillance Network in Guangzhou, China. The 8-h ambient pollutant averages and group sampler concentrations were used as separate indicators of air pollution exposure. Results showed that the 8-h mean concentration of personal PM2.5 exposure was 65.09 ± 22.18 μg/m3, which was 24.34 μg/m3 statistically higher than the ambient concentrations over the same period (p < 0.05). However, these concentrations were strongly correlated (Spearman's r = 0.937, p < 0.01). Separate mixed-effect models were fit for ambient and personal exposures to estimate their associations with cardiopulmonary outcomes. Higher PM2.5 and PM10 exposures were related to lower lung function of maximal mid-expiratory flow (MMEF). A 10 μg/m3 higher PM was associated with 0.11 L/S to 0.52 L/S lower MMEF. No effects on cardiovascular function were found. In conclusion, personal PM2.5 exposure might be higher than ambient concentrations. Young, healthy adults in urban areas may experience reduced lung function (lower MMEF), even after just 8 h of exposure to PM2.5 and PM10.

  18. NAAQS Designated Area Polygons - Fine Particulate Matter (24-Hr, PM-2.5), Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Designated Areas for Particulate Matter < 2.5 microns, according to the 24-Hour National Ambient Air Quality Standards (NAAQS). Nonattainment areas are geographic...

  19. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications.

    Science.gov (United States)

    Lippmann, Morton

    2014-04-01

    Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.

  20. Impact of Particulate Matter Exposure and Surrounding "Greenness" on Chronic Absenteeism in Massachusetts Public Schools.

    Science.gov (United States)

    MacNaughton, Piers; Eitland, Erika; Kloog, Itai; Schwartz, Joel; Allen, Joseph

    2017-02-20

    Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM 2.5 ) within 250 m and 1000 m respectively of each public school in Massachusetts during the 2012-2013 academic year using satellite-based data. We modeled chronic absenteeism rates in the same year as a function of PM 2.5 and NDVI, controlling for race and household income. Among the 1772 public schools in Massachusetts, a 0.15 increase in NDVI during the academic year was associated with a 2.6% ( p value absenteeism rates, and a 1 μg/m³ increase in PM 2.5 during the academic year was associated with a 1.58% ( p value absenteeism rates. Based on these percentage changes in chronic absenteeism, a 0.15 increase in NDVI and 1 μg/m³ increase in PM 2.5 correspond to 25,837 fewer students and 15,852 more students chronically absent each year in Massachusetts respectively. These environmental impacts on absenteeism reinforce the need to protect green spaces and reduce air pollution around schools.

  1. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  2. Air Pollution Exposure Modeling for Epidemiology Studies and Public Health

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  3. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    Science.gov (United States)

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  4. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS).

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin Min; Li, Shanshan; Fan, Shujun; Chen, Gongbo; Syberg, Kevin M; Xian, Hong; Wang, Si-Quan; Ma, Huimin; Chen, Duo-Hong; Yang, Mo; Liu, Kang-Kang; Zeng, Xiao-Wen; Hu, Li-Wen; Guo, Yuming; Dong, Guang-Hui

    2018-07-01

    Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM 1 ), ≤ 2.5 µm (PM 2.5 ), and ≤ 10 µm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and ozone (O 3 )). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m 3 increase in PM 1 , PM 2.5 , PM 10 , SO 2 , NO 2 , and O 3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China.

    Science.gov (United States)

    Wang, Ting; Tian, Mi; Ding, Nan; Yan, Xiao; Chen, She-Jun; Mo, Yang-Zhi; Yang, Wei-Qiang; Bi, Xin-Hui; Wang, Xin-Ming; Mai, Bi-Xian

    2018-05-01

    Few efforts have been made to elucidate the influence of weather conditions on the fate of semivolatile organic compounds (SOCs). Here, daily fine particulate matter (PM 2.5 ) during clear, haze, and fog episodes collected in the winter in Beijing, China was analyzed for polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and organophosphate flame retardants (OPFRs). The total concentrations of PAHs, OPFRs, and BFRs had medians of 45.1 ng/m 3 and 1347 and 46.7 pg/m 3 , respectively. The temporal pattern for PAH concentrations was largely dependent on coal combustion for residential heating. OPFR compositions that change during colder period were related to enhanced indoor emissions due to heating. The mean concentrations of SOCs during haze and fog days were 2-10 times higher than those during clear days. We found that BFRs with lower octanol and air partition coefficients tended to increase during haze and fog episodes, be removed from PM 2.5 during clear episodes, or both. For PAHs and OPFRs, pollutants that are more recalcitrant to degradation were prone to accumulate during haze and fog days. The potential source contribution function (PSCF) model indicated that southern and eastern cities were major source regions of SOCs at this site.

  6. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  7. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  8. Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China.

    Science.gov (United States)

    Gu, Zeping; Feng, Jialiang; Han, Wenliang; Wu, Minghong; Fu, Jiamo; Sheng, Guoying

    2010-08-01

    Solvent extractable organic compounds in PM(2.5) samples collected in Taizhou, a city famous for its electrical and electronic waste (e-waste) recycling industry in Zhejiang province of China, were analyzed to identify the main emission sources based on molecular markers. Two types of plastics which were most frequently contained in the e-wastes, wires/cables and plastic blocks, were burned in the lab and the particles emitted analyzed. The concentrations of PAHs and phthalate esters at the e-waste dismantling area during our sampling periods were about two times of that at the reference urban site, indicating the high pollution level there. The high concentrations of quaterphenyl found at the dismantling area indicated that burning of plastics or polymers was an important emission source of the PAHs in the fine particles. The diagnostic analysis based on the compositions of alkanes, hopanes and other molecular markers showed that engine exhaust, biomass burning and kitchen emissions were also important emission sources at the e-waste dismantling area. Our results suggested that more effort should be paid to control the correlative emission sources such as transportation and kitchen to achieve better air quality at the e-waste dismantling area besides regulating the recycling activities. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  10. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  11. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    Science.gov (United States)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  12. Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the Agglomeration Lausanne-Morges.

    Science.gov (United States)

    Castro, Alberto; Künzli, Nino; Götschi, Thomas

    2017-07-01

    Exposure to urban air pollution has been associated with adverse effects on cardio-vascular and respiratory health, both short and long term. Consequently, governments have applied policies to reduce air pollution. Quantitative health impact assessments of hypothetic changes in air pollution have been conducted at national and global level, but assessments of observed air pollution changes associated with specific clean air policies at a local or regional scale remain scarce. This study estimates health impacts attributable to a decrease in PM 10 and NO 2 exposure in the Agglomeration of Lausanne-Morges (ALM), Switzerland, between 2005 and 2015, corresponding to the implementation period of a supra-municipal plan of measures to reduce air pollution in different sectors such as transport, energy, and industry (called Plan OPair 05). The health impact assessment compares health effects attributed to air pollution exposure levels in 2015 (reference case) with those in 2005 (counterfactual scenario), using 2015 as baseline for all other input data. In the ALM, the modeled PM 10 exposure reduction of 3.3μg/m 3 from 2005 to 2015 prevents 26 premature deaths (equivalent to around 290 years of life lost), 215 hospitalization days due to cardio-vascular and respiratory diseases as well as approximately 47,000 restricted activity days annually. Monetized health impacts of the reduction of PM 10 exposure are valued at approximately CHF 36 million annually. Immaterial costs, mainly related to the economic valuation of years of life lost, dominate the monetized health impacts (90% of total value), while savings at the workplace (net loss in production and reoccupation costs) amount to about CHF 1.9 million, and savings in health care costs to about CHF 0.5 million. The assessment is sensitive to the value assigned to immaterial costs and to uncertainties in the relative risk estimates, whereas variations in the baseline year (i.e. using 2005 data instead of 2015 data) affect

  13. PM10 sampler deposited air particulates: Ascertaining uniformity of sample on filter through rotated exposure to radiation

    International Nuclear Information System (INIS)

    Owoade, Oyediran K.; Olise, Felix S.; Obioh, Imoh B.; Olaniyi, Hezekiah B.; Bolzacchini, Ezio; Ferrero, Luca; Perrone, Grazia

    2006-01-01

    For reproducibility of analytical results of samples deposited on filters using PM 10 sampler, homogeneity of the sample on the filter is very important especially when the size of the X-ray beam for the analysis is less than the size of filter. It is against this background that the air particulate samples collected on using PM 10 samplers are analysed to determine the elemental concentrations. Each sample was divided into four quadrants and each was analysed under same conditions to determine if the particles were deposited uniformly over the filter. Each analysis was done using EDXRF technique. The spectrometer consists of four secondary targets, which are automatically switched to in sequence in analysing each sample. The concentration of various elements detected was determined using TURBOQUANT (a brand name for a SPECTRO method which is used for screening analysis). Sixteen elements were detected in every sample. Results show that there was less than 10% deviation in the concentrations in different quadrants. There were a few elements like Ba, Cs, etc., which have deviation greater than 20%. The concentrations of these latter elements were close to detection limits of the spectrometer. We conclude that the analytical result of particulate samples deposited on filters by the PM 10 sampler can be reliable in terms of the homogeneity of the deposition. For such analytes with low concentrations, it would be important that the sampling time be increased to allow for higher mass deposition on the filter

  14. PM{sub 10} sampler deposited air particulates: Ascertaining uniformity of sample on filter through rotated exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Owoade, Oyediran K. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria)]. E-mail: oowoade2001@yahoo.com; Olise, Felix S. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria); Obioh, Imoh B. [Centre for Energy Research, Development (Cerd), Obafemi Awolowo University, Ile-Ife (Nigeria); Olaniyi, Hezekiah B. [Environmental Research Laboratory (ERL), Physics Department, Obafemi Awolowo University, Ile-Ife (Nigeria); Bolzacchini, Ezio [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy); Ferrero, Luca [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy); Perrone, Grazia [Universita Milano-Bicocca, Dipartimento di Scienze-Ambientali, Pizza della Scienza, Milan (Italy)

    2006-08-01

    For reproducibility of analytical results of samples deposited on filters using PM{sub 10} sampler, homogeneity of the sample on the filter is very important especially when the size of the X-ray beam for the analysis is less than the size of filter. It is against this background that the air particulate samples collected on using PM{sub 10} samplers are analysed to determine the elemental concentrations. Each sample was divided into four quadrants and each was analysed under same conditions to determine if the particles were deposited uniformly over the filter. Each analysis was done using EDXRF technique. The spectrometer consists of four secondary targets, which are automatically switched to in sequence in analysing each sample. The concentration of various elements detected was determined using TURBOQUANT (a brand name for a SPECTRO method which is used for screening analysis). Sixteen elements were detected in every sample. Results show that there was less than 10% deviation in the concentrations in different quadrants. There were a few elements like Ba, Cs, etc., which have deviation greater than 20%. The concentrations of these latter elements were close to detection limits of the spectrometer. We conclude that the analytical result of particulate samples deposited on filters by the PM{sub 10} sampler can be reliable in terms of the homogeneity of the deposition. For such analytes with low concentrations, it would be important that the sampling time be increased to allow for higher mass deposition on the filter.

  15. Long-term exposure to ambient PM2.5 associated with fall-related injury in six low- and middle-income countries.

    Science.gov (United States)

    Guo, Yanfei; Lin, Hualiang; Shi, Yan; Zheng, Yang; Li, Xing; Xiao, Jianpeng; Liu, Tao; Zeng, Weilin; Vaughn, Michael G; Cummings-Vaughn, Lenise A; Nelson, Erik J; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2018-06-01

    Exposure to ambient air pollution has been linked with adverse health outcomes of the circulatory and nervous systems. Given that falls are closely related to circulatory and nervous health, we hypothesize that air pollution may adversely affect fall-related injury. We employed Wave 1 data from 36,662 participants aged ≥50 years in WHO's Study on Global AGEing and Adult Health in six low- and middle-income countries. Ambient annual concentration of PM 2.5 was estimated using satellite data. A three-level logistic regression model was applied to examine the long-term association between ambient PM 2.5 and the prevalence of fall-related injury, and associated disease burden, as well as the potential effect modification of consumption of fruit and vegetables. Ambient PM 2.5 was found to be significantly associated with the risk of fall-related injury. Each 10 μg/m 3 increase corresponded to 18% (OR = 1.18, 95% CI: 1.09, 1.28) increase in fall-related injury after adjusting for various covariates. The association was relatively stronger among participants with lower consumption of fruit (OR = 1.22, 95% CI: 1.12, 1.33) than higher consumption (OR = 1.06, 95% CI: 0.92, 1.23), and among those with lower vegetable consumption (OR = 1.18, 95% CI: 1.08, 1.28) than higher consumption (OR = 1.08, 95% CI: 0.91, 1.27). Our study suggests that ambient PM 2.5 may be one risk factor for fall-related injury and that higher consumption of fruit and vegetables could alleviate this effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CONTROLLED EXPOSURES OF HUMAN VOLUNTEERS TO DIESEL ENGINE EXHAUST: BIOMARKERS OF EXPOSURE AND HEALTH OUTCOMES

    Science.gov (United States)

    Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...

  17. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-β promoter regions.

    Science.gov (United States)

    Ma, Jing-Hui; Song, Shao-Hua; Guo, Meng; Zhou, Ji; Liu, Fang; Peng, Li; Fu, Zhi-Ren

    2017-11-18

    Atmospheric particulates, especially PM2.5, not only damage the respiratory system, but also play important roles in pulmonary immunity. China is influenced by atmospheric diffusion conditions, industrial manufacturers, and heating and discharging. PM2.5 levels in the air rise substantially in the winter, which is also a period of flu high-incidence. Although an epidemiological link exists between PM2.5 and flu, we do not understand how long-term PM2.5 inhalation affects pulmonary immunity and the influenza virus response. Our study has prepared an in vivo PM2.5 mouse pharyngeal wall drop-in model and has found that PM2.5 exposure leads to mouse inflammatory injuries and furthers influenza A infection. Our results suggest that short-term exposure to PM2.5 significantly enhances the survival rate of influenza A-contaminated mice, while long-term PM2.5 inhalation lowers the capacity of pulmonary macrophages to secrete IL-6 and IFN-β. A disorder in the pulmonary innate defense system results in increased death rates following influenza infection. On a macromolecular level, this mechamism involves Kdm6a down-regulation after long-term exposure to PM 2.5 and a resultant increase in H3K4 and H3K9 methylation in IL-6 and IFN-β promoter regions. In summary, PM2.5 causes injuries of lung tissue cells and downregulates immune defense mechanisms in the lung. Copyright © 2017. Published by Elsevier Inc.

  18. CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.

    Science.gov (United States)

    EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...

  19. Indoor pollution: PM2.5 and PM10 from cigarette smoke

    International Nuclear Information System (INIS)

    Chianese, E.; Barone, G.; Castaldo, R.M.; Riccio, A.

    2009-01-01

    This work is aimed to establishing the temporal and spatial dispersion of PM 10 and PM 2.5 particulate matter fractions generated by cigarettes smoking in an indoor ambient. To this purpose, PM 10 and PM 2.5 concentrations were collected with a mobile instrument positioned in a room accommodating a smoking machine. [it

  20. A study of uniformity of elements deposition on glass fiber filters after collection of airborne particulate matter (PM-10), using a high-volume sampler.

    Science.gov (United States)

    Marrero, Julieta; Rebagliati, Raúl Jiménez; Gómez, Darío; Smichowski, Patricia

    2005-12-15

    A study was conducted to evaluate the homogeneity of the distribution of metals and metalloids deposited on glass fiber filters collected using a high-volume sampler equipped with a PM-10 sampling head. The airborne particulate matter (APM)-loaded glass fiber filters (with an active surface of about 500cm(2)) were weighed and then each filter was cut in five small discs of 6.5cm of diameter. Each disk was mineralized by acid-assisted microwave (MW) digestion using a mixture of nitric, perchloric and hydrofluoric acids. Analysis was performed by axial view inductively coupled plasma optical emission spectrometry (ICP OES) and the elements considered were: Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Ti and V. The validation of the procedure was performed by the analysis of the standard reference material NIST 1648, urban particulate matter. As a way of comparing the possible variability in trace elements distribution in a particular filter, the mean concentration for each element over the five positions (discs) was calculated and each element concentration was normalized to this mean value. Scatter plots of the normalized concentrations were examined for all elements and all sub-samples. We considered that an element was homogeneously distributed if its normalized concentrations in the 45 sub-samples were within +/-15% of the mean value ranging between 0.85 and 1.15. The study demonstrated that the 12 elements tested showed different distribution pattern. Aluminium, Cu and V showed the most homogeneous pattern while Cd and Ni exhibited the largest departures from the mean value in 13 out of the 45 discs analyzed. No preferential deposition was noticed in any sub-sample.

  1. Impacts of 2000-2050 Climate Change on Fine Particulate Matter (PM2.5) Air Quality in China Based on Statistical Projections Using an Ensemble of Global Climate Models

    Science.gov (United States)

    Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.

    2017-12-01

    Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on

  2. A comparative study of the organic matter in PM 2.5 from three Chinese megacities in three different climatic zones

    Science.gov (United States)

    Feng, Jialiang; Hu, Min; Chan, Chak K.; Lau, P. S.; Fang, Ming; He, Lingyan; Tang, Xiaoyan

    Organic matter in PM 2.5 collected in 2002 and 2003 from three megacities in different climatic zones in China, Beijing (40°N), Shanghai (31°N) and Guangzhou (23°N), was characterized. The focus was on solvent-extractable organic compounds (SEOC), which were used to identify the influences of geography, variation of the season, sources and transport on the concentration and distribution of these homologues. Organic carbon, elemental carbon, and water-soluble organic carbon concentrations were analyzed only for the substantiation of the SEOC findings. Analysis of the fossil fuel residues and the plant wax components in n-alkanes, PAHs, fatty acids and n-alkanols allowed the identification of anthropogenic (coal and petroleum combustion processes, and kitchen emissions) and biogenic (vegetation and microbial) sources. The influence of temperature on the distribution of the SEOC was exemplified by the negative correlation between the relative concentrations of the semivolatile homologues (alkanes and PAHs) and ambient temperature. This is attributable to gas-particle partitioning. Indirectly, ambient temperature dictates the type of vegetation that can grow in a geographical zone. This would influence the distribution of the plant waxes, and finally, it plays a role in the aerosol loading due to energy usage.

  3. Family Income, Cumulative Risk Exposure, and White Matter Structure in Middle Childhood

    Directory of Open Access Journals (Sweden)

    Alexander J. Dufford

    2017-11-01

    Full Text Available Family income is associated with gray matter morphometry in children, but little is known about the relationship between family income and white matter structure. In this paper, using Tract-Based Spatial Statistics, a whole brain, voxel-wise approach, we examined the relationship between family income (assessed by income-to-needs ratio and white matter organization in middle childhood (N = 27, M = 8.66 years. Results from a non-parametric, voxel-wise, multiple regression (threshold-free cluster enhancement, p < 0.05 FWE corrected indicated that lower family income was associated with lower white matter organization [assessed by fractional anisotropy (FA] for several clusters in white matter tracts involved in cognitive and emotional functions including fronto-limbic circuitry (uncinate fasciculus and cingulum bundle, association fibers (inferior longitudinal fasciculus, superior longitudinal fasciculus, and corticospinal tracts. Further, we examined the possibility that cumulative risk (CR exposure might function as one of the potential pathways by which family income influences neural outcomes. Using multiple regressions, we found lower FA in portions of these tracts, including those found in the left cingulum bundle and left superior longitudinal fasciculus, was significantly related to greater exposure to CR (β = -0.47, p < 0.05 and β = -0.45, p < 0.05.

  4. A dynamic processes study of PM retention by trees under different wind conditions.

    Science.gov (United States)

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  6. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities.

    Science.gov (United States)

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi V

    2015-08-15

    The study deals with the assessment of health impact and the respective economic cost attributed to particulate matter (PM) emitted into the atmosphere from biomass burning for space heating, focusing on the differences between the warm and cold seasons in 2011-2012 and 2012-2013 in Thessaloniki (Greece). Health impact was assessed based on estimated exposure levels and the use of established WHO concentration-response functions (CRFs) for all-cause mortality, infant mortality, new chronic bronchitis cases, respiratory and cardiac hospital admissions. Monetary cost was based on the valuation of the willingness-to-pay/accept (WTP/WTA), to avoid or compensate for the loss of welfare associated with illness. Results showed that long term mortality during the 2012-2013 winter increased by 200 excess deaths in a city of almost 900,000 inhabitants or 3540 years of life lost, corresponding to an economic cost of almost 200-250m€. New chronic bronchitis cases dominate morbidity estimates (490 additional new cases corresponding to a monetary cost of 30m€). Estimated health and monetary impacts are more severe during the cold season, despite its smaller duration (4 months). Considering that the increased ambient air concentrations (and the integral of outdoor/indoor exposure) are explained by shifting from oil to biomass for domestic heating purposes, several alternative scenarios were evaluated. Policy scenario analysis revealed that significant public health and monetary benefits (up to 2b€ in avoided mortality and 130m€ in avoided illness) might be obtained by limiting the biomass share in the domestic heat energy mix. Fiscal policy affecting fuels/technologies used for domestic heating needs to be reconsidered urgently, since the net tax loss from avoided oil taxation due to reduced consumption was further compounded by the public health cost of increased mid-term morbidity and mortality. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Adverse Reproductive Health Outcomes and Exposure to Gaseous and Particulate-Matter Air Pollution in Pregnant Women.

    Science.gov (United States)

    Wu, Jun; Laurent, Olivier; Li, Lianfa; Hu, Jianlin; Kleeman, Michael

    2016-07-01

    There is growing epidemiologic evidence of associations between maternal exposure to ambient air pollution and adverse birth outcomes, such as preterm birth (PTB). Recently, a few studies have also reported that exposure to ambient air pollution may also increase the risk of some common pregnancy complications, such as preeclampsia and gestational diabetes mellitus (GDM). Research findings, however, have been mixed. These inconsistent results could reflect genuine differences in the study populations, the study locations, the specific pollutants considered, the designs of the study, its methods of analysis, or random variation. Dr. Jun Wu of the University of California– Irvine, a recipient of HEI’s Walter A. Rosenblith New Investigator Award, and colleagues have examined the association between air pollution and adverse birth and pregnancy outcomes in California women. In addition, they examined the effect modification by socioeconomic status (SES) and other factors. A retrospective nested case–control study was conducted using birth certificate data from about 4.4 million birth records in California from 2001 to 2008. Wu and colleagues analyzed data on low birth weight (LBW) at term (infants born between 37 and 43 weeks of gestation and weighing less than 2500 g), PTB (infants born before 37 weeks of gestation), and preeclampsia (including eclampsia) of the mother during the pregnancy. In addition, they obtained data on GDM for the years 2006– 2008. In the analyses, all outcomes were included as binary variables. Maternal residential addresses at the time of delivery were geocoded, and a large suite of air pollution exposure metrics was considered, such as (1) regulatory monitoring data on concentrations of criteria pollutants NO2, PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), and ozone (O3) estimated by empirical Bayesian kriging; (2) concentrations of primary and secondary PM2.5 and PM0.1 components and sources estimated by the

  8. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    Science.gov (United States)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  9. Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure.

    Science.gov (United States)

    Jacobsen, Leslie K; Picciotto, Marina R; Heath, Christopher J; Frost, Stephen J; Tsou, Kristen A; Dwan, Rita A; Jackowski, Marcel P; Constable, Robert T; Mencl, W Einar

    2007-12-05

    Prenatal exposure to maternal smoking has been linked to cognitive and auditory processing deficits in offspring. Preclinical studies have demonstrated that exposure to nicotine disrupts neurodevelopment during gestation and adolescence, possibly by disrupting the trophic effects of acetylcholine. Given recent clinical and preclinical work suggesting that neurocircuits that support auditory processing may be particularly vulnerable to developmental disruption by nicotine, we examined white matter microstructure in 67 adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. The groups did not differ in age, educational attainment, IQ, years of parent education, or symptoms of inattention. Diffusion tensor anisotropy and anatomical magnetic resonance images were acquired, and auditory attention was assessed, in all subjects. Both prenatal exposure and adolescent exposure to tobacco smoke was associated with increased fractional anisotropy (FA) in anterior cortical white matter. Adolescent smoking was also associated with increased FA of regions of the internal capsule that contain auditory thalamocortical and corticofugal fibers. FA of the posterior limb of the left internal capsule was positively correlated with reaction time during performance of an auditory attention task in smokers but not in nonsmokers. Development of anterior cortical and internal capsule fibers may be particularly vulnerable to disruption in cholinergic signaling induced by nicotine in tobacco smoke. Nicotine-induced disruption of the development of auditory corticofugal fibers may interfere with the ability of these fibers to modulate ascending auditory signals, leading to greater noise and reduced efficiency of neurocircuitry that supports auditory processing.

  10. Clustering cities with similar fine particulate matter exposure characteristics based on infiltration and in-vehicle commuting factors

    Science.gov (United States)

    Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do not account for an individual's activities or ambient pollutant ...

  11. PM levels in urban area of Bejaia

    Science.gov (United States)

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2017-04-01

    Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.

  12. The Effect of PM 10 on Ischemia- Reperfusion Induced Arrhythmias in Rats

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    Full Text Available ABSTRACT Epidemiological studies show that particulate matter (PM is the principal instigator of some adverse clinical symptoms involving cardiovascular diseases. PM exposure can increase experimental infarct size and potentiate myocardial ischemia and arrhythmias in experimental MI models such as ischemia-reperfusion (I/R injury.The present study was aimed to evaluate the effects of particulate matter (PM10 on ischemia- reperfusion induced arrhythmias with emphasis on the protective role of VA as an antioxidant on them. Male Wistar rats were divided into 8 groups (n=10: Control, VAc, Sham, VA, PM1 (0.5 mg/kg, PM2 (2.5 mg/kg, PM3 group (5 mg/kg, PM3 + VA group. Within 48 hours, PM10 was instilled into trachea in two stages. Then the hearts were isolated, transferred to a Langendorff apparatus, and subjected to global ischemia (30 minutes followed by reperfusion (60 minutes. The ischemia- reperfusion induced ventricular arrhythmias were assessed according to the Lambeth conventions.In the present study,the number, incidence and duration of arrhythmiasduring30 minutes ischemia were demonstrated to be more than those in the reperfusion stage. PM exposure increased significantly the number, incidence and duration of arrhythmias in the ischemia and reperfusion duration. Vanillic acid reduced significantly the number, incidence and duration of arrhythmias during the ischemia and reperfusion period.In summary, the results of this study demonstrated that the protective and dysrhythmic effects of VA in the PM exposure rats in I/R model are probably related to its antioxidant properties.

  13. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V.

    2015-01-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM 1 , PM 2.5 and PM 10 fractions (measured continuously and in terms of mass). Outdoor PM 2.5 and PM 10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM 2.5 and PM 10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  14. A comprehensive review of European epidemiological studies on particulate matter exposure and health

    Energy Technology Data Exchange (ETDEWEB)

    Negri, E.; Gallus, S. [Department of Epidemiology, Mario Negri Institute, Milan (Italy); Boffetta, P. [International Agency for Research on Cancer, Lyon (France); McLaughlin, J.K. [International Epidemiology Institute, Rockville, MD (United States); La Vecchia, C. [Institute of Medical Statistics and Biometry, University of Milan (Italy)

    2011-06-15

    There are a limited number of papers on the long term effect of air pollution on morbidity and mortality in Europe, particularly with reference to small particles with aerodynamic diameters less than 2.5 microns (PM2.5). Most information comes from US cohort studies, including the American Cancer Society Cancer Prevention Study II, the Harvard Six Cities Study, the Adventists' Health Study of Smog, and the Veterans' Cohort Mortality Study. Ambient levels of several relevant pollutants are more variable within Europe than in the USA, and are in several areas comparably high. Selected European cohort studies, including the Netherlands Cohort Study on Diet and Cancer and the European Prospective Investigation on Cancer and Nutrition study found some association between indicators of air pollution such as PM10 or NO2 and lung cancer risk, but the results were inconsistent and inadequate to address the health effects of exposure to PM2.5. In addition to the effect on mortality, there are open issues on the potential impact of air pollution on childhood asthma, allergy and airway disease. In consideration of the difficulties in estimating the prevalence of the conditions in various populations, these issues require additional focus. In order to provide an indication on possible further analyses of existing European datasets, and on future new studies, a critical review of existing literature (with a focus on European data) was performed. The project resulted in a detailed report (see Appendix 1) and in a paper published in the European Journal of Cancer Prevention.

  15. Health impact of exposure to suspended particulate matter. Epidemiology of long-term effects

    International Nuclear Information System (INIS)

    Heinrich, Joachim; Peters, Annette; Wichmann, H.-Erich; Univ. Muenchen; Grote, Veit

    2002-01-01

    Chronic effects of ambient air pollutants are studied by cross-sectional and cohort designs including adjustment for confounder on an individual basis. This review summarizes the state of the art about chronic effects of ambient particulate air pollutants. A majority of regional cross-sectional studies show a higher risk for non-allergic, infectious respiratory diseases such as bronchitis in children who grew up in highly polluted areas. Impaired lung function was only shown in few of these studies, whereas in adults impairments were homogeneously seen in cross-sectional studies. A 10 μg/m 3 TSP or PM 10 increase in annual means increases the prevalence of bronchitis in children by 20-40%. According to North-American cohort studies total mortality can be estimated to increase by 24-50% for PM 10 (per 50 μg/m 3 increase), 17-25% for PM 2.5 (per 25 μg/m 3 increase), and 10-50% for sulfates (per 15 μg/m 3 increase). Prevalence of bronchitis and infectious respiratory health in East German children decreased along with the improvement of air quality. Further studies on chronic effects including an improved exposure assessment are needed to quantify health effects more precisely. These future studies should include a higher number of areas with different air pollution levels. They should help to set up more evidence-based regulations for the control of air pollutants and to improve the evaluation of clean air acts. (orig.) [de

  16. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene,...

  17. Blast Exposure, White Matter Integrity, and Cognitive Function in Iraq and Afghanistan Combat Veterans

    Directory of Open Access Journals (Sweden)

    Erin A. Hazlett

    2017-04-01

    Full Text Available The long-term effects of blast exposure are a major health concern for combat veterans returning from the recent conflicts in Iraq and Afghanistan. We used an optimized diffusion tensor imaging tractography algorithm to assess white matter (WM fractional anisotropy (FA in blast-exposed Iraq and Afghanistan veterans (n = 40 scanned on average 3.7 years after deployment/trauma exposure. Veterans diagnosed with a blast-related mild traumatic brain injury (mTBI were compared to combat veterans with blast exposure but no TBI diagnosis. Blast exposure was associated with decreased FA in several WM tracts. However, total blast exposure did not correlate well with neuropsychological testing performance and there were no differences in FA based on mTBI diagnosis. Yet, veterans with mTBI performed worse on every neurocognitive test administered. Multiple linear regression across all blast-exposed veterans using a six-factor prediction model indicated that the amount of blast exposure accounted for 11–15% of the variability in composite FA scores such that as blast exposure increased, FA decreased. Education accounted for 10% of the variability in composite FA scores and 25–32% of FA variability in the right cingulum, such that as level of education increased, FA increased. Total blast exposure, age, and education were significant predictors of FA in the left cingulum. We did not find any effect of post-traumatic stress disorder on cognition or composite FA. In summary, our findings suggest that greater total blast exposure is a contributing factor to poor WM integrity. While FA was not associated with neurocognitive performance, we hypothesize that FA changes in the cingulum in veterans with multiple combat exposures and no head trauma prior to deployment may represent a marker of vulnerability for future deficits. Future work needs to examine this longitudinally.

  18. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China.

    Science.gov (United States)

    Ji, Shuguang; Cherry, Christopher R; Zhou, Wenjun; Sawhney, Rapinder; Wu, Ye; Cai, Siyi; Wang, Shuxiao; Marshall, Julian D

    2015-12-15

    Plug-in electric vehicles (EVs) in China aim to improve sustainability and reduce environmental health impacts of transport emissions. Urban use of EVs rather than conventional vehicles shifts transportation's air pollutant emissions from urban areas (tailpipes) to predominantly rural areas (power plants), changing the geographic distribution of health impacts. We model PM2.5-related health impacts attributable to urban EV use for 34 major cities. Our investigation focuses on environmental justice (EJ) by comparing pollutant inhalation versus income among impacted counties. We find that EVs could increase EJ challenge in China: most (~77%, range: 41-96%) emission inhalation attributable to urban EVs use is distributed to predominately rural communities whose incomes are on average lower than the cities where EVs are used. Results vary dramatically across cities depending on urban income and geography. Discriminant analysis reveals that counties with low income and high inhalation of urban EV emissions have comparatively higher agricultural employment rates, higher mortality rates, more children in the population, and lower education levels. We find that low-emission electricity sources such as renewable energy can help mitigate EJ issues raised here. Findings here are not unique to EVs, but instead are relevant for nearly all electricity-consuming technologies in urban areas.

  19. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2015-09-01

    Full Text Available PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN model and a geographical information system (GIS in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm and elastic (trainrp algorithms were more than 0.8, the index of agreement (IA ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE and Root Mean Square Error (RMSE indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.

  20. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.

    Science.gov (United States)

    Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui

    2015-09-29

    PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi'an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO₂, and NO₂, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors' variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.

  1. Exposure and risk analysis to particulate matter, metals, and polycyclic aromatic hydrocarbon at different workplaces in Argentina.

    Science.gov (United States)

    Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres

    2018-03-01

    In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).

  2. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  3. PERFORMANCE AUDITING OF A HUMAN AIR POLLUTION EXPOSURE SYSTEM FOR COARSE PARTICULATE MATTER (PM2.5-10)

    Science.gov (United States)

    Databases derived from human health effects research play a vital role in setting environmental standards. An underlying assumption in using these databases for standard setting purposes is that they are of adequate quality. The performance auditing program described in this ma...

  4. Study on Concentration of Particulate Matter with Diameter Less than 10 Microns, Heavy Metals and Polycyclic Aromatic Hydrocarbons Related to PM2.5 in the Ambient Air of Sina Hospital District

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2014-03-01

    Full Text Available Background:In recent decades, extensive studies have shown a number of short and long-term health effects of particle matters. In addition to particle matters, polycyclic aromatic hydrocarbons (PAHs and heavy metals in airborne particles due to their mutagenic and carcinogenic properties are considered major air pollutants. So, the aim of this study was to evaluate the concentration of PM2.5particulate, 7heavy metal concentrations and 13 PAHs compound associated with fine particles (PM2.5-boud PAHs in the district of Sina hospital, Tehran. Methods: This cross-sectional study was carried out in air of Sina Hospital district in Tehran. Concentrations of fine particulate matter (PM2.5 were determined by gravimetric. Also heavy metal concentrations in samples after digestion were determined with ICP-AES instrument through injection. Then the PAHs compounds from each sample were extracted by ultrasonic method. After this step, extracted sample was injected for analysis by GC-MS and concentration of each compound was read. Results: The daily average concentration of PM2.5 during the study was 41.19 µg/m3.Concentration values for zinc, lead, cadmium, chromium, nickel and arsenic, were 92/69, 05/38, 2/18, 24/4, 19/4 and 34/1 ng/m3 respectively but mercury not found in this study. Average concentrations of PAHs compounds have been variable from0.07 ng/m3 for Chrysene to 1.21ng/m3 for Dibenzo(ahanthracene. Conclusion: In this study, the daily average of PM2.5 concentrations