WorldWideScience

Sample records for matter particle size

  1. The release of mineral matter and associated phosphorus as a function of the particle size coal

    Energy Technology Data Exchange (ETDEWEB)

    Claassens, V. [Sasol Technology Research & Development, Sasolburg (South Africa). Syngas & Coal Technologies

    2009-05-15

    The presence of phosphorus in carbon reductants is a major concern in the metallurgical industry. The behaviour of the phosphorus and mineral matter content (reported as ash) as a function of particle size was investigated. The primary aim of this study was to determine the reduction in phosphorus and mineral matter that occurred as the particle size decreased. A secondary aim was to determine how the phosphorus was distributed in the feed coal and to where it reported during floc-flotation. Results showed that the ash content decreased more rapidly than the phosphorus content as the mean particle size was reduced. It remains unclear why P-rejection is only half as effective as mineral matter rejection. Detailed liberation analysis of P-containing minerals is required to possibly explain this phenomenon.

  2. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  3. Dynamics of Dissolved Organic Matter and Microbes in Seawater through Sub-Micron Particle Size Analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Balch, W.M.; Vaughn, J.M.; Gomes, H.R.

    -78. Hansell, D.A. and Carlson, C.A., (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395, 263-266. J. E. (1977) Characterization of suspended matter in the Gulf of Mexico ? II. Particles size analysis of suspended matter.... and Morris, I. (1980) Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr., 25, 262-279. Maurer, L. G. (1976) Organic polymers in seawater: changes with depth in the Gulf of Mexico. Deep-Sea Res., 23, 1059...

  4. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  5. Particle-size fractionation and stable carbon isotope distribution applied to the study of soil organic matter dynamics

    International Nuclear Information System (INIS)

    Cerri, C.; Feller, C.; Balesdent, J.; Victoria, R.; Plenecassagne, A.

    1985-01-01

    The present Note concerns the dynamics of organic matter in soils under forest (C 3 -type vegetation) and 12 and 50 years old sugar-cane (C 4 -type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13 C measurements of total soil and different organic fractions (particle-size, fractionation) [fr

  6. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  7. Particle dark matter searches in the anisotropic sky

    Science.gov (United States)

    Fornengo, Nicolao; Regis, Marco

    2014-02-01

    Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  8. Particle dark matter searches in the anisotropic sky

    Directory of Open Access Journals (Sweden)

    Nicolao eFornengo

    2014-02-01

    Full Text Available Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  9. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  10. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  11. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  12. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  13. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  14. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  15. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  16. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  17. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  18. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  19. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  20. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  1. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  2. The effects of cultivation on the organic matter of total soil and in the different soil particle size separates using radiocarbon dating

    International Nuclear Information System (INIS)

    Gazineu, M.H.P.

    1982-07-01

    The effects of cultivation on the organic matter and nutrients in the total soil and in five particle size separates were studied through chemical analyses and radiocarbon dating. Samples were taken from the A and B horizons of an uncultivated field and of fields cultivated during 5,60 and 90 years which had never received treatment with fertilizers. (M.A.) [pt

  3. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  4. Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model

    Directory of Open Access Journals (Sweden)

    Jae-Weon Lee

    2016-05-01

    Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.

  5. Search for dark-matter particles

    International Nuclear Information System (INIS)

    Cowsik, R.

    1991-01-01

    Experiments performed over the last two years have been very successful in drastically reducing the number of viable elementary particles that could possibly constitute the dark matter that dominates the large-scale gravitational dynamics of astronomical systems. The candidates that survive are the light neutrinos, the axion, and a supersymmetric particle with carefully chosen parameters called the neutralino. Baryonic dark matter, which might contribute not insignificantly over small scales, is perhaps present in the form of brown dwarfs, and a search for these is under way. In this article, the astrophysical studies which bear on the density and the phase-space structure of the dark-matter particles are reviewed and the implications of the various direct and indirect searches for these particles are discussed and, finally, alternative suggestions for the candidates and directions for further searches are pointed out. (author). 35 refs., 29 figs

  6. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  7. Size distribution of alkyl amines in continental particulate matter and their online detection in the gas and particle phase

    Directory of Open Access Journals (Sweden)

    T. C. VandenBoer

    2011-05-01

    Full Text Available An ion chromatographic method is described for the quantification of the simple alkyl amines: methylamine (MA, dimethylamine (DMA, trimethylamine (TMA, ethylamine (EA, diethylamine (DEA and triethylamine (TEA, in the ambient atmosphere. Limits of detection (3σ are in the tens of pmol range for all of these amines, and good resolution is achieved for all compounds except for TMA and DEA. The technique was applied to the analysis of time-integrated samples collected using a micro-orifice uniform deposition impactor (MOUDI with ten stages for size resolution of particles with aerodynamic diameters between 56 nm and 18 μm. In eight samples from urban and rural continental airmasses, the mass loading of amines consistently maximized on the stage corresponding to particles with aerodynamic diameters between 320 and 560 nm. The molar ratio of amines to ammonium (R3NH+/NH4+ in fine aerosol ranged between 0.005 and 0.2, and maximized for the smallest particle sizes. The size-dependence of the R3NH+/NH4+ ratio indicates differences in the relative importance of the processes leading to the incorporation of amines and ammonia into secondary particles. The technique was also used to make simultaneous hourly online measurements of amines in the gas phase and in fine particulate matter using an Ambient Ion Monitor Ion Chromatograph (AIM-IC. During a ten day campaign in downtown Toronto, DMA, TMA + DEA, and TEA were observed to range from below detection limit to 2.7 ppt in the gas phase. In the particle phase, MAH+ and TMAH+ + DEAH+ were observed to range from below detection limit up to 15 ng m−3. The presence of detectable levels of amines in the particle phase corresponded to periods with higher relative humidity and higher mass loadings of nitrate. While the hourly measurements made using the AIM-IC provide data that can

  8. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  9. Influence of the particle size dispersion on gamma-raidation absorption

    International Nuclear Information System (INIS)

    Bonchev, Ts.; Amin, S.S.

    1985-01-01

    The dependence of the value of the Moessbauer absorption on the patricle size of the absorbing material was investigated. It was assumed that: a) the investigated substance is with homogenious composition and that it consists of spherical particles; b) the particles are considered to be uniformly distributed in a matter practically negligible mass-absorption coefficient. The experiment was performed by using X-rays of Ni and Cu generated by the 14,4125 KeV resonance radiation of 57 Co

  10. CASTing light on dark matter particles

    CERN Multimedia

    2005-01-01

    CERN's CAST collaboration recently released first results from its search for solar axions, a candidate dark matter particle. Though they haven't found any axions yet, they have done much to narrow the hunt. The CAST experiment. Physicists think the universe is permeated with dark matter, particles that don't emit or absorb radiation and so are invisible to traditional telescopes. So far no one has found direct signs of dark matter. A different breed of telescope, however, may be able to see such particles. CERN's Axion Solar Telescope (CAST), currently the world's only working axion helioscope, is a superconducting test magnet from the Large Hadron Collider (LHC) that has been refurbished and outfitted with X-ray detectors, plus a focusing mirror system for X-rays that was recovered from the German space program. CAST stares into the sun in search of particles called axions, one of the leading candidates for dark matter. On 9 November, the CAST collaboration released the results of their first experimen...

  11. Fundamental Particle Structure in the Cosmological Dark Matter

    Science.gov (United States)

    Khlopov, Maxim

    2013-11-01

    The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying

  12. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  13. Neutron activation analysis of size-separated airborne dust particles, (2)

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1976-01-01

    The size distribution of the component element concentration in particle floating matters contained in the atmosphere is related closely to atmospheric pollution. In this paper, the results of the neutron activation analysis and the measurement of size distribution of component element concentration are reported, which were carried out in Minami-ku, Kyoto, in May and November, 1975, by collecting airbone dust with Andersen air samples. The activation of samples was carried out with the research reactor in Kyoto University. The gamma-ray spectra of the samples were measured with a Ge(Li) semiconductor detector. The size distributions of Al, Sc, Th and Ti showed the similar pattern. The concentration of Zn was abnormally high as compared with that in other districts, and it is related to the local industry in this district. The size distribution of airborne dust usually follows the logarithmic normal distribution when it is not affected by atmospheric pollution. Accordingly, the size distribution of the concentration also follows the same distribution. The accumulated percentages of the concentrations of Al, Sc and Th fall on the same straight line, and it means that these elements were contained in the same particles as the components. Also it was decided that the particles of Al, Sc, Th, Fe and Ti were soil particles. (Kako, I.)

  14. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency

    Directory of Open Access Journals (Sweden)

    Alderman Steven L.

    2015-01-01

    Full Text Available The relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 109 particles/cm3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.

  15. Constraints on the dark matter particle mass from the number of Milky Way satellites

    International Nuclear Information System (INIS)

    Polisensky, Emil; Ricotti, Massimo

    2011-01-01

    We have conducted N-body simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky Ways decreases with decreasing mass of the dark matter particle. Assuming that the number of dark matter satellites exceeds or equals the number of observed satellites of the Milky Way, we derive lower limits on the dark matter particle mass. We find with 95% confidence m s >13.3 keV for a sterile neutrino produced by the Dodelson and Widrow mechanism, m s >8.9 keV for the Shi and Fuller mechanism, m s >3.0 keV for the Higgs decay mechanism, and m WDM >2.3 keV for a thermal dark matter particle. The recent discovery of many new dark matter dominated satellites of the Milky Way in the Sloan Digital Sky Survey allows us to set lower limits comparable to constraints from the complementary methods of Lyman-α forest modeling and x-ray observations of the unresolved cosmic x-ray background and of dark matter halos from dwarf galaxy to cluster scales. Future surveys like LSST, DES, PanSTARRS, and SkyMapper have the potential to discover many more satellites and further improve constraints on the dark matter particle mass.

  16. Comparison of laser-light diffraction method with other methods of analyzing the particle size distribution in suspensions of latex, pollen, and quartz, and in suspended particulate matter in river water

    International Nuclear Information System (INIS)

    Heyn, R.D.; Zimmermann, H.U.

    1983-01-01

    This report gives an idea of different methods being used for the particle size analysis, including a laser light diffraction method and an image analysis method. These comparing measurements have been carried out with suspensions consisting of fresh water and standard particles, ranging between 1 and 100 μm, as well as with suspended particulate matter of the Elbe river. As to standard particles, statistical errors are subject to the width of the size distribution. When using the light diffraction method, the errors vary between 0,7 and 16%, however, when applying the image analysis method, they range between 0,5 and 26%. As a result of the measurements of the suspended particulate matter of the Elbe river, a statistical error of 21% has occured with regard to the image analysis method, whilst the light diffraction method has shown an error of about 4 - 11%. Possible reasons for systematical and random errors have been discussed as to both of these methods. (orig.) [de

  17. Particle Dark Matter: Status and Searches

    OpenAIRE

    Sandick, Pearl

    2010-01-01

    A brief overview is given of the phenomenology of particle dark matter and the properties of some of the most widely studied dark matter candidates. Recent developments in direct and indirect dark matter searches are discussed.

  18. Light and heavy dark matter particles

    International Nuclear Information System (INIS)

    Boehm, C.; Fayet, P.; Silk, J.

    2004-01-01

    It has recently been pointed out that the 511 keV emission line detected by integral/SPI from the bulge of our galaxy could be explained by annihilations of light dark matter particles into e + e - . If such a signature is confirmed, then one might expect a conflict with the interpretation of very high energy gamma rays if they also turn out to be due to dark matter annihilations. Here, we propose a way to accommodate the existence of both signals being produced by dark matter annihilations through the existence of two stable (neutral) dark matter particles, as is possible in theories inspired from N=2 supersymmetry

  19. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise.

    Science.gov (United States)

    Sanders, Christian J; Smoak, Joseph M; Waters, Mathew N; Sanders, Luciana M; Brandini, Nilva; Patchineelam, Sambasiva R

    2012-06-01

    Mangroves sediments contain large reservoirs of organic material (OM) as mangrove ecosystems produce large quantities and rapidly burial OM. Sediment accumulation rates of approximately 2.0 mm year(-1), based on (210)Pb(ex) dating, were estimated at the margin of two well-developed mangrove forest in southern Brazil. Regional data point to a relative sea level (RSL) rise of up to ∼4.0 mm year(-1). This RSL rise in turn, may directly influence the origin and quantity of organic matter (OM) deposited along mangrove sediments. Lithostratigraphic changes show that sand deposition is replacing the mud (<63 μm) fraction and OM content is decreasing in successively younger sediments. Sediment accumulation in coastal areas that are not keeping pace with sea level rise is potentially conducive to the observed shifts in particle size and OM content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  1. Strange particle production from quark matter droplets

    International Nuclear Information System (INIS)

    Werner, K.; Hladik, M.

    1995-01-01

    We recently introduced new methods to study ultrarelativistic nuclear scattering by providing a link between the string model approach and a thermal description. The string model is used to provide information about fluctuations in energy density. Regions of high energy density are considered to be quark matter droplets and treated macroscopically. At SPS energies, we find mainly medium size droplets---with energies up to few tens of Gev. A key issue is the microcanonical treatment of individual quark matter droplets. Each droplet hadronizes instantaneously according to the available n-body phase space. Due to the huge number of possible hadron configurations, special Monte Carlo techniques have been developed to calculate this disintegration. We present results concerning the production of strange particles from such a hadronization as compared to string decay. copyright 1995 American Institute of Physics

  2. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment

    International Nuclear Information System (INIS)

    Steer, Brian; Gorbunov, Boris; Price, Mark C; Podoleanu, Adrian

    2016-01-01

    In this paper we present a method for the quantification of chemically distinguished airborne particulate matter, required for health risk assessment. Rather than simply detecting chemical compounds in a sample, we demonstrate an approach for the quantification of exposure to airborne particles and nanomaterials. In line with increasing concerns over the proliferation of engineered particles we consider detection of synthetically produced ZnO crystals. A multi-stage approach is presented whereby the particles are first aerodynamically size segregated from a lab-generated single component aerosol in an impaction sampler. These size fractionated samples are subsequently analysed by Raman spectroscopy. Imaging analysis is applied to Raman spatial maps to provide chemically specific quantification of airborne exposure against background which is critical for health risk evaluation of exposure to airborne particles. Here we present a first proof-of-concept study of the methodology utilising particles in the 2–4 μm aerodynamic diameter range to allow for validation of the approach by comparison to optical microscopy. The results show that the combination of these techniques provides independent size and chemical discrimination of particles. Thereby a method is provided to allow quantitative and chemically distinguished measurements of aerosol concentrations separated into exposure relevant size fractions. (paper)

  3. Atmospheric fate of oil matter adsorbed on sea salt particles under UV light

    Science.gov (United States)

    Vaitilingom, M.; Avij, P.; Huang, H.; Valsaraj, K. T.

    2014-12-01

    The presence of liquid petroleum hydrocarbons at the sea water surface is an important source of marine pollution. An oil spill in sea-water will most likely occur due to an involuntary accident from tankers, offshore platforms, etc. However, a large amount of oil is also deliberately spilled in sea-water during the clean-out process of tank vessels (e.g. for the Mediterranean Sea, 490,000 tons/yr). Moreover, the pollution caused by an oil spill does not only affect the aquatic environment but also is of concern for the atmospheric environment. A portion of the oil matter present at the sea-water surface is transported into the atmosphere viaevaporation and adsorption at the surface of sea spray particles. Few studies are related to the presence of oil matter in airborne particles resulting from their adsorption on sea salt aerosols. We observed that the non-volatile oil matter was adsorbed at the surface of sea-salt crystals (av. size of 1.1 μm). Due to their small size, these particles can have a significant residence time in the atmosphere. The hydrocarbon matter adsorbed at the surface of these particles can also be transformed by catalyzers present in the atmosphere (i.e. UV, OH, O3, ...). In this work, we focused on the photo-oxidation rates of the C16 to C30alkanes present in these particles. We utilized a bubble column reactor, which produced an abundance of small sized bubbles. These bubbles generated droplets upon bursting at the air-salt water interface. These droplets were then further dried up and lifted to the top of the column where they were collected as particles. These particles were incubated in a controlled reactor in either dark conditions or under UV-visible light. The difference of alkane content analyzed by GC-MS between the particles exposed to UV or the particles not exposed to UV indicated that up to 20% in mass was lost after 20 min of light exposure. The degradation kinetics varied for each range of alkanes (C16-20, C21-25, C26

  4. Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites

    Science.gov (United States)

    2010-04-12

    assuming dark matter only simulations (we do not include the effect of baryons in our simulations). We adopted values for cosmological parameters from the...ar X iv :1 00 4. 14 59 v1 [ as tr o- ph .C O ] 9 A pr 2 01 0 Constraints on the Dark Matter Particle Mass from the Number of Milky Way...simulations of the growth of Milky Way-sized halos in cold and warm dark matter cosmologies. The number of dark matter satellites in our simulated Milky

  5. α particles and the ''pasta'' phase in nuclear matter

    International Nuclear Information System (INIS)

    Avancini, S. S.; Barros, C. C. Jr.; Menezes, D. P.; Providencia, C.

    2010-01-01

    The effects of the α particles in nuclear matter at low densities are investigated within three different parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter (pasta phase) are described for neutral nuclear matter with fixed proton fractions and stellar matter subject to β equilibrium and trapped neutrinos. In homogeneous matter, α particles are present only at densities below 0.02 fm -3 and their presence decreases with increase of the temperature and, for a fixed temperature, the α particle fraction decreases for smaller proton fractions. A repulsive interaction is important to mimic the dissolution of the clusters in homogeneous matter. The effect of the α particles on the pasta structure is very small except close to the critical temperatures and/or proton fractions, when it may still predict a pasta phase while no pasta phase would occur in the absence of light clusters. It is shown that for densities above 0.01 fm 3 the α-particle fraction in the pasta phase is much larger than that in homogeneous matter.

  6. Collection of size fractionated particulate matter sample for neutron activation analysis in Japan

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko; Nakamatsu, Hiroaki; Oura, Yasuji; Ebihara, Mitsuru

    2004-01-01

    According to the decision of the 2001 Workshop on Utilization of Research Reactor (Neutron Activation Analysis (NAA) Section), size fractionated particulate matter collection for NAA was started from 2002 at two sites in Japan. The two monitoring sites, ''Tokyo'' and ''Sakata'', were classified into ''urban'' and ''rural''. In each site, two size fractions, namely PM 2-10 '' and PM 2 '' particles (aerodynamic particle size between 2 to 10 micrometer and less than 2 micrometer, respectively) were collected every month on polycarbonate membrane filters. Average concentrations of PM 10 (sum of PM 2-10 and PM 2 samples) during the common sampling period of August to November 2002 in each site were 0.031mg/m 3 in Tokyo, and 0.022mg/m 3 in Sakata. (author)

  7. Particle size and radionuclide levels in some west Cumbrian soils

    International Nuclear Information System (INIS)

    Livens, F.R.

    1988-01-01

    Four west Cumbrian soils of contrasting types, together with an estuarine silt sample, were separated into different particle size fractions by a combination of sieving and settling techniques. These sub-samples were analysed by quantitative gamma-ray spectrometry for several nuclides, principally 137 Cs, 106 Ru and 241 Am, followed by chemical separation and alpha spectrometric determination of 238,239,240 Pu. A simple empirical method of correction for differing sample sizes, and hence counting geometries, was developed for gamma spectrometry and found to give good results. The radionuclides were concentrated into the finer size fractions, with clay-sized ( 137 Cs from 3 to 35 times. The enhancement was greatest for all radionuclides in a sandy soil with a very low clay content (0.2% by weight) and it was found that, as the abundance of fine particles increased, so the concentration effect decreased. No evidence was found for a simple relationship between organic content and radionuclide activity, although the organic matter does have some effect. 17 refs.; 3 figs.; 6 tabs

  8. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  9. Astrophysical dark matter: candidates from particle physics and detection possibilities

    International Nuclear Information System (INIS)

    Freese, K.

    1989-01-01

    In this talk, I will discuss the arguments that 50% to 90% of the matter in galaxies, including our own, is made of an unknown type of dark matter. I will review the reason why cosmologists believe Ω = 1 and illustrate the contrast with the limits on the amount of baryonic matter from element abundances in Big Bang Nucleosynthesis. Other arguments for nonbaryonic dark matter will also be discussed. Candidates for the dark matter from particle physics will be presented. I will focus on cold dark matter candidates known as WIMPs, weakly interacting massive (O(GeV)) particles. I will try to illustrate why these particles are interesting for astrophysics and outline ideas for cornering them. Detection possibilities for these particles include indirect detection, which takes advantage of the annihilation products of these particles in the galactic halo, the sun, or the earth. Direct detection via newly proposed cryogenic detectors must be sensitive to <∼ keV energy deposits. Annual modulation of the dark matter signal can be used as a signature for these halo particles. I hope to motivate the interest in these particles and discuss ideas for finding them

  10. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  11. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  12. The Particle Theory of Matter

    Science.gov (United States)

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  13. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  14. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    Science.gov (United States)

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  15. The effect of reducing alfalfa haylage particle size on cows in early lactation.

    Science.gov (United States)

    Kononoff, P J; Heinrichs, A J

    2003-04-01

    The objective of this experiment was to evaluate effects of reducing forage particle size on cows in early lactation based on measurements of the Penn State Particle Separator (PSPS). Eight cannulated, multiparous cows averaging 19 +/- 4 d in milk and 642 +/- 45 kg BW were assigned to one of two 4 x 4 Latin Squares. During each of the 23-d periods, animals were offered one of four diets, which were chemically identical but included alfalfa haylage of different particle size; short (SH), mostly short (MSH), mostly long (MLG), and long (LG). Physically effective neutral detergent fiber (peNDF) was determined by measuring the amount of neutral detergent fiber retained on a 1.18 mm screen and was similar across diets (25.7, 26.2, 26.4, 26.7%) but the amount of particles >19.0 mm significantly decreased with decreasing particle size. Reducing haylage particle size increased dry matter intake linearly (23.3, 22.0, 20.9, 20.8 kg for SH, MSH, MLG, LG, respectively). Milk production and percentage fat did not differ across treatments averaging 35.5 +/- 0.68 kg milk and 3.32 +/- 0.67% fat, while a quadratic effect was observed for percent milk protein, with lowest values being observed for LG. A quadratic effect was observed for mean rumen pH (6.04, 6.15, 6.13, 6.09), while A:P ratio decreased linearly (2.75, 2.86, 2.88, 2.92) with decreasing particle size. Total time ruminating increased quadratically (467, 498, 486, 468 min/d), while time eating decreased linearly (262, 253, 298, 287 min/d) with decreasing particle size. Both eating and ruminating per unit of neutral detergent fiber intake decreased with reducing particle size (35.8, 36.7, 44.9, 45.6 min/kg; 19.9, 23.6, 23.5, 23.5 min/kg). Although chewing activity was closely related to forage particle size, effects on rumen pH were small, indicating factors other than particle size are critical in regulating pH when ration neutral detergent fiber met recommended levels. Feeding alfalfa haylage based rations of reduced

  16. Materials, matter and particles a brief history

    CERN Document Server

    Woolfson, Michael M

    2010-01-01

    This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle d

  17. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  18. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  19. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    Science.gov (United States)

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  20. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  1. From basic processes to sensors: particle-matter interactions

    International Nuclear Information System (INIS)

    Laforge, Bertrand; Bourgeois, Christian

    2005-11-01

    This academic course aims at presenting and explaining techniques of detection of radiations displaying an energy higher that some tens of keV, such as those met in nuclear physics or in particle physics. In a first part, the author first analyses the operation of a biological sensor (the eye), and then presents some generalities about matter: Rutherford experiment, the atom, molecules and solids. The second part deals with interactions between radiations and matter. The author there addresses interactions of heavy charged particles (ionization with high or low energy transfer), interactions of electrons (ionization, Bremsstrahlung), multiple scattering and straggling, the Cherenkov effect, transition radiation, the interaction of γ radiations in matter (Compton effect, photoelectric effect), the interaction of neutrons in matter. Appendices address γ spectrometry, the radiation of a charged particle moving in a dielectric medium, and issues related to statistical fluctuations (distribution functions, fluctuation propagation, energy resolution, noises)

  2. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2016-01-01

    Full Text Available Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8

  3. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  4. Matter: the fundamental particles

    CERN Multimedia

    Landua, Rolf

    2007-01-01

    "The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

  5. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system.

    Science.gov (United States)

    Chen, Michael Y; Hoffer, Alan; Morrison, Paul F; Hamilton, John F; Hughes, Jeffrey; Schlageter, Kurt S; Lee, Jeongwu; Kelly, Brandon R; Oldfield, Edward H

    2005-08-01

    Achieving distribution of gene-carrying vectors is a major barrier to the clinical application of gene therapy. Because of the blood-brain barrier, the distribution of genetic vectors to the central nervous system (CNS) is even more challenging than delivery to other tissues. Direct intraparenchymal microinfusion, a minimally invasive technique, uses bulk flow (convection) to distribute suspensions of macromolecules widely through the extracellular space (convection-enhanced delivery [CED]). Although acute injection into solid tissue is often used for delivery of oligonucleotides, viruses, and liposomes, and there is preliminary evidence that certain of these large particles can spread through the interstitial space of the brain by the use of convection, the use of CED for distribution of viruses in the brain has not been systematically examined. That is the goal of this study. Investigators used a rodent model to examine the influence of size, osmolarity of buffering solutions, and surface coating on the volumetric distribution of virus-sized nanoparticles and viruses (adeno-associated viruses and adenoviruses) in the gray matter of the brain. The results demonstrate that channels in the extracellular space of gray matter in the brain are large enough to accommodate virus-sized particles and that the surface characteristics are critical determinants for distribution of viruses in the brain by convection. These results indicate that convective distribution can be used to distribute therapeutic viral vectors in the CNS.

  6. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  7. Coherent radiation of photon by fast particles in exited matter

    International Nuclear Information System (INIS)

    Ryazanov, M.I.

    1981-01-01

    The review on the theory of coherent photon radiation by fast charged particle interaction with excited by external electromagnetic field atoms of matter is presented. The motive particle excites in the matter longitudinal electric oscillations (plasmons, longitudinal optical phonons, longitudinal excitons). Energy and momentum conservation laws in the course of quantum radiation in the matter by a charged particle are considered taking into account the energy-matter exchange. It follows from the conservation laws that for the processes investigated the quantum angle of escape is stiffly connected with its frequency. The cohe-- rent luminescence processes are considered as generalized Vavilov- Cherenkov radiation [ru

  8. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    Science.gov (United States)

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  9. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  10. Particle-size distribution and phosphorus forms as a function of hydrological forcing in the Yellow River.

    Science.gov (United States)

    Yao, Qing-Zhen; Du, Jun-Tao; Chen, Hong-Tao; Yu, Zhi-Gang

    2016-02-01

    Samples were collected monthly from January to December in 2010, and daily observations were made during the water-sediment regulation event in June-July 2010. Sequential extractions were applied to determine the forms of P in different particle-size fractions and to assess the potential bioavailability of particulate phosphorus (PP). The results indicated that exchangeable phosphorus, organic phosphorus, authigenic phosphorus, and refractory phosphorus increased with the decreasing of particulate size; conversely, detrital phosphorus decreased with the decreasing of particulate size. The content of bioavailable particulate phosphorus (BAPP) varied greatly in different sizes of particles. In general, the smaller the particle size, the higher the content of bioavailable phosphorus and its proportion in total phosphorous was found in these particles. Hydrological forcing controlled the variability in the major P phases found in the suspended sediments via changes in the sources and the particle grain-size distribution. The variation of particle sizes can be attributed also to different total suspended sediment (TSS) sources. Water-sediment regulation (WSR) mobilized only particulate matter from the riverbed, while during the rainstorm soil erosion and runoff were the main source. The BAPP fluxes associated with the "truly suspended" fraction was approximately 200 times larger than the dissolved inorganic phosphorus (DIP) flux. Thus, the transfer of fine particles to the open sea is most probably accompanied by BAPP release to the DIP and can support greater primary and secondary production.

  11. Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2013-07-01

    Full Text Available The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsorption the sediment mineral matrices were obtained by removing inorganic matter metal oxides, and organic matter from natural sediments, which were collected from the Nantong reach of the Yangtze River. The results show that an exponential relationship exists between the median particle size (D50 and specific surface area (Sg of the sediment mineral matrices, and the fine sediment mineral matrix sample has a larger specific surface area and pore volume than the coarse sediment particles. The kinetic equations were used to describe the phosphorus adsorption process of the sediment mineral matrices, including the Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation. The results show that the quasi-second-order adsorption kinetic equation has the best fitting effect. Using the mass conservation and Langmuir adsorption kinetic equations, a formula was deduced to calculate the equilibrium adsorption capacity of the sediment mineral matrices. The results of this study show that the phosphorus adsorption capacity decreases with the increase of D50, indicating that the specific surface area and pore volume are the main factors in determining the phosphorus adsorption capacity of the sediment mineral matrices. This study will help understand the important role of sediment in the transformation of phosphorus in aquatic environments.

  12. Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi.

    Science.gov (United States)

    Hazarika, Naba; Jain, V K; Srivastava, Arun

    2015-09-01

    A study of elemental composition in the ambient air of Delhi was carried out in the monsoon, winter and summer seasons at four different sites from August 2012 to April 2013 in the size ranges 10 μm using "Dekati PM10" impactor. At each site, three samples were collected and were analyzed by energy-dispersive X-ray fluorescence (EDXRF). The presence of elements was found to be very common and highly concentrated in aerosol particles at all the sites, which are Na, Al, Si, K, Ca, Zn and Ba. Total suspended particulate matters (TSPMs) of fine particles were found high in comparison to coarse particles at all seasons. The TSPM of fine particles was found to be varied in the range from 303.6 to 416.2 μg/m(3). Similarly, the range of coarse TSPM was observed from 162.9 to 262.8 μg/m(3). Correlation matrices were observed between fine (size ranges 10 μm) size particles for all elements with seasons. Source apportionments of elements were carried out using MS Excel 2010 through XLSTAT software. The source apportionments between fine and coarse particles were carried out through factor analysis and dominated sources found to be crustal re-suspension and industrial activities.

  13. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  14. The search for fractional charge elemental particles and very massive particles in bulk matter

    International Nuclear Information System (INIS)

    Perl, M.

    2000-01-01

    The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid

  15. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  16. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  17. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  18. Effect of lubricant oil additive on size distribution, morphology, and nanostructure of diesel particulate matter

    International Nuclear Information System (INIS)

    Wang, Yuesen; Liang, Xingyu; Shu, Gequn; Wang, Xiangxiang; Sun, Xiuxiu; Liu, Changwen

    2014-01-01

    Highlights: • Pour point depressant (PPD) has great impact on particulate matters. • The number of nanoparticles increases sharply after PPD is added. • Ambiguous boundaries can be found when the PPD additive was added. • PPD changes the size distribution into bimodal logarithmic. • Three nanostructure parameters are changed greatly by PPD. - Abstract: Effects of lubricant oil additive on the characterization of particles from a four-cylinder turbocharged diesel engine were investigated. Neat diesel and blended fuel containing oil pour point depressant (PPD) additive were chosen as the test fuels. Effects of different fuels on size distribution, morphology, and nanostructure of the diesel particles were studied. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were employed to study the morphology and nanostructure parameters. Particle size distribution was measured by fast particulate spectrometer (DMS 500). According to the experimental results, distribution of the primary particles size of the two fuels conforms to Gaussian distribution, whereas the mean diameter of blended fuel is larger than that of neat diesel at 1200 rpm, which is contrarily smaller at 2400 rpm. Besides, fractal dimension (D f ) of aggregates increases close to 2 (D f = 1.991), indicating that the structure became compacter with adding PPD. As to the nanostructure parameters of the blended fuel particles, the layer fringe length decreases from 1.191 nm to 1.064 nm, while both the separation distance and tortuosity increase. The changes in the nanostructure parameters indicate that the particles are more ordered and compressed with burning pure diesel. Results of blended fuel from DMS show that more particles, particularly nucleation mode particles, were discharged. In addition, its size distribution become bimodal logarithmic at 2400 rpm. All these results can provide new information of the effects of oil PPD additive on the formation and characterization of

  19. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  20. Searches for hadronically decaying Dark Matter mediator particles at ATLAS

    CERN Document Server

    Nindhito, Herjuno Rah

    2016-01-01

    Searches for hadronic resonances of the Dark Matter (DM) particles in the sub-TeV mass re- gion remain as a viable target at ATLAS. However, due to the bandwidth limitation, the events that available for performing an analysis were statistically limited. Reducing the event size by recording a fraction of the full event information overcomes this limitation. An analysis that is performed on those events is called Trigger-Level Analysis(TLA). This poster highlights the TLA strategy used to search for low-mass dijet resonances. No significant excesses are found in a region between 450 and 950 GeV. As an addition, limits are set on a simplified leptophobic Z’ model of DM mediator with axial coupling to quarks and DM particles as well as on Gaussian resonances.

  1. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  2. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  3. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  4. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  5. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  6. Identifying WIMP dark matter from particle and astroparticle data

    Science.gov (United States)

    Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto

    2018-03-01

    One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.

  7. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  8. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Constraining properties of dark matter particles using astrophysical data

    NARCIS (Netherlands)

    Iakubovskyi, Dmytro

    2013-01-01

    A microscopic origin of dark matter phenomenon is the most plausible hypothesis to explain the mystery of dark matter. The dark matter particle hypothesis necessarily implies an extension of the Standard Model. In this thesis, we undertook a systematic model-independent program of studying the

  10. Distribution of lead in relation to size of airborne particulate matter in Islamabad, Pakistan.

    Science.gov (United States)

    Shah, Munir H; Shaheen, N; Jaffar, M; Saqib, M

    2004-02-01

    Airborne particulate matter (PM) collected from two sampling stations in Islamabad, Pakistan, was analyzed for lead content and size gradation. A high volume air sampler was used to trap particulates on glass fiber filters for 8-12 h on a daily basis. Lead was estimated using a nitric acid digestion based AAS method on 44 samples from station 1 and 61 samples from station 2. Particle size fractions were categorized as 100 microm. The correlation between lead concentration and particle size was investigated. The results from two stations indicated average airborne lead concentrations of 0.505 and 0.185 microg/m3. Enhanced levels of lead were measured at a maximum of 4.075 microg/m3 at station 1 and 4.000 microg/m3 at station 2. PM 100 were found to constitute the local atmosphere in comparable proportions. A comparison of the lead levels is made with the existing permissible levels of this element laid down by different international agencies.

  11. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    This thesis describes the design and development of an automated pre-production particle size distribution analyser for particles in the 20 - 2000 μm size range. This work is follow up to the vibro-spring particle sizer reported by Shaeri. In its most basic form, the instrument comprises a horizontally held closed coil helical spring that is partly filled with the test powder and sinusoidally vibrated in the transverse direction. Particle size distribution data are obtained by stretching the spring to known lengths and measuring the mass of the powder discharged from the spring's coils. The size of the particles on the other hand is determined from the spring 'intercoil' distance. The instrument developed by Shaeri had limited use due to its inability to measure sample mass directly. For the device reported here, modifications are made to the original configurations to establish means of direct sample mass measurement. The feasibility of techniques for measuring the mass of powder retained within the spring are investigated in detail. Initially, the measurement of mass is executed in-situ from the vibration characteristics based on the spring's first harmonic resonant frequency. This method is often erratic and unreliable due to the particle-particle-spring wall interactions and the spring bending. An much more successful alternative is found from a more complicated arrangement in which the spring forms part of a stiff cantilever system pivoted along its main axis. Here, the sample mass is determined in the 'static mode' by monitoring the cantilever beam's deflection following the wanton termination of vibration. The system performance has been optimised through the variations of the mechanical design of the key components and the operating procedure as well as taking into account the effect of changes in the ambient temperature on the system's response. The thesis also describes the design and development of the ancillary mechanisms. These include the pneumatic

  12. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  13. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  14. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  15. Phenomenology of quintessino dark matter: Production of next lightest supersymmetric particles

    International Nuclear Information System (INIS)

    Bi Xiaojun; Wang Jianxiong; Zhang Chao; Zhang Xinmin

    2004-01-01

    In the model of quintessino as the dark matter particle, the dark matter and dark energy are unified in one superfield, where the dynamics of the Quintessence drives the Universe acceleration and its superpartner, quintessino, makes up the dark matter of the Universe. This scenario predicts the existence of long-lived τ-tilde as the next lightest supersymmetric particle. In this paper we study the possibility of detecting τ-tilde produced by the high energy cosmic neutrinos interacting with the earth matter. By a detailed calculation we find that the event rate is one to several hundred per year at a detector with an effective area of 1 km 2 . The study in this paper can be also applied to models of gravitino or axino dark matter particles

  16. Colloquium: Toward living matter with colloidal particles

    Science.gov (United States)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  17. Relic abundance of mass-varying cold dark matter particles

    International Nuclear Information System (INIS)

    Rosenfeld, Rogerio

    2005-01-01

    In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter

  18. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  19. Particle Dark Matter constraints: the effect of Galactic uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio [ICTP South American Institute for Fundamental Research Instituto de Física Teórica - Universidade Estadual Paulista (UNESP) Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, SP Brazil (Brazil); Bozorgnia, Nassim; Calore, Francesca, E-mail: mariabenitocst@gmail.com, E-mail: nicolas.bernal@uan.edu.co, E-mail: n.bozorgnia@uva.nl, E-mail: calore@lapth.cnrs.fr, E-mail: fabio.iocco.astro@gmail.com [GRAPPA Institute, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present a systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.

  20. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses

    DEFF Research Database (Denmark)

    Hemkemeyer, Michael; Dohrmann, Anja B.; Christensen, Bent Tolstrup

    2018-01-01

    Genetic fingerprinting demonstrated in previous studies that differently sized soil particle fractions (PSFs; clay, silt, and sand with particulate organic matter (POM)) harbor microbial communities that differ in structure, functional potentials and sensitivity to environmental conditions....... To elucidate whether specific bacterial or archaeal taxa exhibit preference for specific PSFs, we examined the diversity of PCR-amplified 16S rRNA genes by high-throughput sequencing using total DNA extracted from three long-term fertilization variants (unfertilized, fertilized with minerals, and fertilized...

  1. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  2. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  3. Role of the anisotropy in the interactions between nano- and micro-sized particles

    OpenAIRE

    Rovigatti, Lorenzo

    2012-01-01

    The present Thesis focuses on the thermodynamic and dynamic behaviour of anisotropically interacting colloids by means of theoretical and numerical techniques. Colloidal suspensions, i.e. micro-- and nano--sized particles dispersed in a continuous phase, are a topic of great interest in several fields, including material science, soft matter and biophysics. Common in everyday life in the form of soap, milk, cream, etc., colloids have been used for decades as models for atomic and molecula...

  4. EFFECTS OF EFFECTS OF PARTICLE SIZE DISTRIBUTION ...

    African Journals Online (AJOL)

    eobe

    The parameters examined were: moisture content, particle size distribution, total isture content, particle size distribution, total hydrocarbon content, soil pH, available nitrogen, available phosphorus, total heterotrophic bacteria and fungi count. The analysis of the soil characteristics throughout the remediation period showed ...

  5. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  6. Dark matter from gravitational particle production at reheating

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Nurmi, Sami, E-mail: tommi.markkanen@kcl.ac.uk, E-mail: sami.t.nurmi@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  7. Dark matter from gravitational particle production at reheating

    International Nuclear Information System (INIS)

    Markkanen, Tommi; Nurmi, Sami

    2017-01-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  8. Particle dark matter - A theorist's perspective

    Indian Academy of Sciences (India)

    ture of the dark matter (DM) in the Universe, from the point of view of particle ... they must be electrically and (preferably) color neutral. .... in the general MssM and in two unification-based models: the constrained MssM ..... multi-TeV range.

  9. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  10. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  11. Superweakly interacting massive particle dark matter signals from the early Universe

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Rajaraman, Arvind; Takayama, Fumihiro

    2003-01-01

    Cold dark matter may be made of superweakly interacting massive particles, super-WIMP's, that naturally inherit the desired relic density from late decays of metastable WIMP's. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that super-WIMP dark matter may be discovered through cosmological signatures from the early Universe. In particular, super-WIMP dark matter has observable consequences for big bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7 Li without upsetting the concordance between deuterium and CMB baryometers. We discuss the implications for future probes of CMB blackbody distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of Wilkinson microwave anisotropy probe data

  12. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  13. Phenomenological and Astro-particle analysis of light dark matter particles

    International Nuclear Information System (INIS)

    Albornoz Vasquez, D.

    2011-09-01

    The nature of Dark Matter (DM) is still unveiled. Experimental efforts aiming to detect the Dark Matter have shown a great progress in the last decade. This work is devoted to the phenomenological and astro-particle studies of Dark Matter candidates of supersymmetric nature - the neutralino - and beyond - scalar particles. The former, in the (1-100) GeV mass range, is currently being tested by the Large Hadron Collider, direct detection and indirect detection experiments; this work shows that the interplay between experimental techniques is a decisive tool to thoroughly search for theoretical predictions. The latter is a non-standard candidate as light as 1 MeV which could be copiously produced at the Large Hadron Collider and, at the same time, it could explain other phenomena such as neutrino masses and/or the 511 keV line from the galactic center of the Milky Way. We start by describing the DM problem in Part I, where we give a review for evidence of the existence of DM, we set the cosmological framework in which we work and describe the history of DM from the Early Universe (EU), to the formation of structure and up to the current distribution of the DM in haloes. Then, in Part II, we go through the important Cosmological, Astro-particle and Particle Physics constraints to particle DM candidates and subsequently introduce models providing relatively light DM candidates, models of standard supersymmetric nature such as the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-MSSM (NMSSM) with neutralino DM, and beyond N=1 SUSY in a light scalar DM scenario inspired in N=2 SUSY. Finally, in Part III we present the findings of the investigations carried out: we describe a numerical tool developed to scan the multidimensional supersymmetric parameter space, then we present an application of this tool to the search of light neutralino configurations in the MSSM and NMSSM as well as an application to the search for neutralino DM in directional detectors, and

  14. Elementary particles, dark matter candidate and new extended standard model

    Science.gov (United States)

    Hwang, Jaekwang

    2017-01-01

    Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.

  15. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  16. EFFECTS OF ULTRASOUND ON THE MORPHOLOGY, PARTICLE SIZE, CRYSTALLINITY, AND CRYSTALLITE SIZE OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    SUMARI SUMARI

    2014-05-01

    Full Text Available The aim of this study is to optimize ultrasound treatment to produce fragment of cellulose that is low in particles size, crystallite size, and crystallinity. Slurry of 1 % (w/v the cellulose was sonicated at different time periods and temperatures. An ultrasonic reactor was operated at 300 Watts and 28 kHz to cut down the polymer into smaller particles. We proved that ultrasound damages and fragments the cellulose particles into shorter fibers. The fiber lengths were reduced from in the range of 80-120 µm to 30-50 µm due to an hour ultrasonication and became 20-30 µm after 5 hours. It was also found some signs of erosion on the surface and stringy. The acoustic cavitation also generated a decrease in particle size, crystallinity, and crystallite size of the cellulose along with increasing sonication time but it did not change d-spacing. However, the highest reduction of particle size, crystallite size, and crystallinity of the cellulose occurred within the first hour of ultrasonication, after which the efficiency was decreased. The particle diameter, crystallite size, and crystallinity were decreased from 19.88 µm to 15.96 µm, 5.81 Å to 2.98 Å, and 77.7% to 73.9% respectively due to an hour ultrasound treatment at 40 °C. The treatment that was conducted at 40 °C or 60 °C did not give a different effect significantly. Cellulose with a smaller particle and crystallite size as well as a more amorphous shape is preferred for further study.

  17. CCDM model from quantum particle creation: constraints on dark matter mass

    International Nuclear Information System (INIS)

    Jesus, J.F.; Pereira, S.H.

    2014-01-01

    In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε for the scale factor in the matter dominated era of the form t 2/3+ε . Based on recent H(z) data, the best fit values for the mass of dark matter created particles and the ε parameter have been found as m = 1.6× 10 3 GeV, restricted to a 68.3% c.l. interval of 1.5 < m < 6.3× 10 7 ) GeV and ε = -0.250 +0.15 -0.096 at 68.3% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called ''dark degeneracy'', where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion

  18. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė

    2015-10-01

    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  19. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  20. Recent heavy particle decay in a matter dominated universe

    Science.gov (United States)

    Olive, K. A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of (UC OMEGA) = 1. Cold matter and (UC OMEGA) = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  1. Recent heavy-particle decay in a matter-dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1985-05-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of ..cap omega.. = 1. We will show here that cold matter and ..cap omega.. = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  2. Recent heavy particle decay in a matter dominated universe

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of Ω = 1. We will show here that cold matter and Ω = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter. 33 references

  3. Recent heavy-particle decay in a matter-dominated universe

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1985-01-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of Ω = 1. We will show here that cold matter and Ω = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter

  4. Recent heavy-particle decay in a matter-dominated universe

    Science.gov (United States)

    Olive, K. A.; Seckel, D.; Vishniac, E.

    1985-05-01

    The cold-matter scenario for galaxy formation solves the dark-matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a universe with an Einstein-deSitter value of Ω = 1. It is shown here that cold matter and Ω = 1 can be made compatible while retaining the feature that the universe is matter-dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter.

  5. Recent heavy particle decay in a matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Olive, K.A.; Seckel, D.; Vishniac, E.

    1984-09-01

    The cold matter scenario for galaxy formation solves the dark matter problem very nicely on small scales corresponding to galaxies and clusters of galaxies. It is, however, difficult to reconcile with a Universe with an Einstein-deSitter value of ..cap omega.. = 1. We will show here that cold matter and ..cap omega.. = 1 can be made compatible while retaining the feature that the Universe is matter dominated today. This is done by means of heavy (cold) particles whose decay subsequently leads to the unbinding of a large fraction of lighter clustered matter. 33 references.

  6. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    Science.gov (United States)

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Particle Dark Matter and DAMA/LIBRA

    International Nuclear Information System (INIS)

    Bernabei, R.; Nozzoli, F.; Belli, P.; Cappella, F.; D'Angelo, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Incicchitti, A.; Montecchia, F.; Ye, Z. P.

    2010-01-01

    The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in the galactic halo, as pointed out by the former DAMA/NaI set-up; cumulatively the data support such evidence at 8.2 σ C.L. and satisfy all the many peculiarities of the Dark Matter annual modulation signature. The main aspects and prospects of this model independent experimental approach will be outlined.

  8. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  10. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    Science.gov (United States)

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017. © 2017 Wiley Periodicals, Inc.

  11. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  12. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  13. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    Dry deposition of atmospheric particles is critically dependent on particle size and plays a key role in dictating the mass and number distributions of atmospheric particles. However, modeling dry deposition is constrained by a lack of understanding of controlling dependencies and accurate size......-resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... leaf-on and are statistically robust. Particle deposition velocities normalized by friction velocity (v d +) are approximately four times smaller than comparable values for coniferous forests reported elsewhere. Comparison of the data with output from a new one-dimensional mechanistic particle...

  14. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  15. SOLAR NEUTRINO PHYSICS: SENSITIVITY TO LIGHT DARK MATTER PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2012-06-20

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radii of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV) in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely {sup 8}B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 Multiplication-Sign 10{sup -37} cm{sup -2} produce a variation in the {sup 8}B neutrino fluxes that would be in conflict with current measurements.

  16. Particle size control of detergents in mixed flow spray dryers

    Directory of Open Access Journals (Sweden)

    Mark Jonathan Crosby

    2015-03-01

    Full Text Available Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance.

  17. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  18. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    International Nuclear Information System (INIS)

    Dai, De-Chang; Stojkovic, Dejan; Freese, Katherine

    2009-01-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10 11 GeV–10 16 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes

  19. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    Science.gov (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  20. Neutrinos as a probe of dark-matter particles

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.-Y. Pauchy, E-mail: wyhwang@phys.ntu.edu.tw [National Taiwan University, Asia Pacific Organization for Cosmology and Particle Astrophysics, Institute of Astrophysics, Center for Theoretical Sciences (China)

    2013-03-15

    We try to envision that there might be a dark-matter world and neutrinos, especially the right-handed ones, might be coupled directly with dark-matter particles in the dark-matter world. The candidate model would be the extended Standard Model based on SU{sub c}(3) Multiplication-Sign SU{sub L}(2) Multiplication-Sign U(1) Multiplication-Sign SU{sub f}(3) Multiplication-Sign SU{sub R}(2), with the search of the detailed version through the aid of the two working rules, 'Dirac similarity principle' and 'minimum Higgs hypothesis'.

  1. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  2. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  3. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    Directory of Open Access Journals (Sweden)

    Daniel J Cooney

    2008-08-01

    Full Text Available Daniel J Cooney1, Anthony J Hickey21Department of Biomedical Engineering; 2School of Pharmacy, University of North Carolina, Chapel Hill, NC, USAAbstract: The influence of diesel exhaust particles (DEP on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene in the particles resulting from the aerosolization process.Keywords: diesel exhaust particles, aerosol, inhalation toxicology

  4. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  5. Detecting particle dark matter signatures by cross-correlating γ-ray anisotropies with weak lensing

    Science.gov (United States)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2016-05-01

    The underlying nature of dark matter still represents one of the fundamental questions in contemporary cosmology. Although observations well agree with its description in terms of a new fundamental particle, neither direct nor indirect signatures of its particle nature have been detected so far, despite a strong experimental effort. Similarly, particle accelerators have hitherto failed at producing dark matter particles in collider physics experiments. Here, we illustrate how the cross-correlation between anisotropies in the diffuse γ-ray background and weak gravitational lensing effects represents a novel promising way in the quest of detecting particle dark matter signatures.

  6. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  7. Particle sizes in slash fire smoke.

    Science.gov (United States)

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  8. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  9. Implication of POC/234Th ratios in oceanic particulate matter. An approach to particle aggregation

    International Nuclear Information System (INIS)

    Hirose, Katumi

    2003-01-01

    234 Th has been widely applied as a tracer of particulate organic carbon (POC) fluxes in the upper ocean. Fundamental to this approach is the determination of 234 Th fluxes from water column measurements of the 234 Th- 238 U disequilibria, and the conversion of 234 Th flux to POC export, using the measured POC/ 234 Th ratio on particles. As such, POC/ 234 Th ratios are one of the most critical factors in quantifying the carbon export flux in ocean interior when using this approach. However, the POC/ 234 Th ratios show significant temporal and spatial variations, but cannot be predicted at this time. therefore, it is important to elucidate factors controlling the variations of the POC/ 234 Th ratios. To achieve this purpose, we should understand the chemical interactions between POC and 234 Th. In the open ocean, POC/ 234 Th ratios have been determined together with other oceanographic parameters. We examined here the relationship between POC/ 234 Th and primary production. The POC/ 234 Th ratios were linearly related to logarithmic values of primary production. Taken into account the complexation between surface ligand on particulate organic matter (POM) and 234 Th, a complexation model suggests that the size of particles adsorbing 234 Th is related to primary production; in the equatorial Pacific, the size of particles adsorbing 234 Th apparently decreases with increasing primary production, whereas opposite phenomenon occurs in the North Atlantic. Since the POC/ 234 Th ratios were determined in filtered particulate matter, this finding suggests that aggregation of small particles would be dominant in the equatorial Pacific, which can be explained by a chemical aggregation model. (author)

  10. Extended micro objects as dark matter particles

    Science.gov (United States)

    Belotsky, K.; Rubin, S.; Svadkovsky, I.

    2017-05-01

    Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.

  11. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  12. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  13. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  14. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  15. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  16. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  17. Light weakly interacting particles. Constraints and connection to dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah

    2013-07-01

    The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A 0 to fermions can be constrained by current measurements for the case where the A 0 is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive several

  18. A study of particle size distribution in zirconia-alumina powders

    International Nuclear Information System (INIS)

    Ramakrishnan, K.N.; Venkadesan, S.; Nagarajan, R.

    1996-01-01

    Powder particles, in general are characterized in terms of particle size, size distributions and composition for reasons associated with manufacturing problem based upon product quality, manufacturing convenience, cost and product handling convenience. Particle size analysis or the measurement of particle size distribution is a common effort in any physical, chemical or mechanical processes. This information and processing methods are intricate factors that relate to material behavior and/or physical properties of the fabricated product. The requirements for the formation of a product of particulate solids and its strength varies as the particle size and the size distribution changes. Also the transport properties and the chemical activity are related to the particle size and the size distribution. The choice of a distribution to represent a physical system is generally motivated by an understanding of the nature of underlying phenomenon and is verified by the available data. After a model has been chosen, its parameter must be determined. The reasonableness of a selected model on the basis of given data is especially important when the model is to be used for prediction. Two different approaches in this problem are probability plotting and statistical tests

  19. Particle dark matter: A multimessenger endeavour

    Science.gov (United States)

    Regis, M.

    2017-01-01

    The search for dark matter (DM) as a new, yet undiscovered, particle is explored through a complex host of different signals, from collider to direct and indirect searches. A special focus is dedicated to the latter ones, covering the full electromagnetic spectrum (from radio to gamma-rays), charged cosmic-rays and neutrinos. The expected DM signals are by definition faint, but the possibility to exploit a wide-field investigation offers promising prospects. In this brief review, I summarize the state-of-the-art in the search for particle DM signals, exploring some new ideas that are emerging in the effort of the scientific community to understand the elusive nature of DM.

  20. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    Science.gov (United States)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  1. 14C-labeled organic amendments: Characterization in different particle size fractions and humic acids in a long-term field experiment.

    Science.gov (United States)

    Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H

    2012-05-01

    Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.

  2. Sampling, testing and modeling particle size distribution in urban catch basins.

    Science.gov (United States)

    Garofalo, G; Carbone, M; Piro, P

    2014-01-01

    The study analyzed the particle size distribution of particulate matter (PM) retained in two catch basins located, respectively, near a parking lot and a traffic intersection with common high levels of traffic activity. Also, the treatment performance of a filter medium was evaluated by laboratory testing. The experimental treatment results and the field data were then used as inputs to a numerical model which described on a qualitative basis the hydrological response of the two catchments draining into each catch basin, respectively, and the quality of treatment provided by the filter during the measured rainfall. The results show that PM concentrations were on average around 300 mg/L (parking lot site) and 400 mg/L (road site) for the 10 rainfall-runoff events observed. PM with a particle diameter of model showed that a catch basin with a filter unit can remove 30 to 40% of the PM load depending on the storm characteristics.

  3. Detection of dark matter particles with low temperature phonon sensors

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1988-03-01

    Taking as an example the development effort in Berkeley, the author discusses for nonspecialists (Astronomers and Particle Physicists) the promises of phonon sensing at low temperature for the detection of dark matter particles and the difficulties faced. 31 refs

  4. Results on light dark matter particles with a low-threshold CRESST-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Defay, X.; Feilitzsch, F. von; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Schoenert, S.; Trinh Thi, H.H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Erb, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Guetlein, A.; Kluck, H.; Schieck, J.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Atominstitut, Vienna University of Technology, Wien (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Reindl, F. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2016-01-15

    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO{sub 4} crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub- GeV/c{sup 2} region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles. (orig.)

  5. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  6. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  7. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  8. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  9. Solid-state 13C NMR experiments reveal effects of aggregate size on the chemical composition of particulate organic matter in grazed steppe soils

    Science.gov (United States)

    Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2009-04-01

    Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =

  10. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  11. Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    International Nuclear Information System (INIS)

    Peter, Annika H. G.

    2010-01-01

    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle dark matter. Mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the 'astrophysics' of dark matter). I propose a shift in how to think about direct-detection data analysis. I show that by treating the astrophysical and particle-physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but it may illuminate how dark matter coevolves with galaxies.

  12. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Estimating particle number size distributions from multi-instrument observations with Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, T.

    2012-07-01

    Atmospheric aerosol particles have several important effects on the environment and human society. The exact impact of aerosol particles is largely determined by their particle size distributions. However, no single instrument is able to measure the whole range of the particle size distribution. Estimating a particle size distribution from multiple simultaneous measurements remains a challenge in aerosol physical research. Current methods to combine different measurements require assumptions concerning the overlapping measurement ranges and have difficulties in accounting for measurement uncertainties. In this thesis, Extended Kalman Filter (EKF) is presented as a promising method to estimate particle number size distributions from multiple simultaneous measurements. The particle number size distribution estimated by EKF includes information from prior particle number size distributions as propagated by a dynamical model and is based on the reliabilities of the applied information sources. Known physical processes and dynamically evolving error covariances constrain the estimate both over time and particle size. The method was tested with measurements from Differential Mobility Particle Sizer (DMPS), Aerodynamic Particle Sizer (APS) and nephelometer. The particle number concentration was chosen as the state of interest. The initial EKF implementation presented here includes simplifications, yet the results are positive and the estimate successfully incorporated information from the chosen instruments. For particle sizes smaller than 4 micrometers, the estimate fits the available measurements and smooths the particle number size distribution over both time and particle diameter. The estimate has difficulties with particles larger than 4 micrometers due to issues with both measurements and the dynamical model in that particle size range. The EKF implementation appears to reduce the impact of measurement noise on the estimate, but has a delayed reaction to sudden

  14. Effect of particle size on mixing degree in dispensation.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  15. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  16. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  17. Influence of particle size distributions on magnetorheological fluid performances

    International Nuclear Information System (INIS)

    Chiriac, H; Stoian, G

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  18. Planckian Interacting Massive Particles as Dark Matter

    DEFF Research Database (Denmark)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-01-01

    . In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...

  19. Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.

    Science.gov (United States)

    1984-11-01

    34Particle Sizing by Optical , Nonimaging Techniques," Liquid Particle Size _Mjur-mentTechnjgjwi, ASTM publications STP848, ed. by J. MI. Tishkoff, R. D... Optical Nonimaging predictions do not account for nonideal lens effects. Techniques," in Liquid Particle Size Measurement Techniques, J.M.Tishkoff, ed...4S E. Dan Hirleman’ Particle Sizing by Optical , Nonimaging Techniques REFERENCE: Hieleman, E. D., "Particle Sizing by Optical , Nonimaging Tech- niques

  20. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  1. Light weakly interacting particles. Constraints and connection to dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2013-07-15

    The so far unknown particle nature of dark matter is a main motivation for extending the Standard Model of particle physics. A recently promoted approach to solving this puzzle is the concept of hidden sectors. Since the interactions of such sectors with the visible sector are very weak, so are the current experimental bounds. Hidden sectors might even contain sub-GeV scale particles that have so far escaped detection. In this thesis, we study the phenomenology of Weakly Interacting Slim Particles (WISPs) as well as their connection to dark matter in different Standard Model extensions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CPodd Higgs, arising from spontaneous breaking of approximate symmetries, represents an example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are other well motivated candidates for WISPs and called hidden photons. Such light hidden photons appear naturally in supersymmetry or string theory and might resolve the observed deviation in the muon anomalous magnetic moment from predictions. Moreover, scenarios in which hidden sector dark matter interacts via a light hidden photon with the visible sector exhibit appealing features in view of recent astrophysical anomalies. We study how the coupling of the CP-odd Higgs A{sup 0} to fermions can be constrained by current measurements for the case where the A{sup 0} is lighter than two muons. Analysing measurements of different rare and radiative meson decays, the muon anomalous magnetic moment as well as results from beam dump and reactor experiments, we severely constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four orders of magnitude weaker than the Standard Model Higgs. These results apply more generally to the coupling of an axion-like particle to matter. Hidden photons can be constrained by experiments since they couple to charged Standard Model particles via kinetic mixing with the ordinary photon. We derive

  2. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles

    Directory of Open Access Journals (Sweden)

    Tatiana Borisova

    2018-06-01

    Full Text Available Nerve cells take a special place among other cells in organisms because of their unique function mechanism. The plasma membrane of nerve cells from the one hand performs a classical barrier function, thereby being foremost targeted during contact with micro- and nano-sized particles, and from the other hand it is very intensively involved in nerve signal transmission, i.e., depolarization-induced calcium-dependent compound exocytosis realized via vesicle fusion following by their retrieval and calcium-independent permanent neurotransmitter turnover via plasma membrane neurotransmitter transporters that utilize Na+/K+ electrochemical gradient as a driving force. Worldwide traveling air pollution particulate matter is now considered as a possible trigger factor for the development of a variety of neuropathologies. Micro- and nano-sized particles can reach the central nervous system during inhalation avoiding the blood–brain barrier, thereby making synaptic neurotransmission extremely sensitive to their influence. Neurosafety of environmental, engineered and planetary particles is difficult to predict because they possess other features as compared to bulk materials from which the particles are composed of. The capability of the particles to absorb heavy metals and organic neurotoxic molecules from the environment, and moreover, spontaneously interact with proteins and lipids in organisms and form biomolecular corona can considerably change the particles‘ features. The absorption capability occasionally makes them worldwide traveling particulate carriers for delivery of environmental neurotoxic compounds to the brain. Discrepancy of the experimental data on neurotoxicity assessment of micro- and nano-sized particles can be associated with a variability of systems, in which neurotoxicity was analyzed and where protein components of the incubation media forming particle biocorona can significantly distort and even eliminate factual particle

  3. Element content and particle size characterization of a mussel candidate reference material

    International Nuclear Information System (INIS)

    Moreira, Edson G.; Vasconcellos, Marina B.A.; Santos, Rafaela G. dos; Martinelli, Jose R.

    2011-01-01

    The use of certified reference materials is an important tool in the quality assurance of analytical measurements. To assure reliability on recently prepared powder reference materials, not only the characterization of the property values of interest and their corresponding uncertainties, but also physical properties such as the particle size distribution must be well evaluated. Narrow particle size distributions are preferable than larger ones; as different size particles may have different analyte content. Due to this fact, the segregation of the coarse and the fine particles in a bottle may lead to inhomogeneity of the reference material, which should be avoided. In this study the element content as well as the particle size distribution of a mussel candidate reference material produced at IPEN-CNEN/SP was investigated. Instrumental Neutron Activation Analysis was applied to the determination of 15 elements in seven fractions of the material with different particle size distributions. Subsamples of the materials were irradiated simultaneously with elemental standards at the IEA-R1 research nuclear reactor and the induced gamma ray energies were measured in a hyperpure germanium detector. Three vials of the candidate reference material and three coarser fractions, collected during the preparation, were analyzed by Laser Diffraction Particle Analysis to determine the particle size distribution. Differences on element content were detected for fractions with different particle size distribution, indicating the importance of particle size control for biological reference materials. From the particle size analysis, Gaussian particle size distribution was observed for the candidate reference material with mean particle size μ = 94.6 ± 0.8 μm. (author)

  4. Softness of Nuclear Matter and the Production of Strange Particles in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    陈伟; 文德华; 刘良钢

    2003-01-01

    In the various models, we study the influences of the softness of nuclear matter, the vacuum fluctuation ofnucleons and σ mesons on the production of strange particles in neutron stars. Wefind that the stiffer the nuclear matter is, the more easily the strange particles is produced in neutron stars. The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.

  5. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces

    DEFF Research Database (Denmark)

    Kornfelt, L. F.; Weisbjerg, Martin Riis; Norgaard, P.

    2013-01-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37 late: NDF 44% in dry matter.......01), physical form (P time (P distribution function...... fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P time. The mean ruminating time (min/kg DM) was affected by harvest time (P

  6. EVALUATION OF THE IMPACT OF OIL PRESENCE IN THE AVIATION FUEL ON PARTICLE SIZE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Remigiusz JASIŃSKI

    2017-03-01

    Full Text Available Emissions from aircraft engines represent a highly complex and important issue, which is related to the risk to human health. Particles emitted in urban areas and in the vicinity of airports affect air quality and have a particularly negative impact on airport workers. The development of measurement techniques and the methodology for evaluating exhaust emissions have allowed for the elaboration of appropriate procedures for the certification of aircraft and the enhancement of existing standards. Particulate matter emissions depend, among other things, on the composition of the fuel used and its additives. Some aircraft engine designs require a fuel additive in the form of oil, which ensures the proper operation of the fuel supply system. This article presents the results of studies conducted on jet engines powered by clean aviation fuel and fuel with the addition of oil. The aim of the study was to evaluate the effect of the addition of oil on the size distribution and concentration of emitted particles. It was found that, for small values of thrust, oil additive increases the concentration of particles. With an increase in the thrust force, the reduction of particles concentration was recorded in the case of the engine powered by fuel with oil additive. There was no significant effect of oil additive on the size distribution of emitted particles.

  7. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  8. Synopsis of the temporal variation of particulate matter composition and size.

    Science.gov (United States)

    Demerjian, Kenneth L; Mohnen, Volker A

    2008-02-01

    A synopsis of the detailed temporal variation of the size and number distribution of particulate matter (PM) and its chemical composition on the basis of measurements performed by several regional research consortia funded by the U.S. Environmental Protection Agency (EPA) PM Supersite Program is presented. This program deployed and evaluated a variety of research and emerging commercial measurement technologies to investigate the physical and chemical properties of atmospheric aerosols at a level of detail never before achieved. Most notably these studies demonstrated that systematic size-segregated measurements of mass, number, and associated chemical composition of the fine (PM2.5) and ultrafine (PM0.1) fraction of ambient aerosol with a time resolution down to minutes and less is achievable. A wealth of new information on the temporal variation of aerosol has been added to the existing knowledge pool that can be mined to resolve outstanding research and policy-related questions. This paper explores the nature of temporal variations (on time scales from several minutes to hours) in the chemical and physical properties of PM and its implications in the identification of PM formation processes, and source attribution (primary versus secondary), the contribution of local versus transported PM and the development of effective PM control strategies. The PM Supersite results summarized indicate that location, time of day, and season significantly influence not only the mass and chemical composition but also the size-resolved chemical/elemental composition of PM. Ambient measurements also show that ultrafine particles have different compositions and make up only a small portion of the PM mass concentration compared with inhalable coarse and fine particles, but their number concentration is significantly larger than their coarse or fine counterparts. PM size classes show differences in the relative amounts of nitrates, sulfates, crustal materials, and most especially

  9. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  10. DEPFET detectors for direct detection of MeV dark matter particles

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Ninkovic, J.; Treis, J. [Max-Planck-Gesellschaft Halbleiterlabor, Munich (Germany); Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Atominstitut, Technische Universitaet Wien, Vienna (Austria)

    2017-12-15

    The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about anti σ{sub e} = 10{sup -41} cm{sup 2} for dark matter particles with a mass of 10 MeV can be reached. (orig.)

  11. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py

  12. Effectiveness of the Size Matters Handwriting Program.

    Science.gov (United States)

    Pfeiffer, Beth; Rai, Gillian; Murray, Tammy; Brusilovskiy, Eugene

    2015-04-01

    The purpose of the research was to study changes in handwriting legibility among kindergarten, first- and second-grade students in response to the Size Matters curricular-based handwriting program. A two-group pre-post-test design was implemented at two public schools with half of the classrooms assigned to receive the Size Matters program and the other continuing to receive standard instruction. All participants completed two standardized handwriting measures at pre-test and after 40 instructional sessions were completed with the classes receiving the handwriting program. Results identified significant changes in legibility in the handwriting intervention group for all three grades when compared with the standard instruction group. The results of this study support the use of a curricular-embedded handwriting program and provide the foundation for future research examining the impact of handwriting legibility on learning outcomes.

  13. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  14. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  15. Particle sizing experiments with the laser Doppler velocimeter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  16. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  17. Particle dark matter signal in DAMA/LIBRA

    International Nuclear Information System (INIS)

    Bernabei, R.; Belli, P.; Di Marco, A.; Montecchia, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C.J.; He, H.L.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; Ye, Z.P.

    2012-01-01

    The DAMA/LIBRA experiment, running at LNGS, has a sensitive mass of about 250 kg highly radiopure NaI(Tl) and it is mainly devoted to the investigation of Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The present DAMA/LIBRA experiment and the former DAMA/NaI one have released so far results corresponding to a total exposure of 1.17 ton×yr over 13 annual cycles. They provide a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ C.L.

  18. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  19. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  20. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)

    2011-10-15

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  1. Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets

    International Nuclear Information System (INIS)

    Baker, Oliver K.; Jaeckel, Joerg; Lindner, Axel; Ringwald, Andreas; Semertzidis, Yannis; Sikivie, Pierre

    2011-10-01

    In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)

  2. Atomic interactions of charged particles with matter

    International Nuclear Information System (INIS)

    Bichsel, H.

    1993-01-01

    Ideas about the interactions of charged particles with matter are discussed. First, some experimental information is presented. Concepts related to collision cross sections and the Bethe model for them are given. The stopping power is derived and applied to the discussion of depth dose functions ('Bragg curves'). Some details of the energy loss in microscopic volumes are discussed

  3. Classroom Materials for Teaching "The Particle Nature of Matter." Practical Paper No. 173.

    Science.gov (United States)

    Pella, Milton O.; And Others

    This document presents the lesson plans and tests used in the research study reported in Technical Report 173 (ED 070 658), together with descriptions of models and films developed for the teaching program. Thirty-one lessons are included, covering the topics of matter and energy; making interferences; particles; a model for matter; particles and…

  4. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  5. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  6. Size-based sorting of micro-particles using microbubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  7. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  8. The effects of particle size distribution and induced unpinning during grain growth

    International Nuclear Information System (INIS)

    Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.

    1996-01-01

    The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society

  9. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  10. A particle dark matter footprint on the first generation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2014-05-01

    Dark matter particles with properties identical to those of dark matter candidates hinted at by several international collaborations dedicated to the experimental detection of dark matter (DAMA, COGENT, CRESST, and CDMS-II, although not, most notably, by LUX), which also have a dark matter asymmetry that is identical to the observed baryon asymmetry (Planck and Wilkinson Microwave Anisotropy Probe), may produce a significant impact on the evolution of the first generation of low-metallicity stars. The lifetimes of these stars in different phases of stellar evolution are significantly extended, namely, in the pre-main sequence, main sequence, and red giant phases. In particular, intermediate-mass stars in the red giant phase experience significant changes in their luminosity and chemical composition. The annihilations of dark matter particles affect the interior of the star in such a way that the 3α reaction becomes less efficient in the production of carbon and oxygen. This dark matter effect contradicts the excess of carbon and other metals observed today in stars of low mass and low metallicity. Hence, we can impose an upper limit on the dark matter halo density, and therefore on the redshift, at which the first generation of low-metallicity stars formed.

  11. Particle size distribution of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Zeng Ke; Wu Wangsuo; Jin Yuren; Shen Maoquan; Han Zhaoyang; Hu Zhiqian; Ma Teqi

    2012-01-01

    Wet classification and γ ray spectroscopy had been applied to study the particle size distribution of Pu in the desert soil of somewhere in Northern China. It was found that nearly 90% of Pu exits in 0.1-10 mm particles. only 10% less in particles under 0.05 mm that still poses notable hazards to biosphere if any resuspension. Providing a decontamination target of 239 Pu <4000 Bq/kg, accident condition. (authors)

  12. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  13. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  14. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    Science.gov (United States)

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  16. Thermoluminescent dependence with the particle size in ionized foods by radiation

    International Nuclear Information System (INIS)

    Teuffer Z, C.A.

    2005-01-01

    The influence of the particle size of poly minerals in the signals of the thermally stimulated luminescence (TL) is analysed. The poly minerals were extracted of Mexican spices such as Origanum vulgare L. (origanum) and Capsicum annum (Chilli guajillo), these underwent to an homogenization process to obtain four different particle sizes corresponding to 149, 74, 53 and 10 μ m, and later on to expose them to gamma radiation in an interval of 0.5- 45 kGy in the Gamma beam 651 PT of 60 Co irradiator of the Nuclear Sciences Institute, UNAM. The glow curves show a maximum of TL intensity for Capsicum annum to dose of 0.5- 10 kGy with particle size selected by means of a mesh of opening of 53 μ m, while for Origanum vulgare L., the more intense emission is observed with 149 μ m. In the interval of dose 12- 45 kGy the maximum in intensity emission it was presented in 53 μ m in both cases. For the case of 10 μ m, the TL emissions were of smaller intensity, and were achieved glow curves in a clear, defined way and an overlapping that allows to center the maximum of TL emission, in a defined temperature 126 C for Origanum vulgare L., and 166 C for Capsicum annum. The behavior before described is related with the composition of the samples. For Capsicum annum it was found Quartz (60%), Albite (30%) and Ortosa (10%), while Origanum vulgare stops L., Quartz (50%), Calcite (20%), Albite (20%) and Clay (10%). The homogenization of the samples is an important factor because exists high probability of avoiding as much as possible rests of organic matter traces that can contribute to the total signal of the glow curves. Likewise the defects that pollute from a natural way to each one of the minerals found in the samples, they play an outstanding role in the TL emissions. Although to the interacting the gamma radiation with the poly minerals of different particle sizes, there is a certain energy transfer that will be translated in the absorbed dose and this it will depend on the

  17. Searches for Particle Dark Matter with gamma-rays.

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this contribution I review the present status and discuss some prospects for indirect detection of dark matter with gamma-rays. Thanks to the Fermi Large Area Telescope, searches in gamma-rays have reached sensitivities that allow to probe the most interesting parameter space of the weakly interacting massive particles (WIMP) paradigm. This gain in sensitivity is naturally accompanied by a number of detection claims or indications, the most recent being the claim of a line feature at a dark matter particle mass of ∼ 130 GeV at the Galactic Centre, a claim which requires confirmation from the Fermi-LAT collaboration and other experiments, for example HESS II or the planned Gamma-400 satellite. Predictions for the next generation air Cherenkov telescope, Cherenkov Telescope Array (CTA), together with forecasts on future Fermi-LAT constraints arrive at the exciting possibility that the cosmological benchmark cross-section could be probed from masses of a few GeV to a few TeV. Consequently, non-detection wou...

  18. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  19. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  20. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  1. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant

    Directory of Open Access Journals (Sweden)

    Zhixiang Chen

    2018-03-01

    Full Text Available Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide. The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression.

  2. A fast iterative method for computing particle beams penetrating matter

    International Nuclear Information System (INIS)

    Boergers, C.

    1997-01-01

    Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs

  3. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  4. Paul Scherrer Institut Scientific Report 2001. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kubik, P.; Meisel, E.; Zehnder, A.

    2002-03-01

    This scientific report comprises the activities of the following laboratories of PSI: for particle physics, for astrophysics, for muon spin spectroscopy, for micro- and nano- technology, for radio- and environmental chemistry,and for beam physics in the field of particles and matter sciences

  5. Effects of particle size and adaptation duration on the digestible and metabolizable energy contents and digestibility of various chemical constituents in wheat for finishing pigs determined by the direct or indirect method.

    Science.gov (United States)

    Fan, Yuanfang; Guo, Panpan; Yang, Yuyuan; Xia, Tian; Liu, Ling; Ma, Yongxi

    2017-04-01

    This experiment was conducted as a 3×2×2 factorial design to examine the effects of particle size (mean particle size of 331, 640, or 862 μm), evaluation method (direct vs indirect method) and adaptation duration (7 or 26 days) on the energy content and the apparent total tract digestibility (ATTD) of various chemical components in wheat when fed to finishing pigs. Forty-two barrows (Duroc×Landrace×Yorkshire) with an initial body weight of 63.0±0.8 kg were individually placed in metabolic cages and randomly allotted to 1 of 7 diets with 6 pigs fed each diet. For the indirect method, the pigs were fed either a corn-soybean meal based basal diet or diets in which 38.94% of the basal diet was substituted by wheat of the different particle sizes. In the direct method, the diets contained 97.34% wheat with the different particle sizes. For both the direct and indirect methods, the pigs were adapted to their diets for either 7 or 26 days. A reduction in particle size linearly increased the digestible energy (DE) and metabolizable energy (ME) contents as well as the ATTD of gross energy, crude protein, organic matter, ether extract (EE) and acid detergent fiber (ADF) (penergy, crude protein, dry matter and organic matter were higher (pdirect method, but the ATTD of ADF, EE, and neutral detergent fiber were higher when determined by the indirect method (pdirect method but quadratic equations (p = 0.073 and p = 0.088, respectively) about ATTD of ADF and EE when determined by the indirect method. Decreasing particle size can improve the DE and ME contents of wheat; both of the direct and indirect methods of evaluation are suitable for evaluating the DE and ME contents of wheat with different particle sizes; and an adaptation duration of 7 d is sufficient to evaluate DE and ME contents of wheat in finishing pigs.

  6. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  7. Size distributions of non-volatile particle residuals (Dp<800 nm at a rural site in Germany and relation to air mass origin

    Directory of Open Access Journals (Sweden)

    T. Tuch

    2007-11-01

    Full Text Available Atmospheric aerosol particle size distributions at a continental background site in Eastern Germany were examined for a one-year period. Particles were classified using a twin differential mobility particle sizer in a size range between 3 and 800 nm. As a novelty, every second measurement of this experiment involved the removal of volatile chemical compounds in a thermodenuder at 300°C. This concept allowed to quantify the number size distribution of non-volatile particle cores – primarily associated with elemental carbon, and to compare this to the original non-conditioned size distribution. As a byproduct of the volatility analysis, new particles originating from nucleation inside the thermodenuder can be observed, however, overwhelmingly at diameters below 6 nm. Within the measurement uncertainty, every particle down to particle sizes of 15 nm is concluded to contain a non-volatile core. The volume fraction of non-volatile particulate matter (non-conditioned diameter < 800 nm varied between 10 and 30% and was largely consistent with the experimentally determined mass fraction of elemental carbon. The average size of the non-volatile particle cores was estimated as a function of original non-conditioned size using a summation method, which showed that larger particles (>200 nm contained more non-volatile compounds than smaller particles (<50 nm, thus indicating a significantly different chemical composition. Two alternative air mass classification schemes based on either, synoptic chart analysis (Berliner Wetterkarte or back trajectories showed that the volume and number fraction of non-volatile cores depended less on air mass than the total particle number concentration. In all air masses, the non-volatile size distributions showed a more and a less volatile ("soot" mode, the latter being located at about 50 nm. During unstable conditions and in maritime air masses, smaller values were observed compared to stable or continental conditions

  8. Muon Flux Limits for Majorana Dark Matter Particles

    DEFF Research Database (Denmark)

    Belotsky, Konstantin; Khlopov, Maxim; Kouvaris, Christoforos

    2009-01-01

    We analyze the effects of capture of dark matter (DM) particles, with successive annihilations, predicted in the minimal walking technicolor model (MWT) by the Sun and the Earth. We show that the Super-Kamiokande (SK) upper limit on excessive muon flux disfavors the mass interval between 100-200 Ge...

  9. Particle size-dependent radical generation from wildland fire smoke

    International Nuclear Information System (INIS)

    Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.

    2007-01-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The

  10. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  11. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  12. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  13. Strange particles from dense hadronic matter

    International Nuclear Information System (INIS)

    Rafelski, J.; Letessier, J.; Tounsi, A.

    1996-01-01

    After a brief survey of the remarkable accomplishments of the current heavy ion collision experiments up to 200A GeV, we address in depth the role of strange particle production in the search for new phases of matter in these collisions. In particular, we show that the observed enhancement pattern of otherwise rarely produced multistrange antibaryons can be consistently explained assuming color deconfinement in a localized, rapidly disintegrating hadronic source. We develop the theoretical description of this source, and in particular study QCD based processes of strangeness production in the deconfined, thermal quark-gluon plasma phase, allowing for approach to chemical equilibrium and dynamical evolution. We also address thermal charm production. Using a rapid hadronization model we obtain final state particle yields, providing detailed theoretical predictions about strange particle spectra and yields as functions of heavy ion energy. Our presentation is comprehensive and self contained: we introduce the procedures used in data interpretation in considerable detail, discuss the particular importance of selected experimental results, and show how they impact the theoretical developments. (author)

  14. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Science.gov (United States)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  15. Influence of particle size on physical and sensory attributes of mango pulp powder

    Science.gov (United States)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  16. Black holes are neither particle accelerators nor dark matter probes.

    Science.gov (United States)

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  17. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  18. Effect of forage inclusion and particle size in diets of neonatal lambs on performance and rumen development.

    Science.gov (United States)

    Norouzian, M A; Valizadeh, R

    2014-12-01

    A slaughter experiment was conducted to determine the effects of alfalfa particle size on rumen morphology and performance of lambs. Twenty-four Balouchi lambs aged 21 days (9.1 ± 1.1 kg) were randomly fed control (diet without alfalfa hay; CON) and mixed rations containing 15% finely ground (FINE; 2 mm) and 15% coarsely chopped alfalfa hay (LONG; 3 to 4 cm). After a 63 days feeding period, nine animals (three per treatment) were slaughtered to obtain ruminal tissue samples for morphological analyses. Alfalfa particle size did not affect (p > 0.05) papillae density, height, width, epithelium depth and surface area. Coarse alfalfa decreased the stratum corneum and increased (p content and nor RNA concentration of rumen tissue was affected by feeding different diets. Forage particle size did not affect the blood concentration of glucose, urea nitrogen (BUN), beta-hydroxybutyric acid (BHBA) and non-esterified fatty acids (NEFA). Dry matter intake and feed conversion ratio were higher for control diet; however, there were no significant differences between treatments for average daily gain. These data suggest that coarse alfalfa significantly reduces the stratum corneum and increases muscularity of rumen wall and tended to better feed conversion ratio. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  19. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  20. Size limits for rounding of volcanic ash particles heated by lightning

    Science.gov (United States)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  1. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  2. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  3. Effect of dispersed phase particle size on microstructure of cup fracture

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1978-01-01

    A correlation-regressive analysis has been carried out to reveal the influence of the size and the mean distance between the disperse particles of deposits V(C,N) on the microstructure (size of micropores and cups, density of the cups) of a viscous cup-like fracture of specimens made of 30Kh2NMFA grade steel that has been hardened and annealed. It is shown that micropores develop at relatively large particles of deposits V(C,N) (>=0.04/m). A strong correlation linear connection exists between the size of a disperse particle of deposits V(C,N), the size of micropore and cup. This connection is attributable to the close, pairwise correlative connection between the size of the particle and the micropore, the micropore and the cup

  4. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  5. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  6. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  7. Characterization of spherical core–shell particles by static light scattering. Estimation of the core- and particle-size distributions

    International Nuclear Information System (INIS)

    Clementi, Luis A.; Vega, Jorge R.; Gugliotta, Luis M.; Quirantes, Arturo

    2012-01-01

    A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio. -- Highlights: ► Particles with core–shell morphology are characterized by static light scattering. ► Core size distribution and particle size distribution are successfully estimated. ► Simulated and experimental examples are used to validate the numerical method. ► The positive effect of a large core/shell optical contrast is investigated. ► No a-priori assumption on the shapes of the size distributions is required.

  8. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  9. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  10. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  11. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  12. Natural Dark Matter from an unnatural Higgs boson and new colored particles at the TeV scale

    International Nuclear Information System (INIS)

    Pierce, Aaron; Thaler, Jesse

    2007-01-01

    The thermal relic abundance of Dark Matter motivates the existence of new electroweak scale particles, independent of naturalness considerations. However, most unnatural Dark Matter models do not ensure the presence of new particles charged under SU(3) C , resulting in challenging LHC phenomenology. Here, we present a class of models with scalar electroweak doublet Dark Matter that require a host of colored particles at the TeV scale. In these models, the Higgs boson is apparently fine-tuned, but the Dark Matter doublet is kept light without any additional fine-tuning

  13. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  15. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  16. Quasi-particle description of strongly interacting matter: Towards a foundation

    International Nuclear Information System (INIS)

    Bluhm, M.; Kaempfer, B.; Schulze, R.; Seipt, D.

    2007-01-01

    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Φ-functional approach to QCD which motivates the quasi-particle picture. (orig.)

  17. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  18. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  19. Dark matter particle production in b→s transitions with missing energy

    International Nuclear Information System (INIS)

    Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim

    2004-01-01

    Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K * ) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B→KSS may exceed the decay width in the standard model channel, B→Kνν-bar, by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV

  20. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  1. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    Science.gov (United States)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of

  3. Searches for Dark Matter in events with long-lived particles at the LHC

    CERN Document Server

    Schioppa, Marco; The ATLAS collaboration

    2017-01-01

    The ATLAS, CMS and LHCb collaborations searched for Dark Matter (DM) in events with long-lived particles. Many theories of physics beyond the Standard Model predict the existence of stable, neutral, weakly-interacting and massive particles that are putative Dark Matter candidates. The observation of such matter at a collider could only establish that it is neutral, weakly-interactive, massive and stable on the distance-scales of tens of meters. The searches are performed using the LHC Run-I and Run-II datasets recorded with the ATLAS, CMS and LHCb detectors in proton-proton collisions at a center-of-mass energy of 7, 8 and 13 TeV. Signatures include both long-lived particles produced in association with DM and long-lived DM particles (e.g. dark photons decay in lepton-jets). This presentation covers only some of the many researches carried out with the LHC experiments in recent years. No deviation from SM background expectation was found up to now and exclusion limits on DM production cross section were set.

  4. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  5. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  6. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions

    DEFF Research Database (Denmark)

    Göke, Katrin; Roese, Elin; Arnold, Andreas

    2016-01-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bl......Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection...... treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones....

  7. Planckian Interacting Massive Particles as Dark Matter

    CERN Document Server

    Garny, Mathias; Sloth, Martin S.

    2016-03-10

    The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar...

  8. Particle number size distributions in urban air before and after volatilisation

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  9. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  10. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  11. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  12. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  13. More evidence in favor of light dark matter particles?

    International Nuclear Information System (INIS)

    Boehm, Celine; Ascasibar, Yago

    2004-01-01

    In a previous work, it was found that the light dark matter scenario could be a possible explanation to the 511 keV emission line detected at the center of our galaxy. Here, we show that hints of this scenario may also have been discovered in particle physics experiments. This could explain the discrepancy between the measurement of the fine structure constant and the value referenced in the CODATA. Finally, our results indicate that some of the light dark matter features could be tested in accelerators. Their discovery might favor N=2 supersymmetry

  14. A low-cost, high-magnification imaging system for particle sizing applications

    International Nuclear Information System (INIS)

    Tipnis, Tanmay J; Lawson, Nicholas J; Tatam, Ralph P

    2014-01-01

    A low-cost imaging system for high magnification and high resolution was developed as an alternative to long-working-distance microscope-based systems, primarily for particle sizing applications. The imaging optics, comprising an inverted fixed focus lens coupled to a microscope objective, were able to provide a working distance of approximately 50 mm. The system magnification could be changed by using an appropriate microscope objective. Particle sizing was achieved using shadow-based techniques with the backlight illumination provided by a pulsed light-emitting diode light source. The images were analysed using commercial sizing software which gave the particle sizes and their distribution. A range of particles, from 6 to 8 µm to over 100 µm, was successfully measured with a minimum spatial resolution of approximately 2.5 µm. This system allowed measurement of a wide range of particles at a lower cost and improved operator safety without disturbing the flow. (technical design note)

  15. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  16. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  17. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  18. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  19. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  20. Search for weakly interacting massive particles with the Cryogenic Dark Matter Search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saab, Tarek [Stanford U.

    2002-01-01

    From individual galaxies, to clusters of galaxies, to in between the cushions of your sofa, Dark Matter appears to be pervasive on every scale. With increasing accuracy, recent astrophysical measurements, from a variety of experiments, are arriving at the following cosmological model : a flat cosmology (Ωk = 0) with matter and energy densities contributing roughly 1/3 and 2/3 (Ωm = 0.35, ΩΛ = 0.65). Of the matter contribution, it appears that only ~ 10% (Ωb ~ 0.04) is attributable to baryons. Astrophysical measurements constrain the remaining matter to be non-realtivistic, interacting primarily gravitationally. Various theoretical models for such Dark Matter exist. A leading candidate for the non-baryonic matter are Weakly Interacting Massive Particles (dubbed WIMPS). These particles, and their relic density may be naturally explained within the framework of Super-Symmetry theories. SuperSymmetry also offers predictions as to the scattering rates of WIMPs with baryonic matter allowing for the design and tailoring of experiments that search specifically for the WIMPs. The Cryogenic Dark Matter Search experiment is searching for evidence of WIMP interactions in crystals of Ge and Si. Using cryogenic detector technology to measure both the phonon and ionization response to a particle recoil the CDMS detectors are able to discriminate between electron and nuclear recoils, thus reducing the large rates of electron recoil backgrounds to levels with which a Dark Matter search is not only feasible, but far-reaching. This thesis will describe in some detail the physical principles behind the CDMS detector technology, highlighting the final step in the evolution of the detector design and characterization techniques. In addition, data from a 100 day long exposure of the current run at the Stanford Underground Facility will be presented, with focus given to detector performance as well as to the implications on allowable WIMP mass - cross-section parameter space.

  1. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  2. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland During Summer

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Andersen, T. J.; Nielsen, Morten Holtegaard

    2010-01-01

    Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66A degrees) in August 2007 along with optical properties. These comprised diffuse...... water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K (d...... from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K (d)(PAR), particle beam attenuation coefficients (c (p)), and reflectance R(-0, PAR) at the melt...

  3. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  4. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  5. Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China

    Science.gov (United States)

    Du, Wei; Zhao, Jian; Wang, Yuying; Zhang, Yingjie; Wang, Qingqing; Xu, Weiqi; Chen, Chen; Han, Tingting; Zhang, Fang; Li, Zhanqing; Fu, Pingqing; Li, Jie; Wang, Zifa; Sun, Yele

    2017-06-01

    Despite extensive studies into the characterization of particle number size distributions at ground level, real-time measurements above the urban canopy in the megacity of Beijing have never been performed to date. Here we conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing from 22 August to 30 September. Our results showed overall similar temporal variations in number size distributions between ground level and 260 m, yet periods with significant differences were also observed. Particularly, accumulation-mode particles were highly correlated (r2 = 0. 85) at the two heights, while Aitken-mode particles presented more differences. Detailed analysis suggests that the vertical differences in number concentrations strongly depended on particle size, and particles with a mobility diameter between 100 and 200 nm generally showed higher concentrations at higher altitudes. Particle growth rates and condensation sinks were also calculated, which were 3.2 and 3.6 nm h-1, and 2.8 × 10-2 and 2.9 × 10-2 s-1, at ground level and 260 m, respectively. By linking particle growth with aerosol composition, we found that organics appeared to play an important role in the early stage of the growth (09:00-12:00 LT) while sulfate was also important during the later period. Positive matrix factorization of size-resolved number concentrations identified three common sources at ground level and 260 m, including a factor associated with new particle formation and growth events (NPEs), and two secondary factors that represent photochemical processing and regional transport. Cooking emission was found to have a large contribution to small particles and showed much higher concentration at ground level than 260 m in the evening. These results imply that investigation of NPEs at ground level in megacities needs to consider the influences of local cooking emissions. The impacts of regional emission controls on

  6. Simultaneous velocity and particle size measurement in two phase flows by Laser Anemometry

    Science.gov (United States)

    Ungut, A.; Yule, A. J.; Taylor, D. S.; Chigier, N. A.

    1978-01-01

    A technique for particle size measurement by using Laser Doppler Anemometry is discussed. An additional gate photomultiplier has been introduced at right angles to the optical axis in order to select only those particles passing through the central region of the measurement control volume. Particle sizing measurements have been made in sprays of glass particles using the modified Laser Anemometry system. Measurements in fuel sprays are also reported and compared with the results obtained by a photographic technique. The application of the particle sizing technique to opaque particles is investigated and suitable optical arrangements are suggested. Light scattering characteristics of Laser Anemometry systems for different optical geometries are calculated to select the optimum optical arrangement for the particle sizing measurements.

  7. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  8. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    International Nuclear Information System (INIS)

    Konopka, Ladislav; Kosek, Juraj

    2015-01-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles. (paper)

  9. Size exclusion chromatography with superficially porous particles.

    Science.gov (United States)

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Influence of maize flour particle size on gluten-free breadmaking.

    Science.gov (United States)

    de la Hera, Esther; Talegón, María; Caballero, Pedro; Gómez, Manuel

    2013-03-15

    Maize, one of the suitable grains for coeliac consumption, is, together with rice, the most cultivated cereal in the world. However, the inclusion of maize flour in gluten-free bread is a minority and studies are scarce. This paper analyses the influence of different maize flour types and their particle sizes on the quality of two types of bread without gluten (80% and 110% water in the formulation) obtained from them. We also analysed the microstructure of the dough and its behaviour during the fermentation. Finer flours had a lower dough development during fermentation in all cases. Among the different types of flour, those whose microstructure revealed compact particles were those which had higher specific bread volume, especially when the particle size was greater. Among the formulations, the dough with more water gave breads with higher specific volume, an effect that was more important in more compact flours. The higher volume breads had lower values of hardness and resilience. The type of corn flour and mainly its particle size influence significantly the dough development of gluten-free bread during fermentation and therefore the final volume and texture of the breads obtained. The flours having coarser particle size are the most suitable for making gluten-free maize bread. © 2012 Society of Chemical Industry.

  11. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits.

    Science.gov (United States)

    Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M

    2017-08-01

    Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially associated with the observed particle size distributions and to identify key issues

  12. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  13. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    Science.gov (United States)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  14. Microbial communities in litter and soil - particles size fractionation, C- and N-pools and soil enzymes

    International Nuclear Information System (INIS)

    Stemmer, M.; Gerzabek, M.H.; Pichlmayer, F.; Kandeler, E.

    1995-08-01

    In this study we try to correlate C and N pool investigations to enzyme activities in particle size fractions of soils. Soil incubations in the lab (for one year) simulate two different conventional tillage treatments : (i) soil mixed with maize straw (GSF-mixed) and (ii) soil with maize straw lying on the top (home-mixed). The control soil is incubated without any amendment. The separation of the particle size fractions (2000 - 200 μm, 200 - 63 μm, 63 - 2 μm, 2 - 0.1 μm and 0.1 - 0 μm) is realized by a combination of wet-sieving and centrifugation. To disrupt aggregates we use a defined low-energy ultrasonication, which partly preserves microaggregates. The decomposition of organic C during the incubation can be observed clearly, the small amount of N in the added maize straw complicates the analysis. The isotopic measurements of δ13C and δ15N provide valuable additional informations in this context. Both enzymes, saccharase and xylanase, seem to react in a more sensitive way on the incorporation of the maize litter, than the chemical analysis of the pools. The saccharase activity, which seems to be a sensitive indicator for microbial biomass, shows different behaviour between the mix- and top-treatment. The xylanase activity is mainly located in the coarse sand fraction, this extracellular enzyme might be adsorbed by the particulate organic matter. The transfer of adhering coatings and small particles of the added maize to small sized particles during the fractionation procedure and the 'passive role' of the silt fraction, which could be due to the used method, are nonexpected results. (author)

  15. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  16. Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth

    OpenAIRE

    Jordens, Jeroen; Canini, Enio; Gielen, Bjorn; Van Gerven, Tom; Braeken, Leen

    2017-01-01

    Controlling particle size is essential for crystal quality in the chemical and pharmaceutical industry. Several articles illustrate the potential of ultrasound to tune this particle size during the crystallization process. This paper investigates how ultrasound can control the particle size distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound starts s...

  17. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    Science.gov (United States)

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  18. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  19. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  20. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  1. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  2. Particle size analysis in estimating the significance of airborne contamination

    International Nuclear Information System (INIS)

    1978-01-01

    In this report information on pertinent methods and techniques for analysing particle size distributions is compiled. The principles underlying the measurement methods are described, and the merits of different methods in relation to the information being sought and to their usefulness in the laboratory and in the field are explained. Descriptions on sampling methods, gravitational and inertial particle separation methods, electrostatic sizing devices, diffusion batteries, optical sizing techniques and autoradiography are included. Finally, the report considers sampling for respirable activity and problems related to instrument calibration

  3. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  4. Rutile nanopowders for pigment production: Formation mechanism and particle size prediction

    Science.gov (United States)

    Zhang, Wu; Tang, Hongxin

    2018-01-01

    Formation mechanism and particle size prediction of rutile nanoparticles for pigment production were investigated. Anatase nanoparticles were observed by oriented attachment with parallel lattice fringe spaces of 0.2419 nm. Upon increasing the calcination temperature, the (1 1 0) plane of rutile was gradually observed, suggesting that the anatase (1 0 3) planes undergo internal structural rearrangement of oxygen and titanium ions into rutile phase due to ionic diffusion. Backpropagation neural network was used to predict particle size of rutile nanopowders, the prediction errors were all smaller than 2%, providing an efficient method to control particle size in pigment production.

  5. LIGHT MICROSCOPY DETECTION OF NANOSCALE PARTICLE INTERNALIZATION BY HUMAN LUNG CELLS

    Science.gov (United States)

    RATIONALE. Ultrafine particulate matter (PM) is reported to be more strongly correlated with adverse health effects relative to larger particle size fractions. These epidemiological findings are supported by toxicological studies suggesting that particle size is inversely associa...

  6. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  7. Development of an ejecta particle size measurement diagnostic based on Mie scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Martin Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buttler, William Tillman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Frayer, Daniel K. [National Security Tech, Inc., Los Alamos, NM (United States); Grover, Michael [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Monfared, Shabnam Kalighi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Gerald D. [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Stone, Benjamin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turley, William Dale [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.

    2017-09-27

    The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived by Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.

  8. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  9. Active matter in silico : phase behaviour of attractive, repulsive and anisotropic self-propelled particles

    NARCIS (Netherlands)

    Prymidis, V.

    2017-01-01

    In this thesis we study emergent statistical properties of many-particle systems of self-propelled particles using computer simulations. Ensembles of self-propelled particles belong to the class of physical systems labeled active matter, a term that refers to systems whose individual components are

  10. Particle-size distribution study: PILEDRIVER event

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 {+-} 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  11. Particle-size distribution study: PILEDRIVER event

    International Nuclear Information System (INIS)

    Rabb, David D.

    1970-01-01

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 ± 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  12. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    Science.gov (United States)

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the

  13. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  14. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  15. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    Science.gov (United States)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  16. Particle creation in a universe filled with radiation and dust-like matter

    International Nuclear Information System (INIS)

    Villalba, V.M.

    1993-01-01

    In this article the particle creation process of scalar and spin 1/2 particles in a spatially open cosmological model associated with a universe filled with radiation and dustlike matter is analyzed. The Klein-Gordon and the Dirac equations are solved via separation of variables. After comparing the in and out vacua, we obtain that the number of created particles corresponds to Planckian and Fermi-Dirac distributions for the scalar and Dirac cases respectively. (author)

  17. Suspended particulate matter flocculation in a natural tidal wetland located in the San Francisco Estuary

    Science.gov (United States)

    Saraceno, J.; Bergamaschi, B. A.; Wright, S. A.; Boss, E.; Downing, B. D.; Fleck, J.; Ganju, N. K.

    2011-12-01

    Suspended mineral and algal particles together comprise suspended particulate matter (SPM). The SPM size distribution influences the quantity and color of light penetration and the adsorption and transport of contaminants such as pesticides and metals. It is widely known that interaction with wetlands alters the size distribution and quality of particles through local primary production, differential settling and particle aggregation, however, our understanding of how tidal wetland processes affect SPM quantity and size spectra has been hampered by the difficulty of directly observing these parameters at tidal time scales. To evaluate how SPM concentration and size varied over tidal time scales and to better understand the relationship between organic matter and sediment characteristics, simultaneous measurements of dissolved organic matter, SPM concentration and organic content as well as in situ surrogates of particle concentration (turbidity, particulate attenuation, volume concentration) and particle size (laser diffraction) were carried out with measurements of current velocity (acoustic Doppler velocity meter) in the main channel of Brown's Island located in the western San Joaquin/Sacramento River Delta, CA. The study period coincided with high estuary sediment levels following a significant precipitation runoff event. In the Brown Island wetland, particle concentration and size dynamics were tied to variations in water level and velocity. Turbidity and attenuation covaried with the volume concentration of particles smaller than 33 um, which on average represented greater than 50% of particle population by volume. On average, these SPM concentration surrogates were three times higher in flood water than in ebb water; consistent with a loss of fine particles on the island. Following the highest flood tide, the decrease in fine particles was coincident with an increase in the concentration of particles larger than 130 um; a finding consistent with particle

  18. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  19. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  20. Source apportionment of atmospheric carbonaceous particulate matter based on the radiocarbon

    International Nuclear Information System (INIS)

    Guang-hua Wang; You-shi Zeng; Jian Yao; Yuan Qian; Ke Liu; Wei Liu; Yan Li; Yu Huang; University of South China, Hunan

    2013-01-01

    A method was established to quantitatively estimate sources of atmospheric carbonaceous matter, using a combination of radiocarbon technology, linear regression of organic carbon (OC) -K + and elemental carbon (EC) tracer method. Fractional contributions of fossil fuels, biomass burning, biogenic secondary organic carbon (BSOC) and soil dust to the atmospheric size-resolved carbonaceous matters in Shanghai suburb were estimated using this new method. The fossil carbon contributed most of the OC in particles smaller than 0.49 μm, and its fraction decreased with the increase of particle size. Biomass burning contributed 17-28 % to the OC. The BSOC contributed comparable proportions to the OC in particles smaller than 3.0 μm with the biomass burning, but larger in the particles lager than 3.0 μm. The soil dust contributed least fraction to the OC of each size with a proportion of 2-13 %. The biomass burning and fossil sources shared comparable fraction of the EC in all size range. (author)

  1. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  2. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy

    Czech Academy of Sciences Publication Activity Database

    Pacáková, Barbara; Mantlíková, Alice; Nižňanský, D.; Kubíčková, Simona; Vejpravová, Jana

    2016-01-01

    Roč. 28, č. 20 (2016), 1-11, č. článku 206004. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : magnetic nanoparticles * single-particle anisotropy * dipolar energy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016

  3. Particle Dark Matter Searches Outside the Local Group

    Science.gov (United States)

    Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-06-01

    If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ -ray maps. We show that this technique is more sensitive than other extragalactic γ -ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ -ray production mechanism. This solicits further data collection and dedicated analyses.

  4. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  5. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Particle dark matter constraints from the Draco dwarf galaxy

    International Nuclear Information System (INIS)

    Tyler, Craig

    2002-01-01

    It is widely thought that neutralinos, the lightest supersymmetric particles, could comprise most of the dark matter. If so, then dark halos will emit radio and gamma ray signals initiated by neutralino annihilation. A particularly promising place to look for these indicators is at the center of the local group dwarf spheroidal galaxy Draco, and recent measurements of the motion of its stars have revealed it to be an even better target for dark matter detection than previously thought. We compute limits on WIMP properties for various models of Draco's dark matter halo. We find that if the halo is nearly isothermal, as the new measurements indicate, then current gamma ray flux limits prohibit much of the neutralino parameter space. If Draco has a moderate magnetic field, then current radio limits can rule out more of it. These results are appreciably stronger than other current constraints, and so acquiring more detailed data on Draco's density profile may become one of the most promising avenues for identifying dark matter

  7. Effect of limestone particle size and calcium to non-phytate phosphorus ratio on true ileal calcium digestibility of limestone for broiler chickens.

    Science.gov (United States)

    Anwar, M N; Ravindran, V; Morel, P C H; Ravindran, G; Cowieson, A J

    2016-10-01

    The purpose of this study was to determine the effect of limestone particle size and calcium (Ca) to non-phytate phosphorus (P) ratio on the true ileal Ca digestibility of limestone for broiler chickens. A limestone sample was passed through a set of sieves and separated into fine (digestibility of Ca was calculated using the indicator method and corrected for basal endogenous losses to determine the true Ca digestibility. The basal ileal endogenous Ca losses were determined to be 127 mg/kg of dry matter intake. Increasing Ca:non-phytate P ratios reduced the true Ca digestibility of limestone. The true Ca digestibility coefficients of limestone with Ca:non-phytate P ratios of 1.5, 2.0 and 2.5 were 0.65, 0.57 and 0.49, respectively. Particle size of limestone had a marked effect on the Ca digestibility, with the digestibility being higher in coarse particles (0.71 vs. 0.43).

  8. Particle size studies in the preparation of AQCS reference materials

    International Nuclear Information System (INIS)

    Fajgelj, A.; Zeisler, R.; Benesch, T.; Dekner, R.

    1994-01-01

    Particle size determination is one of the important steps in the characterization of physical properties of each particulate material. However, particle size distribution effects also a chemical composition of the material in terms of homogeneity and representativeness of the sample, as well as allows or not a possible sub-sampling of the material. All this is of great importance in the preparation of reference materials for which the chemical composition and physical properties have to be extremely well characterized. In the present paper we intend to present same efforts which have been done by Analytical Quality Control Services (AQCS) of the International Atomic Energy Agency (IAEA) in the field of particle size determination in the production of reference materials. The Malvern product MasterSizer X, based on laser light scattering is used for this purpose and the technique is also shortly discussed. (author)

  9. Optimizing the particle size of coal for CWM in view of fluidity. [Biomodal

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Seiji; Nonaka, Michio; Okano, Yasuhiko; Inoue, Toshio

    1987-10-25

    As is well known, the viscosity of CWM is considerably influenced by the distribution of coal particle sizes and has bearing on particle packing density or porosity. A model for representing the viscosity of CWM in terms of particle porosity and specific surface was designed. Also, experimental verification was conducted for the method of optimizing particle size on a two-stage grinding system. The results are as follows: The viscosity of CWM is influenced not only by the porosity of coal particles, but also by the specific surface; also, it is correlated to the distance between suspended particles. At the two-stage grinding experiments, a particle size distribution leading to a low viscosity was obtained by mixing coarse and fine particles at 4:1. This has demonstrated that the use of an agitating mill for fine particles is of help. (11 figs, 2 tabs, 6 refs)

  10. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  11. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    Science.gov (United States)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  12. Effect of particle size on colloidal zirconia rheology at the isoelectric point

    International Nuclear Information System (INIS)

    Leong, Y.K.; Scales, P.J.; Healy, T.W.; Boger, D.V.

    1995-01-01

    This paper examines the effects of particle concentration and size on the yield stress of ZrO 2 suspensions at a well-defined surface chemistry condition of the isoelectric point (IEP). At the IEP, the relationship between yield stress τ y max and particulate volume fraction φ s , and mean particle size d was evaluated to be τ y max = K φ s 4.0 /d 2.0 . The difference in size distribution of the various ZrO 2 suspensions examined causes some degree of scatter in the data used to establish the τ y max , φ s , and d relation. The use of particle concentration n t based on the fine size fraction instead of volume fraction φ s provided a better correlation, because the fine particles govern the properties of the flocculated network structure

  13. Process R&D for Particle Size Control of Molybdenum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The primary goal of this study was to produce MoO3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study, effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.

  14. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  15. Particle size distribution in effluent of trickling filters and in humus tanks.

    Science.gov (United States)

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  16. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    Science.gov (United States)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  17. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi.

    Science.gov (United States)

    Srivastava, Arun; Jain, V K

    2007-06-01

    A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.

  18. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  19. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter.

    Science.gov (United States)

    Park, Seungshik; Son, Se-Chang

    2016-01-01

    This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during

  20. Performance of japanese quails fed feeds containing different corn and limestone particle sizes

    Directory of Open Access Journals (Sweden)

    DA Berto

    2007-09-01

    Full Text Available This study aimed at evaluating performance and egg quality of Japanese quails fed feeds containing different corn and limestone particle sizes. A total number of 648 birds in the peak of production was distributed in a random complete block experimental design, using a 2x3 factorial arrangement (2 corn particle sizes and 3 limestone particle sizes. Birds were designated to one of two blocks, with six replicates of 18 birds each. Mean geometric diameter (MGD values used were 0.617mm and 0.723mm (corn fine and coarse particle sizes, respectively, and 0.361mm, 0.721mm, and 0.947mm (limestone fine, intermediate and coarse particle sizes, respectively. The following treatments were applied: T1: fine corn feed, with 100% fine limestone; T2: fine corn feed, with 50% fine limestone and 50% intermediate limestone; T3: fine corn feed, with 50% fine limestone and 50% coarse limestone; T4: coarse corn feed, with 100% fine limestone; T5: coarse corn feed, with 50% fine limestone and 50% intermediate limestone; T6: coarse corn feed, with 50% fine limestone and 50% coarse limestone. The experiment lasted 112 days, consisting of 4 cycles of 28 days. No significant interaction was observed among corn and limestone particle sizes for any of the analyzed parameters. There were no significant effects (p>0.05 of the tested corn particle sizes on quail performance or egg quality. There were significant (p<0.05 isolated effects of limestone particle size only on the percentage of cracked eggs, which was reduced when birds fed 50% coarse limestone (0.947mm and 50% fine limestone (0.361mm as compared to those fed 100% fine limestone. Therefore, the inclusion of 50% coarse limestone (0.947mm is recommended for quail egg production.

  1. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  2. Energy loss of particles in dense matter - calorimetry

    International Nuclear Information System (INIS)

    Wigmans, R.

    1987-08-01

    In the last decade, a class of detectors gradually have become more and more important in experimental particle physics. They are called calorimeters, or total absorption detectors. Basically a calorimeter is a block of matter, in which the particle to be measured interacts, and deposits all its energy in the form of a shower of decreasingly lower-energy particles. The block is made such that certain (usually small and hopefully constant) fraction of the initial particle energy is transformed in a measurable signal (light, electrical charge). This lecture mainly deals with sampling calorimeters but in section 2 also fully sensitive devices are briefly treated. In this section calorimeters for detecting electromagnetic showers are discussed. The physics processes relevant to em shower development are examined, and the factors that limit the performance of em calorimeters. Section 3 is devoted to readout techniques for sampling calorimeters. In sections 4-7 hadron calorimeters are discussed. The physics processes relevant to hadron shower development, their consequences for the calorimeter signals and the possibility for optimizing the performance of hadron calorimeters are examined. In section 8 an outlook for future development is given. 31 refs.; 48 figs

  3. Evaluation of instruments used in particle size analysis by using the sedimentation technique

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abdrahman, A.A.M.; Ahmed, A.Z.

    2007-01-01

    This study is carried out to evaluate the performance of some instruments in which the sedimentation technique is used for the determination of particle size distribution using Stoke's law. A mathematical formula has been developed to calculate the particle size distribution for different cases and the results were compared to the real ones. The results revealed unsatisfactory agreement between the calculated and the measured values. In addition, illogic results were obtained indicating that the instruments in which the sedimentation technique is used are not the proper ones to provide accurate measurements except for mono particle size cases. More above, the results obtained represent the sedimentation rate but not the particle size distribution.

  4. Combustion synthesis of micron-sized Sm2Co17 particles via mechanochemical processing

    International Nuclear Information System (INIS)

    Liu, W.; McCormick, P.G.

    1998-01-01

    Full text: The spontaneous formation of Sm 2 Co 17 micron-sized particles via a mechanically induced combustion reaction has been investigated. Sm 2 Co 17 alloy particles of 0.1--2 μm in size embedded in a CaO matrix formed directly via a combustion reaction induced by milling the powder mixture of Sm 2 O 3 , CoO, CaO and Ca over a critical time. The micron-sized Sm 2 Co 17 particles were found to have the TbCu 7 -type structure and characterized by a coercivity value of 7.8 kOe while embedded in the CaO matrix. The effect of subsequent heat treatment on the structure and magnetic properties of as-milled samples was also investigated. Removal of the CaO by a carefully controlled washing process yielded micron-sized Sm 2 Co 17 particles without significant oxidation of the particles. These fine Sm 2 Co 17 particles can be used to produce anisotropic bulk or bonded magnets

  5. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  6. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  7. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  8. Airborne particulate matter and spacecraft internal environments

    Science.gov (United States)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  9. DISSOLVED ORGANIC-MATTER, CADMIUM, COPPER AND ZINC IN PIG SLURRY-SIZE AND SOIL SOLUTION-SIZE EXCLUSION CHROMATOGRAPHY FRACTIONS

    NARCIS (Netherlands)

    DELCASTILHO, P; DALENBERG, JW; BRUNT, K; BRUINS, AP

    1993-01-01

    Sephadex size exclusion chromatography was used to prepare molecular size fractions from liquid pig slurry, before and after aerobic interaction with a loamy-sand soil. In the liquid fractions organic matter was characterized and some components were identified. The distribution of zinc and copper

  10. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  11. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  12. A novel method for determination of particle size distribution in-process

    Science.gov (United States)

    Salaoru, Tiberiu A.; Li, Mingzhong; Wilkinson, Derek

    2009-07-01

    The pharmaceutical and fine chemicals industries are strongly concerned with the manufacture of high value-added speciality products, often in solid form. On-line measurement of solid particle size is vital for reliable control of product properties. The established techniques, such as laser diffraction or spectral extinction, require dilution of the process suspension when measuring from typical manufacturing streams because of their high concentration. Dilution to facilitate measurement can result in changes of both size and form of particles, especially during production processes such as crystallisation. In spectral extinction, the degree of light scattering and absorption by a suspension is measured. However, for concentrated suspensions the interpretation of light extinction measurements is difficult because of multiple scattering and inter-particle interaction effects and at higher concentrations extinction is essentially total so the technique can no longer be applied. At the same time, scattering by a dispersion also causes a change of phase which affects the real component of the suspension's effective refractive index which is a function of particle size and particle and dispersant refractive indices. In this work, a novel prototype instrument has been developed to measure particle size distribution in concentrated suspensions in-process by measuring suspension refractive index at incidence angles near the onset of total internal reflection. Using this technique, the light beam does not pass through the suspension being measured so suspension turbidity does not impair the measurement.

  13. Academic Training Lecture Regular Programme: Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    2012-01-01

    Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3), by Dr. Edward (Rocky) Kolb (University of Chicago).   Wednesday, May 9, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Ninety-five percent of the present mass-energy density of the Universe is dark.  Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe.  Dark matter and dark energy cannot be explained within the standard model of particle physics.  In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter.  I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis.  Finally, I will discus...

  14. Feebly Interacting Dark Matter Particle as the Inflaton

    OpenAIRE

    Tenkanen, Tommi

    2016-01-01

    We present a scenario where a $Z_2$-symmetric scalar field $\\phi$ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays \\`{a} la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, $\\lambda\\phi^4$, non-minimal coupling to gravity, $\\xi\\phi^2R$, and coupling to another scalar f...

  15. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  17. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  18. Effect of particle size on thermal decomposition of alkali metal picrates

    International Nuclear Information System (INIS)

    Liu, Rui; Zhang, Tonglai; Yang, Li; Zhou, Zunning

    2014-01-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate

  19. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  20. Simulation study of effects of initial particle size distribution on dissolution

    International Nuclear Information System (INIS)

    Wang, G.; Xu, D.S.; Ma, N.; Zhou, N.; Payton, E.J.; Yang, R.; Mills, M.J.; Wang, Y.

    2009-01-01

    Dissolution kinetics of γ' particles in binary Ni-Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ' particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ' particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD

  1. Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface.

    Science.gov (United States)

    Piletska, Elena V; Piletsky, Sergey A

    2010-03-16

    The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.

  2. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  3. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 and CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro, E-mail: pietro.baratella@sissa.it, E-mail: marco.cirelli@cea.fr, E-mail: andi.hektor@cern.ch, E-mail: joosep.pata@cern.ch, E-mail: morten.piibeleht@cern.ch, E-mail: alessandro.strumia@cern.ch [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  4. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  5. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    International Nuclear Information System (INIS)

    Jamaati, Roohollah; Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad

    2011-01-01

    Research highlights: → Microstructure of MMC with larger particles becomes completely uniform, sooner. → When the number of cycles increased, tensile strength for both samples improved. → Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. → First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 μm were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 μm particle size was more salient compared to the MMCs with 2 μm particle size. Also, the composite strip with 40 μm particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 μm particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 μm particle size was more than the composite strip with 2 μm up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 μm particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 μm particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  6. Numerical sedimentation particle-size analysis using the Discrete Element Method

    Science.gov (United States)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  7. Particles size distribution effect on 3D packing of nanoparticles in to a bounded region

    International Nuclear Information System (INIS)

    Farzalipour Tabriz, M.; Salehpoor, P.; Esmaielzadeh Kandjani, A.; Vaezi, M. R.; Sadrnezhaad, S. K.

    2007-01-01

    In this paper, the effects of two different Particle Size Distributions on packing behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel algorithms have been reported. A mersenne twister algorithm was used to generate pseudo random numbers for the particles initial coordinates. Also, for this purpose a nano sized tetragonal confined container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Lognormal Particle Size Distributions were chosen to investigate the packing behavior in a 3D bounded region. The effects of particle numbers on packing behavior of these two Particle Size Distributions have been investigated. Also the reproducibility and the distribution of packing factor of these Particle Size Distributions were compared

  8. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  9. Particle size distribution, chemical composition and meteorological factor analysis: A case study during wintertime snow cover in Zhengzhou, China

    Science.gov (United States)

    Yu, Fei; Wang, Qun; Yan, Qishe; Jiang, Nan; Wei, Junhua; Wei, Zhiyuan; Yin, Shasha

    2018-04-01

    There was a significant snowfall event in North China from November 23 to 25 in 2015. Considering that most of the bare surface and road dust were covered by snow, the effect of dust and soil could be ignored. Atmospheric particle samples were collected in Zhengzhou, China during a haze event from November 28 to December 4, 2015. To better understand the formation and evolution of this hazy event, the size distribution, particle number, composition of particles and meteorological parameters were measured and analyzed. Results show that the meteorological conditions played an important role in the occurrence and elimination of this event. The hourly fine particle matter (PM2.5) concentration was positively correlated with relative humidity (r = 0.84, p NH4+) on hazy days was higher than that on clean days. The higher NH4+ concentration in this case may be contributed by traffic and coal-power emission. Crustal matter accounted for 2.4% in PM2.5 on hazy days, and it confirmed that the contribution of dust emission source was negligible during this event. The ratios of NO3-/SO42 - ranging from 0.41 to 0.67 indicated the relative importance of stationary combustion. The ratios of OC/EC varied from 2.73 to 3.42 and indicated the presence of secondary organic carbon. Effective haze mitigation should enforce pollutant control measures for primary emission (dust) and secondary aerosol gaseous precursor (NH3, NO2 and SO2).

  10. Evaluation of respirable particle matter in gold mine tailings on the Witwatersrand

    International Nuclear Information System (INIS)

    Ojelede, M.E.; Annegarn, H.J.

    2007-01-01

    Within the Witwatersrand gold mining area of South Africa, wind-blown dust is a significant contributor to atmospheric air pollution brought to the fore with the reworking of old mine tailings. Approximately 40,000 hectares are covered with tailings in the Witwatersrand. Wind-erosion during late austral winter and early spring causes surfaces of these tailings to be exposed, particularly during higher wind speeds and in the absence of rainfall. Local residents complain as the surrounding areas experience unpleasant dust episodes. As a result of urban PM 10 and PM 2.5 respirable particulate matter, increased respiratory ailments, morbidity and mortality, and concerns about the health impacts of wind-blown mine tailings in South Africa have been reported. Since 1981, significant monitoring of dustfall has taken place on the Witwatersrand, however, characterization of the respirable fraction of gold mine tailings material and dustfall is lacking. This paper presented the results of a study that established the content of respirable particulate matter in exposed mine tailings and wind-blown dust, and their likely contributions to ambient air. The initial results of the particulate size distribution of material samples from tailings and dust deposits collected in ambient dustfall-monitors were provided. Particle size distributions from different deposit types include slimes and sand deposits, surface and core material, and wind-winnowed secondary deposits. Fractions of PM 10 in source and deposited material were also discussed. It was concluded that there was a significant fraction of PM 10 material in the mine tailings, and that further work to quantify the population exposure risk is needed. 11 refs., 1 tab., 6 figs

  11. Effect of raw soya bean particle size on productive performance and digestion of dairy cows.

    Science.gov (United States)

    Naves, A B; Freitas Júnior, J E; Barletta, R V; Gandra, J R; Calomeni, G D; Gardinal, R; Takiya, C S; Vendramini, T H A; Mingoti, R D; Rennó, F P

    2016-08-01

    Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean. Journal of

  12. Higgs particles interacting via a scalar Dark Matter field

    Directory of Open Access Journals (Sweden)

    Bhattacharya Yajnavalkya

    2016-01-01

    Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  13. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    Science.gov (United States)

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  14. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  15. Inhalation risk and particle size in dust and mist

    Energy Technology Data Exchange (ETDEWEB)

    Davies, C N

    1949-01-01

    This paper presents a critical overview of particle uptake and retention from literature through 1949. Particles > 6-..mu..m are retained in nose, or by secondary bronchi with mouth breathing. Few > 2-..mu..m particles are exhaled, trapped mostly in bronchioles (some by alveoli) by sedimentation. Maximal deposition is 0.4- to 0.8-..mu..m size in bronchioles and alveoli. Minimim retention is at 0.1 to 0.15 ..mu..m; approx. 80% are exhaled. Brownian settling of smaller particles in alveoli occurs. Particles of low density penetrate farther. Slow breathing enhances retention. Soluble toxins may be absorbed at any point along respiratory tract, so deep penetration percentage is moot in most cases.

  16. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  17. High-resolution extraction of particle size via Fourier Ptychography

    Science.gov (United States)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  18. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  19. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.

    Science.gov (United States)

    Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto

    2015-10-06

    The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and

  20. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  1. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  2. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1978-09-01

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr

  3. Separation and chemical characterization of finely-sized fly-ash particles

    International Nuclear Information System (INIS)

    Campbell, J.A.; Laul, J.C.; Nielson, K.K.; Smith, R.D.

    1978-01-01

    The concentrations of 43 major, minor, and trace elements were measured by x-ray fluorescence, atomic absorption, and instrumental neutron activation for nine well-defined size fractions, with mass median diameters of 0.5 μ to 50 μm, of fly ash from a western coal-fired steam plant. There was generally good agreement in concentrations of elements analyzed by more than one technique. Concentration profiles as a function of mean particle size were established for various elements. Based on the concentration profiles, the elements can be divided into three distinct groups. One group consists primarily of the volatile elements or elements partially volatilized during coal combustion (examples include As, Se, Zn, Ga, etc.), and their concentrations decrease with increasing particle size. A second group, which shows a minor or direct dependence on particle size, as in the case of Si, is apparently associated primarily with the fly-ash matrix. The last group of elements, which includes Ca, Sr, Y, and the rare earths, shows small changes in their concentration profiles with a maximum in concentration at approximately 5 μm. 6 tables, 6 figures

  4. Characterizing temporal changes of agricultural particulate matter number concentrations

    Science.gov (United States)

    Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.

    2017-12-01

    It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.

  5. Influence of Emulsion Polymerization Techniques to Particle Size of Copoly(styrene/butyl acrylate/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Tresye Utari

    2008-04-01

    Full Text Available In the majority of applications, particle size and particle size distribution are highly significant factors that determine the properties of a polymer dispersion, such as its flow behavior or its stability. For example, a coating material with small particle size will give smooth coating result, good adhesive strength, good water resistance and latex stability. This article describes influence of various emulsion polymerization techniques to particle size of copoly(styrene/butyl acrylate/methyl methacrylate with mix surfactant SDBS linear chain and nonyl fenol (EO10 and initiator ammonium persulphate. DSC data, solid content and IR spectrum showed that copoly(styrene/butyl acrylate/methyl methacrylate was produced. Batch emulsion polymerization technique gave the highest particle size i.e. 615 nm and also the highest % conversion of monomer i.e. 97%. The more concentration of monomer was seeded to initial charge gave greater particle size and greater poly dispersity index.

  6. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen.

    Science.gov (United States)

    Li, Shuangde; Gao, Jiajia; He, Yiqing; Cao, Liuxu; Li, Ang; Mo, Shengpeng; Chen, Yunfa; Cao, Yaqun

    2017-01-01

    Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10μm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM 2.5 around 6.1mg/m 3 , in comparison with those of soybean and corn (5.87 and 4.65mg/m 3 , respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×10 5 /cm 3 . Mean values of PM 1.0 /PM 2.5 and PM 2.5 /PM 10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM 1.0 , PM 2.5 and PM 10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM 1.0 is quite hard to decay than larger particles, PM 2.5 and PM 10 . The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type. Copyright © 2016. Published by Elsevier B.V.

  7. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2013-01-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  8. Investigation of the low-speed impact behavior of dual particle size metal matrix composites

    International Nuclear Information System (INIS)

    Cerit, Afşın Alper

    2014-01-01

    Highlights: • AA2124 matrix composites reinforced with SiC particles were manufactured. • Low-speed impact behaviors of composites were investigated. • Composites were manufactured with single (SPS) and dual particle sizes (DPS). • Impact behaviors of DPS composites are more favorable than the SPS composites. • Approximately 50–60% of input energy was absorbed by the composite samples. - Abstract: SiC-reinforced aluminum matrix composites were manufactured by powder metallurgy using either single or dual particle sized SiC powders and samples sintered under argon atmosphere. Quasi-static loading, low-speed impact tests and hardness tests were used to investigate mechanical behavior and found that dual particle size composites had improved hardness and impact performance compared to single particle size composites. Sample microstructure, particle distributions, plastic deformations and post-testing damages were examined by scanning electron microscopy and identified microstructure agglomerations in SPS composites. Impact traces were characterized by broken and missing SiC particles and plastically deformed composite areas

  9. Unraveling the size-dependent optical properties of dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Stedmon, Colin; Tranvik, Lars

    2018-01-01

    The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...

  10. Defining the sizes of airborne particles that mediate influenza transmission in ferrets.

    Science.gov (United States)

    Zhou, Jie; Wei, Jianjian; Choy, Ka-Tim; Sia, Sin Fun; Rowlands, Dewi K; Yu, Dan; Wu, Chung-Yi; Lindsley, William G; Cowling, Benjamin J; McDevitt, James; Peiris, Malik; Li, Yuguo; Yen, Hui-Ling

    2018-03-06

    Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency. Copyright © 2018 the Author(s). Published by PNAS.

  11. Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs by the multiple titanium oxide (TiO2 layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency.

  12. Karna Particle Size Dataset for Tables and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains 1) table of bulk Pb-XAS LCF results, 2) table of bulk As-XAS LCF results, 3) figure data of particle size distribution, and 4) figure data for...

  13. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation.

    Science.gov (United States)

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2016-01-01

    Two trials were conducted to determine effects of straw particle size in calf starter on rumen fermentation and development in calves. Holstein calves (n=17 in trial 1; n=25 in trial 2) were housed in individual pens; bedding (wood shavings) was covered with landscape fabric to completely avoid consumption of bedding. Milk replacer was fed at 12% of birth body weight per day and water offered free choice. Calves were randomly assigned to 4 treatments differing in geometric mean particle length (Xgm) of straw comprising 5% of starter dry matter. Straw was provided within the pellet at manufacture (PS; 0.82 mm Xgm) or mixed with the pellet at time of feeding at Xgm of 3.04 (SS), 7.10 (MS), or 12.7 (LS) mm. Calves (n=12; 3/treatment) in trial 1 were fitted with a rumen cannula by wk 2 of age. A fixed amount of starter that was adjusted with age and orts were fed through the cannula in cannulated calves. Calves were euthanized 6 wk after starter was offered (9 and 7 wk of age for trials 1 and 2, respectively). Rumen digesta pH linearly decreased with age, whereas volatile fatty acid concentration increased with age. Overall pH had a cubic trend with SS lower than that of PS and MS. Molar proportion of acetate decreased with age whereas propionate proportion increased. Overall molar proportions of volatile fatty acids were not affected by diet. Fecal Xgm was not different in spite of changes in diet particle size and rumen digesta of PS being greater than SS, MS, and LS at slaughter. Fecal pH and starch concentration were not affected by diet; however, pH decreased whereas starch content increased with age. Weight of stomach compartments, rumen papillae length and width, and rumen wall thickness did not differ between diets. Omasum weight as a percentage of body weight at harvest linearly decreased as straw particle size increased. Under the conditions of this study, modifying straw particle length in starter grain resulted in minimal rumen fermentation parameter

  14. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Science.gov (United States)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  15. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  16. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  17. Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Albers, J.G.; German, A.L.

    1994-01-01

    Polybutadiene (I) latexes prepd. by emulsifier-free emulsion polymn. and having particle diam. 50-300 nm for both unimodal and bimodal particles size distributions were analyzed by the line-start (LIST) method in a Brookhaven disk centrifuge photosedimentometer. A special spin fluid was designed to

  18. Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

    Directory of Open Access Journals (Sweden)

    Do Hyung Kim

    2018-01-01

    Full Text Available Objective This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods Four ruminally cannulated Holstein steers (body weight 592±29.9 kg fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber (24°C and 60% for 22 h/d. Treatments in a 4×4 Latin square design were TMR only (control, TMR with whole corn grain (WC, coarsely ground corn grain (CC, and finely ground corn grain (FC, respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA, ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results There was no difference in dry matter (DM intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05 ruminal pH and a ratio of acetate to propionate, and higher (p<0.05 propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05 increased by FC. Conclusion Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

  19. Analysis of tecniques for measurement of the size distribution of solid particles

    Directory of Open Access Journals (Sweden)

    F. O. Arouca

    2005-03-01

    Full Text Available Determination of the size distribution of solid particles is fundamental for analysis of the performance several pieces of equipment used for solid-fluid separation. The main objective of this work is to compare the results obtained with two traditional methods for determination of the size grade distribution of powdery solids: the gamma-ray attenuation technique (GRAT and the LADEQ test tube technique. The effect of draining the suspension in the two techniques used was also analyzed. The GRAT can supply the particle size distribution of solids through the monitoring of solid concentration in experiments on batch settling of diluted suspensions. The results show that use of the peristaltic pump in the GRAT and the LADEQ methods produced a significant difference between the values obtained for the parameters of the particle size model.

  20. Particle production in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Eklund, A.

    1992-08-01

    The charged particle production in heavy ion reactions at 200 A GeV has been studied for projectiles of 16 O and 32 S on targets of Al, Cu, Ag and Au. Up to 700 charged particles are measured in the pseudorapidity region -1.7 32 S+Au. The measured particle density is used to estimate the energy density attained in central collisions and gives a values of ≅2 GeV/fm 3 . This is close to the energy density predicted for the phase transition from hadronic matter to a quark-gluon plasma. To measure the large number of charged particle produced, finely granulated detector systems are employed. Streamer tube detectors with pad readout and large area, multi-step avalanche chambers with optical readout have been developed for the measurements. The widths of the pseudorapidity distributions of charged particles increase with decreasing centrality of the collision as well as with increasing mass of the target nucleus. This behaviour is assumed to be due to the target fragmentation. The Monte-Carlo model for nucleus-nucleus collisions, VENUS 3.11, which includes rescattering, is in reasonable agreement with the data. The yield of charged particles for central collisions of the heavy targets with 33 S is found to be proportional to the target mass, A, at target rapidity. At midrapidity it is approximately proportional to A 0.3 . At midrapidity the charged particle measurements are supplemented by measurements of the transverse energy. The dimensionless, normalized variances of the multiplicity and transverse energy distributions are, to a large extent, governed by the collision geometry. The change in the normalized variance when studying the charged particle distribution in a narrow angular region is explained as being of statistical nature. (au)

  1. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    International Nuclear Information System (INIS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-01-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html

  2. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 & CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Helsinki Institute of Physics, P.O. Box 64, Helsinki, FI-00014 (Finland); Pata, Joosep; Piibeleht, Morten [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Strumia, Alessandro [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Buonarroti 2, Pisa (Italy)

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  3. Performance of japanese quails fed feeds containing different corn and limestone particle sizes

    OpenAIRE

    Berto,DA; Garcia,EA; Móri,C; Faitarone,ABG; Pelícia,K; Molino,AB

    2007-01-01

    This study aimed at evaluating performance and egg quality of Japanese quails fed feeds containing different corn and limestone particle sizes. A total number of 648 birds in the peak of production was distributed in a random complete block experimental design, using a 2x3 factorial arrangement (2 corn particle sizes and 3 limestone particle sizes). Birds were designated to one of two blocks, with six replicates of 18 birds each. Mean geometric diameter (MGD) values used were 0.617mm and 0.72...

  4. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    Science.gov (United States)

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  5. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...

  6. Spatial Variability of CCN Sized Aerosol Particles

    Science.gov (United States)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  7. Effect of milling time on the structure, particle size, and morphology of montmorillonite

    International Nuclear Information System (INIS)

    Abareshi, M.

    2017-01-01

    In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1-60 hours). After that, the structure, particle size and morphology of all samples were investigated by XRD, FTIR, SEM, and transmission electron microscopy. Results showed that the ball milling causes the particle size reduction of clay and separation of the clay layers. Moreover, ball milling increases the overall structural disorder and transforms the crystalline structure into an amorphous phase. Also, the morphology of clay particle changes from layered to aggregates of almost rounded particles after 60 hours of milling.

  8. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces.

    Science.gov (United States)

    Kornfelt, L F; Weisbjerg, M R; Nørgaard, P

    2013-02-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37%, late: NDF 44% in dry matter (DM)), and from each harvest, a chopped (theoretical cutting length: 19 mm) and an unchopped crop was ensiled in bales. The silages were fed restrictively to four rumen cannulated non-lactating Jersey cows (391 ± 26 kg) in a 4 × 4 Latin square design. The cows were fed restrictively 80% of their ad libitum intake twice daily. Chewing activity was recorded for 96 h continuously. Swallowed boli, rumen content, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500 and 0.212 mm pore sizes into six fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P rumen content, rumen fluid and faeces was affected by harvest time (P rumen content and faeces were identified. Chopping of the silage decreased the mean PL and PW, the most frequent PL (mode) and 95% percentile PL and PW values in boli. In the rumen content, chopping increased the mean PW (P rumen content and faeces than in boli (P rumen contents (P rumen content and faeces particles are most likely related to the leaf and the stem residues.

  9. [Grain Size Distribution Characteristics of Suspended Particulate Matter as Influenced by the Apparent Pollution in the Eutrophic Urban Landscape Water Body].

    Science.gov (United States)

    Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian

    2016-03-15

    Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material

  10. Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon

    International Nuclear Information System (INIS)

    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.

    2007-01-01

    In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes

  11. Assessment of particle size distribution in CO 2 accidental releases

    NARCIS (Netherlands)

    Hulsbosch-Dam, C.E.C.; Spruijt, M.P.N.; Necci, A.; Cozzani, V.

    2012-01-01

    A model was developed to calculate the particle size distribution following the release of pressurised supercritical CO 2. The model combines several sub-models for the different stages of jet break-up and specifically addresses the possible formation of solid particles, which is important for CO 2

  12. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  13. Nuclear sizes and intranuclear matter distribution -- from hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1999-01-01

    The method of intranuclear matter studies by hadronic projectiles is found and worked out. It is tested on the pion-xenon nucleus collision events. Target-nucleus size and nucleon density distributions in it were estimated and described by formulas prompted experimentally

  14. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  15. Nuclear matter with pseudo-particle model: static bulk and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-12-31

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs.

  16. Nuclear matter with pseudo-particle model: static bulk and surface properties

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a Gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of Gaussian per nucleon and the Gaussian widths are critical parameters in that semi-classical model. (author) 13 refs.; 9 figs.; 2 tabs

  17. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  18. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  19. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  20. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  1. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  2. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  3. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    OpenAIRE

    Daiva Laučytė; Regimantas Dauknys

    2011-01-01

    The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The ...

  4. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  5. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  6. Dark matter CMB constraints and likelihoods for poor particle physicists

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M.; Scott, Pat, E-mail: jcline@physics.mcgill.ca, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2013-03-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m{sub χ}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

  7. Dark matter CMB constraints and likelihoods for poor particle physicists

    International Nuclear Information System (INIS)

    Cline, James M.; Scott, Pat

    2013-01-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m χ , for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels

  8. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    Science.gov (United States)

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  9. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  10. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  11. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    Science.gov (United States)

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Minerals as Time-Integrating Luminescence Detectors for setting bounds on dark matter particle characteristics

    International Nuclear Information System (INIS)

    Polymeris, G.S.; Kitis, G.; Liolios, A.K.; Tsirliganis, N.C.; Zioutas, K.

    2006-01-01

    Terrestrial material, since its formation, is supposed to receive additional radiation dose from its exposure to fluxes of dark matter particles. The present work investigates the possibility for bound estimation of interaction parameters of dark matter particles with ordinary matter, by measuring the accumulated doses of certain geological materials. It is proposed that Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) could enable the differentiation between the individual dose components, attributing a possible excessive dose, beyond the anticipated from cosmic rays and environmental radioactivity, to interactions with dark matter particles. Dosimetric properties of natural calcium fluoride, such as low detectable dose limit and low energy threshold (well below 1keV), indicate it as a promising Thermoluminescent Dosimeter (TLD) for the proposed method. The limitations imposed by the 'background' of cosmic rays and environmental radioactivity are discussed, and initial limits for the interaction strengths with ordinary matter, and/or the mass of WIMPs and axions are derived. The use of sedimentary quartz, sited in a free-from background-radiation environment, would yield a value of 4x10 -8 GeV -1 as an upper limit for the axion-to-photon interaction constant g aγγ and a value of 3x10 -8 GeV as a lower limit for the neutralino mass. The best limits, g aγγ =1.1x10 -10 GeV -1 for solar axions and m=3000GeV for neutralinos, could be derived for natural calcium fluoride as a dosimeter

  14. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  15. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    Science.gov (United States)

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  16. Application of ferrofluid density separation to particles in the micrometer-size range

    International Nuclear Information System (INIS)

    Strebin, R.S. Jr.; Johnson, J.W.; Robertson, D.M.

    1976-02-01

    A device designed and described by AVCO* as a ''Ferrofluid Density Separator''/sup (1)/ develops an apparent fluid density from nominally 2 to 20 g/cm 3 dependent on the magnitude of an imposed magnetic field gradient. The ferrofluid retains other normal properties of a liquid. One of these devices and a concentration series of ferrofluids were obtained in order to determine the practicality of separating groups of micrometer-size particles into density fractions. Such separations would be of enormous value in the study of various particle burdens because particles of interest are almost always diluted with overwhelming amounts of other particles. The results of a study of separations of micrometer-size particles with the ferrofluid density separator are presented

  17. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  18. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  19. Optical extinction dependence on wavelength and size distribution of airborne dust

    Science.gov (United States)

    Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.

    2013-05-01

    The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.

  20. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  1. The role of particle-size soil fractions in the adsorption of heavy metals

    Science.gov (United States)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of

  2. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area

    Science.gov (United States)

    Gao, Yuan; Lee, Shun-Cheng; Huang, Yu; Chow, Judith C.; Watson, John G.

    2016-03-01

    Size-resolved particulate matter (PM) samples were collected with a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) at a sub-urban site (Tung Chung) in Hong Kong for four non-consecutive months representing four seasons from 2011 to 2012. Major chemical components were water-soluble anions (i.e., Cl-, NO3-, and SO42 -), cations (i.e., NH4+, Na+, K+, and Ca2 +), organic and elemental carbon and elements. Both chemical mass closure and positive matrix factorization (PMF) were employed to understand the chemical composition, resolve particle size modes, and evaluate the PM sources. Tri-modal size distributions were found for PM mass and major chemical components (e.g., SO42 -, NH4+, and OC). Mass median aerodynamic diameters (MMADs) with similar standard deviations (1.32 burning. Secondary SO42 - is also the most dominant component in the droplet mode, accounting for 23% of PM mass, followed by an industrial source (19%). Engine exhaust, secondary NO3-, and sea salt each accounted for 13-15% of PM mass. Sea salt and soil are the dominated sources in the coarse mode, accounting for 80% of coarse mass.

  3. Comparing particle-size distributions in modern and ancient sand-bed rivers

    Science.gov (United States)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  4. Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background

    International Nuclear Information System (INIS)

    Zhang Le; Chen Xuelei; Lei Yian; Si Zongguo

    2006-01-01

    The recombination history of the Universe provides a useful tool for constraining the annihilation of dark matter particles. Even a small fraction of dark matter particles annihilated during the cosmic dark age can provide sufficient energy to affect the ionization state of the baryonic gas. Although this effect is too small for neutralinos, lighter dark matter particle candidates, e.g. with mass of 1-100 MeV, which was proposed recently to explain the observed excess of positrons in the galactic center, may generate observable differences in the cosmic microwave background (CMB) temperature and polarization anisotropies. The annihilations at the era of recombination affects mainly the CMB anisotropy at small angular scales (large l), and is distinctively different from the effect of early reionization. We perform a multiparameter analysis of the CMB data, including both the Wilkinson Microwave Anisotropy Probe (WMAP) first year and three year data, and the ACBAR, Boomerang, CBI, and VSA data. Assuming that the observed excess of e + e - pairs in the galactic center region is produced by dark matter annihilation, and that a sizable fraction of the energy produced in the annihilation is deposited in the baryonic gas during recombination, we obtain a 95% dark matter mass limit of M<8 MeV with the current data set

  5. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  6. Effects of Sludge Particle Size and Density on Hanford Waste Processing

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Mahoney, Lenna A.; Daniel, Richard C.; Tingey, Joel M.; Cooley, Scott K.

    2008-01-01

    The U.S. Department of Energy Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on a new approach that relates measured particle-size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid-phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: (1) the composite PSDs are reproduced, (2) the solid-phase compound mass fractions are reproduced, (3) the expected in situ bulk-solids density is qualitatively reproduced, and (4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not

  7. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  8. Possible interaction between baryons and dark-matter particles revealed by the first stars

    Science.gov (United States)

    Barkana, Rennan

    2018-03-01

    The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal—either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

  9. Possible interaction between baryons and dark-matter particles revealed by the first stars.

    Science.gov (United States)

    Barkana, Rennan

    2018-02-28

    The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal-either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers-we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

  10. Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Nanolipoprotein particles (NLPs are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. METHODOLOGY: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. CONCLUSIONS: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications.

  11. Particle size dependent confinement and lattice strain effects in LiFePO4.

    Science.gov (United States)

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  12. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  13. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  14. Adaption of the suspension behavior of suspended matter in natural water

    International Nuclear Information System (INIS)

    Hattenbach, K.; Schreier, H.H.; Zimmermann, H.U.

    1980-01-01

    The particle size distribution of an artificial tracer is adapted to that of suspended matter in natural water. Therefore the material of a tracer was divided into fractions and afterwards mixed according to computed proportions. The determination of particle size distribution was carried out using a sedimentation balance. For calculation of the distribution curve a special mathematical function was assumed. (orig.) [de

  15. Quasi-particles and effective mean field in strongly interacting matter

    International Nuclear Information System (INIS)

    Levai, P.; Ko, C.M.

    2010-01-01

    We introduce a quasi-particle model of strongly interacting quark-gluon matter and explore the possible connection to an effective field theoretical description consisting of a scalar σ field by introducing a dynamically generated mass, M(σ), and a self-consistently determined interaction term, B(σ). We display a possible connection between the two types of effective description, using the Friedberg-Lee model.

  16. An Ultra-Sensitive, Size Resolved Particle Mass Measurement Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — By providing size resolved compositional information, the Aerosol Mass Spectrometer (AMS) has greatly advanced understanding of aircraft particulate matter (PM)...

  17. Change of particle size distribution during Brownian coagulation

    International Nuclear Information System (INIS)

    Lee, K.W.

    1984-01-01

    Change in particle size distribution due to Brownian coagulation in the continuum regime has been stuied analytically. A simple analytic solution for the size distribution of an initially lognormal distribution is obtained based on the assumption that the size distribution during the coagulation process attains or can, at least, be represented by a time dependent lognormal function. The results are found to be in a form that corrects Smoluchowski's solution for both polydispersity and size-dependent kernel. It is further shown that regardless of whether the initial distribution is narrow or broad, the spread of the distribution is characterized by approaching a fixed value of the geometric standard deviation. This result has been compared with the self-preserving distribution obtained by similarity theory. (Author)

  18. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  19. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  20. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca ...

  1. Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel

    International Nuclear Information System (INIS)

    Morris, V N; Farrell, R A; Sexton, A M; Morris, M A

    2006-01-01

    High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects

  2. Effect on blood lead of airborne lead particles characterized by size.

    Science.gov (United States)

    Park, Dong-Uk; Paik, Nam-Won

    2002-03-01

    Worker exposure to airborne lead particles was evaluated for a total of 117 workers in 12 work-places of four different industrial types in Korea. The particle sizes were measured using 8-stage cascade impactors worn by the workers. Mass median aerodynamic diameters (MMAD) were determined by type of industry and percentage of lead particles as a fraction of airborne lead (PbA) concentration was determined by particle size. Blood lead (PbB) levels of workers who matched airborne lead samples were also examined. A Scheffé's pairwise comparison test showed that MMAD and the fractions of each of respirable particles and lead particles lead particles lead particles (r = 0.82) than that between concentrations of small particles and PbA (r = 0.61). A simple linear regression indicated that PbB correlated better with respirable lead concentration (r2 = 0.35, P = 0.0001) than with PbA concentration and had a higher slope coefficient. Controlling for respirable lead concentration reduced the partial correlation coefficient between PbA concentration and PbB level from 0.56 to 0.20 (P = 0.053). The results indicate that the contribution of respirable lead particles to lead absorption would be greater than that of PbA. This study concludes that the measurement of PbA only may not properly reflect a worker's exposure to lead particles with diverse characteristics. For the evaluation of a worker's exposure to various types of lead particles, it is recommended that respirable lead particles as well as PbA be measured.

  3. Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces

    OpenAIRE

    Calzavarini, Enrico; Volk, Romain; Bourgoin, Mickael; Leveque, Emmanuel; Pinton, Jean-Francois; Toschi, Federico

    2008-01-01

    International audience; The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These ...

  4. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  5. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    International Nuclear Information System (INIS)

    Armas, O; Gómez, A; Mata, C

    2011-01-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers

  6. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    Science.gov (United States)

    Armas, O.; Gómez, A.; Mata, C.

    2011-10-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers.

  7. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  8. An Ultra-Sensitive, Size Resolved Particle Mass Measurement Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The characterization of aircraft particulate matter (PM) emissions has benefited greatly by the Aerosol Mass Spectrometer (AMS) by providing size resolved...

  9. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  10. On the origin of the cobalt particle size effects in Fischer−Tropsch catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Radstake, P.B.|info:eu-repo/dai/nl/304829587; Bezemer, G.L.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; Froseth, V.; Holmen, A.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2009-01-01

    The effects of metal particle size in catalysis are of prime scientific and industrial importance and call for a better understanding. In this paper the origin of the cobalt particle size effects in Fischer−Tropsch (FT) catalysis was studied. Steady-State Isotopic Transient Kinetic Analysis (SSITKA)

  11. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.

    Science.gov (United States)

    Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F

    2018-05-09

    Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight

  12. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  13. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    Science.gov (United States)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  14. Interpretation of aerosol trace metal particle size distributions

    International Nuclear Information System (INIS)

    Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W.

    1974-01-01

    Proton-induced X-ray emission (PIXE) analysis is capable of rapid routine determination of 10--15 elements present in amounts greater than or equal to 1 ng simultaneously in aerosol size fractions as collected by single orifice impactors over short periods of time. This enables detailed study of complex relationships between elements detected. Since absolute elemental concentrations may be strongly influenced by meteorological and topographical conditions, it is useful to normalize to a reference element. Comparison between the ratios of concentrations with aerosol and corresponding values for anticipated sources may lead to the identification of important sources for the elements. Further geochemical insights may be found through linear correlation coefficients, regression analysis, and cluster analysis. By calculating correlations for elemental pairs, an indication of the degree of covariance between the elements is obtained. Preliminary results indicate that correlations may be particle size dependent. A high degree of covariance may be caused either by a common source or may only reflect the conservative nature of the aerosol. In a regression analysis, by plotting elemental pairs and estimating the regression coefficients, we may be able to conclude if there is more than one source operating for a given element in a certain size range. Analysis of clustering of several elements, previously investigated for aerosol filter samples, can be applied to the analysis of aerosol size fractions. Careful statistical treatment of elemental concentrations as a function of aerosol particle size may thus yield significant information on the generation, transport and deposition of trace metals in the atmosphere

  15. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  16. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    In vitro measures of aerosol particles size, such as the fine particle mass, play a pivotal role for approval of inhaled anti-asthmatic drugs. However, the validity as a measure of dose to the lungs in children lacks evidence. In this study we investigated for the first time the association between...... an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... was assessed after single inhalation. The corresponding emitted mass of drug in segments of aerosol particle size was assessed ex vivo by replicating the inhalation flows recorded by transducers built into the Diskus® inhaler and re-playing them in a breathing simulator. There was no correlation between any...

  17. Effect of flour particle size and damaged starch on the quality of cookies.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2014-07-01

    Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.

  18. Effect of limestone particle size on bone quality characteristics of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different limestone particle sizes in layer diets on bone quality characteristics at end-of-lay hens. Calcitic limestone (360 g Ca/kg DM) that is extensively used in commercial poultry diets was obtained from a specific South African source. Limestone particles were graded as ...

  19. Development of mesoporosity in scandia-stabilized zirconia: particle size, solvent, and calcination effects.

    Science.gov (United States)

    Cahill, James T; Ruppert, Jesse N; Wallis, Bryce; Liu, Yanming; Graeve, Olivia A

    2014-05-20

    We present the mechanisms of formation of mesoporous scandia-stabilized zirconia using a surfactant-assisted process and the effects of solvent and thermal treatments on the resulting particle size of the powders. We determined that cleaning the powders with water resulted in better formation of a mesoporous structure because higher amounts of surfactant were preserved on the powders after washing. Nonetheless, this resulted in agglomerate sizes that were larger. The water-washed powders had particle sizes of >5 μm in the as-synthesized state. Calcination at 450 and 600 °C reduced the particle size to ∼1-2 and 0.5 μm, respectively. Cleaning with ethanol resulted in a mesoporous morphology that was less well-defined compared to the water-washed powders, but the agglomerate size was smaller and had an average size of ∼250 nm that did not vary with calcination temperature. Our analysis showed that surfactant-assisted formation of mesoporous structures can be a compromise between achieving a stable mesoporous architecture and material purity. We contend that removal of the surfactant in many mesoporous materials presented in the literature is not completely achieved, and the presence of these organics has to be considered during subsequent processing of the powders and/or for their use in industrial applications. The issue of material purity in mesoporous materials is one that has not been fully explored. In addition, knowledge of the particle (agglomerate) size is essential for powder handling during a variety of manufacturing techniques. Thus, the use of dynamic light scattering or any other technique that can elucidate particle size is essential if a full characterization of the powders is needed for achieving postprocessing effectiveness.

  20. Effect of particle size on laser-induced breakdown spectroscopy analysis of alumina suspension in liquids

    International Nuclear Information System (INIS)

    Diaz Rosado, José Carlos; L'hermite, Daniel; Levi, Yves

    2012-01-01

    The analysis by Laser Induced Breakdown Spectroscopy (LIBS) was proposed for the detection and the quantification of different elements in water even when the analyte is composed of particles in suspension. We have studied the effect of particle size on the LIBS signal during liquid analysis. In our study we used different particle sizes (from 2 μm to 90 μm) of Al 2 O 3 in suspension in water. The results were compared to the signal obtained in the case of dissolved aluminum. In the case of particles, a linear correlation between the LIBS signal versus concentration was found but a significant decrease in the slope of the calibration curve was found when the particle size increased. Several hypotheses have been tested and only a partial ablation of the particles might explain this decrease in signal intensity. This effect probably does not occur at smaller particle size. We estimated 860 nm/pulse as ablated thickness from the top of the particle. A statistical analysis over all data obtained allowed us to calculate 100 μm as ablated water column depth. - Highlights: ► We have identified a decrease of calibration curve when particle size increases. ► Partial particle ablation has been identified as the origin of this effect. ► The ablation rate on Al 2 O 3 particles in suspension in water has been estimated. ► We can determine the deepness of the interaction volume into the liquid.

  1. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  2. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  3. Depositing nanometer-sized particles of metals onto carbon allotropes

    Science.gov (United States)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  4. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  5. Synthesis and electrochemical properties of different sizes of the CuO particles

    International Nuclear Information System (INIS)

    Zhang Xiaojun; Zhang Dongen; Ni Xiaomin; Song Jimei; Zheng Huagui

    2008-01-01

    Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC 2 O 4 precursor at 400 deg. C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes

  6. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  7. Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The gray of two images of a same particle taken by a digital camera with different exposure times is different too. Based on the gray difference of particle images in a double-exposed photo and autocorrelation processing of digital images,this paper proposes a method for measuring particle velocities and sizes simultaneously. This paper also introduces the theoretical foundation of this method,the process of particle imaging and image processing,and the simultaneous measurement of velocity and size of a low speed flow field with 35 μm and 75 μm standard particles. The graphical measurement results can really reflect the flow characteristics of the flow field. In addition,although the measured velocity and size histograms of these two kinds of standard particles are slightly wider than the theoretical ones,they are all still similar to the normal distribution,and the peak velocities and diameters of the histograms are consistent with the default values. Therefore,this measurement method is capable of providing moderate measurement accuracy,and it can be further developed for high-speed flow field measurements.

  8. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Science.gov (United States)

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  9. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Faye, C.B.; Amodeo, T.; Fréjafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Delepine-Gilon, N. [Institut des Sciences Analytiques, 5 rue de la Doua, 69100 Villeurbanne (France); Dutouquet, C., E-mail: christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)

    2014-01-01

    Pollution of water is a matter of concern all over the earth. Particles are known to play an important role in the transportation of pollutants in this medium. In addition, the emergence of new materials such as NOAA (Nano-Objects, their Aggregates and their Agglomerates) emphasizes the need to develop adapted instruments for their detection. Surveillance of pollutants in particulate form in waste waters in industries involved in nanoparticle manufacturing and processing is a telling example of possible applications of such instrumental development. The LIBS (laser-induced breakdown spectroscopy) technique coupled with the liquid jet as sampling mode for suspensions was deemed as a potential candidate for on-line and real time monitoring. With the final aim in view to obtain the best detection limits, the interaction of nanosecond laser pulses with the liquid jet was examined. The evolution of the volume sampled by laser pulses was estimated as a function of the laser energy applying conditional analysis when analyzing a suspension of micrometric-sized particles of borosilicate glass. An estimation of the sampled depth was made. Along with the estimation of the sampled volume, the evolution of the SNR (signal to noise ratio) as a function of the laser energy was investigated as well. Eventually, the laser energy and the corresponding fluence optimizing both the sampling volume and the SNR were determined. The obtained results highlight intrinsic limitations of the liquid jet sampling mode when using 532 nm nanosecond laser pulses with suspensions. - Highlights: • Micrometric-sized particles in suspensions are analyzed using LIBS and a liquid jet. • The evolution of the sampling volume is estimated as a function of laser energy. • The sampling volume happens to saturate beyond a certain laser fluence. • Its value was found much lower than the beam diameter times the jet thickness. • Particles proved not to be entirely vaporized.

  10. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  11. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  12. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  13. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  14. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  15. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  16. Nuclear matter with a pseudo-particle model: static bulk and surface properties

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)

  17. Nuclear matter with a pseudo-particle model: static bulk and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Benhassine, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Farine, M. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire CNRS/IN2P3, Univ. de Nantes (France))

    1993-11-15

    Direct calculations of cold and hot nuclear matter (bulk and surface properties) are carried out within the frame of a pseudo-particle model using a gaussian decomposition of the distribution function. Comparisons with Hartree-Fock calculations, for a large class of effective interactions, show that such a model is reliable to reproduce accurately the equation of state of nuclear matter for large ranges of densities and temperatures. The number of gaussians per nucleon and the gaussian widths are critical parameters in that semi-classical model. (orig.)

  18. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  19. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    International Nuclear Information System (INIS)

    Kumari, Monika; Hirt, Ann M.; Widdrat, Marc; Faivre, Damien; Tompa, Éva; Pósfai, Mihály; Uebe, Rene; Schüler, Dirk

    2014-01-01

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  20. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    Directory of Open Access Journals (Sweden)

    Yoshiaki Hayashi

    2018-05-01

    Full Text Available The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.