WorldWideScience

Sample records for matter dom derived

  1. Tracing the origin of dissolved organic matter (DOM) in subterranean estuaries using colored DOM and amino acids

    Science.gov (United States)

    Kim, T.; Kwon, E.; Kim, G.

    2011-12-01

    In order to determine the origin of dissolved organic matter (DOM) in the subterranean estuary (STE), the mixing zone of fresh terrestrial groundwater and recirculating seawater in a coastal permeable aquifer, we conducted water sampling from two STEs with different geological settings: (1) Jeju Island beaches (Hwasun and Samyang), which are composed of volcanic rocks and sandy sediments, and (2) Hampyeong beach, which is located in a large intertidal, sandy flat zone. The distributions of salinity, total hydrolysable amino acids (THAA), dissolved organic carbon (DOC), and colored DOM (CDOM) were measured for groundwater samples in these STEs. In the Hwasun STE, the humic-like peak decreases with increasing salinity, whereas the protein-like peak does not show a clear relationship with salinity. In contrast, in the Samyang STE, both humic-like peak and protein-like peak increase with increasing salinity. These contrasting results indicate that DOM in the Hwasun STE originates mainly from terrestrial inputs, while that in the Samyang STE originates mainly from biological and/or microbial activities. In the Hampyeong STE, we observed good correlations among the biodegradation index, alanine D/L ratios, THAA concentrations, DOC, and CDOM index (both humic-like and protein-like). Together with their geographical distribution patterns, these correlations indicate that DOM in the Hampyeong STE is mainly derived from marine sediments in the course of seawater recirculation. Our study shows that CDOM and amino acids are excellent tracers of DOM in the STE where DOM is derived from diverse sources.

  2. Molecular characterization of dissolved organic matter (DOM): a critical review.

    Science.gov (United States)

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  3. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  4. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-derived Dissolved Organic Matter (Tree-DOM) in an Epiphyte-laden Oak-cedar Forest.

    Science.gov (United States)

    Whitetree, A.; Van Stan, J. T., II; Wagner, S.; Guillemette, F.; Lewis, J.; Silva, L.; Stubbins, A.

    2017-12-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched compared to rainfall and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with FDOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g-C m-2 yr-1) compared well to other yields along the rainfall-to- discharge flow pathway, exceeding DOM yields from some river watersheds.

  5. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  6. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    International Nuclear Information System (INIS)

    Li Kun; Xing Baoshan; Torello, William A.

    2005-01-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf

  7. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  8. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    Science.gov (United States)

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  9. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  10. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  11. [Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter season].

    Science.gov (United States)

    Liang, Jian; Jiang, Tao; WeiI, Shi-Qiang; Lu, Song; Yan, Jin-Long; Wang, Qi-Lei; Gao, Jie

    2015-03-01

    This study aimed at evaluating the variability of the optical properties including UV-Vis and fluorescence characteristics of dissolved organic matter (DOM) from rainwater in summer and winter seasons. UV-Vis and fluorescence spectroscopy, together with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and fire events map, were conducted to characterize DOM and investigate its sources and contributions. The results showed that as compared with aquatic and soil DOM, rainwater DOM showed similar spectral characteristics, suggesting DOM in precipitation was also an important contributor to DOM pool in terrestrial and aquatic systems. The concentrations of DOC in rainwater were 0.88-12.80 mg x L(-1), and the CDOM concentrations were 3.17-21.11 mg x L(-1). Differences of DOM samples between summer and winter were significant (P summer, DOM samples in winter had lower molecular weight and aromaticity, and also lower humification. Input of DOM in winter was predominantly derived from local and short-distance distances, while non-special scattering sources were identified as the main contributors in summer. Although absorption and fluorescence spectroscopy could be used to identify DOM composition and sources, there were obvious differences in spectra and sources analysis between rainwater DOM and the others from other sources. Thus, the classic differentiation method by "allochthonous (terrigenous) and autochthonous (authigenic)" is possibly too simple and arbitrary for characterization of DOM in rainwater.

  12. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight

    Science.gov (United States)

    Mannino, A.; Dyda, R. Y.; Hernes, P. J.; Hooker, Stan; Hyde, Kim; Novak, Mike

    2012-01-01

    Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocean

  14. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    Science.gov (United States)

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  15. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    Science.gov (United States)

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  16. Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S.; Guo, Laodong; Santschi, Peter H.

    2000-10-01

    Concentrations of lignin-phenols were analyzed in high molecular weight dissolved organic matter (0.2 μm > HMW DOM > 1 kDa) isolated from surface waters of the Chesapeake Bay (C. Bay), and surface and bottom waters of the Middle Atlantic Bight (MAB). The abundance of lignin-phenols in HMW DOM was higher in the C. Bay (0.128 ± 0.06 μg L -1) compared to MAB surface waters (0.016 ± 0.004 μg L -1) and MAB bottom waters (0.005 ± 0.003 μg L -1). On an organic carbon-normalized basis, lignin-phenol abundances in the HMW DOM (i.e., Λ 6), were significantly higher ( p vanillin (Ad/Al) V in HMW DOM, indicative of lignin decay, ranged from 0.611 to 1.37 in C. Bay, 0.534 to 2.62 in MAB surface waters, and 0.435 to 1.96 in MAB bottom water. Ratios of S/V and (Ad/Al) V showed no significant differences between each environment, providing no evidence of any compositionally distinct input of terrestrial organic matter into each environment. When considering depth profiles of suspended particulate matter in the MAB, with C:N ratios, and bulk radiocarbon ages and stable carbon isotopic values in HMW DOM isolated from these areas, two scenarios present themselves regarding the sources and transport of terrestrially derived HMW DOM in the MAB. Scenario #1 assumes that a low amount of refractory terrestrial organic matter and old DOC are uniformly distributed in the oceans, both in surface and bottom waters, and that primary production in surface waters increases DOC with low lignin and younger DOC which degrades easily. In this case, many of the trends in age and biomarker composition likely reflect general patterns of Atlantic Ocean surface and bottom water circulation in the area of the MAB. Scenario 2 assumes terrestrial organic matter in bottom waters of the MAB may have originated from weathered shelf and slope sediments in nearshore areas via a combination of mechanisms (e.g., diffusion, recent resuspension events, and/or desorption of DOM from riverine POM buried deep

  17. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...

  18. Source and composition of surface water dissolved organic matter (DOM) and the effect of flood events on the organic matter cycling

    Science.gov (United States)

    Bondar-Kunze, Elisabeth; Welti, Nina; Tritthart, Michael; Baker, Andrew; Pinay, Gilles; Hein, Thomas

    2014-05-01

    Floodplains are often simultaneously affected by land use change, river regulation and loss of hydrological dynamics which alter the surface water connectivity between floodplain and river main channel. These alterations can have significant impacts on the sources of organic matter and their degradation and thus, the carbon cycling of riverine landscapes. Although floodplains are known to be important sources of dissolved organic matter (DOM) within watersheds, reduced hydrological connectivity impair their role. The key questions of our research were to determine i) to what extent the degree of connection between the Danube River and its floodplain controlled the DOM composition with its backwater systems, and ii) what were the effects of the DOM changes on carbon cycling in floodplains during two flood events with different magnitude? In this study we report on the variations in DOM spectrophotometric properties of surface waters in different connected floodplain areas and during two flood events of different magnitude in a section of the Alluvial Zone National Park of the Danube River downstream Vienna, Austria. Two backwater floodplain systems were studied, one backwater system mostly disconnected from the fluvial dynamics except during high flood events (Lower Lobau) and the second one, recently restored and connected even during mean flow conditions (Orth). Fluorescence excitation-emission matrix (EEM) spectrophotometry and water chemical analyses were applied to investigate the DOM dynamics. In both backwater systems 15 sites were sampled monthly for two years and every second day during a flood event.

  19. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  20. How Reservoirs Alter DOM Amount and Composition: Sources, Sinks, and Transformations

    Science.gov (United States)

    Kraus, T. E.; Bergamaschi, B. A.; Hernes, P. J.; Doctor, D. H.; Kendall, C.; Losee, R. F.; Downing, B. D.

    2011-12-01

    Reservoirs are critical components of many water supply systems as they allow the storage of water when supply exceeds demand. However, during water storage biogeochemical processes can alter both the amount and composition of dissolved organic matter (DOM), which can in turn affect water quality. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also relevant as they affect DOM reactivity (e.g. persistence in the environment, removability during coagulation treatment, and potential to form toxic compounds during drinking water treatment). The composition of the DOM pool also provides information about the DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir (SLR), a large off-stream impoundment of the California State Water Project. We used an array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, optical properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C NMR. There were periods when the reservoir was i) a net source of DOM due to the predominance of algal production (summer), ii) a net sink due to the predominance of degradation (fall/winter), and iii) balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0-3.6 mg C/L), substantial changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Results suggest reservoirs have the potential to reduce DOM amount and reactivity via degradative processes, however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  1. Characterising Event-Based DOM Inputs to an Urban Watershed

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.

    2017-12-01

    Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest

  2. Dissolved Organic Matter (DOM) From Different Composts: Comparative Study Of Properties And Allelochemical Effects On Horticultural Plants

    Science.gov (United States)

    Traversa, A.; Loffredo, E.; Gattullo, C. E.; Senesi, N.

    2009-04-01

    Dissolved organic matter (DOM) from compost has a major role in numerous chemical and biological processes occurring in the bulk substrate or compost amended soil, and can exert allelochemical effects on plant germination and growth. The objectives of this study were: (i) to investigate comparatively the main properties of three DOM fractions isolated from a green compost (DOMGC), a mixed compost (DOMMC) and a green coffee compost (DOMGCC), and (ii) to evaluate their allelochemical effects on the germination and early growth of two horticultural plants of worldwide interest such as tomato and lettuce. The DOM was extracted from each compost with distilled water (1/10 w/v) under mechanical shaking for 15 min. The suspension was then centrifuged at 6000 rpm for 15 min and filtered sequentially through filters with decreasing particle size retention (from 11 to 0.45 μm). Each DOM sample was characterized by means of pH, electrical conductivity, total organic carbon (TOC), E4/E6 ratio, fluorescence and FT IR spectroscopies and HPLC analysis. Comparative evaluation of the three DOM samples indicated the occurrence of significant differences among them. In particular, the pH value was similar and close to neutrality for DOMMC and DOMGC, whereas it resulted alkaline (pH 8.3) for DOMGCC. The EC values were also similar (about 3.2 mS/cm) for DOMMC and DOMGC and almost half value for DOMGCC. The TOC content, the E4/E6 ratio, the ɛ280 value and the humification index followed the same order: DOMGCC>DOMMC>DOMGC. The fluorescence analysis of the three DOM samples showed the presence of a common fluorophore unit associated to simple aromatic units such as phenolic-like, hydroxy-substituted benzoic and cinnamic acid derivatives. The peak wavelengths observed in the fluorescence emission, excitation and synchronous scan spectra of DOMGCC were generally higher than those of the two other DOM samples, which can be ascribed to a more extended aromatic system of the former. The FT

  3. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  4. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    Directory of Open Access Journals (Sweden)

    Rachel E. Sipler

    2017-06-01

    Full Text Available Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

  5. Effect of dissolved organic matter derived from waste amendments on the mobility of inorganic arsenic (III) in the Egyptian alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Mohamed [Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934 Alexandria (Egypt); Assaad, Faiz F. [Soils and Water Use Department, National Research Centre, Dokki, Cairo (Egypt); Shalaby, Elsayed A. [Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University (Egypt)

    2013-07-01

    Dissolved organic matter (DOM) is one of the decisive factors affecting pollutants mobility in soils receiving waste amendments. The aim of this study was to investigate the effects of DOM1 derived from agricultural solid waste (ASW) and DOM2 derived from municipal solid waste (MSW) on the mobility of inorganic arsenic (As) in two alluvial soils from the Nile River Delta. In column experiments, addition of DOM solutions significantly increased As concentration in the effluents. There was no significant difference between the two soils, the obtained results from soil2 columns revealed that DOM2 has stronger capability than DOM1 to facilitate As mobility. The pH of the studied soils is alkaline (8.1) which promoted the dissociation as well as deprotonation of DOM and as a consequence, humic substances in DOM become negatively charged organic anions, leading to their substantial competition with As for the adsorption sites on both soil surfaces. The results emphasized that in alkaline soils there is a risk of groundwater pollution in the long run by arsenic either naturally found in soil or originated at high soil pH when dissolved organic carbon (DOC) released from various organic amendments ASW and/or MSW and leached through soil profile.

  6. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Molecular characterisation of dissolved organic matter (DOM) in groundwaters from the Aespoe Underground Research Laboratory (Sweden)): A novel 'finger printing' tool for palaeo-hydrological assessment

    International Nuclear Information System (INIS)

    Vane, C. H.; Kim, A. W.; Milodowski, A. E.; Smellie, J.; Tullborg, E. L.; West, J. M.

    2008-01-01

    The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeo-hydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Aespoe Underground Research Laboratory (URL) (Sweden)) and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and dia-filtration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkylphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies. (authors)

  8. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin

    Science.gov (United States)

    Gao, Zhiyuan; Guéguen, Céline

    2017-03-01

    The molecular weight (MW) of dissolved organic matter (DOM) is considered as an important factor affecting the bioavailability of organic matter and associated chemical species. Colored DOM (CDOM) MW distribution was determined, for the first time, in the Beaufort Sea (Canada Basin) by asymmetrical flow field-flow fractionation (AF4) coupled with online diode array ultra violet-visible photometer and offline fluorescence detectors. The apparent MW ranged from 1.07 to 1.45 kDa, congruent with previous studies using high performance size exclusion chromatography and tangential flow filtration. Interestingly, a minimum in MW was associated with the Pacific Summer Waters (PSW), while higher MW was associated with the Pacific Winter Waters (PWW). The Arctic Intermediate Waters (AIW) did not show any significant change in MW and fluorescence intensities distribution between stations, suggesting homogeneous DOM composition in deep waters. Three fluorescence components including two humic-like components and one protein-like component were PARAFAC-validated. With the increase of MW, protein-like fluorescence component became more dominant while the majority remained as marine/microbially derived humic-like components. Overall, it is concluded that water mass origin influenced DOM MW distribution in the Arctic Ocean.

  9. Selective incorporation of dissolved organic matter (DOM) during sea ice formation

    DEFF Research Database (Denmark)

    Müller, Susan; Vähätalo, Anssi V.; Stedmon, Colin

    2013-01-01

    This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well as concentrat......This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well...

  10. Molecular and optical properties of tree-derived dissolved organic matter in throughfall and stemflow from live oaks and eastern red cedar

    Science.gov (United States)

    Stubbins, Aron; Silva, Leticia M.; Dittmar, Thorsten; Van Stan, John T.

    2017-03-01

    Studies of dissolved organic matter (DOM) transport through terrestrial aquatic systems usually start at the stream. However, the interception of rainwater by vegetation marks the beginning of the terrestrial hydrological cycle making trees the headwaters of aquatic carbon cycling. Rainwater interacts with trees picking up tree-DOM, which is then exported from the tree in stemflow and throughfall. Stemflow denotes water flowing down the tree trunk, while throughfall is the water that drips through the leaves of the canopy. We report the concentrations, optical properties (light absorbance) and molecular signatures (ultrahigh resolution mass spectrometry) of tree-DOM in throughfall and stemflow from two tree species (live oak and eastern red cedar) with varying epiphyte cover on Skidaway Island, Savannah, Georgia, USA. Both stemflow and throughfall were enriched in DOM compared to rainwater, indicating trees were a significant source of DOM. The optical and molecular properties of tree-DOM were broadly consistent with those of DOM in other aquatic ecosystems. Stemflow was enriched in highly colored DOM compared to throughfall. Elemental formulas identified clustered the samples into three groups: oak stemflow, oak throughfall and cedar. The molecular properties of each cluster are consistent with an autochthonous aromatic-rich source associated with the trees, their epiphytes and the microhabitats they support. Elemental formulas enriched in oak stemflow were more diverse, enriched in aromatic formulas, and of higher molecular mass than for other tree-DOM classes, suggesting greater contributions from fresh and partially modified plant-derived organics. Oak throughfall was enriched in lower molecular weight, aliphatic and sugar formulas, suggesting greater contributions from foliar surfaces. While the optical properties and the majority of the elemental formulas within tree-DOM were consistent with vascular plant-derived organics, condensed aromatic formulas were

  11. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Moreno, Laura, E-mail: laura.delgado@eez.csic.es; Wu, Laosheng; Gan, Jay

    2015-08-15

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C{sub free}). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r{sup 2} > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems.

  12. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    International Nuclear Information System (INIS)

    Delgado-Moreno, Laura; Wu, Laosheng; Gan, Jay

    2015-01-01

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C free ). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r 2 > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems

  13. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    International Nuclear Information System (INIS)

    He, Xiao-Song; Xi, Bei-Dou; Cui, Dong-Yu; Liu, Yong; Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan

    2014-01-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol e− (g C) −1 and 57.1– 346.07 μmol e− (g C) −1 , respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting

  14. Revealing Sources and Distribution Changes of Dissolved Organic Matter (DOM) in Pore Water of Sediment from the Yangtze Estuary

    Science.gov (United States)

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Feng, Chenghong; Chen, Jing

    2013-01-01

    Dissolved organic matter (DOM) in sediment pore waters from Yangtze estuary of China based on abundance, UV absorbance, molecular weight distribution and fluorescence were investigated using a combination of various parameters of DOM as well as 3D fluorescence excitation emission matrix spectra (F-EEMS) with the parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that DOM in pore water of Yangtze estuary was very variable which mainly composed of low aromaticity and molecular weight materials. Three humic-like substances (C1, C2, C4) and one protein-like substance (C3) were identified by PARAFAC model. C1, C2 and C4 exhibited same trends and were very similar. The separation of samples on both axes of the PCA showed the difference in DOM properties. C1, C2 and C4 concurrently showed higher positive factor 1 loadings, while C3 showed highly positive factor 2 loadings. The PCA analysis showed a combination contribution of microbial DOM signal and terrestrial DOM signal in the Yangtze estuary. Higher and more variable DOM abundance, aromaticity and molecular weight of surface sediment pore water DOM can be found in the southern nearshore than the other regions primarily due to the influence of frequent and intensive human activities and tributaries inflow in this area. The DOM abundance, aromaticity, molecular weight and fluorescence intensity in core of different depth were relative constant and increased gradually with depth. DOM in core was mainly composed of humic-like material, which was due to higher release of the sedimentary organic material into the porewater during early diagenesis. PMID:24155904

  15. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)

    2014-03-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.

  16. The characteristics of dissolved organic matter (DOM) in storm sewer sediments and the binding interaction with Cu(II) in four typical regions in Beijing, China.

    Science.gov (United States)

    Zhang, Ziyang; Li, Kun; Zhang, Xiaoran; Li, Haiyan

    2017-07-01

    In this work, dissolved organic matter (DOM) was extracted from storm sewer sediments collected in four typical regions (residential, campus, traffic and business regions) in Beijing, China. The basic characteristics of DOM were analyzed by UV-visible spectroscopy (UV-Vis), excitation-emission matrix Fluorescence Spectroscopy and Fourier Transform Infrared Spectroscopy. Furthermore, the complexation between DOM and Cu(II) were investigated. The results showed that there were large amount of aromatic structure in the DOM extracted from storm sewer sediments. The microbial activities had also made a contribution to the DOM in storm sewer sediments. The composition of DOM influenced the complexing capacity of Cu(II) greatly, which may be attributed to the protein-like and humic-like substances in storm sewer sediments. This study demonstrated valuable information on the structure present in the DOM of storm sewer sediments and provided new insight for exploring the relationship between DOM and co-existing heavy metals in storm sewer sediments.

  17. How appetizing is the dissolved organic matter (DOM) trees lose during rainfall?

    Science.gov (United States)

    Howard, D.; Van Stan, J. T., II; Whitetree, A.; Zhu, L.; Stubbins, A.

    2017-12-01

    Dissolved organic carbon (DOC) is the chemical backbone of dissolved organic matter (DOM), which is important because it drives many processes in soils and waterways. Current DOC work has paid little attention to interactions between rain and plant canopies, where rainfall is partitioned into throughfall and stemflow. Even less DOC research has investigated the effect of arboreal epiphytes on throughfall and stemflow DOC. The purpose of this study is twofold: (1) assess the degree and timing of DOC consumption by microbial communities (biolability) in throughfall and stemflow, and (2) determine whether the presence of arboreal epiphytes in the canopy affect DOC biolability. Biolability of stemflow and throughfall DOC from Juniperus virginiana (cedar) was determined by incubating samples for 14 days. Throughfall and stemflow DOC was highly biolabile with DOC concentrations decreasing by 30-60%. Throughfall DOC was more biolabile than stemflow DOC. DOC in both throughfall and stemflow from epiphyte-covered cedars was less biolabile than DOC from trees without epiphytes. The high biolability of tree-derived DOC indicates that its supply provides carbon substrates to the microbial community at the forest floor, in soils and the rhizosphere. Epiphytes appear to be important in determining the biolability of DOC and therefore the size of this carbon subsidy to the soil ecosystem.

  18. Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario

    Science.gov (United States)

    Levanon, Naveh; Soker, Noam

    2017-09-01

    We show that the blue and UV excess emission in the first few days of some Type Ia supernovae (SNe Ia) can be accounted in the double-degenerate (DD) scenario by the collision of the SN ejecta with circumstellar matter that was blown by the accretion disc formed during the merger process of the two white dwarfs (WDs). We assume that in cases of excess early light, the disc blows the circumstellar matter, that we term disc-originated matter (DOM), hours to days before explosion. To perform our analysis, we first provide a model-based definition for early excess light, replacing the definition of excess light relative to a power-law fit to the rising luminosity. We then examine the light curves of the SNe Ia iPTF14atg and SN 2012cg, and find that the collision of the ejecta with a DOM in the frame of the DD scenario can account for their early excess emission. Thus, early excess light does not necessarily imply the presence of a stellar companion in the frame of the single-degenerate scenario. Our findings further increase the variety of phenomena that the DD scenario can account for, and emphasize the need to consider all different SN Ia scenarios when interpreting observations.

  19. Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical river-wetland system

    Science.gov (United States)

    Dalmagro, Higo J.; Johnson, Mark S.; de Musis, Carlo R.; Lathuillière, Michael J.; Graesser, Jordan; Pinto-Júnior, Osvaldo B.; Couto, Eduardo G.

    2017-08-01

    The Cerrado (savanna) and Pantanal (wetland) biomes of Central Western Brazil have experienced significant development activity in recent decades, including extensive land cover conversion from natural ecosystems to agriculture and urban expansion. The Cuiabá River transects the Cerrado biome prior to inundating large areas of the Pantanal, creating one of the largest biodiversity hot spots in the world. We measured dissolved organic carbon (DOC) and the optical absorbance and fluorescence properties of dissolved organic matter (DOM) from 40 sampling locations spanning Cerrado and Pantanal biomes during wet and dry seasons. In the upper, more agricultural region of the basin, DOC concentrations were highest in the rainy season with more aromatic and humified DOM. In contrast, DOC concentrations and DOM optical properties were more uniform for the more urbanized middle region of the basin between wet and dry seasons, as well as across sample locations. In the lower region of the basin, wet season connectivity between the river and the Pantanal floodplain led to high DOC concentrations, a fourfold increase in humification index (HIX) (an indicator of DOM humification), and a 50% reduction in the spectral slope (SR). Basin-wide, wet season values for SR, HIX, and FI (fluorescence index) indicated an increasing representation of terrestrially derived DOM that was more humified. Parallel factor analysis identified two terrestrially derived components (C1 and C2) representing 77% of total fluorescing DOM (fDOM). A third, protein-like fDOM component increased markedly during the wet season within the more urban-impacted region.

  20. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality

    Science.gov (United States)

    Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin

    2015-04-01

    The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.

  1. Temporal Dynamics in the Concentration, Flux, and Optical Properties of Tree-Derived Dissolved Organic Matter in an Epiphyte-Laden Oak-Cedar Forest

    Science.gov (United States)

    Van Stan, John T.; Wagner, Sasha; Guillemette, François; Whitetree, Ansley; Lewis, Julius; Silva, Leticia; Stubbins, Aron

    2017-11-01

    Studies on the fate and transport of dissolved organic matter (DOM) along the rainfall-to-discharge flow pathway typically begin in streams or soils, neglecting the initial enrichment of rainfall with DOM during contact with plant canopies. However, rain water can gather significant amounts of tree-derived DOM (tree-DOM) when it drains from the canopy, as throughfall, and down the stem, as stemflow. We examined the temporal variability of event-scale tree-DOM concentrations, yield, and optical (light absorbance and fluorescence) characteristics from an epiphyte-laden Quercus virginiana-Juniperus virginiana forest on Skidaway Island, Savannah, Georgia (USA). All tree-DOM fluxes were highly enriched in dissolved organic carbon (DOC) compared to rainfall, and epiphytes further increased concentrations. Stemflow DOC concentrations were greater than throughfall across study species, yet larger throughfall water yields produced greater DOC yields versus stemflow. Tree-DOM optical characteristics indicate it is aromatic-rich with fluorescent DOM dominated by humic-like fluorescence, containing 10-20% protein-like (tryptophan-like) fluorescence. Storm size was the only storm condition that strongly correlated with tree-DOM concentration and flux; however, throughfall and stemflow optical characteristics varied little across a wide range of storm conditions (from low magnitude events to intense tropical storms). Annual tree-DOM yields from the study forest (0.8-46 g C m-2 yr-1) were similar to other yields from discrete down-gradient fluxes (litter leachates, soil leachates, and stream discharge) along the rainfall-to-discharge flow path.

  2. Insights into the redox components of dissolved organic matters during stabilization process.

    Science.gov (United States)

    Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu

    2018-05-01

    The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.

  3. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    Science.gov (United States)

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  4. Microbial Interactions With Dissolved Organic Matter Drive Carbon Dynamics and Community Succession

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wu

    2018-06-01

    Full Text Available Knowledge of dynamic interactions between natural organic matter (NOM and microbial communities is critical not only to delineate the routes of NOM degradation/transformation and carbon (C fluxes, but also to understand microbial community evolution and succession in ecosystems. Yet, these processes in subsurface environments are usually studied independently, and a comprehensive view has been elusive thus far. In this study, we fed sediment-derived dissolved organic matter (DOM to groundwater microbes and continually analyzed microbial transformation of DOM over a 50-day incubation. To document fine-scale changes in DOM chemistry, we applied high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS and soft X-ray absorption spectroscopy (sXAS. We also monitored the trajectory of microbial biomass, community structure and activity over this time period. Together, these analyses provided an unprecedented comprehensive view of interactions between sediment-derived DOM and indigenous subsurface groundwater microbes. Microbial decomposition of labile C in DOM was immediately evident from biomass increase and total organic carbon (TOC decrease. The change of microbial composition was closely related to DOM turnover: microbial community in early stages of incubation was influenced by relatively labile tannin- and protein-like compounds; while in later stages the community composition evolved to be most correlated with less labile lipid- and lignin-like compounds. These changes in microbial community structure and function, coupled with the contribution of microbial products to DOM pool affected the further transformation of DOM, culminating in stark changes to DOM composition over time. Our study demonstrates a distinct response of microbial communities to biotransformation of DOM, which improves our understanding of coupled interactions between sediment-derived DOM, microbial processes, and community structure in

  5. 'invisible' DOM in hourly-resolved headwater river records from Northern Amazonia

    Science.gov (United States)

    Pereira, R.; Bovolo, C.; Spencer, R. G.; Hernes, P. J.; Tipping, E.; Vieth-Hillebrand, A.; Chappell, N.; Lewis-Franklin, A.; Parkin, G.; Wagner, T.

    2012-12-01

    Global river networks annually process ~3 billion tonnes of organic carbon but only ~17% reaches the ocean. These estimates suggest rivers are not mere transportation pipes but biogeochemical reactors. Inland waters are therefore fundamental to the understanding of carbon and nutrient interactions between land and ocean. Within these global estimates, tropical rivers contribute ~two-thirds of the global dissolved organic matter flux to the ocean. Recent studies suggest that up to 50% of the CO2 outgassed from tropical rivers is derived from terrestrial organic matter and that the terrestrial-aquatic interface in river headwaters are hotspots of biochemical activity. However, to date, most tropical riverine studies focus on the main river stem or mouth and therefore the dynamics of tropical headwater organic matter cycling within the global carbon cycle are unknown. We present a geochemical and hydrological time-series (sub-hourly resolution) of river water DOC concentration, source and composition from a pristine lowland rainforest headwater of the Burro Burro River, a tributary of the Essequibo River, the 3rd largest river in S. America. We show that during and after a rainstorm event, DOC concentrations increase an order of magnitude (10 to 114mg/L) in less than 30 mins, far exceeding the entire seasonal DOC range measured in 2010 and 2011 (17-28mg/L). The source (δ13C-DOC) of DOC during the rainstorm event changes from microbial/aquatic (-21.9‰ to -25.7‰) at low/intermediate DOC concentration to C3 vegetation supply (-26.8‰ to -30.3‰) during peak DOC flushing. First radiocarbon data shows that riverine DOC is relatively young (106.8-110.9 %modern), however, tropical soils suggest a potential for organic matter to be preserved (360-1200 BP). The fundamental relationship between DOC and coloured dissolved organic matter (CDOM), measured as UV absorbance (SUVA254), holds only for low riverine DOC concentrations with proportionally high lignin contribution

  6. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    Science.gov (United States)

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  7. Root-derived organic matter confines sponge community composition in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Ubels, S.M.; Kraak, M.H.S.; van der Geest, H.G.

    2013-01-01

    Introduction Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the

  8. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.

    Science.gov (United States)

    Sánchez-Marín, Paula; Santos-Echeandía, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xosé Antón; Beiras, Ricardo

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L(Cu)) than the natural seawater used for their preparation. L(Cu) varied from 0.08 microM in natural seawater to 0.3 and 0.5 microM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC(50) of 0.64 microM, significantly higher than the Cu EC(50) of natural and artificial seawater, which was 0.38 microM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC(50). This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC(50), while L(Cu) correlated

  9. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae

    International Nuclear Information System (INIS)

    Sanchez-Marin, Paula; Santos-Echeandia, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xose Anton; Beiras, Ricardo

    2010-01-01

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L Cu ) than the natural seawater used for their preparation. L Cu varied from 0.08 μM in natural seawater to 0.3 and 0.5 μM in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC 50 of 0.64 μM, significantly higher than the Cu EC 50 of natural and artificial seawater, which was 0.38 μM. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC 50 . This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC 50 , while L Cu correlated better with the

  10. Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marin, Paula, E-mail: paulasanchez@uvigo.es [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain); Santos-Echeandia, Juan; Nieto-Cid, Mar; Alvarez-Salgado, Xose Anton [Instituto de Investigacions Marinas, Consejo Superior de Investigaciones Cientificas (CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia (Spain); Beiras, Ricardo [Laboratorio de Ecoloxia Marina (LEM), Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia (Spain)

    2010-01-31

    Water samples of contrasting origin, including natural seawater, two sediment elutriates and sewage-influenced seawater, were collected and obtained to examine the effect of the dissolved organic matter (DOM) present on metal bioavailability. The carbon content (DOC) and the optical properties (absorbance and fluorescence) of the coloured DOM fraction (CDOM) of these materials were determined. Cu and Pb complexation properties were measured by anodic stripping voltammetry (ASV) and the effect of DOM on Cu and Pb bioavailability was studied by means of the Paracentrotus lividus embryo-larval bioassay. Sediment elutriates and sewage-influenced water (1) were enriched 1.4-1.7 times in DOC; (2) absorbed and reemitted more light; and (3) presented higher Cu complexation capacities (L{sub Cu}) than the natural seawater used for their preparation. L{sub Cu} varied from 0.08 {mu}M in natural seawater to 0.3 and 0.5 {mu}M in sediment elutriates and sewage-influenced water, respectively. Differences in DOC, CDOM and Cu complexation capacities were reflected in Cu toxicity. DOM enriched samples presented a Cu EC{sub 50} of 0.64 {mu}M, significantly higher than the Cu EC{sub 50} of natural and artificial seawater, which was 0.38 {mu}M. The protecting effect of DOM on Cu toxicity greatly disappeared when the samples were irradiated with high intensity UV-light. Cu toxicity could be successfully predicted considering ASV-labile Cu concentrations in the samples. Pb complexation by DOM was only detected in the DOM-enriched samples and caused little effect on Pb EC{sub 50}. This effect was contrary for both elutriates: one elutriate reduced Pb toxicity in comparison with the control artificial seawater, while the other increased it. UV irradiation of the samples caused a marked increase in Pb toxicity, which correlated with the remaining DOC concentration. DOM parameters were related to Cu speciation and toxicity: good correlations were found between DOC and Cu EC{sub 50}, while L

  11. Impact of dissolved organic matter on bioavailability of chlorotoluron to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Song Ninghui [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Zhang Shuang; Hong Min [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Yang Hong, E-mail: hongyang@njau.edu.c [Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing 210095 (China); Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China)

    2010-03-15

    Chlorotoluron (Chl) is a phenylurea herbicide and is widely used for controlling weeds. While it has brought great benefits to crop production, it has also resulted in contamination to ecosystem. In this study, we investigated accumulation of chlorotoluron (Chl) and biological responses of wheat plants as affected by dissolved organic matter (DOM). Wheat seedlings grown under 10 mg kg{sup -1} Chl for 4 d showed a low level of chlorophyll accumulation and damage to plasma membrane. The growth was inhibited by exposure of chlorotoluron. Treatment with 50 mg DOC kg{sup -1} DOM derived either from sludge (DOM-SL) or straw (DOM-ST) attenuated the chlorotoluron toxicity to plants. Both DOMs decreased activities of catalase, peroxidase and superoxide dismutase in Chl-treated seedlings. However, an increased glutathione S-transferases activity was observed under the same condition. Wheat plants treated with Chl in the presence of DOM accumulated less Chl than those treated with Chl alone. Moreover, in the presence of DOM, bioconcentration factor (BCF) decreased whereas translocation factors increased. Analyses with FT-IR spectra confirmed the regulatory role of DOMs in reducing Chl accumulation in wheat. - Dissolved organic matter (DOM) as a soil amendment can reduce herbicide accumulation in crops.

  12. Development And Application of Functional Assays For Freshwater Dissolved Organic Matter

    Science.gov (United States)

    Thacker, S.; Tipping, E.; Gondar, D.; Baker, A.

    2006-12-01

    Dissolved organic matter (DOM) in natural waters participates in many important ecological and geochemical reactions, including acid-base buffering, light absorption, proton binding, binding of heavy metals, organic contaminants, aluminium and radionuclides, adsorption at surfaces, aggregation and photochemical reactivity. We are studying DOM in order to understand and quantify these functional properties, so we can use the knowledge to predict the influence of DOM on the natural freshwater environment. As DOM has no readily identifiable structure, our approach is to measure what it does, rather than what it is. Thus, we have developed a series of 12 standardised, reproducible assays of physico-chemical functions of dissolved organic matter (DOM) in freshwaters. The assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo(a)pyrene binding, hydrophilicity and adsorption to alumina. We have collected twenty DOM samples in total, ten samples from a eutrophic lake (Esthwaite Water) and ten samples from three stream waters. A mild isolation method was then used to concentrate the DOM samples for the assay work. When assaying the concentrates, parallel assays were also preformed with Suwannee River Fulvic Acid (SRFA), as a quality control standard. Our results showed that; (i) for eleven of the assays, the variability among the twenty DOM samples was significantly (p<0.001) greater than can be explained by analytical error, i.e. by comparison with results from the SRFA quality control; (ii) the functional properties of the DOM from Esthwaite Water are strongly influenced by the seasonally-dependent input of autochthonous DOM, derived from phytoplankton. The autochthonous DOM is less fluorescent, light absorbing, hydrophobic and has a lower acid group content and capacity to be adsorbed onto alumina than terrestrially derived allochthonous DOM; (iii) significant correlations were found between

  13. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    Science.gov (United States)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo

  14. Investigating Photosensitized Properties of Natural Organic Matter and Effluent Organic Matter

    KAUST Repository

    Niu, Xi-Zhi

    2013-05-01

    The photosensitized processes significantly enhance photolysis of various chemicals in the aqueous system with dissolved organic matter (DOM) as sensitizer. The excitation of chromophores on the DOM molecule further generates reactive species as triplet states DOM, singlet oxygen, hydroxyl radical, carbonate radical etc. We investigated the photosensitization properties of Beaufort Fulvic Acid, Suwannee River Fulvic Acid, South Platte River Fulvic Acid, and Jeddah wastewater treatment plant effluent organic matter with a sunlight simulator. DOM photochemical properties were characterized by observing their performances in 3DOM*, singlet oxygen, hydroxyl radical production with indirect probing protocols. Sensitized degradation of 0.1 μM and 0.02 μM 2, 4, 6- Trimethylphenol exhibited higher pseudo-first-order rate constant than that of 10 μM. Pre-irradiated DOMs were found to be depressed in photochemical properties. Photolysis of 5 different contaminants: ibuprofen, bisphenol A, acetaminophen, cimetidine, and caffeine were found to be enhanced in the presence of sensitizers. The possible reaction pathways were revealed. Long time irradiance induced change in contaminants degradation kinetics in some DOM solutions, which was proposed to be due to the irradiation initiated indirect transformation of DOMs. Key Words: Photolysis Dissolved Organic Matter, Triplet State DOM, Singlet Oxygen, Hydroxyl Radical, Contaminants Degradation.

  15. Cadmium accumulation in zebrafish (Danio rerio) eggs is modulated by dissolved organic matter (DOM)

    International Nuclear Information System (INIS)

    Burnison, B. Kent; Meinelt, Thomas; Playle, Richard; Pietrock, Michael; Wienke, Andreas; Steinberg, Christian E.W.

    2006-01-01

    Experiments were conducted to investigate factors influencing the accumulation of cadmium (Cd 2+ ) into zebrafish (Danio rerio) eggs. The accumulation of 109 Cd was affected by: (1) concentration, (2) time, (3) presence of dissolved organic material (DOM), (4) different origin of DOM and (5) different parts of fish eggs. Over a 5-h exposure, zebrafish eggs showed a steady increase in Cd-accumulation. DOM-concentrations over 15 ppm carbon (C) decreased Cd-uptake significantly. Both samples of DOM, brown water marsh (LM) and a eutrophic pond (SP), at 16.9 ppm C, reduced the Cd-accumulation in the chorion, perivitelline liquid and the embryo. Cd was mainly accumulated in the egg's outer shell chorion (61%) and only small amounts passed through the chorion into the perivitelline liquid (38%) and embryo (1%). In the presence of LM-DOM, the accumulation of Cd into the egg components was decreased by 43% (chorion), 52% (perivitelline liquid) and 52% (embryo), respectively, compared with the control group. Similarly, the presence of SP-DOM reduced the Cd-accumulation by 29% (chorion), 61% (perivitelline liquid) and 60% (embryo), respectively, compared with the controls. DOM-concentration should be taken into consideration when determining ecotoxicological effects of Cd on fish populations

  16. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use.

    Science.gov (United States)

    Shang, Peng; Lu, YueHan; Du, YingXun; Jaffé, Rudolf; Findlay, Robert H; Wynn, Anne

    2018-01-15

    Human land use has led to significant changes in the character of dissolved organic matter (DOM) in lotic ecosystems. These changes are expected to have important environmental and ecological consequences. However, high spatiotemporal variability has been reported in previous studies, and the underlying mechanisms remain inadequately understood. This study assessed variation in the properties of stream water DOM within watersheds across a gradient of agricultural land use with grazing pasture lands as the dominant agricultural type in the southeastern United States. We collected water samples under baseflow conditions five times over eight months from a regional group of first- to fourth-order streams. Samples were analyzed for dissolved organic carbon (DOC) concentration, DOM quality based on absorbance and fluorescence properties, as well as DOM biodegradability. We found that air temperature and antecedent hydrological conditions (indicated by antecedent precipitation index and stream water sodium concentrations) positively influenced stream water DOC concentration, DOM fluorescence index, and the proportion of soil-derived, microbial humic fluorescence. This observation suggests that elevated production and release of microbial DOM in soils facilitated by high temperature, in conjunction with strong soil-stream hydrological connectivity, were important drivers for changes in the concentration and composition of stream water DOM. By comparison, watersheds with a high percentage of agricultural land use showed higher DOC concentration, larger proportion of soil-derived, humic-like DOM compounds, and higher DOC biodegradability. These observations reflect preferential mobilization of humic DOM compounds from shallow organic matter-rich soils in agricultural watersheds, likely due to enhanced soil erosion, organic matter oxidation and relatively shallow soil-to-stream flow paths. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  18. The Urban Watershed as a Transformer of DOM Chemistry

    Science.gov (United States)

    Gabor, R. S.; Smith, R. M.; Follstad Shah, J.; Kelso, J. E.; Baker, M. A.; Brooks, P. D.

    2017-12-01

    Growing urban systems stress watersheds, resulting in water quality impacts downstream. Urban stresses can include nutrient runoff from fertilizer, effluent from wastewater treatment plants, and changes in hydrologic routing. Synoptic surveys were performed at two rivers in Salt Lake City, Utah to identify how urbanization drives dissolved organic matter (DOM) chemistry. Red Butte Creek, a small third order stream, flows from a protected mountain environment directly into a highly urbanized mountain area. The organic matter chemistry, as measured by fluorescence, changed dynamics in the urban system, with organic matter demonstrating greater aromaticity and different seasonal patterns than observed in the canyon. Several kilometers downstream of the start of urbanization, the C:N ratio of the organic matter changes from 12.5 to 17.7, at a location where the stream is fed by urban-impacted groundwater, suggesting that subsurface DOC is utilized for microbial respiration in denitrification of urban nitrate inputs. This also corresponds with a shift in the chemistry of the DOM, as measured by fluorescence. Red Butte Creek terminates at the Jordan River, which flows from a highly eutrophic lake and is fed by seven tributaries and five wastewater treatment plants before ending at the Great Salt Lake. The Jordan River is heavily contaminated, with low dissolved oxygen and high nutrient content. The fluorescence index (FI) of DOM in the Jordan River indicates a dominant microbial contribution to the fluorescent organic material, particularly in areas where the dissolved oxygen is low, with the FI becoming less microbial as the DO sag lessens. This corresponds to increasing fluorescence signal in the protein-like area of the fluorescence excitation-emission matrices. Additionally, effluent from four wastewater treatment plants, each with different technologies, had distinct organic matter fluorescence, corresponding with differences in the nitrogen and microbial dynamics

  19. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  20. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations

    Science.gov (United States)

    Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.

    2011-01-01

    Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  1. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems

    Science.gov (United States)

    Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.

    2011-01-01

    Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg–1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form, and these species need to be considered when addressing mercury biogeochemistry.

  2. Illuminating the dark side of DOM: A bottom up approach to understanding the structure and composition of DOM.

    Science.gov (United States)

    Zito, P.; Tarr, M. A.; Spencer, R. G.; Podgorski, D. C.

    2017-12-01

    Dissolved organic matter (DOM) is one of the most complex natural mixtures on Earth. It is generally comprised of hydrocarbons incorporating a diverse subset of oxygen-containing functional groups along with a small amount of nitrogen, sulfur and phosphorous heteroatoms all of which make it very difficult to chromatographically separate. The only way to directly characterize and quantify these structural and compositional changes is by separating the DOM continuum into defined bins of structure and chemistry. In this study, we take an alternate bottom-up approach that utilizes petroleum to work toward identifying the molecular structures of DOM. Although petroleum is the most structurally diverse mixture in nature, it is almost exclusively comprised of hydrocarbons with only trace quantities of heteroatoms, including oxygen. Here, crude oil was chromatographically separated into bins based on the number of aromatic rings to be used as a starting carbon source. Photochemically produced DOM from these aromatic ring bins provides unique opportunities to gain insight in the compositional controls associated with transport, processing and fate of DOM in natural systems. Here, we present EEMs data from individual ring fractions that were subjected to 24 hours of sunlight to use as a model to fingerprint specific aromatic regions in the DOM fraction. Results illustrate that the 1-, 2-, 3-, 4- and 5- ring fractions exhibit a wide range of structurally dependent excitation and emission spectra. A well-known red-shift in the emission and excitation occurs as the number of rings increase. In order to understand changes in the elemental composition of the data, ultra high-resolution mass spectrometry was used to obtain molecular level information. Together, these data will provide a tool to help understand the relationship of the composition and structure of DOM released into the environment in terms of aromaticity. It is well known that aromaticity is an important indicator

  3. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  4. Insights on the Optical Properties of Estuarine DOM - Hydrological and Biological Influences.

    Directory of Open Access Journals (Sweden)

    Luísa Santos

    Full Text Available Dissolved organic matter (DOM in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal, the seasonality and the sources of the fraction of DOM that absorbs light (CDOM were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems.

  5. Insights on the Optical Properties of Estuarine DOM - Hydrological and Biological Influences.

    Science.gov (United States)

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B H; Almeida, Adelaide

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems.

  6. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes.

    Science.gov (United States)

    He, Yuhong; Song, Na; Jiang, He-Long

    2018-04-01

    In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.

  8. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  9. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  10. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  11. Insights on the Optical Properties of Estuarine DOM – Hydrological and Biological Influences

    Science.gov (United States)

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B. H.

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems. PMID:27195702

  12. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    Science.gov (United States)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al

  13. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state

    Science.gov (United States)

    O’Donnell, Jonathan A.; Aiken, George R.; Butler, Kenna D.; Guillemette, Francois; Podgorski, David C.; Spencer, Robert G. M.

    2016-01-01

    The boreal region stores large amounts of organic carbon (C) in organic-soil horizons, which are vulnerable to destabilization via warming and disturbance. Decomposition of soil organic matter (SOM) contributes to the production and turnover of dissolved organic matter (DOM). While temperature is a primary control on rates of SOM and DOM cycling, little is known about temperature effects on DOM composition in soil leachate. Here we conducted a 30 day incubation to examine the effects of temperature (20 versus 5°C) and SOM decomposition state (moss versus fibric versus amorphous horizons) on DOM composition in organic soils of interior Alaska. We characterized DOM using bulk dissolved organic C (DOC) concentration, chemical fractionation, optical properties, and ultrahigh-resolution mass spectrometry. We observed an increase in DOC concentration and DOM aromaticity in the 20°C treatment compared to the 5°C treatment. Leachate from fibric horizons had higher DOC concentration than shallow moss or deep amorphous horizons. We also observed chemical shifts in DOM leachate over time, including increases in hydrophobic organic acids, polyphenols, and condensed aromatics and decreases in low-molecular weight hydrophilic compounds and aliphatics. We compared ultrahigh-resolution mass spectrometry and optical data and observed strong correlations between polyphenols, condensed aromatics, SUVA254, and humic-like fluorescence intensities. These findings suggest that biolabile DOM was preferentially mineralized, and the magnitude of this transformation was determined by kinetics (i.e., temperature) and substrate quality (i.e., soil horizon). With future warming, our findings indicate that organic soils may release higher concentrations of aromatic DOM to aquatic ecosystems.

  14. Long-term litter input manipulation effects on production and properties of dissolved organic matter in the forest floor of a Norway spruce stand.

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Stepper, C.; van Loon, E.; Gerstberger, P.; Kalbitz, K.

    2012-01-01

    Background and aims Environmental factors such as climate and atmospheric CO2 control inputs of plant-derived matter into soils, which then determines properties and decomposition of soil organic matter. We studied how dissolved organic matter (DOM) in forest floors responded to six years of litter

  15. “Wrapping” X3DOM around Web Audio API

    Directory of Open Access Journals (Sweden)

    Andreas Stamoulias

    2015-12-01

    Full Text Available Spatial sound has a conceptual role in the Web3D environments, due to highly realism scenes that can provide. Lately the efforts are concentrated on the extension of the X3D/ X3DOM through spatial sound attributes. This paper presents a novel method for the introduction of spatial sound components in the X3DOM framework, based on X3D specification and Web Audio API. The proposed method incorporates the introduction of enhanced sound nodes for X3DOM which are derived by the implementation of the X3D standard components, enriched with accessional features of Web Audio API. Moreover, several examples-scenarios developed for the evaluation of our approach. The implemented examples established the achievability of new registered nodes in X3DOM, for spatial sound characteristics in Web3D virtual worlds.

  16. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    , pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than...... natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation...... of heterotrophic DOM decomposition, but increased P limitation. Land use—especially urbanization—also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high...

  17. Production of Dissolved Organic Matter During Doliolid Feeding

    Science.gov (United States)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  18. First inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal - case studies of Coloured Dissolved Organic Matter (cDOM) and turbidity regimes

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Dvornikov, Yuri; Leibman, Marina; Eulenburg, Antje; Morgenstern, Anne; Boike, Julia; Widhalm, Barbara; Fedorova, Irina; Chetverova, Antonina

    2015-04-01

    We provide a first satellite-based inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal using multi-sensor satellite data. Within our thematic network between our groups we seek to investigate how we may link: • multi-sensor remote sensing analysis (optical and radar) • tachymmetrical and satellite-based stereographical analysis • geochemical and hydrodynamical ground investigations in the thermokarst- and thermoerosional-influenced landscape types in the central Lena Delta and the Yamal region in Siberia. We are investigating the turbidity regimes of the lakes and the catchment characteristics (vegetation, geomorphology, topography) using satellite-derived information from optical and radar sensors. For some of the lakes in Yamal and the central Lena River Delta we were able to sample for Dissolved Organic Carbon, DOC, and coloured dissolved organic matter, cDOM (the absorbing fraction of the DOC pool). The sediment sources for turbidity spatial patterns are provided by the large subaquatic sedimentary banks and lake cliffs. The cDOM regimes influence the transparency of the different lake types. However, turbidity seems to play the dominant role in providing the water colour of thermokarst lake types.

  19. The composition and character of DOM from an upland peat catchment - sources, roles and fate

    Science.gov (United States)

    Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.

    2017-12-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.

  20. Origins and bioavailability of dissolved organic matter in groundwater

    Science.gov (United States)

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  1. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium.

    Science.gov (United States)

    Li, Gang; Khan, Sardar; Ibrahim, Muhammad; Sun, Tian-Ran; Tang, Jian-Feng; Cotner, James B; Xu, Yao-Yang

    2018-04-15

    Biochar application has attracted great attention due to its diverse uses and benefits in the fields of environmental management and agriculture. Biochar modifies the composition of dissolved organic matter (DOM) in soil, which directly or indirectly controls the mobility of metal contaminants and their bioaccumulation. In this study, ten different hydrothermal biochars pyrolysed from mushroom waste (MSBC), soybean straw (SBBC), sewage sludge (SSBC), peanut shells (PNBC) and rice straw (RSBC) at two pyrolysis temperatures (200 °C and 350 °C) were used to investigate DOM changes in soil solution and their effects on metal availability and bioaccumulation. Biochar induced modification of soil DOM which was characterized by spectroscopic analysis of water soluble organic carbon, specific absorbance (SUVA 254 ), UV-vis absorption, spectral slope (S R ) and the absorption coefficient. Regarding rice plant growth, the biochar effects on biomass were greatly varied. Biochars (except for RSBC and MSBC) prepared at high temperature significantly (P ≤ 0.05) suppressed the availability of As and Cd in soil and their subsequent bioaccumulation in rice plants. The highest reduction (88%) in bioaccumulated As was observed in rice grown on soil amended with SBBC prepared at 350 °C (the highest temperature for hydrothermal technique). The addition of biochars (except RSBC and MSBC) prepared at high temperature markedly (p < 0.05) decreased AsIII (30-92%), while the effects on dimethylarsenic acid (DMA) and arsenate (AsV) concentrations were not significant except for SSBC350 (prepared at 350 °C) treatment. These results highlight the potential of biochar-DOM interactions as an important mechanism for suppressing the mobility and bioaccumulation of As and Cd in biochar-amended paddy agricultural systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  3. Molecular Determinants of Dissolved Organic Matter Reactivity in Lake Water

    Directory of Open Access Journals (Sweden)

    Alina Mostovaya

    2017-12-01

    Full Text Available Lakes in the boreal region have been recognized as the biogeochemical hotspots, yet many questions regarding the regulators of organic matter processing in these systems remain open. Molecular composition can be an important determinant of dissolved organic matter (DOM fate in freshwater systems, but many aspects of this relationship remain unclear due to the complexity of DOM and its interactions in the natural environment. Here, we combine ultrahigh resolution mass spectrometry (FT-ICR-MS with kinetic modeling of decay of >1,300 individual DOM molecular formulae identified by mass spectrometry, to evaluate the role of specific molecular characteristics in decomposition of lake water DOM. Our data is derived from a 4 months microbial decomposition experiment, carried out on water from three Swedish lakes, with the set-up including natural lake water, as well as the lake water pretreated with UV light. The relative decay rate of every molecular formula was estimated by fitting a single exponential model to the change in FT-ICR-MS signal intensities over decomposition time. We found a continuous range of exponential decay coefficients (kexp within different groups of compounds and show that for highly unsaturated and phenolic compounds the distribution of kexp was shifted toward the lowest values. Contrary to this general trend, plant-derived polyphenols and polycondensed aromatics were on average more reactive than compounds with an intermediate aromaticity. The decay rate of aromatic compounds increased with increasing nominal oxidation state of carbon, and molecular mass in some cases showed an inverse relationship with kexp in the UV-manipulated treatment. Further, we observe an increase in formulae-specific kexp as a result of the UV pretreatment. General trends in reactivity identified among major compound groups emphasize the importance of the intrinsic controllers of lake water DOM decay. However, we additionally indicate that each

  4. Wet–dry cycles impact DOM retention in subsurface soils

    Directory of Open Access Journals (Sweden)

    Y. Olshansky

    2018-02-01

    Full Text Available Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment. Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR and near-edge X-ray absorption fine structure (NEXAFS spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil

  5. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  6. Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy

    Science.gov (United States)

    Valsaraj, K.; Birdwell, J.

    2010-07-01

    Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.

  7. Enteric Neuron Imbalance and Proximal Dysmotility in Ganglionated Intestine of the Sox10Dom/+ Hirschsprung Mouse ModelSummary

    Directory of Open Access Journals (Sweden)

    Melissa A. Musser

    2015-01-01

    Full Text Available Background & Aims: In Hirschsprung disease (HSCR, neural crest-derived progenitors (NCPs fail to completely colonize the intestine so that the enteric nervous system is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. Methods: Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wild-type controls. Results: Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as calretinin+ and neuronal nitric oxide synthase (nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4 weeks of age; at 6 weeks of age, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6 weeks of age had little or no colonic inflammation when compared with wild-type littermates, suggesting that these changes in gastrointestinal motility are neurally mediated. Conclusions: The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects gastrointestinal motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification. Keywords: Aganglionosis, Enteric Nervous System, Neural Crest

  8. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  9. The Utility of CDOM for Improving the Resolution of Riverine DOM Fluxes and Biogeochemical Function

    Science.gov (United States)

    Spencer, R. G.; Aiken, G.; Mann, P. J.; Holmes, R. M.; Niggemann, J.; Dittmar, T.; Hernes, P.; Stubbins, A.

    2014-12-01

    A major historical limitation to geochemical studies assessing fluvial fluxes of dissolved organic matter (DOM) has been the issue of both temporal and spatial scaling. Examples will be presented from watersheds around the world highlighting how chromophoric dissolved organic matter (CDOM) measurements can be utilized as proxies for more intensive and expensive analytical analyses (e.g. molecular-level organic biomarkers). Utilizing these refined CDOM loads for terrigenous biomarkers results in improved temporal resolution and a significant change in flux estimates. Examining CDOM and dissolved organic carbon (DOC) flux data from an assortment of terrestrial biomes we establish a robust relationship between CDOM and DOC loads. The application of this relationship allows future studies to derive DOC loads from CDOM utilizing emerging in-situ or remote sensing technologies and thus refine river-to-ocean DOC fluxes, as well as exploit historic imagery to examine how fluxes may have changed. Calculated CDOM yields from a range of rivers are correlated to watershed percent wetland and highlight the importance of certain regions with respect to CDOM flux to the coastal ocean. This approach indicates that future studies might predict CDOM and DOC yields for different watershed types that could then be readily converted to loads providing for the estimation of CDOM and DOC export from ungauged watersheds. Examination of CDOM yields also highlights important geographical regions for future study with respect to the role of terrigenous CDOM in ocean color budgets and CDOM's role in biogeochemical processes. Finally, examples will be presented linking CDOM parameters to DOM composition and biogeochemical properties with the aim of providing measurements to improve the spatial and especially temporal resolution of the role DOM plays in fluvial networks.

  10. Characterization of DOM in landfill leachate polluted groundwater with electrospary LC-MS

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2001-01-01

    Dissolved organic matter in leachate polluted groundwater, downgradient a landfill, was analysed with electrospray mass spectrometry. The results indicate that the DOM change qualitatively in the gradient, becoming more uniform in functional groups and hydrofobicity. Those changes may affect...

  11. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    Science.gov (United States)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; pLignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  12. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    Science.gov (United States)

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean.

  13. Bioavialability of Dom Photochemically Released from Resuspended Sediments

    Science.gov (United States)

    Avery, G. B., Jr.; Rainey, D. H.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Felix, J. D.; Helms, J. R.

    2016-02-01

    Little is known regarding the bioavailability of dissolved organic matter (DOM) released photochemically from resuspended estuarine sediments. Sediments were collected from two sites along the Cape Fear River estuary, NC, USA, size fractionated in 0.2 µm filtered Gulf Stream seawater and exposed to simulated sunlight for six hours. Light exposed samples resulted in increases of dissolved organic carbon (DOC) (34 ± 3 µM), chromophoric dissolved organic matter (CDOM) (a300nm, 2.7 m-1), and fluorescent dissolved organic matter (FDOM) (78.6 quinine sulfate equivalents (QSE)) compared to dark controls. Ultra high resolution mass spectrometric characterization indicated the photoreleased DOM was more oxidized and condensed based upon van Kreevlan analysis. Samples were then filtered and inoculated to a final ratio of 4% with coastal water sample filtered through a100 µm net to remove larger grazing organisms and particles while keeping most of bacterial community intact. All three parameters were monitored during a 30 day-long incubation in the dark to assess biological consumption and alteration. Previously light exposed samples had double (20 vs. 9 µM) the amount of DOC consumed compared to samples not previously exposed to light and twice the loss of CDOM (a300nm, 0.6 vs. 0.3 m-1) compared to samples not previously exposed to light. Previously light exposed samples resulted in a threefold loss of FDOM (9.5 QSE) compared to samples not previously exposed to light (2.8 QSE). Results of this study are important because they demonstrate dissolved organic matter released photochemically from resuspended sediments is more bioavailable than ambient material likely fueling secondary productivity and impacting ecosystem functioning in coastal regions.

  14. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  15. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  16. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool.

    Science.gov (United States)

    Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen

    2014-08-19

    Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.

  17. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    Science.gov (United States)

    Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.

  18. Source and Processes of Dissolved Organic Matter in a Bangladesh Groundwater

    Science.gov (United States)

    McKnight, D. M.; Simone, B. E.; Mladenov, N.; Zheng, Y.; Legg, T. M.; Nemergut, D.

    2010-12-01

    Arsenic contamination of groundwater is a global health crisis, especially in Bangladesh where an estimated 40 million people are at risk. The release of geogenic arsenic bound to sediments into groundwater is thought to be influenced by dissolved organic matter (DOM) through several biogeochemical processes. Abiotically, DOM can promote the release of sediment bound As through the formation of DOM-As complexes and competitive interactions between As and DOM for sorption sites on the sediment. Additionally, the labile portion of groundwater DOM can serve as an electron donor to support microbial growth and the more recalcitrant humic DOM may serve as an electron shuttle, facilitating the eventual reduction of ferric iron present as iron oxides in sediments and consequently the mobilization of sorbed As and organic material. The goal of this study is to understand the source of DOM in representative Bangladesh groundwaters and the DOM sorption processes that occur at depth. We report chemical characteristics of representative DOM from a surface water, a shallow low-As groundwater, mid-depth high-As groundwater from the Araihazar region of Bangladesh. The humic DOM from groundwater displayed a more terrestrial chemical signature, indicative of being derived from plant and soil precursor materials, while the surface water humic DOM had a more microbial signature, suggesting an anthropogenic influence. In terms of biogeochemical processes occurring in the groundwater system, there is evidence from a diverse set of chemical characteristics, ranging from 13C-NMR spectroscopy to the analysis of lignin phenols, for preferential sorption onto iron oxides influencing the chemistry and reactivity of humic DOM in high As groundwater in Bangladesh. Taken together, these results provide chemical evidence for anthropogenic influence and the importance of sorption reactions at depth controlling the water quality of high As groundwater in Bangladesh.

  19. Dissolved Organic Matter Composition and Export from U.S. Rivers

    Science.gov (United States)

    Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In

  20. A DOM Odyssey: The Tale of Molecular Transformations in an Aquifer near Bemidji, MN

    Science.gov (United States)

    Podgorski, D. C.; Zito, P.; Smith, D. F.; Cao, X.; Schmidt-Rohr, K.; Wagner, S.; Stubbins, A.; Aiken, G.; Cozzarelli, I.; Bekins, B. A.; Spencer, R. G.

    2017-12-01

    Analytical methods including fluorescence spectroscopy, NMR spectroscopy, and ultrahigh resolution mass spectrometry have significantly advanced the understanding of compositional controls on dissolved organic matter (DOM) processing and fate. Yet, we still heavily rely on extrapolation of chemical changes identified at the edges of the compositional continuum (i.e., endmembers) to assess DOM reactivity and stability. While extrapolation of chemical transformations is useful for determining relative changes in DOM composition, a comprehensive understanding of the underlying core structures and composition is required to develop advanced biogeochemical models. Studying DOM from natural systems is complicated by many variables associated with an open system including input from multiple sources, simultaneous photo-alteration and microbial processing, and obtaining samples that cover high spatial and temporal resolution. A 38-year biodegradation study at the National Crude Oil Spill Research site near Bemidji, MN provides a unique opportunity to monitor DOM in a relatively closed system. An extensively characterized 1 m thick oil body is confined to a 25 x 75 m2 area at the water table in the aquifer. Oxidized metabolites partition from the oil into the underlying aquifer increase the DOC concentration to > 100 ppm from molecular formulas with O/C and H/C similar to those associated with the `island of stability'. Samples collected spatially from the DOM plume between these two endmembers provide sufficient temporal resolution to model both DOC concentration and DOM composition as a result of biodegradation.

  1. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    Science.gov (United States)

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  2. Optical properties and molecular diversity of dissolved organic matter in the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.

    2017-10-01

    Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.

  3. Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM

    Directory of Open Access Journals (Sweden)

    Adelumola Oladeinde

    2018-05-01

    Full Text Available In this study, we investigated gene expression changes in three bacterial strains (Escherichia coli C3000, Escherichia coli O157:H7 B6914, and Enterococcus faecalis ATCC 29212, commonly used as indicators of water quality and as control strains in clinical, food, and water microbiology laboratories. Bacterial transcriptome responses from pure cultures were monitored in microcosms containing water amended with manure-derived dissolved organic matter (DOM, previously exposed to simulated sunlight for 12 h. We used RNA sequencing (RNA-seq and quantitative real-time reverse transcriptase (qRT-PCR to compare differentially expressed temporal transcripts between bacteria incubated in microcosms containing sunlight irradiated and non-irradiated DOM, for up to 24 h. In addition, we used whole genome sequencing simultaneously with RNA-seq to identify single nucleotide variants (SNV acquired in bacterial populations during incubation. These results indicate that E. coli and E. faecalis have different mechanisms for removal of reactive oxygen species (ROS produced from irradiated DOM. They are also able to produce micromolar concentrations of H2O2 from non-irradiated DOM, that should be detrimental to other bacteria present in the environment. Notably, this study provides an assessment of the role of two conjugative plasmids carried by the E. faecalis and highlights the differences in the overall survival dynamics of environmentally-relevant bacteria in the presence of naturally-produced ROS.

  4. Multi-technical approach to characterize the dissolved organic matter from clay-stone

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Michels, Raymond; Faure, Pierre; Parant, Stephane; Bruggeman, Christophe; De Craen, Mieke

    2012-01-01

    Document available in extended abstract form only. Currently, different clay formations (Boom Clay, Callovo-Oxfordian argilites, Opalinus Clay, Toarcian shales...) are studied as reference host rocks for methodological studies on the geological disposal of high-level and long-lived radioactive waste. While a significant effort is being done on the characterization of the mineral composition and the reactivity of the clays as barriers, the occurrence of organic matter, even in low proportion cannot be neglected. The organic matter appears as gas (C 1 -C 4 as identified in the Bure underground facilities), as solid (kerogen), as hydrocarbon liquids (free hydrocarbons within the kerogen or adsorbed on minerals) as well as in the aqueous phase (Dissolved Organic Matter - DOM). DOM raises specific interest, as it may have complexation properties towards metals and rare earth elements and is potentially mobile. Therefore, it is important to characterize the DOM as part of a study of feasibility of geological disposal. In this study, four host rocks were studied: - The Callovo-Oxfordian shales of Bure Underground Research Laboratory (Meuse, France); - The Opalinus Clay of Mont Terri Underground Research Laboratory (Switzerland); - The Toarcian shales of Tournemire (Aveyron, France); - The Boom Clay formation studied in The HADES Underground Research Laboratory (Mol, Belgium). Organic matter characteristics vary upon formation in terms of (i) origin (mainly marine type II; mixtures of marine type II and higher plants type III organic matter often poorly preserved), (ii) TOC contents, (iii) thermal maturity (for instance, Opalinus Clay and Toarcian shales are more mature and have poor oxygen content compare to Callovo-Oxfordian shales and Boom Clay). These differences in organic matter quality may have an influence on the quantity and the quality of DOM. The DOM of the rocks was isolated by Soxhlet extraction using pure water. A quantitative and qualitative multi

  5. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    Science.gov (United States)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  6. Studies of the DOM aqueous extracts from coastal marine sediments

    Science.gov (United States)

    Sakellariadou, F.

    2012-04-01

    Dissolved organic matter (DOM) represents a major exchangeable organic pool playing an outstanding role in the ocean carbon cycle. It has a complex chemical structure made up of a wide range of organic molecules. The composition of DOM depends on the sources proximity and the exposure to any sort of degradation mechanism. The coloured (or chromophoric) dissolved organic matter (CDOM), representing the optically active fraction of DOM, consists of aromatic rings able to absorb light in the visible and UV regions (Kirk, 1994) and fluorophoric molecules that emit light. The main fluorophoric moieties of CDOM are humic material with a blue fluorescence and protein material with an ultraviolet (UV) fluorescence (Mopper and Schultz, 1993). Dissolved organic matter interacts with pollutants either by enhancing their bioavailability or by influencing their transportation to the soluble phase. In addition, DOM affects the remineralisation of carbon and its preservation in marine sediments. Referring to its origin, it can be terrestrial, freshwater or marine one. Fluorescence spectroscopy is a technique widely applied for the identification and characterization of organic matter, being fast, simple, non-destructive and sensitive. In addition, the fluorescence analysis for the physico-chemical characterization of organic matter requires a small amount of aqueous sample at a low concentration, in comparison with the large sample volumes needed for conventional techniques. At the present study coastal sediment samples were collected from Messiniakos gulf in the south western Peloponnese in South Greece. Messiniakos gulf has a seabed dominated by very abrupt inclinations reaching depths of more than 1000m. All samples, according to their grain size, are classified as fine clayey silt. Dissolved organic matter was extracted under gentle extraction conditions (4 mM CaCl2 solution). The various classes of organic components present at the DOM aqueous extracts were characterised by

  7. Evidence for major input of riverine organic matter into the ocean

    Science.gov (United States)

    Cao, Xiaoyan; Aiken, George R.; Butler, Kenna D.; Huntington, Thomas G.; Balch, William M.; Mao, Jingdong; Schmidt-Rohr, Klaus

    2018-01-01

    The changes in the structure of XAD-8 isolated dissolved organic matter (DOM) samples along a river (Penobscot River) to estuary (Penobscot Bay) to ocean (across the Gulf of Maine) transect and from the Pacific Ocean were investigated using selective and two dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy coupled with elemental and carbon isotope analysis. The results provide important insights into the nature of relatively stable structures in the river-to-ocean continuum and the enigma of the fate of terrestrial DOM in the marine system. First, lignin and carboxyl-rich alicyclic molecules (CRAMs), which are indistinguishable from mass spectrometry, were clearly differentiated with NMR spectroscopy. NMR unambiguously showed that CRAMs persisted along the river-to-ocean transect and in the Pacific Ocean, while lignin residues dramatically decreased in abundance from the river to the coastal ocean and the Pacific Ocean. The results challenge a previous conclusion that lignin-derived compounds are refractory and can accumulate in the coastal ocean. The loss of terrestrial plant-derived aromatic compounds such as lignin and tannin residues throughout the sequence of riverine, coastal, and open ocean DOM extracts could also partially explain the decreasing organic carbon recovery by XAD-8 isolation and the change in carbon stable isotope composition from riverine DOM (δ13C −27.6‰) to ocean DOM (δ13C −23.0‰) extracts. The observation, from advanced NMR, of similar CRAM molecules in XAD-8 isolated DOM samples from the Penobscot River to the Penobscot Bay and from the ocean refutes a previous conclusion that XAD-isolated DOM samples from seawater and river are distinctly different. The alicyclic structural features of CRAMs and their presence as the major structural units in DOM extracts from the Penobscot River to Gulf of Maine transect, together with the deduced old 14C age of CRAMs in the ocean, imply that terrestrial CRAMs may persist on

  8. [The Influence of Runoff Pollution to DOM Features in an Urban Wastewater Treatment Plant].

    Science.gov (United States)

    He, Li; Ji, Fang-ying; Lai, Ming-sheng; Xu, Xuan; Zhou, Wei-wei; Mao, Bo-lin; Yang, Ming-jia

    2015-03-01

    Combined with wastewater treatment process, the sewage in sunny and rainy day was collected from a wastewater treatment plant in Chongqing. Three-dimensional fluorescence spectra was used to investigate the characteristic fluorescence of dissolved organic matter (DOM). DOM dissolved organic carbon (DOC), chemical oxygen demand (COD), fluorescence index (ƒ450/500) and fluorescence intensity ratio γ (A, C) of fulvic acid in ultraviolet and visible region were used to analyze the impact of rain runoff pollution on sewage DOM. According to the experimental data, the DOM fluorescence fingerprints of this wastewater treatment plant were quite different from typical municipal sewage, and the main component was tryptophan with low excitation wavelength (Peak S), then the tryptophan with long wavelength excitation (Peak T) followed. A2/O process had an approximative degradation of the protein-like both in sunny day and rainy day, but had a better degradation of fulvic-like, DOC and COD in rainy day than that in sunny day. Morever, the fluorescence peaks got red-shifted after the biological treatment. The differences of DOM fluorescence fingerprint between sunny and rainy day were significant, the fluorescence center of UV fulvic (Peak A) in rainy day getting blue-shifted obviously, shifting from 240 - 248/390 - 440 to 240 - 250/370 - 400 nm. Although the DOM types in sunny and rainy day were the same, the source of fulvic got more complex by runoff and the component ratio of DOM also changed. Compared with the sunny day, the proportion of Peak S in DOM dereased by 10%, and the proportion of Peak A increased by 7% in rainy day.

  9. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    Science.gov (United States)

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  10. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    Science.gov (United States)

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  11. Relationship between rumen protozoal growth, intake of DM, TDN, N, DOM and VFA production rate in buffalo calves

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.

    1981-01-01

    Relationships between in vivo rumen protozoal growth and intakes of dry matter (DM), nitrogen, digestible organic matter (DOM), total digestible nutrients (TDN) and volatile fatty acid (VFA) production have been studied. Isotope dilution technique and 14 C-labelled rumen protozoa were used in the studies. (author)

  12. High frequency monitoring revels new insights into baseflow DOM processing

    Science.gov (United States)

    Khamis, K.; Bradley, C.; Blaen, P.; Krause, S.; Hannah, D. M.

    2017-12-01

    Dissolved organic matter (DOM) is important for myriad biogeochemical processes in river ecosystems. Currently, however, we have limited knowledge of DOM dynamics under low flow conditions as most previous studies have focused largely on storm event dynamics. Field deployable fluorescence technology offers new opportunities to explore diurnal DOM dynamics at finer time-steps and for longer periods than previously possible, thus providing new insights into in-stream DOM processing. In this study, we collected hourly fluorescence data (Spring - Fall) and a suite of hydro-climatological variables from two contrasting UK headwater watersheds: the urban Bourn Brook, Birmingham (52° 26' N, 1° 55' W) and agricultural Mill Haft, Shropshire (52° 48' N, 2° 14' W). We hypothesised that diurnal dynamics in humic-like fluorescence (Peak C; Ex. 365 nm / Em. 490 nm) would be driven by photo-oxidation processes; while tryptophan-like fluorescence (Peak T; Ex. 285 nm / Em. 345 nm) would respond to diurnal biomass production cycles. Wavelet analysis identified significant diurnal variations in Peak C for both the Bourn Brook and Mill Haft, with the strongest signal in early summer. While the amplitude was broadly similar between sites, peak timing and consistency differed, the Bourn Brook displayed peaks in the early morning (04:00 ± 2.2 h) and Mill Haft in early evening (19:00 ± 6.6 h). Cross wavelet analysis identified strong coherence with SW radiation for the urban stream but stronger relationships with discharge for the agricultural system. Hence, results from the Bourn Brook support our hypothesis regarding Peak C photo-oxidation processes but for Mill Haft, discharge (DOM dilution) appeared to be the key control. Contrary to our hypothesis, no strong diurnal pattern was identified for Peak T for either system. From this, we infer that the low levels of Peak T produced were rapidly taken up by bacteria and/or that productivity in these systems was low. Future work on in

  13. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  14. The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state

    Science.gov (United States)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2017-07-01

    This study used thermogravimetric analysis (TGA) to study the transit of organic C through a peatland ecosystem. The biomass, litter, peat soil profile, particulate organic matter (POM), and dissolved organic matter (DOM) fluxes were sampled from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and carbon budget for the catchment were known. The study showed that although TGA traces showed distinct differences between organic matter reservoirs and fluxes, the traces could not readily be associated with particular functionalities or elemental properties. The TGA trace shows that polysaccharides are preferentially removed by humification and degradation with residual peat being dominated by lignin compositions. The DOM is derived from the degradation of lignin while the POM is derived from erosion of the peat profile. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 92 to 95% polysaccharide carbon. The composition of the organic matter lost from the peat ecosystem means that the oxidative ratio (OR) of the ecosystem experienced by the atmosphere was between 0.96 and 0.99: currently, the Intergovernmental Panel on Climate Change uses an OR value of 1.1 for all ecosystems.

  15. Seasonal Changes in Estuarine Dissolved Organic Matter Due to Variations in Discharge, Flushing Times and Wind-driven Mixing Events

    Science.gov (United States)

    Dixon, Jennifer Louise

    Estuaries are highly productive habitats that transport and transform organic matter (OM), experience large changes in ionic composition and act as a transition zone between terrestrial and marine environments (Paerl et al. 1998; Markager et al. 2011; Osburn et al. 2012). OM source and matrix effects (such as salinity and pH) influence the chemical structure of DOM in estuaries and therefore affect its bioavailability, photo-reactivity, and its overall fate in these systems (Jaffe et al. 2004; Boyd et al. 2010; Pace et al. 2012; Osburn et al. 2012; Cawley et al. 2013). Within estuaries, dissolved organic matter (DOM) is a heterogeneous mixture of aromatic and aliphatic compounds, and its composition in aquatic systems varies spatially and temporally with source (Bauer and Bianchi 2011). However, the main source of DOM in estuaries, rivers and other aquatic systems, originates from vascular plant detritus, soil humus, older fossil (i.e., petrogenic) organic carbon, black carbon, marine OM and in situ production (Hedges 2002; Houghton 2007; Bauer and Bianchi 2011). Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of DOM, can be characterized using optical methods such as absorption and fluorescence spectroscopy (e.g. Coble, 1996; Stedmon and Markager, 2003). By analyzing the spatial and temporal variability of DOM and CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained. These methods offer an inexpensive, non-destructive means for obtaining sensitive measurements of a diverse group of organic compounds. By using this technology to analyze the spatial and temporal variability of CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained (Fellman et al. 2011; Osburn et al. 2012; Murphy et al. 2014). Chemical biomarkers are also routinely used to identify DOM sources in coastal waters. Examples are carbon stable

  16. Differential recycling of coral and algal dissolved organic matter via the sponge loop

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; van Oevelen, D.; Struck, U.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.

    Corals and macroalgae release large quantities of dissolved organic matter (DOM), one of the largest sources of organic matter produced on coral reefs. By rapidly taking up DOM and transforming it into particulate detritus, coral reef sponges are proposed to play a key role in transferring the

  17. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    Science.gov (United States)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  18. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  19. Application of fluorescence spectroscopy for dissolved organic matter characterization in constructed wetlands

    Science.gov (United States)

    Sardana, A.; Aziz, T. N.; Cottrell, B. A.

    2017-12-01

    In this presentation we will discuss our ongoing work to characterize the photochemical behavior of dissolved organic matter (DOM) from wastewater treated in constructed wetlands. We have used a suite of spectroscopic and chromatographic techniques to characterize the DOM and to quantify the potential production of reactive oxygenated species (ROS). In the present study, DOM was fractionated based on its hydrophobicity and both the natural water isolates and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs) and proton nuclear magnetic resonance (1H NMR). Photodegradation of wetland DOM and the formation of the hydroxyl radical (*OH), singlet oxygen (1O2), and the triplet-excited state (3DOM*) was also determined to assess the reactivity of DOM. EEM spectra exhibited the four main fluorescence peaks that are characteristic of DOM: peak A humic-like DOM, Peak C (fulvic or chromophoric DOM), Peak M (marine-like DOM), and peak T (tryptophan or protein-like absorbance). Two additional observed peaks with shorter emission wavelengths (A' Ex/Em = 243/278 nm and T' Ex/Em = 272/319 nm) were attributed to the microbial DOM in wastewater effluent. The spectral slope ratios decreased from 1.46 at the wetland inlet to 0.89 at the wetland outlet. The protein-like Peak T fluorescence decreased from 50% at the wetland inlet to 6.7% at the Wetland 2 outlet. A negative correlation between the percent fluorescence of Peak T and Peaks A, C and M confirmed the transition from the spectrum of pure wastewater with a primarily protein-like signature to a spectrum characteristic of terrestrially derived DOM. This transition coincided with enhanced formation rates and steady state concentrations of photochemically produced reactive intermediates (PPRIs). Size Exclusion Chromatography demonstrated that the influent wastewater had a lower molecular weight as compared to downstream wetland locations

  20. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    International Nuclear Information System (INIS)

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  1. Differences in N loading affect DOM dynamics during typhoon events in a forested mountainous catchment.

    Science.gov (United States)

    Yeh, Tz-Ching; Liao, Chien-Sen; Chen, Ting-Chien; Shih, Yu-Ting; Huang, Jr-Chuan; Zehetner, Franz; Hein, Thomas

    2018-03-21

    The dissolved organic matter (DOM) and nutrient dynamics in small mountainous rivers (SMRs) strongly depend on hydrologic conditions, and especially on extreme events. Here, we investigated the quantity and quality of DOM and inorganic nutrients during base-flow and typhoon events, in a chronically N-saturated mainstream and low N-loaded tributaries of a forested small mountainous reservoir catchment in Taiwan. Our results suggest that divergent transport mechanisms were triggered in the mainstream vs. tributaries during typhoons. The mainstream DON increased from 3.4 to 34.7% of the TDN pool with a static DOC:NO 3 -N ratio and enhanced DOM freshness, signalling a N-enriched DOM transport. Conversely, DON decreased from 46 to 6% of the TDN pool in the tributaries and was coupled with a rapid increase of the DOC:NO 3 -N ratio and humified DOM signals, suggesting the DON and DOC were passively and simultaneously transported. This study confirmed hydrology and spatial dimensions being the main drivers shaping the composition and concentration of DOM and inorganic nutrients in small mountainous catchments subject to hydrologic extremes. We highlighted that the dominant flow paths largely controlled the N-saturation status and DOM composition within each sub-catchment, the effect of land-use could therefore be obscured. Furthermore, N-saturation status and DOM composition are not only a result of hydrologic dynamics, but potential agents modifying the transport mechanism of solutes export from fluvial systems. We emphasize the importance of viewing elemental dynamics from the perspective of a terrestrial-aquatic continuum; and of taking hydrologic phases and individual catchment characteristics into account in water quality management. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Measuring the pollutant transport capacity of dissolved organic matter in complex matrixes

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2003-01-01

    Dissolved organic matter (DOM) facilitated transport in contaminated groundwater was investigated through the measurement of the binding capacity of landfill leachate DOM (Vejen, Denmark) towards two model pollutants (pyrene and phenanthrene). Three different methods for measuring binding capacity....... It was further concluded that DOM facilitated transport should be taken into account for non-ionic PAHs with lg K OW above 5, at DOM concentrations above 250 mg C/L. The total DOM concentration was found to be more important for the potential of facilitated transport than differences in the DOM binding capacity....

  3. Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism

    Directory of Open Access Journals (Sweden)

    S. Halbedel

    2013-08-01

    Full Text Available Dissolved organic matter (DOM is an important resource for microbes, thus affecting whole-stream metabolism. However, the factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. It was hypothesized that whole-stream metabolism is linked to DOM composition and that the coupling of both is influenced by seasonality and different land-use types. We tested this hypothesis in a comparative study on two pristine forestry streams and two non-forestry streams. The investigated streams were located in the Harz Mountains (central Europe, Germany. The metabolic rate was measured with a classical two-station oxygen change technique and the variability of DOM with fluorescence spectroscopy. All streams were clearly net heterotrophic, whereby non-forestry streams showed a higher primary production, which was correlated to irradiance and phosphorus concentration. We detected three CDOM components (C1, C2, C3 using parallel factor (PARAFAC analysis. We compared the excitation and emission maxima of these components with the literature and correlated the PARAFAC components with each other and with fluorescence indices. The correlations suggest that two PARAFAC components are derived from allochthonous sources (C1, C3 and one is derived autochthonously (C2. The chromophoric DOM matrix was dominated by signals of humic-like substances with a highly complex structure, followed by humic-like, fulfic acids, low-molecular-weight substances, and with minor amounts of amino acids and proteins. The ratios of these PARAFAC components (C1 : C2, C1 : C3, C3 : C2 differed with respect to stream types (forestry versus non-forestry. We demonstrated a significant correlation between gross primary production (GPP and signals of autochthonously derived, low-molecular-weight humic-like substances. A positive correlation between P / R (i.e. GPP/daily community respiration and the fluorescence index FI suggests

  4. Effects of Dissolved Organic Matter on Uptake and Translocation of Lead in Brassica chinensis and Potential Health Risk of Pb

    Directory of Open Access Journals (Sweden)

    Renying Li

    2016-07-01

    Full Text Available Dissolved organic matter (DOM can affect the bioavailability of heavy metals in soil, especially in soils used for vegetable production, where intensive organic fertilization is applied. The present study examined the effects of DOM derived from commercial organic fertilizers (COF, cow manure (COM and chicken manure (CHM, on uptake and translocation of lead (Pb in Brassica chinensis in a pot experiment. The results indicate that DOM derived from CHM (DOMCHM significantly increased Pb concentrations in roots of B. chinensis (p < 0.05. By contrast, there was no significant increase in shoot Pb concentration for all the DOM treatments except the high DOMCHM treatment in the soil with 800 mg·kg−1 Pb. Consistent with the Pb concentrations in shoots, translocation factor of Pb from soil to shoot and specific lead uptake (SLU by B. chinensis were significantly increased for the high DOMCHM treatment in the high Pb soil, but not for other DOM treatments. Based on the results of this study, the application of DOM to the soil with 800 mg·kg−1 Pb could result in an increase in total Pb annually ingested by the inhabitants of Nanjing City in the range of 2018–9640 kg, with the highest estimates resulting from the high DOMCHM treatment. This study suggests the risk may rise under some conditions as indicated in the high DOMCHM treatment and high Pb pollution level.

  5. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  6. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter.

    Science.gov (United States)

    Kteeba, Shimaa M; El-Adawi, Hala I; El-Rayis, Osman A; El-Ghobashy, Ahmed E; Schuld, Jessica L; Svoboda, Kurt R; Guo, Laodong

    2017-11-01

    Exposure experiments were conducted to evaluate the influence of dissolved organic matter (DOM) on the toxicity of ZnO-NPs (10-30 nm) and dissolved Zn at sub-lethal doses (50 and 5 ppm, respectively) to zebrafish (Danio rerio). Humic acid, alginic acid, bovine serum albumin and various natural DOM isolated from rivers as the Milwaukee River-WI (NOMW), Yukon River-AK (NOMA) and Suwannee River-GA DOM (NOMS) were used to represent humic substances (HA), carbohydrates (CHO), proteins (PTN), and natural organic matter (NOM), respectively. Initial experiments were carried out to confirm the toxic effect of ZnO-NPs at 50 ppm, followed by mitigation experiments with different types and concentrations of DOM (0.4-40 mg-C/L). Compared to 0% hatch of 50 ppm ZnO-NPs exposed embryos at 72 h post fertilization (hpf), NOMS, NOMW and HA had the best mitigative effects on hatching (53-65%), followed by NOMA, CHO and PTN (19-35%); demonstrating that the mitigation effects on ZnO-NPs toxicity were related to DOM's quantity and composition. At 96 hpf, 20% of embryos exposed to 50 ppm ZnO-NPs hatched, 100% of embryos reared in embryo medium hatched, and close to 100% of the embryos hatched upon mitigation, except for those mitigated with PTN which had less effect. Dissolved Zn (5 ppm) also exhibited the same toxicity on embryos as ZnO-NPs (50 ppm). However, in the presence of HA, NOM and CHO, the hatching rates at 72 and 96 hpf increased significantly compared to 5% hatch without DOM. The overall mitigation effects produced by DOM followed the order of HA ≥ NOMS > NOM (A&W) > CHO > PTN, although specific mitigation effects varied with DOM concentration and functionalities. Our results also indicate that the toxicity of ZnO-NPs to embryos was mostly derived from NPs although dissolved Zn released from ZnO-NPs also interacted with embryos, affecting hatching, but to a less extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  8. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean.

    Science.gov (United States)

    Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J

    2017-09-01

    Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The Influences of Riverine Dissolved Organic Matter in the Gulf of Maine

    Science.gov (United States)

    Aiken, G.; Cao, X.; Mao, J.; Spencer, R. G.; Balch, W. M.; Huntington, T. G.

    2014-12-01

    Dissolved organic matter (DOM) exported from the Gulf of St. Lawrence and by rivers in Maine, Nova Scotia, and New Brunswick is being studied to quantify and characterize optical proxies in the receiving waters of the Gulf of Maine (GoM). Measurements of DOC concentrations, absorption coefficients (254nm, 350 nm and 412 nm), specific ultraviolet absorbance (SUVA254), spectral slope, and fluorescence, and DOC fractionation and isotopic analyses were used to determine the amount and nature of DOM from major inflowing rivers, marine waters, and the GoM. In addition, lignin phenols, 14C-age, 13C-NMR and FTICR-MS analyses were performed on the hydrophobic (HPOA) and transphilic organic acid fractions of the DOM isolated using XAD resins for a smaller subset of samples from the Penobscot River, Penobscot Bay, GoM waters in the Eastern Maine Coastal Current (EMCC), a sample from the eastern portion of the GoM (Scotian Shelf waters), and the Pacific Ocean. These samples provide detailed DOM compositional data in support of the more easily collected concentration and optical data obtained from discrete samples, optical data obtained by in situ glider, and remotely sensed satellite observations. Optical measurements, 13C-NMR, and lignin phenol analyses showed that DOM associated with inflowing rivers to the GoM is rich in aromatic compounds resulting in a large flux of terrestrially derived chromophoric DOM (CDOM). As a result, GoM DOM is more aromatic and younger than open ocean samples collected from the Sargasso Sea and from the Pacific Ocean near Hawaii. This observation is consistent with isotopic data that indicated δ 13C values for the HPOA fractions from the Gulf samples (δ 13C= -27‰ and -25‰) were considerably depleted in comparison to the whole DOM sample (δ 13C = -19‰; which also includes algal-produced DOM) and are more similar to those from the terrestrial sources. Samples from the EMCC were the most heavily influenced by terrestrial sources. While NMR

  10. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Ammonium production off central Chile (36°S by photodegradation of phytoplankton-derived and marine dissolved organic matter.

    Directory of Open Access Journals (Sweden)

    Angel Rain-Franco

    Full Text Available We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM in the coastal upwelling system off central Chile (36°S. The mean penetration of solar radiation (Z1% between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400-700 nm, UV-A (320-400 nm and UV-B (280-320 nm, respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L(-1 h(-1 and a maximum rate of 1.49 µmol L(-1 h(-1. Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L(-1 h(-1. We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4(+ assimilation, while rates obtained from natural samples could contribute to 50-178% of spring-summer phytoplankton NH4(+ requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight.

  12. DomFLIP++

    International Nuclear Information System (INIS)

    Hendrysiak, W.; Raggl, A.; Slany, W.

    1996-01-01

    DomFLIP++ is the knowledge engineering module of the *FLIP++ project. *FLIP++ is a tool for optimizing multiple criteria problems. It uses fuzzy constraints to model optimizing criteria and applies algorithms such as Tabu search or genetic algorithms to the problems. DomFLIP++ is a C++ library. It allows the definition of new optimization problems. It helps a domain engineer to design the structure of a new problem. However, there is a domain independent interface to other *FLIP++ modules such as OptiFLIP++, DynaFLIP++, and InterFLIP++. After each iteration in the optimization process, the considered instantiations of the problem are evaluated. Each evaluation produces a list of violated constraints. For each constraint in further iterations of the optimization. A domain can be fine-tuned through modifications of constraints, through editing their repair lists, and through change in the optimizing parameters. A well-tuned domain can be successfully applied for optimization. Object-oriented design and implementation makes this module easy to modify and to reuse. Definition of new domains, system extensions with new optimizing algorithms, and definition of specific domain-dependent repair steps can be done efficiently. DomFLIP++ is tested on real-world example, namely scheduling the steel plant LD3 in Linz, Austria

  13. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin; Kragh, Theis

    2011-01-01

    . These observations imply a link to dark ocean microbial remineralization and indicate that the major source of humic-like compounds is microbial turnover of organic matter. The results of the present study show that the distribution of the humic-like DOM fractions is a balance between supply from continental run off......A fraction of dissolved organic matter (DOM) is able to fluoresce. This ability has been used in the present study to investigate the characteristics and distribution of different DOM fractions. A unique global dataset revealed seven different fluorescent fractions of DOM: two humic-like, four...... in the surface layer indicate the quantitative importance of photochemical degradation as a sink of the humic-like compounds. In the dark ocean (below 200 m), significant linear relationships between humic-like DOM fluorescence and microbial activity (apparent oxygen utilization, NO3- and PO43-) were found...

  14. Adsorption of carbamazepine by carbon nanotubes: Effects of DOM introduction and competition with phenanthrene and bisphenol A

    International Nuclear Information System (INIS)

    Lerman, Ilya; Chen, Yona; Xing, Baoshan; Chefetz, Benny

    2013-01-01

    Carbon nanotubes, organic contaminants and dissolved organic matter (DOM) are co-introduced into the environment. Thus, the interactions between these components have to be evaluated to better understand their environmental behavior. In this study, single-walled carbon nanotubes (SWCNTs) were used as sorbent, carbamazepine was the primary adsorbate, and bisphenol A and phenanthrene were used as competitors. Strong competition with bisphenol A and no effect of phenanthrene on adsorption of carbamazepine was obtained. The hydrophobic neutral fraction of the DOM exhibited the strongest reductive effect on carbamazepine adsorption, most probably due to interactions in solution. In contrast, the hydrophobic acid fraction decreased carbamazepine adsorption mainly via direct competition. When DOM and bisphenol A were co-introduced, the adsorption of carbamazepine was significantly reduced. This study suggests that the chemical nature of DOM can significantly affect the sorptive behavior of polar organic pollutants with carbon nanotubes when all are introduced to the aquatic system. Highlights: •Bisphenol A is an efficient competitor for carbamazepine. •Phenanthrene does not compete with carbamazepine. •DOM exhibited strong reductive effect on carbamazepine adsorption by SWCNTs. •HoN fraction decreased carbamazepine adsorption due to interactions in solution. •HoA fraction decreased carbamazepine adsorption via direct competition. -- In multi-component system including the main adsorbate and competitor, DOM exhibited significant effect on adsorption of contaminants by carbon nanotubes

  15. Modeling rates of DOC degradation using DOM composition and hydroclimatic variables

    Science.gov (United States)

    Moody, C. S.; Worrall, F.

    2017-05-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The in-stream processes acting on the DOC, such as photodegradation and biodegradation, can lead to DOC loss and thus contribute CO2 to the atmosphere. The aim of this study was to understand what controls the rates of DOC degradation. Water samples from a headwater, peat-covered catchment, were collected over a 23 month period and analyzed for the DOC degradation rate and dissolved organic matter (DOM) composition in the context of hydroclimatic monitoring. Measures of DOM composition included 13C solid-state nuclear magnetic resonance spectroscopy, bomb calorimetry, and elemental analysis. Regression analysis showed that there was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The highest rates of DOC degradation occurred when aldehyde functionality was at its greatest and this occurred on the recession limb of storm hydrographs. Including this knowledge into models of fluvial carbon fate for an 818 km2 catchment gave an annual average DOC removal rate of 67% and 50% for total organic carbon, slightly lower than previously predicted. The compositional controls suggest that DOM is primarily being used as a ready energy source to the aquatic ecosystem rather than as a nutrient source.

  16. Interactions of diuron with dissolved organic matter from organic amendments.

    Science.gov (United States)

    Thevenot, Mathieu; Dousset, Sylvie; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Andreux, Francis

    2009-07-01

    Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and D(F) amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and D(F) compared to B, C(F), C(M) and D(M) increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between D(F) and D(M). After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight >1000 Da. Complexes <1000 Da could also take part in this facilitated transport.

  17. Effects of watershed history on dissolved organic matter characteristics in headwater streams

    Science.gov (United States)

    Youhei Yamashita; Brian D. Kloeppel; Jennifer Knoepp; Gregory L. Zausen; Rudolf Jaffe'

    2011-01-01

    Dissolved organic matter (DOM) is recognized as a major component in the global carbon cycle and is an important driver in aquatic ecosystem function. Climate, land use, and forest cover changes all impact stream DOM and alter biogeochemical cycles in terrestrial environments. We determined the temporal variation in DOM quantity and quality in headwater streams at a...

  18. An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams

    Science.gov (United States)

    Snyder, Lisle; Potter, Jody D.; McDowell, William H.

    2018-03-01

    A state-of-the-art network of water quality sensors was established in 2012 to gather year-round high temporal frequency hydrochemical data in streams and rivers throughout the state of New Hampshire. This spatially extensive network includes eight headwater stream and two main stem river monitoring sites, spanning a variety of stream orders and land uses. Here we evaluate the performance of nitrate, fluorescent dissolved organic matter (fDOM), and turbidity sensors included in the sensor network. Nitrate sensors were first evaluated in the laboratory for interference by different forms of dissolved organic carbon (DOC), and then for accuracy in the field across a range of hydrochemical conditions. Turbidity sensors were assessed for their effectiveness as a proxy for concentrations of total suspended solids (TSS) and total particulate C and N, and fDOM as a proxy for concentrations of dissolved organic matter. Overall sensor platform performance was also examined by estimating percentage of data loss due to sensor failures or related malfunctions. Although laboratory sensor trials show that DOC can affect optical nitrate measurements, our validations with grab samples showed that the optical nitrate sensors provide a reliable measurement of NO3 concentrations across a wide range of conditions. Results showed that fDOM is a good proxy for DOC concentration (r2 = 0.82) but is a less effective proxy for dissolved organic nitrogen (r2 = 0.41). Turbidity measurements from sensors correlated well with TSS (r2 = 0.78), PC (r2 = 0.53), and PN (r2 = 0.51).

  19. Molecular signatures of biogeochemical transformations in dissolved organic matter from ten World Rivers

    Directory of Open Access Journals (Sweden)

    Thomas Riedel

    2016-09-01

    Full Text Available Rivers carry large amounts of dissolved organic matter (DOM to the oceans thereby connecting terrestrial and marine element cycles. Photo-degradation in conjunction with microbial turnover is considered a major pathway by which terrigenous DOM is decomposed. To reveal globally relevant patterns behind this process, we performed photo-degradation experiments and year-long bio-assays on DOM from ten of the largest world rivers that collectively account for more than one-third of the fresh water discharge to the global ocean. We furthermore tested the hypothesis that the terrigenous component in deep ocean DOM may be far higher than biomarker studies suggest, because of the selective photochemical destruction of characteristic biomolecules from vascular plants. DOM was molecularly characterized by a combination of non-targeted ultrahigh-resolution mass spectrometry and quantitative molecular tracer analyses. We show that the reactivity of DOM is globally related to broad catchment properties. Basins that are dominated by forest and grassland export more photo-degradable DOM than other rivers. Chromophoric compounds are mainly vascular plant-derived polyphenols, and partially carry a pyrogenic signature from vegetation fires. These forest and grassland dominated rivers lost up to 50% of dissolved organic carbon (DOC during irradiation, and up to 85% of DOC was lost in total if subsequently bio-incubated for one year. Basins covered by cropland, on the other hand, export DOM with a higher proportion of photo-resistant and bio-available DOM which is enriched in nitrogen. In these rivers, 30% or less of DOC was photodegraded. Consistent with previous studies, we found that riverine DOM resembled marine DOM in its broad molecular composition after extensive degradation, mainly due to almost complete removal of aromatics. More detailed molecular fingerprinting analysis (based on the relative abundance of >4000 DOM molecular formulae, however, revealed

  20. [Evolution of Dissolved Organic Matter Properties in a Constructed Wetland of Xiao River, Hebei].

    Science.gov (United States)

    Ma, Li-na; Zhang, Hui; Tan, Wen-bing; Yu, Min-da; Huang, Zhi-gang; Gao, Ru-tai; Xi, Bei-dou; He, Xiao-song

    2016-01-01

    The evolution of water DOC and COD, and the source, chemical structure, humification degree and redox of dissolved organic matter (DOM) in a constructed wetland of Xiao River, Hebei, was investigated by 3D excitation--emission matrix fluorescence spectroscopy coupled with ultraviolet spectroscopy and chemical reduction, in order to explore the geochemical processes and environmental effects of DOM. Although DOC contributes at least 60% to COD, its decrease in the constructed wetland is mainly caused by the more extensive degradation of elements N, H, S, and P than C in DOM, and 65% is contributed from the former. DOM is mainly consisted of microbial products based on proxies f470/520 and BIX, indicating that DOM in water is apparently affected by microbial degradation. The result based on PARAFAC model shows that DOM in the constructed wetland contains protein-like and humus-like components, and Fulvic- and humic-like components are relatively easier to degrade than protein-like components. Fulvic- and humic-like components undergo similar decomposition in the constructed wetland. A common source of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) exists; both CDOM and FDOM are mainly composed of a humus-like material and do not exhibit selective degradation in the constructed wetland. The proxies E2 /E3, A240-400, r(A, C) and HIX in water have no changes after flowing into the constructed wetland, implying that the humification degree of DOM in water is hardly affected by wet constructed wetland. However, the constructed wetland environment is not only beneficial in forming the reduced state of DOM, but also facilitates the reduction of ferric. It can also improve the capability of DOM to function as an electron shuttle. This result may be related to the condition that the aromatic carbon of DOM can be stabilized well in the constructed wetland.

  1. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    Science.gov (United States)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  2. Bioavailability and export of dissolved organic matter from a tropical river during base- and stormflow conditions

    Science.gov (United States)

    Tracy N. Wiegner; Randee L. Tubal; Richard A. MacKenzie

    2009-01-01

    Concentrations, bioavailability, and export of dissolved organic matter (DOM), particulate organic matter (POM), and nutrients from the Wailuku River, Hawai'i, U.S.A., were examined under base- and stormflow conditions. During storms, DOM and POM concentrations increased approximately by factors of 2 and 11, respectively, whereas NO3...

  3. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter

    KAUST Repository

    Niu, Xi-Zhi; Liu, Chao; Gutié rrez, Leonardo A.; Croue, Jean-Philippe

    2014-01-01

    Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen (1O2), triplet state of DOM (3DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching.

  4. Photobleaching-induced changes in photosensitizing properties of dissolved organic matter

    KAUST Repository

    Niu, Xi-Zhi

    2014-12-01

    Photosensitizing properties of different dissolved organic matter (DOM) were investigated according to their performance in singlet oxygen (1O2), triplet state of DOM (3DOM*), and hydroxyl radical (·OH) productions. The photobleaching of DOM solutions after irradiation was characterized by fluorescence excitation-emission matrix and UV-Vis spectroscopy. The photosensitizing properties of pre-irradiated DOM solutions were changed in a sunlight simulator. The performance of DOMs in photosensitized degradation of several contaminants was investigated. For a 20h exposure, the observed degradation rate constant (kobs) of some contaminants decreased as a function of exposure time, and highly depended on the properties of both DOM and contaminant. Degradation of contaminants with lower kobs was more susceptible to DOM photobleaching-induced decrease in kobs. Under the current experimental conditions, the photobleaching-induced decrease of DOM photo-reactivity in contaminant degradation was mainly attributed to indirect phototransformation of DOM caused by the interactions between photo-inductive DOM moieties and photochemically-produced reactive species. Reactive contaminants can inhibit DOM indirect photobleaching by scavenging reactive species, photosensitized degradation of these contaminants exhibited a stable kobs as a result. This is the first study to report DOM photobleaching-induced changes in the simultaneous DOM photosensitized degradation of contaminants and the inhibitory effect of reactive contaminants on DOM photobleaching.

  5. Compositional Characteristics of Dissolved Organic Matter released from the sediment of Han river in Korea.

    Science.gov (United States)

    Oh, H.; Choi, J. H.

    2017-12-01

    The dissolved organic matter (DOM) has variable characteristics depending on the sources. The DOM of a river is affected by rain water, windborne material, surface and groundwater flow, and sediments. In particular, sediments are sources and sinks of nutrients and pollutants in aquatic ecosystems by supplying large amounts of organic matter. The DOM which absorbs ultraviolet and visible light is called colored dissolved organic matter (CDOM). CDOM is responsible for the optical properties of natural waters in several biogeochemical and photochemical processes and absorbs UV-A (315-400 nm) and UV-B (280-315), which are harmful to aquatic ecosystems (Helms et al., 2008). In this study, we investigated the quantity and quality of DOM and CDOM released from the sediments of Han river which was impacted by anthropogenic activities and hydrologic alternation of 4 Major River Restoration Project. The target area of this study is Gangchenbo (GC), Yeojubo (YJ), and Ipobo(IP) of the Han River, Korea. Sediments and water samples were taken on July and August of 2016 and were incubated at 20° up to 7 days. Absorbance was measured with UV-visible spectrophotometer (Libra S32 PC, Biochrom). Fluorescence intensity determined with Fluorescence EEMs (F-7000, Hitachi). Absorbance and fluorescence intensity were used to calculate Specific Ultraviolet Absorbance (SUVA254), Humification index (HIX), Biological index (BIX), Spectral slope (SR) and component analysis. The DOC concentration increased after 3 days of incubation. According to the SUVA254 analysis, the microbial activity is highest in the initial overlying water of IP. HIX have range of 1.35-4.08, and decrease poly aromatic structures of organic matter during incubation. From the results of the BIX, autochthonous organic matter was released from the sediments. In all sites, Humic-like DOM, Microbial humic-like DOM and Protein-like DOM increased significantly between Day 0 and 3(except Humic-like, Microbial humic-like DOM in

  6. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    Science.gov (United States)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  7. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    Science.gov (United States)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher

  8. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  9. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review.

    Science.gov (United States)

    Chen, Meilian; Hur, Jin

    2015-08-01

    Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Carbon monoxide photoproduction: implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter.

    Science.gov (United States)

    Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng

    2014-08-19

    Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.

  11. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses.

    Science.gov (United States)

    Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long

    2015-10-01

    The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mixing and photoreactivity of dissolved organic matter in the Nelson/Hayes estuarine system (Hudson Bay, Canada)

    Science.gov (United States)

    Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.

    2016-09-01

    This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.

  13. Terrestrial dissolved organic matter distribution in the North Sea.

    Science.gov (United States)

    Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J

    2018-07-15

    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Hydrological and Biogeochemical Controls on Absorption and Fluorescence of Dissolved Organic Matter in the Northern South China Sea

    Science.gov (United States)

    Wang, Chao; Guo, Weidong; Li, Yan; Stubbins, Aron; Li, Yizhen; Song, Guodong; Wang, Lei; Cheng, Yuanyue

    2017-12-01

    The Kuroshio intrusion from the West Philippine Sea (WPS) and mesoscale eddies are important hydrological features in the northern South China Sea (SCS). In this study, absorption and fluorescence of dissolved organic matter (CDOM and FDOM) were determined to assess the impact of these hydrological features on DOM dynamics in the SCS. DOM in the upper 100 m of the northern SCS had higher absorption, fluorescence, and degree of humification than in the Kuroshio Current of the WPS. The results of an isopycnal mixing model showed that CDOM and humic-like FDOM inventories in the upper 100 m of the SCS were modulated by the Kuroshio intrusion. However, protein-like FDOM was influenced by in situ processes. This basic trend was modified by mesoscale eddies, three of which were encountered during the fieldwork (one warm eddy and two cold eddies). DOM optical properties inside the warm eddy resembled those of DOM in the WPS, indicating that warm eddies could derive from the Kuroshio Current through Luzon Strait. DOM at the center of cold eddies was enriched in humic-like fluorescence and had lower spectral slopes than in eddy-free waters, suggesting inputs of humic-rich DOM from upwelling and enhanced productivity inside the eddy. Excess CDOM and FDOM in northern SCS intermediate water led to export to the Pacific Ocean interior, potentially delivering refractory carbon to the deep ocean. This study demonstrated that DOM optical properties are promising tools to study active marginal sea-open ocean interactions.

  15. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    Science.gov (United States)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  16. SME competitiveness: An internationalization strategy for Dom Pedro Hotels

    OpenAIRE

    Feldmann, Hannah Henrike

    2013-01-01

    This paper studies the internationalization process of Dom Pedro to South Brazil. The company’s strategy is critically assessed and it is argued that a professionalization of corporate strategic planning is needed regarding further internationalization. This finding combined with a regional macro environment and hotel industry scanning helps deriving success factors for an expansion to South Brazil. Building on those factors, the market is analyzed regarding the most favorable hot...

  17. The Role of Refractory Dissolved Organic Matter in Ocean Carbon Sequestration

    DEFF Research Database (Denmark)

    Jørgensen, Linda

    The ocean assimilates a large amount of atmospheric CO2 and is potentially a buffer for climate change. A fraction of the assimilated CO2 is incorporated into algal biomass and further converted into refractory dissolved organic matter (DOM). Carbon bound in refractory DOM has the potential...... studies the prokaryotic production and degradation of oceanic refractory DOM and discusses the reasons for the persistent nature of this large DOM fraction. The first two papers investigate the microbial carbon pump, i.e. prokaryotic transfor-mation of organic carbon into refractory DOM. The results show...... DOM compounds in the ocean are rare—possibly too rare to sustain viable uptake and assimilation. Hence, the dilute concentration of individual compounds is a possible explanation for the apparent refractory nature of most DOM in the ocean. Understanding the mechanisms that control the quality...

  18. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-01

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg −1 ) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L −1 DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH 4 ) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively

  19. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  20. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet

    Science.gov (United States)

    Bhatia, Maya P.; Das, Sarah B.; Longnecker, Krista; Charette, Matthew A.; Kujawinski, Elizabeth B.

    2010-07-01

    Subsurface microbial oxidation of overridden soils and vegetation beneath glaciers and ice sheets may affect global carbon budgets on glacial-interglacial timescales. The likelihood and magnitude of this process depends on the chemical nature and reactivity of the subglacial organic carbon stores. We examined the composition of carbon pools associated with different regions of the Greenland ice sheet (subglacial, supraglacial, proglacial) in order to elucidate the type of dissolved organic matter (DOM) present in the subglacial discharge over a melt season. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry coupled to multivariate statistics permitted unprecedented molecular level characterization of this material and revealed that carbon pools associated with discrete glacial regions are comprised of different compound classes. Specifically, a larger proportion of protein-like compounds were observed in the supraglacial samples and in the early melt season (spring) subglacial discharge. In contrast, the late melt season (summer) subglacial discharge contained a greater fraction of lignin-like and other material presumably derived from underlying vegetation and soil. These results suggest (1) that the majority of supraglacial DOM originates from autochthonous microbial processes on the ice sheet surface, (2) that the subglacial DOM contains allochthonous carbon derived from overridden soils and vegetation as well as autochthonous carbon derived from in situ microbial metabolism, and (3) that the relative contribution of allochthonous and autochthonous material in subglacial discharge varies during the melt season. These conclusions are consistent with the hypothesis that, given sufficient time (e.g., overwinter storage), resident subglacial microbial communities may oxidize terrestrial material beneath the Greenland ice sheet.

  1. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaoling [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Ma, Lena Q., E-mail: lqma@ufl.edu [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046 (China); Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Gress, Julia; Harris, Willie [Department of Soil and Water Science, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Soil and Water Science Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031-3314 (United States)

    2014-02-01

    Graphical abstract: - Highlights: • Biochar-derived dissolved organic matter (DOM) effectively reduced Cr(VI) and oxidized As(III). • Cr(VI) and As(III) could serve as a redox couple. • Cr(VI) and As(III) redox conversion was more effective in the ice phase than aqueous phase. • FTIR and ESR showed that biochar DOM served as both electron donor and acceptor. - Abstract: This study evaluated the impact of DOM from two biochars (sugar beet tailing and Brazilian pepper) on Cr(VI) reduction and As(III) oxidation in both ice and aqueous phases with a soil DOM as control. Increasing DOM concentration from 3 to 300 mg C L{sup −1} enhanced Cr(VI) reduction from 20% to 100% and As(III) oxidation from 6.2% to 25%; however, Cr(VI) reduction decreased from 80–86% to negligible while As(III) oxidation increased from negligible to 18–19% with increasing pH from 2 to 10. Electron spin resonance study suggested semiquinone radicals in DOM were involved in As(III) oxidation while Fourier transform infrared analysis suggested that carboxylic groups in DOM participated in both Cr(VI) reduction and As(III) oxidation. During Cr(VI) reduction, part of DOM (∼10%) was oxidized to CO{sub 2}. The enhanced conversion of Cr(VI) and As(III) in the ice phase was due to the freeze concentration effect with elevated concentrations of electron donors and electron acceptors in the grain boundary. Though DOM enhanced both Cr(VI) reduction and As(III)oxidation, Cr(VI) reduction coupled with As(III) oxidation occurred in absence of DOM. The role of DOM, Cr(VI) and/or As(III) in Cr and As transformation may provide new insights into their speciation and toxicity in cold regions.

  2. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China

    Science.gov (United States)

    Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong

    2018-02-01

    The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.

  3. In-situ Fluorometers Reveal High Frequency Dynamics In Dissolved Organic Matter For Urban Rivers

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Khamis, K.; Hannah, D. M.; Sadler, J. P.; Van Loon, A.

    2017-12-01

    To-date Dissolved Organic Matter (DOM) dynamics have been quantified poorly in urban rivers, despite the substantial water quality issues linked to urbanisation. Research has been hindered by the low temporal resolution of observations and over-reliance on manual sampling which often fail to capture precipitation events and diurnal dynamics. High frequency data are essential to estimate more accurately DOM fluxes/loads and to understand DOM furnishing and transport processes. Recent advances in optical sensor technology, including field deployable in-situ fluorometers, are yielding new high resolution DOM information. However, no consensus regarding the monitoring resolution required for urban systems exists, with no studies monitoring at lower temporal resolution monitoring. High temporal variation occurs during storm events in TLF and HLF intensity: TLF intensity is highest during the rising limb of the hydrograph and can rapidly decline thereafter, indicating the importance of fast flow-path and close proximity sources to TLF dynamics. HLF intensity tracks discharge more closely, but can also quickly decline during high flow events due to dilution effects. Furthermore, the ratio of TLF:HLF when derived at high-frequency provides a useful indication of the presence and type of organic effluents in stream, which aids in the identification of Combined Sewage Overflow releases. Our work highlights the need for future studies to utilise shorter temporal scales than previously used to monitor urban DOM dynamics. The application of higher frequency monitoring enables the identification of finer-scale patterns and subsequently aids in deciphering the sources and pathways controlling urban DOM dynamics.

  4. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for Southern Beaufort Sea (Canadian Arctic) waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2012-10-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  5. QCD axion dark matter from long-lived domain walls during matter domination

    OpenAIRE

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-01-01

    The domain wall problem of the Peccei–Quinn mechanism can be solved if the Peccei–Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dom...

  6. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey

    DEFF Research Database (Denmark)

    Kothawala, D.N.; Stedmon, Colin; Müller, R.A.

    2014-01-01

    Inland waters transport large amounts of dissolved organic matter (DOM) from terrestrial environments to the oceans, but DOM also reacts en route, with substantial water column losses by mineralization and sedimentation. For DOM transformations along the aquatic continuum, lakes play an important...... role as they retain waters in the landscape allowing for more time to alter DOM. We know DOM losses are significant at the global scale, yet little is known about how the reactivity of DOM varies across landscapes and climates. DOM reactivity is inherently linked to its chemical composition. We used...... analyzed in relation to lake chemistry, catchment, and climate characteristics. Land cover, particularly the percentage of water in the catchment, was a primary factor explaining variability in PARAFAC components. Likewise, lake water retention time influenced DOM quality. These results suggest...

  7. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  8. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM

  9. Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use

    DEFF Research Database (Denmark)

    Stedmon, C. A.; Markager, S.; Søndergaard, M.

    2006-01-01

    Inputs of dissolved carbon, nitrogen, and phosphorus were assessed for an estuary and its catchment (Horsens, Denmark). Seasonal patterns in the concentrations of DOM in the freshwater supply to the estuary differed depending on the soil and drainage characteristics of the area. In streams draini...

  10. Photobiogeochemistry of organic matter. Principles and practices in water environments

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, Khan M.G. [Chinese Academy of Sciences, Guiyang, Guizhou (China). Inst. of Geochemistry; Yoshioka, Takahito [Kyoto Univ. (Japan). Field Science Education; Mottaleb, M. Abdul [Northwest Missouri State Univ., MO (United States). Dept. of Chemistry and Physics; Vione, Davide (eds.) [Turin Univ. (Italy). Dipt. di Chimica Analitica

    2013-03-01

    Gives a comprehensive account of photo and biological processes of key biogeochemical functions and their interrelations in the aquatic environment. Discusses essential issues refering to the aquatic environment. Designed as a study text for students. Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO x; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results''.

  11. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, Liesbeth, E-mail: verheyenliesbeth@gmail.com; Versieren, Liske, E-mail: liske.versieren@ees.kuleuven.be; Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be

    2014-09-15

    Highlights: • Different DOM samples were added to solutions with a resin buffered Cd{sup 2+} activity. • This increased total dissolved Cd by factors 3–16 due to complexation reactions. • Cd uptake in algae was unaffected or increased maximally 1.6 fold upon addition. • Free Cd{sup 2+} is the main bioavailable form of Cd for algae in well buffered solutions. - Abstract: Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis. In addition, one {sup 13}C enriched DOM sample was isolated from soil to trace DOM adsorption to algae. Algae were exposed to standardized solutions with or without these DOM samples, each exposed at equal DOM concentrations and at equal non-toxic Cd{sup 2+} activity (∼4 nM) that was buffered with a resin. The DOM increased total dissolved Cd by factors 3–16 due to complexation reactions at equal Cd{sup 2+} activity. In contrast, the Cd uptake was unaffected by DOM or increased maximally 1.6 fold ({sup 13}C enriched DOM). The {sup 13}C analysis revealed that maximally 6% of algal C was derived from DOM and that this can explain the small increase in biomass Cd. It is concluded that free Cd{sup 2+} and not DOM-complexed Cd is the main bioavailable form of Cd when solution Cd{sup 2+} is well buffered.

  12. Molecular simulation of a model of dissolved organic matter.

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf

    2005-08-01

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  13. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2013-02-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  14. The source and distribution of thermogenic dissolved organic matter in the ocean

    Science.gov (United States)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    Thermogenic organic matter (ThOM) is abundant in the environment. ThOM is produced at elevated temperature and pressure in deep sediments and earth's crust, and it is also a residue of fossil fuel and biomass burning ("black carbon"). Because of its refractory character, it accumulates in soils and sediments and, therefore, may sequester carbon from active cycles. It was hypothesized that a significant component of marine dissolved organic matter (DOM) might be thermogenic. Here we present a detailed data set on the distribution of thermogenic DOM in major water masses of the deep and surface ocean. In addition, several potential sources of thermogenic DOM to the ocean were investigated: active seeps of brine fluids in the deep Gulf of Mexico, rivers, estuaries and submarine groundwaters. Studies on deep-sea hydrothermal vents and aerosol deposition are ongoing. All DOM samples were isolated from seawater via solid phase extraction (SPE-DOM). ThOM was quantified in the extracts as benzene-polycarboxylic acids (BPCAs) after nitric acid oxidation via high-performance liquid chromatography and diode array detection (HPLC-DAD). BPCAs are produced exclusively from fused ring systems and are therefore unambiguous molecular tracers for ThOM. In addition to BPCA determination, the molecular composition and structure of ThOM was characterized in detail via ultrahigh resolution mass spectrometry (FT-ICR-MS). All marine and river DOM samples yielded significant amounts of BPCAs. The cold seep system in the deep Gulf of Mexico, but also black water rivers (like the Suwannee River) were particularly rich in ThOM. Up to 10% of total dissolved organic carbon was thermogenic in both systems. The most abundant BPCA was benzene-pentacarboxylic acid (B5CA). The molecular composition of BPCAs and the FT-ICR-MS data indicate a relatively small number (5-8) of fused aromatic rings per molecule. Overall, the molecular BPCA patterns were very similar independent of the source of Th

  15. [Influence of Natural Dissolved Organic Matter on the Passive Sampling Technique and its Application].

    Science.gov (United States)

    Yu, Shang-yun; Zhou, Yan-mei

    2015-08-01

    This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.

  16. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  17. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  18. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    Science.gov (United States)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  19. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  20. Understanding dissolved organic matter reactivity in a global context: tribute to Dr. George Aiken's many contributions

    Science.gov (United States)

    McKnight, Diane

    2017-04-01

    As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.

  1. Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis

    International Nuclear Information System (INIS)

    Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong

    2014-01-01

    Highlights: • Concentration factor controls sorption of DOM and thus yields of reverse osmosis. • Solid-state 13 C NMR was used to characterize RO-isolated DOM from freshwater. • C distribution of freshwater RO-DOM differs from that of reported marine DOM. • The compositions of DOM were transformed during transport from rivers to oceans. - Abstract: Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state 13 C nuclear magnetic resonance ( 13 C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the 13 C NMR and δ 13 C analyses. Carbohydrates and lipids accounted for 25.0–41.5% and 30.2–46.3% of the identifiable DOM, followed by proteins (18.2–19.8%) and lignin (7.17–12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans

  2. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  3. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    Science.gov (United States)

    Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.

    2015-01-01

    This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

  4. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.

    Science.gov (United States)

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G

    2010-09-01

    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  5. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  6. Optical properties of Colored Dissolved Organic Matter (CDOM) on the East Siberian shelf

    Science.gov (United States)

    Semiletov, I. P.; Pugach, S.; Pipko, I.

    2015-12-01

    The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean. Given the magnitude of Siberian Arctic dissolved organic matter (DOM) export and the uncertain extent to which it is degraded to greenhouse gases, intensified studies to better quantify and understand this large carbon pool and processes acting on it are urgently needed. The East Siberian Arctic shelf is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge which derived terrigenous DOM in the Arctic Ocean. DOM plays a significant role in freshwater and marine aquatic ecosystems including its effects on nutrients and carbon cycling. The colored fraction of DOM, CDOM, directly affects the quantity and spectral quality of available light, thereby impaction both primary production and UV exposure in aquatic ecosystems. Since 2003 we measure CDOM in the East Siberian Arctic Seas (ESAS) in situ using the WETStar fluorometer which doesn't require prefiltration of sample. Combined analysis of CDOM and DOC data obtained at near-annual basis in (2003-2011) demonstrate a high degree of correlation between these parameters. For all the measured samples taken during the ISSS cruises (2003, 2004, 2005, 2008, 2011), there is an overall linear relationship between DOC concentration, CDOM, and salinity. Here we report the spatial-time variability of river-borne DOM in the ESAS using CDOM as a proxy parameter. Higher absorption coefficients (a254), spectral slope parameter over range 275-295 nm (S275-295) and CDOM concentrations reflect the dominant contribution of terrigenous DOM. It is shown that the attenuation light coefficient in the shallow ESAS is mostly determined by riverine CDOM.

  7. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    Science.gov (United States)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  8. Quantitative and qualitative characteristics of dissolved organic matter from eight dominant aquatic macrophytes in Lake Dianchi, China.

    Science.gov (United States)

    Qu, Xiaoxia; Xie, Li; Lin, Ying; Bai, Yingchen; Zhu, Yuanrong; Xie, Fazhi; Giesy, John P; Wu, Fengchang

    2013-10-01

    The aim of this research was to determine and compare the quantitative and qualitative characteristics of dissolved organic matters (DOM) from eight aquatic macrophytes in a eutrophic lake. C, H, N, and P in ground dry leaves and C, N, and P in DOM of the species were determined, and C/N, C/P, C/H, DOC/C, TDN/N, TDP/P, DOC/TDN, and DOC/TDP were calculated. Chemical structures of the DOM were characterized by the use of multiple techniques including UV-visible, FT-IR, and (13)C CP/MAS spectra. The results showed subtle differences in quantity and quality of DOM among species and life-forms. Except oriental pepper which had a C/H of 0.7, C/H of all the other species was 0.6. C/N and C/P of ground leaves was 10.5-17.3 and 79.4-225.3, respectively, which were greater in floating and submerged species than in the others. Parrot feather also had a small C/P (102.8). DOC/C, TDN/N, and TDP/P were 7.6-16.8, 5.5-22.6, and 22.9-45.6 %, respectively. Except C/N in emergent and riparian species, C/N in the other species and C/P in all the species were lower in their DOM than in the ground leaves. DOM of the macrophytes had a SUVA254 value of 0.83-1.80. The FT-IR and (13)C NMR spectra indicated that the DOM mainly contained polysaccharides and/or amino acids/proteins. Percent of carbohydrates in the DOM was 37.3-66.5 % and was highest in parrot feather (66.5 %) and crofton weed (61.5 %). DOM of water hyacinth, water lettuce, and sago pondweed may have the greatest content of proteins. Aromaticity of the DOM was from 6.9 % in water lettuce to 17.8 % in oriental pepper. DOM of the macrophytes was also different in polarity and percent of Ar-OH. Distinguished characteristics in quantity and quality of the macrophyte-derived DOM may induce unique environmental consequences in the lake systems.

  9. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels

    OpenAIRE

    Rochelle-Newall, E.; Delille, B.; Frankignoulle, M.; Gattuso, J.-P.; Jacquet, S.; Riebesell, Ulf; Terbrüggen, A.; Zondervan, I.

    2004-01-01

    Chromophoric dissolved organic matter (CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM) pool. Recent evidence pointed towards a microbial source of CDOM in the aquatic environment and led to the proposal that phytoplankton is not a direct source of CDOM, but that heterotrophic bacteria, through reprocessing of DOM of algal origin, are an important source of CDOM. In a recent experiment designed at looking at the effects of elevated pCO2 on blooms of th...

  10. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    Science.gov (United States)

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B

  11. Estimating absorption coefficients of colored dissolved organic matter (CDOM using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Directory of Open Access Journals (Sweden)

    A. Matsuoka

    2013-02-01

    Full Text Available A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM, has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM into CDOM and non-algal particles (NAP through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012 showed that dissolved organic carbon (DOC concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97. By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  12. The compositional change of Fluorescent Dissolved Organic Matter across Fram Strait assessed with use of a multi channel in situ fluorometer.

    Science.gov (United States)

    Raczkowska, A.; Kowalczuk, P.; Sagan, S.; Zabłocka, M.; Pavlov, A. K.; Granskog, M. A.; Stedmon, C. A.

    2016-02-01

    Observations of Colored Dissolved Organic Matter absorption (CDOM) and fluorescence (FDOM) from water samples and an in situ fluorometer and of Inherent Optical Properties (IOP; light absorption and scattering) were carried out along a section across Fram Strait at 79°N. A 3 channel Wetlabs Wetstar fluorometer was deployed, with channels for humic- and protein-like DOM and used to assess distribution of different FDOM fractions. A relationship between fluorescence intensity of the protein-like fraction of FDOM and chlorophyll a fluorescence was found and indicated the importance of phytoplankton biomass in West Spitsbergen Current waters as a significant source of protein-like FDOM. East Greenland Current waters has low concentration of chlorophyll a, and were characterized by high humic-like FDOM fluorescence. An empirical relationship between humic-like FDOM fluorescence intensity and CDOM absorption was derived and confirms the dominance of terrigenous like CDOM on the composition of DOM in the East Greenland Current. These high resolution profile data offer a simple approach to fractionate the contribution of these two DOM source to DOM across the Fram Strait and may help refine estimates of DOC fluxes in and out of the Arctic through this region.

  13. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Lu, X Q; Maie, N; Hanna, J V; Childers, D L; Jaffé, R

    2003-06-01

    In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

  14. Evaluation of passive samplers for the collection of dissolved organic matter in streams.

    Science.gov (United States)

    Warner, Daniel L; Oviedo-Vargas, Diana; Royer, Todd V

    2015-01-01

    Traditional sampling methods for dissolved organic matter (DOM) in streams limit opportunities for long-term studies due to time and cost constraints. Passive DOM samplers were constructed following a design proposed previously which utilizes diethylaminoethyl (DEAE) cellulose as a sampling medium, and they were deployed throughout a temperate stream network in Indiana. Two deployments of the passive samplers were conducted, during which grab samples were frequently collected for comparison. Differences in DOM quality between sites and sampling methods were assessed using several common optical analyses. The analyses revealed significant differences in optical properties between sampling methods, with the passive samplers preferentially collecting terrestrial, humic-like DOM. We assert that the differences in DOM composition from each sampling method were caused by preferential binding of complex humic compounds to the DEAE cellulose in the passive samplers. Nonetheless, the passive samplers may provide a cost-effective, integrated sample of DOM in situations where the bulk DOM pool is composed mainly of terrestrial, humic-like compounds.

  15. Fate of {sup 14}C-labeled dissolved organic matter in paddy and upland soils in responding to moisture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangbi [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Wang, Aihua [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Ge, Tida; Wu, Jinshui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Kuzyakov, Yakov [Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen (Germany); Su, Yirong, E-mail: yrsu@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China)

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). {sup 14}C labeled DOM, extracted from the {sup 14}C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to {sup 14}CO{sub 2} and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial {sup 14}C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial {sup 14}C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of {sup 14}C incorporated into the microbial biomass (2.4–11.0% of the initial DOM-{sup 14}C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to {sup 14}CO{sub 2} within 100 days was 1.2–2.1-fold higher in the paddy soils (41.9–60.0% of the initial DOM-{sup 14}C activity) than in the upland soils (28.7–35.7%), 2) {sup 14}C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) {sup 14}C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm

  16. Impact of drainage and soil hydrology on sources and degradation of organic matter in tropical coastal podzols

    NARCIS (Netherlands)

    Lopes-Mazzetto, Josiane Millani; Schellekens, Judith; Vidal-Torrado, Pablo; Buurman, Peter

    2018-01-01

    In podzols important environmental issues converge, including dissolved organic matter (DOM) transport, DOM-metal binding, and carbon storage in the subsoil. Therefore, it is important to understand the formation and degradation of podzols in relation to (changes in) environmental conditions. For

  17. Unraveling the size-dependent optical properties of dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Stedmon, Colin; Tranvik, Lars

    2018-01-01

    The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...

  18. Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Directory of Open Access Journals (Sweden)

    Andrea Mentges

    2017-06-01

    Full Text Available Dissolved organic matter (DOM is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity.

  19. Challenges in modelling dissolved organic matter dynamics in agricultural soil using DAISY

    DEFF Research Database (Denmark)

    Gjettermann, Birgitte; Styczen, Merete; Hansen, Hans Christian Bruun

    2008-01-01

    pedotransfer functions taking into account the soil content of organic matter, Al and Fe oxides. The turnover of several organic matter pools including one DOM pool are described by first-order kinetics. The DOM module was tested at field scale for three soil treatments applied after cultivating grass....... In the subsoil, the observed concentrations of DOC were steadier and the best simulations were obtained using a high k. The model shows that DOC and DON concentrations are levelled out in the subsoils due to soil buffering. The steady concentration levels were based on the Ceq for each horizon and the kinetic...

  20. Thermodynamic constrains on the flux of organic matter through a peatland ecosystem

    Science.gov (United States)

    Worrall, Fred; Moody, Catherine; Clay, Gareth; Kettridge, Nick; Burt, Tim

    2017-04-01

    The transformations and transitions of organic matter into, through and out of a peatland ecosystem must obey the 2nd law of thermodynamics. Beer and Blodau (Geochimica Cosmochimica Acta, 2007, 71, 12, 2989-3002) showed that the evolution of CH4 in peatlands was constrained by equilibrium occurring at depth in the peat as the pore water became a closed system. However, that study did not consider the transition in the solid components of the organic matter flux through the entire ecosystem. For this study, organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by elemental analysis and bomb calorimetry. The samples analysed were: above- and below-ground biomass, heather, mosses, sedges, plant litter layer, peat soil, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, and plant protein. It was possible to calculate ∆H_f^OM ∆S_f^OM and ∆G_f^OM for each of the samples and standards. By assuming that each thermodynamic property can be expressed per g C and that any increase in ∆G_f^OM can be balanced by the production of CO2, DOM or CH4 then it is possible to predict the consequences of the fixation of 1 g of carbon in a peatland soil. The value of ∆G_f^OMincreases from glucose to components of the biomass: 1g of C fixed as glucose by photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2. The transition from biomass to litter could occur spontaneously but the transition from surface to 1m depth in the peat profile would release 0.18 g C as CO2 per 1 g of carbon entering the peat profile. Therefore, for every 1 g of carbon fixed from photosynthesis then 0.44g of C would be released as CO2 and 0.54 g C would be present at 1 m depth. Alternatively, if DOM only

  1. Effect of photodegradation and biodegradation on the concentration and composition of dissolved organic matter in diverse waterbodies

    Science.gov (United States)

    Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.

    2017-12-01

    The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2

  2. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  3. Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS

    Science.gov (United States)

    Hertkorn, Norbert; Harir, Mourad; Cawley, Kaelin M.; Schmitt-Kopplin, Philippe; Jaffé, Rudolf

    2016-04-01

    Wetlands provide quintessential ecosystem services such as maintenance of water quality, water supply and biodiversity, among others; however, wetlands are also among the most threatened ecosystems worldwide. Natural dissolved organic matter (DOM) is an abundant and critical component in wetland biogeochemistry. This study describes the first detailed, comparative, molecular characterization of DOM in subtropical, pulsed, wetlands, namely the Everglades (USA), the Pantanal (Brazil) and the Okavango Delta (Botswana), using optical properties, high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (FT-ICRMS), and compares compositional features to variations in organic matter sources and flooding characteristics (i.e., differences in hydroperiod). While optical properties showed a high degree of variability within and between the three wetlands, analogies in DOM fluorescence properties were such that an established excitation emission matrix fluorescence parallel factor analysis (EEM-PARAFAC) model for the Everglades was perfectly applicable to the other two wetlands. Area-normalized 1H NMR spectra of selected samples revealed clear distinctions of samples while a pronounced congruence within the three pairs of wetland DOM readily suggested the presence of an individual wetland-specific molecular signature. Within sample pairs (long- vs. short-hydroperiod sites), internal differences mainly referred to intensity variations (denoting variable abundance) rather than to alterations of NMR resonances positioning (denoting diversity of molecules). The relative disparity was largest between the Everglades long- and short-hydroperiod samples, whereas Pantanal and Okavango samples were more alike among themselves. Otherwise, molecular divergence was most obvious in the case of unsaturated protons (δH > 5 ppm). 2-D NMR spectroscopy for a particular sample revealed a large richness of aliphatic and unsaturated substructures, likely derived from

  4. Characteristics of dissolved organic matter following 20 years of peatland restoration

    NARCIS (Netherlands)

    Höll, B.S.; Fiedler, S.; Jungkunst, H.F.; Kalbitz, K.; Freibauer, A.; Drösler, M.; Stahr, K.

    2009-01-01

    The changes in the amounts and composition of dissolved organic matter (DOM) following long-term peat restoration are unknown, although this fraction of soil organic matter affects many processes in such ecosystems. We addressed this lack of knowledge by investigating a peatland in south-west

  5. Small scale variability of transport and composition of dissolved organic matter in the subsoil

    Science.gov (United States)

    Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.

    2016-12-01

    Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.

  6. Characterization of Organic Matter Sources within a Matrix of Land Use in Northeast Utah

    Science.gov (United States)

    Kelso, J. E.; Baker, M. A.

    2017-12-01

    Dynamics of organic matter (OM) sources in natural aquatic systems have been studied for decades, but urban studies have revealed additional, less studied, OM sources such as stormwater, lawn clippings, and wastewater effluent. Traditionally the OM pool in freshwater systems has been defined as a homogenous pool of varying size classes: course particulate, fine particulate and dissolved OM. Our goal was to identify and quantify the composition of fine particulate OM (FPOM), and dissolved OM (DOM) as derived from autochthonous, terrestrial, and potential anthropogenic sources. We hypothesized anthropogenic changes in land use have increased the proportion of autochthonous sources of OM. We sampled OM at 33 sites in four watersheds in northeast Utah that encompass a range of land uses. Stable isotopes of carbon, nitrogen, and deuterium were collected for all size classes of OM, and DOM was analyzed with a spectrofluorometer. Stable isotopes were used to estimate the proportion of autochthonous and terrestrial sources of OM. Fluorescence indices and a PARAFAC model were created from DOM excitation emission matrices (EEMs). FPOM appeared to be a mixture of autochthonous and terrestrial sources but overlap in endmember isotope values made quantifying the proportion of each source difficult. Higher deuterium values (-120 to -80‰) were associated with sites receiving wastewater effluent, while sites with agriculture, forest, and urban land use had lower deuterium isotope values (-200 to -110). DOM Excitation Emission Matrices were resolved into a 5-component PARAFAC model. The percent of protein-like DOM components tended to be higher in urban versus non-urban sites (mean 35%, S.D. 12% versus mean 25%, S.D. 15%). We concluded deuterium isotopes may be used as a tracer or wastewater effluent and DOM is composed of more labile, protein-like DOM with increased wastewater input. A greater understanding of the sources of OM can inform management and policy decisions aimed at

  7. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  8. Changes in optical characteristics of surface microlayers hint to photochemically and microbially-mediated DOM turnover in the upwelling region off Peru

    Science.gov (United States)

    Galgani, L.; Engel, A.

    2015-12-01

    The coastal upwelling system off Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. During the Meteor (M91) cruise to the Peruvian upwelling system in 2012, we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples at 38 stations determining DOC concentration, amino acid composition, marine gels, CDOM and bacterial and phytoplankton abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. We identified five fluorescent components of the CDOM pool, of which two had excitation/emission characteristics of protein-like fluorophores and were highly enriched in the SML. CDOM composition and changes in spectral slope properties suggested a local microbial release of HMW DOM directly in the SML as a response to light exposure in this extreme environment. Our results suggest that microbial and photochemical processes play an important role for the production, alteration and loss of optically active substances in the SML.

  9. Flux and Seasonality of Dissolved Organic Matter From the Northern Dvina (Severnaya Dvina) River, Russia

    Science.gov (United States)

    Johnston, Sarah Ellen; Shorina, Natalia; Bulygina, Ekaterina; Vorobjeva, Taisya; Chupakova, Anna; Klimov, Sergey I.; Kellerman, Anne M.; Guillemette, Francois; Shiklomanov, Alexander; Podgorski, David C.; Spencer, Robert G. M.

    2018-03-01

    Pan-Arctic riverine dissolved organic carbon (DOC) fluxes represent a major transfer of carbon from land-to-ocean, and past scaling estimates have been predominantly derived from the six major Arctic rivers. However, smaller watersheds are constrained to northern high-latitude regions and, particularly with respect to the Eurasian Arctic, have received little attention. In this study, we evaluated the concentration of DOC and composition of dissolved organic matter (DOM) via optical parameters, biomarkers (lignin phenols), and ultrahigh resolution mass spectrometry in the Northern Dvina River (a midsized high-latitude constrained river). Elevated DOC, lignin concentrations, and aromatic DOM indicators were observed throughout the year in comparison to the major Arctic rivers with seasonality exhibiting a clear spring freshet and also some years a secondary pulse in the autumn concurrent with the onset of freezing. Chromophoric DOM absorbance at a350 was strongly correlated to DOC and lignin across the hydrograph; however, the relationships did not fit previous models derived from the six major Arctic rivers. Updated DOC and lignin fluxes were derived for the pan-Arctic watershed by scaling from the Northern Dvina resulting in increased DOC and lignin fluxes (50 Tg yr-1 and 216 Gg yr-1, respectively) compared to past estimates. This leads to a reduction in the residence time for terrestrial carbon in the Arctic Ocean (0.5 to 1.8 years). These findings suggest that constrained northern high-latitude rivers are underrepresented in models of fluxes based from the six largest Arctic rivers with important ramifications for the export and fate of terrestrial carbon in the Arctic Ocean.

  10. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    Non target high resolution organic structural spectroscopy of marine dissolved organic matter (DOM) isolated on 27 November 2008 by means of solid phase extraction (SPE) from four different depths in the South Atlantic Ocean off the Angola coast (3.1° E; -17.7° S; Angola basin) provided molecular level information of complex unknowns with unprecedented coverage and resolution. The sampling was intended to represent major characteristic oceanic regimes of general significance: 5 m (FISH; near surface photic zone), 48 m (FMAX; fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 800 MHz proton (1H) nuclear magnetic resonance (NMR) 1H NMR, spectra were least affected by fast and differential transverse NMR relaxation and produced at first similar looking, rather smooth bulk NMR envelopes reflecting intrinsic averaging from massive signal overlap. Visibly resolved NMR signatures were most abundant in surface DOM but contributed at most a few percent to the total 1H NMR integral and were mainly limited to unsaturated and singly oxygenated carbon chemical environments. The relative abundance and variance of resolved signatures between samples was maximal in the aromatic region; in particular, the aromatic resolved NMR signature of the deep ocean sample at 5446 m was considerably different from that of all other samples. When scaled to equal total NMR integral, 1H NMR spectra of the four marine DOM samples revealed considerable variance in abundance for all major chemical environments across the entire range of chemical shift. Abundance of singly oxygenated CH units and acetate derivatives declined from surface to depth whereas aliphatics and carboxyl-rich alicyclic molecules (CRAM) derived molecules increased in abundance. Surface DOM contained a remarkably lesser abundance of methyl esters than all other marine DOM, likely a consequence of photodegradation from direct exposure to sunlight. All DOM showed similar overall 13C NMR

  11. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  12. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  13. The influence of past research on the design of experiments with dissolved organic matter and engineered nanoparticles.

    Directory of Open Access Journals (Sweden)

    Nicole Sani-Kast

    Full Text Available To assess the environmental fate of engineered nanoparticles (ENPs, it is essential to understand their interactions with dissolved organic matter (DOM. The highly complex nature of the interactions between DOM and ENPs and other particulate matter (PM requires investigating a wide range of material types under different conditions. However, despite repeated calls for an increased diversity of the DOM and PM studied, researchers increasingly focus on certain subsets of DOM and PM. Considering the discrepancy between the calls for more diversity and the research actually carried out, we hypothesize that materials that were studied more often are more visible in the scientific literature and therefore are more likely to be studied again. To investigate the plausibility of this hypothesis, we developed an agent-based model simulating the material choice in the experiments studying the interaction between DOM and PM between 1990 and 2015. The model reproduces the temporal trends in the choice of materials as well as the main properties of a network that displays the DOM and PM types investigated experimentally. The results, which support the hypothesis of a positive reinforcing material choice, help to explain why calls to increase the diversity of the materials studied are repeatedly made and why recent criticism states that the selection of materials is unbalanced.

  14. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    Science.gov (United States)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex

  15. Bioavailability of dissolved organic matter originating from different sources in the River Vantaa

    Science.gov (United States)

    Hoikkala, Laura; Soinne, Helena; Asmala, Eero; Helin, Janne; Autio, Iida; Rahikainen, Mika

    2013-04-01

    Most of the dissolved organic matter (DOM) pool in the Baltic Sea is of terrestrial origin. Organic matter load to the Baltic Sea has been identified as the second greatest environmental pressure both in the Bothnian Bay and in the Gulf of Finland by the HELCOM Holistic Assessment. Loads of terrestrial DOM may increase the productivity, oxygen consumption and light attenuation in the coastal waters. The quantity and quality of DOM loads that enter the Baltic Sea depend on the properties of the catchment area, land use and the runoff as well as ecological processes and water retention time in freshwater systems, and are sensitive to temperature. In this study we investigate DOM loads from River Vantaa, which has a catchment area of 1 685 km2 and flows through the most important population center in Southern Finland into the Gulf of Finland. We focus on the effects of soil type and land-use on the DOM load and on the bioavailability of DOM to bacteria in the Baltic Sea. In addition, samples will be collected from up- and downstream of main water treatment plants to estimate the effect of municipal waste on the DOM loads. Further, we aim to estimate the total DOM loads to the Baltic Sea from samples taken at the river mouth. Water samples are collected from river branches selected according to the main land-use (forest or agricultural land) and soil type (mineral or organic soil) in the catchment area. The DOC, DON and DOP loads will be measured. The bioavailability of DOC is measured by incubating the DOM samples (<0.2 µm) in nutrient replete conditions with bacterial inocula (<0.8 µm, retentate of 100 kD TFF) from either river mouth or the Gulf of Finland for two months at dark. Time courses of DOC and DON concentrations, CDOM absorption and fluorescence, bacterial biomass and respiration will be followed.

  16. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-03-07

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  17. Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients

    DEFF Research Database (Denmark)

    Asmala, E.; Autio, R.; Kaartokallio, H.

    2014-01-01

    The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark...... prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM...... was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added...

  18. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    Science.gov (United States)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-09-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values ( a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  19. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  20. A Transformational Journey: Compositional Changes in Organic Matter during Desorption from Sediments

    Science.gov (United States)

    Matiasek, S. J.; Pellerin, B. A.; Spencer, R.; Bergamaschi, B. A.; Hernes, P.

    2016-12-01

    The release of organic matter (OM) from suspended particles via desorption is a critical component of OM cycling since dissolved OM (DOM) fuels aquatic ecosystems and is a precursor for disinfection by-products formation. This study assessed the elemental and molecular composition of DOM desorbed abiotically from sediments and soils of an irrigated agricultural watershed of northern California. Relative to mineral-bound OM, the released DOM was nitrogen-poor (lower carbon:nitrogen ratios) and depleted in amino acids and lignin phenols (lower carbon-normalized yields). Water-extracted DOM appeared substantially more degraded than its parent particulate OM with increased molar contributions of acidic amino acids, non-protein amino acids, and acidic lignin phenols, all molecular indicators of a more extensively processed OM pool. Desorption processes also significantly altered lignin compositional ratios which help distinguish vascular-plant sources of DOM. Specific optical parameters, including spectral slope, specific UV absorbance at 254 nm (SUVA254), and fluorescence index (FI), did not constitute useful proxies for the desorbed DOM pool, while absorption coefficients and fluorescence peak intensities were strongly correlated with extracted DOM concentrations and composition. This study highlights the profound impact of desorption on DOM composition which, if unaccounted for, could lead to misinterpretations of common biomarkers and optical proxies used to predict DOM sources and reactivity. Our findings suggest that sediments contribute a biogeochemically distinct source of DOM to surface waters, with potential impacts on aquatic health and drinking water quality.

  1. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  2. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS

    KAUST Repository

    Caupos, Emilie

    2014-10-04

    Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOMvaried from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOMand DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

  3. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhenke [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Tao, Liang, E-mail: taoliang@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Dissolved organic matter (DOM) act as electron shuttle in redox reactions. • Different molecular weight DOM fractions have different electron transfer capacity. • A higher electron transfer capacities value indicates a higher reduction rate. • DOM transfer electron from S. putrefaciens 200 to 2-nitrophenol (2-NP) and Fe(III). • DOM and biogenic Fe(II) synergistically enhanced the 2-NP reductive transformation. - Abstract: The reduction of nitroaromatic compounds (listed as a priority pollutant) in natural subsurface environments typically coexists with dissimilatory reduction of iron oxides effected by dissolved organic matter (DOM). Investigating the impact of the DOM that influences those reduction processes is crucial for understanding and predicting the geochemical fate of these environmental species. This study investigated the impact of different molecular weight DOM fractions (DMWDs) on the 2-nitrophenol (2-NP) reduction by S. putrefaciens 200 (SP200) and α-Fe{sub 2}O{sub 3} with lactate (excluding electron donor interference). Kinetic measurements demonstrated that 2-NP reduction rates were affected by the redox reactivity of active species under DMWDs (denoted as L-DOM, M-DOM, and H-DOM). The enhanced reduction rates are consistent with the negative shifts in peak oxidation potential values, the increases in HA-like/FA-like values, aromaticity index values and electron transfer capacity values. L-DOM acted mainly as ligands to complex Fe(II), whereas the significant role of H-DOM in reductive reactions should be acting as an electron shuttle, transferring electrons from SP200 to Fe(III) and 2-NP and from biogenic Fe(II) to 2-NP, further accelerating the 2-NP reductions. Those observations provide valuable insights into the role of DOM in the biogeochemical redox processes and the remediation of contaminated soil in a natural environment.

  4. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  5. Dissolved organic matter cycling in eastern Mediterranean rivers experiencing multiple pressures. The case of the trans-boundary Evros River

    Directory of Open Access Journals (Sweden)

    E. PITTA

    2014-07-01

    Full Text Available The objective of our study was to provide a comprehensive evaluation on C, N, P cycling in medium sized Mediterranean rivers, such as the Evros, experiencing multiple pressures (intensive agriculture, industrial activities, population density. Our work aims also to contribute to the development of integrated management policies. Dissolved organic matter (DOM cycling were investigated, during a one-year study. It was shown that the organic component of N and P was comparable to those of large Mediterranean rivers (Rhone, Po. In the lower parts of the river where all point and non-point inputs converge, the high inorganic N input favour elevated assimilation rates by phytoplankton and result in increased chl-a concentrations and autochthonous dissolved organic matter (DOM production during the dry season with limited water flow. Moreover, carbohydrate distribution revealed that there is a constant background of soil derived mono-saccharides on top of which are superimposed impulses of poly-saccharides during blooms. During the dry season, inorganic nutrients and DOM are trapped in the lower parts of the river, whereas during high flow conditions DOM is flushed towards the sea and organic nitrogen forms can become an important TDN constituent (at least 40% transported to shelf waters. The co-existence of terrigenous material with autochthonous and some anthropogenic is supported by the relatively low DOC:DON and DOC:DOP ratios, the positive correlation of DOC vs chl-a and the decoupling between DOC and DON. Overall, this study showed that in medium size Mediterranean rivers, such as the Evros, intensive agriculture and pollution sources in combination with water management practices and climatic variability are important factors determining C, N, P dynamics and export to coastal seas. Also, it highlights the importance of the organic fraction of N and P when considering management practices.

  6. Molecular Hysteresis of Dissolved Organic Matter in the Connecticut River Watershed

    Science.gov (United States)

    Wagner, S.; Hoyle, J. B.; Matt, S.; Raymond, P. A.; Saiers, J. E.; Dittmar, T.; Stubbins, A.

    2017-12-01

    Rainfall-runoff processes have emerged as key controllers of the quantity and quality of terrestrial dissolved organic matter (DOM) exported from the landscape to inland waters. Hydrological events result in increased river discharge and a concomitant release of large amounts of DOM into fluvial networks. This study is part of a Macrosystems project which aims to test the Pulse-Shunt Concept: where rivers are converted from active to passive pipes during high discharge events ("pulse"), transporting labile, terrestrial DOM downstream ("shunt"), and relocating biogeochemical hotspots for DOM from the upper to the lower reaches of the watershed. The primary objective of our study was to track hysteretic changes in riverine DOM molecular composition over the course of a storm event. Samples were collected from nested watersheds in the Passumpsic River catchment, a tributary of the Connecticut River (USA). High resolution monitoring (via in-situ sondes) and high frequency collection of discreet samples (for FT-ICR/MS and other analyses) was necessary to capture short-term, hydrologically-driven variations in DOM concentration and composition. At the onset of the discharge event, we observed a unique DOM signature, enriched in aliphatic, and potentially biolabile, DOM. During peak discharge, and along the falling limb of the hydrograph, an aromatic, terrestrial-type DOM signature was more prevalent. These initial findings support the pulse-shunt hypothesis, providing evidence for the release of labile forms of DOM into rivers during the onset of a storm event, which apparently persists across low-to-high stream orders. Insights into the molecular hysteresis of fluvial DOM spotlights the impact of watershed hydrology on biogeochemical cycling in river networks.

  7. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  8. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  9. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  10. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  11. El tiempo donado en el ámbito doméstico-familiar : estudio sobre el trabajo doméstico y los cuidados

    OpenAIRE

    Legarreta Iza, Matxalen

    2012-01-01

    262 p. : il. La tesis tiene como objetivo estudiar las dinámicas del entorno doméstico-familiar en relación al trabajo doméstico y los cuidados desde una perspectiva de la sociología del tiempo. Cuenta con diez apartados, además de la introducción y la bibliografía.

  12. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Directory of Open Access Journals (Sweden)

    Paul James Mann

    2016-03-01

    Full Text Available Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM spectral slope (S275-295 tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of ‘terrestrial humic-like’ versus ‘marine humic-like’ fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350 proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93. Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years. Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the

  13. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    Science.gov (United States)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  14. Characterization and Fate of Dissolved Organic Matter in the Lena Delta Region, Siberia

    Science.gov (United States)

    Goncalves-Araujo, R.; Stedmon, C. A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A.

    2016-02-01

    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

  15. Strong linkages between DOM optical properties and main clades of aquatic bacteria

    DEFF Research Database (Denmark)

    Amaral, Valentina; Graeber, Daniel; Calliari, Danilo

    2016-01-01

    –emission fluorescence spectroscopy and spectroscopic indexes to characterize DOM composition, and fluorescence in situ hybridization, to quantify the major bacterial groups in a subtropical lagoon. The DOM exhibited marked temporal variations in concentration, molecular weight, aromaticity, color, degree...... properties. Alphaproteobacteria and Gammaproteobacteria abundances were significantly explained by low or high dissolved organic carbon concentrations, respectively. The significant relationships between DOM properties and the main bacterial groups delineated a profile of each group regarding DOM preferences...

  16. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  17. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?

    NARCIS (Netherlands)

    Scheel, T.; Jansen, B.; van Wijk, A.J.; Verstraten, J.M.; Kalbitz, K.

    2008-01-01

    Carbon mineralization in acidic forest soils can be retarded by large concentrations of aluminium (Al). However, it is still unclear whether Al reduces C mineralization by direct toxicity to microorganisms or by decreased bioavailability of organic matter (OM) because dissolved organic matter (DOM)

  18. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    Science.gov (United States)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes.

    Science.gov (United States)

    Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A

    2018-03-15

    Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.

  20. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    Science.gov (United States)

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  1. Seeing the light: the effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams

    Science.gov (United States)

    Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.; Saraceno, John Franco; Kraus, Tamara E.C.

    2012-01-01

    Field-deployable sensors designed to continuously measure the fluorescence of colored dissolved organic matter (FDOM) in situ are of growing interest. However, the ability to make FDOM measurements that are comparable across sites and over time requires a clear understanding of how instrument characteristics and environmental conditions affect the measurements. In particular, the effects of water temperature and light attenuation by both colored dissolved material and suspended particles may be significant in settings such as rivers and streams. Using natural standard reference materials, we characterized the performance of four commercially-available FDOM sensors under controlled laboratory conditions over ranges of temperature, dissolved organic matter (DOM) concentrations, and turbidity that spanned typical environmental ranges. We also examined field data from several major rivers to assess how often attenuation artifacts or temperature effects might be important. We found that raw (uncorrected) FDOM values were strongly affected by the light attenuation that results from dissolved substances and suspended particles as well as by water temperature. Observed effects of light attenuation and temperature agreed well with theory. Our results show that correction of measured FDOM values to account for these effects is necessary and feasible over much of the range of temperature, DOM concentration, and turbidity commonly encountered in surface waters. In most cases, collecting high-quality FDOM measurements that are comparable through time and between sites will require concurrent measurements of temperature and turbidity, and periodic discrete sample collection for laboratory measurement of DOM.

  2. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2017-01-01

    Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM...... but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical...... opportunities for elucidating the origins and biogeochemical properties of FDOM...

  3. Changes in optical characteristics of surface microlayers in the Peruvian upwelling region hint to photochemically and microbially-mediated DOM turnover

    Science.gov (United States)

    Engel, A.; Galgani, L.

    2016-02-01

    The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.

  4. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil.

    Science.gov (United States)

    Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu

    2018-05-01

    Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cosorption study of organic pollutants and dissolved organic matter in a soil

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Cespedes, F. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Fernandez-Perez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)]. E-mail: mfernand@ual.es; Villafranca-Sanchez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Gonzalez-Pradas, E. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)

    2006-08-15

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl{sub 2} aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L{sup -1}, produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K {sub doc}, has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM.

  6. Cosorption study of organic pollutants and dissolved organic matter in a soil

    International Nuclear Information System (INIS)

    Flores-Cespedes, F.; Fernandez-Perez, M.; Villafranca-Sanchez, M.; Gonzalez-Pradas, E.

    2006-01-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl 2 aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L -1 , produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K doc , has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM

  7. Stability in higher-derivative matter fields theories

    International Nuclear Information System (INIS)

    Tretyakov, Petr V.

    2016-01-01

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β 1 and β 4 . By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β 4 < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β 1 > -(1)/(3)β 4 , which is needed to avoid a tachyon-like instability. (orig.)

  8. Burning transformations: Fire history effects on organic matter processing from hillslopes to streams

    Science.gov (United States)

    Barnes, R. T.; Gilbertson, A.; Maxwell, K.

    2017-12-01

    Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (pmineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.

  9. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum

    Science.gov (United States)

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.

    2015-01-01

    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  11. Comparing the Spectroscopic and Molecular Characteristics of Different Dissolved Organic Matter Fractions Isolated by Hydrophobic and Anionic Exchange Resins Using Fluorescence Spectroscopy and FT-ICR-MS

    Directory of Open Access Journals (Sweden)

    Morgane Derrien

    2017-07-01

    Full Text Available Despite the environmental significance of dissolved organic matter (DOM, characterizing DOM is still challenging due to its structural complexity and heterogeneity. In this study, three different chemical fractions, including hydrophobic acid (HPOA, transphilic acid (TPIA, and hydrophilic neutral and base (HPIN/B fractions, were separated from bulk aquatic DOM samples, and their spectral features and the chemical composition at the molecular level were compared using both fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. The HPIN/B fraction was distinguished from the two acidic fractions (i.e., HPOA and TPIA by the EEM-PARAFAC, while the TPIA fraction was discriminated by using the molecular parameters derived from the FT-ICR MS analyses. Statistical comparison suggests that the spectral dissimilarity among the three chemical fractions might result from the acido-basic properties of DOM samples, while the differences in molecular composition were more likely to be affected by the hydrophobicity of the DOM fractions. The non-metric multidimensional scaling map further revealed that the HPOA was the most heterogeneous among the three fractions. The number of overlapping formulas among the three chemical fractions constituted only <5% of all identified formulas, and those between two different fractions ranged from 2.0% to 24.1%, implying relatively homogeneous properties of the individual chemical fractions with respect to molecular composition. Although employing chemical fractionation achieved a lowering of the DOM heterogeneity, prevalent signatures of either acido-basic property or the hydrophobic nature of DOM on the characteristics of three chemical isolated fractions were not found for this study.

  12. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne

    2016-01-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial...

  13. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  14. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  15. [Effect of Charge-Transfer Complex on Ultraviolet-Visible (UV-Vis) Absorption Property of Chromophoric Dissolved Organic Matter (CDOM) in Waters of Typical Water-Level Fluctuation Zones of the Three Gorges Reservoir Areas].

    Science.gov (United States)

    Jiang, Tao; Liang, Jian; Zhang, Mu-xue; Wang, Ding-yong; Wei, Shi-qiang; Lu, Song

    2016-02-15

    As an important fraction of dissolved organic matter (DOM), chromophoric dissolved organic matter (CDOM) plays a key role in decision of the optical properties and photogeochemistry of DOM, and further affects pollutant fate and global carbon cycle. These optical properties are ascribed to two chromophoric systems including superposition of individual chromophores and charge-transfer (CT) complexation between electron donor (e.g., phenols and indoles) and acceptor (e.g., quinones and other oxidized aromatics) in DOM structures. Thus in this study, based on the "double-chromophoric system" model, DOM samples from four typical water-level fluctuation zones of Three Gorges Reservoir (TGR) areas were selected, to investigate the effect and contribution of charge-transfer complex to ultraviolet-visible (UV-Vis) absorption property of CDOM. Using NaBH, reduction method, original featureless absorption curve was classified into two independent curves caused by individual chromophoric group, which were derived from a simple superposition of independent chromophore and charge-transfer complex, respectively. Also, the changes in curve properties and specific parameters before and after NaBH4 reduction were compared. The results showed that in all DOM samples from the four sites of TGR, more than 35% of absorption was attributed from CT complex. Shibaozhai of Zhongxian and Zhenxi of Fuling showed the highest proportion ( > 50%). It suggested that the role of CT complex in CDOM property could not be neglected. After removal of CT complex, absorption curve showed blue-shift and CDOM concentration [a (355)] decreased significantly. Meanwhile, because of deforming of bonds by reduction, DOM structures became more dispersive and the molecular size was decreased, resulting in the lower spectral slope (S) observed, which evidentially supported that the supermolecular association structure of DOM was self-assembled through CT complex. Meanwhile, deceasing hydrophobic components led

  16. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  17. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    Directory of Open Access Journals (Sweden)

    N. Hertkorn

    2013-03-01

    Full Text Available High-performance, non-target, high-resolution organic structural spectroscopy was applied to solid phase extracted marine dissolved organic matter (SPE-DOM isolated from four different depths in the open South Atlantic Ocean off the Angola coast (3° E, 18° S; Angola Basin and provided molecular level information with extraordinary coverage and resolution. Sampling was performed at depths of 5 m (Angola Current; near-surface photic zone, 48 m (Angola Current; fluorescence maximum, 200 m (still above Antarctic Intermediate Water, AAIW; upper mesopelagic zone and 5446 m (North Atlantic Deep Water, NADW; abyssopelagic, ~30 m above seafloor and produced SPE-DOM with near 40% carbon yield and beneficial nuclear magnetic resonance (NMR relaxation properties, a crucial prerequisite for the acquisition of NMR spectra with excellent resolution. 1H and 13C NMR spectra of all four marine SPE-DOM showed smooth bulk envelopes, reflecting intrinsic averaging from massive signal overlap, with a few percent of visibly resolved signatures and variable abundances for all major chemical environments. The abundance of singly oxygenated aliphatics and acetate derivatives in 1H NMR spectra declined from surface to deep marine SPE-DOM, whereas C-based aliphatics and carboxyl-rich alicyclic molecules (CRAM increased in abundance. Surface SPE-DOM contained fewer methyl esters than all other samples, likely a consequence of direct exposure to sunlight. Integration of 13C NMR spectra revealed continual increase of carboxylic acids and ketones from surface to depth, reflecting a progressive oxygenation, with concomitant decline of carbohydrate-related substructures. Aliphatic branching increased with depth, whereas the fraction of oxygenated aliphatics declined for methine, methylene and methyl carbon. Lipids in the oldest SPE-DOM at 5446 m showed a larger share of ethyl groups and methylene carbon than observed in the other samples. Two-dimensional NMR spectra showed

  18. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132.

    Science.gov (United States)

    Zhao, Linduo; Chen, Hongmei; Lu, Xia; Lin, Hui; Christensen, Geoff A; Pierce, Eric M; Gu, Baohua

    2017-09-19

    Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.

  19. Bacterial community dynamics and activity in relation to dissolved organic matter availability during sea-ice formation in a mesocosm experiment.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N

    2014-02-01

    The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Degradation of riverine dissolved organic matter by seawater bacteria

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Pizay, M-D.; Middelburg, J.J.; Boschker, H.T.S.; Gattuso, J.P.

    2004-01-01

    The functional response of a seawater bacterial community transplanted into freshwater dissolved organic matter (DOM) was investigated together with the response of natural populations of bacteria to size-fractioned natural source water. Seawater bacteria were incubated over a period of 8 d in

  1. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Air oxidation of samples from different clay formations of East Paris basin: quantitative and qualitative consequences on the dissolved organic matter

    International Nuclear Information System (INIS)

    Blanchart, Pascale; Faure, Pierre; Michels, Raymond; Parant, Stephane

    2012-01-01

    Document available in extended abstract form only. During the excavation and the building of an underground research laboratory in clay geological formations, exposure to air is one of the most important parameters affecting the composition of fossil organic matter. Indeed the net effect of air oxidation of the organic matter is enrichment in oxygen and carbon combined with a loss of hydrogen. Effluents formed are CO 2 and water as well as the liberation of hydrocarbons. This process may have an impact on water chemistry of the clay, especially on the quantity and composition of Dissolved Organic Matter (DOM). The clays studied were the following and may be distinguished on the basis of their organic matter content: - The Callovo-Oxfordian argillite, collected in the Bure Underground Research Laboratory (Meuse, France), which contains a mixture of type II and III kerogen; - The Toarcian shales of East Paris Basin collected from drilling EST 204 (Meuse, France) contains type II kerogen; - The Kimmeridgian shales of East Paris Basin collected from drilling HTM 102 (Meuse, France) also contains type II kerogen. The powdered clay samples were oxidized in a ventilated oven at 100 C under air flow during 2, 256, 512 and 1088 hours for Callovo-Oxfordian samples and during 512 and 2048 hours for Toarcian and Kimmeridgian samples. The DOM of each sample was extracted by soxhlet using pure water. Different analyses were carried out: - Quantitative evolution of DOM with the oxidation process; - Evolution of several chemical parameters of DOM with oxidation using molecular analyses (PyGC-MS) molecular weight distribution (GPC-HPLC) as well as spectroscopic measurements (3D-Fluorescence). Increasing oxidation induces an increase of DOC values for all samples. Also, Changes in the chemical composition of the DOM are observed: decrease in the molecular weight range; enrichment in acidic functional groups (alkane-dioic acids, alkanoic acids, aromatics poly acids). Moreover the

  3. Using latent effects to determine the ecological importance of dissolved organic matter to marine invertebrates.

    Science.gov (United States)

    Wendt, Dean E; Johnson, Collin H

    2006-10-01

    The uptake and utilization of dissolved organic matter (DOM) by marine invertebrates is a field that has received significant attention over the past 100 years. Although it is well established that DOM is taken up by marine invertebrates, the extent to which it contributes to an animal's survival, growth, and reproduction (that is, the ecological benefits) remains largely unknown. Previous work seeking to demonstrate the putative ecological benefits of DOM uptake have examined them within a single life stage of an animal. Moreover, most of the benefits are demonstrated through indirect approaches by examining (1) mass balance, or (2) making comparisons of oxyenthalpic conversions of transport rates to metabolic rate as judged by oxygen consumption. We suggest that directly examining delayed metamorphosis or the latent effects associated with nutritional stress of larvae is a better model for investigating the ecological importance of DOM to marine invertebrates. We also provide direct evidence that availability of DOM enhances survival and growth of the bryozoan Bugula neritina. That DOM offsets latent effects in B. neritina suggests that the underlying mechanisms are at least in part energetic.

  4. Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan.

    Science.gov (United States)

    Chen, Ting-Chien; Hseu, Zeng-Yei; Jean, Jiin-Shuh; Chou, Mon-Lin

    2016-09-01

    The formation of an arsenic (As)-dissolved organic matter (DOM) complex is important in driving the release of arsenic in groundwater. This study collected groundwater samples from a 20 m deep well throughout 2014 and separated each into three subsamples by ultrafiltration: high molecular weight-DOM (HDOM, 0.45 μm-10 kDa), medium molecular weight-DOM (MDOM, 10-1 kDa), and low molecular weight-DOM (LDOM, arsenic and the fractional DOM. Based on the EEM records, three fluorescence indicators were further calculated to characterize the DOM sources, including the fluorescence index (FI), the biological index (BI), and the humification index (HI). The experimental results indicated that arsenic in the groundwater was mainly partitioned into the MDOM and LDOM fractions. All fractional DOMs contained humic acid-like substances and were considered as microbial sources. LDOM had the highest humification degree and aromaticity, followed by MDOM and HDOM. The As and DOM association could be formed by a Fe-bridge, which was demonstrated by the Ks values and fourier transform infrared (FTIR) spectra of the DOM. The formation of AsFe-DOM complex was only significant in the MDOM and LDOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  6. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  7. Passive sampler for dissolved organic matter in freshwater environments.

    Science.gov (United States)

    Lam, Buuan; Simpson, André J

    2006-12-15

    A passive sampler for the isolation of dissolved organic matter (DOM) from freshwater environments is described. The sampler consists of a molecular weight selective membrane (1000 kDa) and an anion exchange resin (diethylaminoethylcellulose (DEAE-cellulose)). NMR indicates the samplers isolate DOM that is nearly indistinguishable from that isolated using the batch DEAE-cellulose procedure. In a comparative study DOM isolated from Lake Ontario cost approximately 0.30 dollars/mg to isolate using the passive samplers while DOM isolated using the traditional batch procedure cost approximately 8-10 dollars/mg. The samplers have been shown to be effective in a range of freshwater environments including a large inland lake (Lake Ontario), fast flowing tributary, and wetland. Large amounts (gram quantities of DOM) can be easily isolated by increasing the size or number of samplers deployed. Samplers are easy to construct, negate the need for pressure filtering, and also permit a range of temporal and spatial experiments that would be very difficult or impossible to perform using conventional approaches. For example, DOM can be monitored on a regular basis at numerous different locations, or samplers could be set at different depths in large lakes. Furthermore, they could potentially be deployed into hard to reach environments such as wells, groundwater aquifers, etc., and as they are easy to use, they can be mailed to colleagues or included with expeditions going to difficult to reach places such as the Arctic and Antarctic.

  8. The Emperor Dom Pedro II: his convulsive seizures when a boy O imperador Dom Pedro II: as suas crises convulsivas quando menino

    Directory of Open Access Journals (Sweden)

    Marleide da Mota Gomes

    2007-12-01

    Full Text Available INTRODUCTION: Dom Pedro II, the Prince Heir and Emperor under regency, in a delicate period of the construction of the Brazilian nation, had convulsive seizures. OBJECTIVE: To investigate the convulsive seizures and related syndromes of Dom Pedro II and his family, besides the physicians in charge of the health care. METHOD: Narrative review based on primary and secondary sources. CONCLUSION: The scattered and self-limited convulsive seizures associated with physical and mental integrity favored a benign prognosis. Dom Pedro and his family presented rich history of epileptic seizures and febrile convulsion. This variety resembles the diagnosis of generalized epilepsy with febrile seizures plus that seems to be a combination of several syndromes with shared genetic susceptibility.INTRODUÇÃO: Dom Pedro, o príncipe herdeiro e imperador sob regência, em período delicado da formação da nação brasileira, apresentou crises convulsivas que geraram preocupação para o país. OBJETIVO: Investigar a história da epilepsia de Dom Pedro II e da sua família e procurar identificar quais tipos de crises epilépticas estavam presentes, além dos médicos envolvidos com os cuidados de saúde. MÉTODO: Revisão narrativa baseada em fontes primárias e secundárias. CONCLUSÃO: As crises convulsivas esparsas e auto-limitadas associadas a higidez física e mental de Dom Pedro II sugerem um prognóstico benigno. A história de epilepsia idiopática e convulsões febris no imperador e em outros membros da sua família aponta para o diagnóstico mais provável de Epilepsia Generalizada com Convulsões Febris Plus que é determinada por uma combinação de alguns tipos de manifestações epilépticas com suscetibilidade genética compartilhada.

  9. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    Science.gov (United States)

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength 400 nm.

  10. Relationships between land cover and dissolved organic matter change along the river to lake transition

    Science.gov (United States)

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  11. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  12. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White

    2009-01-01

    The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...

  13. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkins, Suzanne; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody; Saleska, Scott; Crill, Patrick M.; Rich, Virginia; Chanton, Jeffrey; Cooper, William T.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens were indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnumdominated bogs

  14. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    Science.gov (United States)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody K.; Saleska, Scott R.; Crill, Patrick M.; Rich, Virginia I.; Chanton, Jeffrey P.; Cooper, William T.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs

  15. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    Science.gov (United States)

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  16. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    Science.gov (United States)

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  17. High-performance liquid chromatographic characterization of dissolved organic matter from low-level radioactive waste leachates

    International Nuclear Information System (INIS)

    Caron, F.; Elchuk, S.; Walker, Z.H.

    1996-01-01

    Leachates from a waste degradation experiment, containing ∼700-3700 mg C/I of dissolved organic matter (DOM), were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography (LC), using various separation strategies. Scaling up of the separation scheme to a semi-preparative scale, suitable for hyphenated techniques, was also investigated. Separations with reversed-phase columns suggested that ∼70-93% of the DOM was hydrophilic, and ion-pair chromatography of this fraction showed the presence of several discrete compounds. Labile and non-labile complexes were formed by adding 60 Co radiotracer. Size-exclusion chromatography indicated that the DOM was primarily in the <1000-1500 Da molecular mass range. (author)

  18. Proyecto de Investigación-acción: trabajo doméstico y servicio doméstico en Colombia

    OpenAIRE

    León, Magdalena

    2013-01-01

    El Proyecto “Acciones para transformar las condiciones sociolaborales del servicio doméstico en Colombia ” se adelantó con el objetivo de entender y transformar la situación sociolaboral del servicio doméstico en Colombia. Se inició en marzo de 1981, en Bogotá, y a finales de 1983 y principios de 1984 se extendió a Medellín, Cali, Barranquilla y Bucaramanga. Concluyó en 1990. Fue un proyecto de investigación-acción, en la medida en que el conocimiento que iba descubriendo del trabajo y la vi...

  19. Proyecto de Investigación-acción: trabajo doméstico y servicio doméstico en Colombia

    OpenAIRE

    León, Magdalena

    2018-01-01

    El Proyecto “Acciones para transformar las condiciones sociolaborales del servicio doméstico en Colombia” se adelantó con el objetivo de entender y transformar la situación sociolaboral del servicio doméstico en Colom­bia. Se inició en marzo de 1981, en Bogotá, y a finales de 1983 y principios de 1984 se extendió a Medellín, Cali, Barranquilla y Bucaramanga. Concluyó en 1990. Fue un proyecto de investigación-acción, en la medida en que el conocimiento que iba descubriendo del trabajo y la vid...

  20. Comunidades de atingidos, o comum e o dom expandido Affected communities, the ordinary and the expanded gift

    Directory of Open Access Journals (Sweden)

    Antonio Lafuente

    2011-07-01

    Full Text Available Este artigo examina a relação entre a tecnologia e os bens comuns e, a partir daí, propõe uma nova valência para o comum. O novo comum deve ser entendido como uma economia do dom que assiste, a cada novo ciclo de relações assimétricas, ao surgimento de uma questão que preocupa uma comunidade de afeto ou de atingidos. A economia do dom expandido retém a produtividade conceitual da famosa teoria do dom de Marcel Mauss, mas é adaptada a um mundo em que quem doa e quem recebe tendem a permanecer anônimos e as expectativas de retribuição, indefinidas. Finalmente, o artigo defende a noção de um dom expandido, cuja economia de reciprocidade possa, em um único gesto, fazer aparecer novas formas de comunidade e inaugurar protocolos inovadores de mobilização social.The article investigates the relationship between technology and ordinary goods in order to propose a new valence for the ordinary. The new ordinary should be understood as a gift economy that witnesses, within every new cycle of asymmetrical relations, the rise of a matter that regards a community of shared affections, or affected community. The expanded gift economy retains the conceptual productivity of Marcel Mauss’s famous theory about the gift, except that it is adapted to a world in which giver and receiver tend to remain anonymous, and the retribution expectations, undefined. At long last, the article argues for a notion of an expanded gift, whose reciprocity economy may - in a single gesture - make appear new forms of community and launch innovative social mobilization protocols.

  1. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River

    Science.gov (United States)

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2013-12-01

    We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) to identify the molecular composition of dissolved organic matter (DOM) collected from different ecosystems along a transect crossing Siberia’s northern and middle Taiga. This information is urgently needed to help elucidate global carbon cycling and export through Russian rivers. In total, we analyzed DOM samples from eleven Yenisei tributaries and seven bogs. Freeze-dried and re-dissolved DOM was desalted via solid phase extraction (SPE) and eluted in methanol for ESI-FT-ICR-MS measurements. We recorded 15209 different masses and identified 7382 molecular formulae in the mass range between m/z = 150 and 800. We utilized the relative FT-ICR-MS signal intensities of 3384 molecular formulae above a conservatively set limit of detection and summarized the molecular characteristics for each measurement using ten magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (DBE)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w and (AI)w) for redundancy analysis. Consequently, we revealed that the molecular composition of DOM depends mainly on pH and geographical latitude. After applying variation partitioning to the peak data, we isolated molecular formulae that were strongly positive or negatively correlated with latitude and pH. We used the chemical information from 13 parameters (C#, H#, N#, O#, O/C, H/C, DBE, DBE/C, DBE/O, AI, N/C, DBE-O and MW) to characterize the extracted molecular formulae. Using latitude along the gradient representing climatic variation, we found a higher abundance of smaller molecules, nitrogen-containing compounds and unsaturated Cdbnd C functionalities at higher latitudes. As possible reasons for the different molecular characteristics occurring along this gradient, we suggested that the decomposition was temperature dependent resulting to a higher abundance of non-degraded lignin-derived phenolic substances. We demonstrated that bog samples

  2. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...

  3. Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: Role of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz0143@yahoo.com.cn [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Li, Li [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); The Graduate School of Chinese Academy of Science, Beijing 100049 (China); Fan, Xiaoyun [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Liu, Mingdeng [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); The Graduate School of Chinese Academy of Science, Beijing 100049 (China); Deng, Wenye [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Eco-Materials and Sustainable Technology (LEMST), Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China)

    2013-07-15

    Highlights: • Soil organic matter (SOM) has significant influence on the transformation of PAHs. • Photodegradation rate is strongly dependent on the SOM fractions and their content. • Photolysis is determined by the interaction between phenanthrene, clay and SOM. -- Abstract: In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron–donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70 mg/g) and HA (0.65 mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM–Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay–humic substances complexes for remediation of contaminated soil.

  4. Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.

    2015-01-01

    We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future

  5. Colored dissolved organic matter in shallow estuaries: the effect of source on quantification

    OpenAIRE

    W. K. Oestreich; N. K. Ganju; J. W. Pohlman; S. E. Suttles

    2015-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM...

  6. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers.

    Science.gov (United States)

    Wagner, Sasha; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi V; Dittmar, Thorsten; Jaffé, Rudolf

    2015-12-01

    Large world rivers are significant sources of dissolved organic matter (DOM) to the oceans. Watershed geomorphology and land use can drive the quality and reactivity of DOM. Determining the molecular composition of riverine DOM is essential for understanding its source, mobility and fate across landscapes. In this study, DOM from the main stem of 10 global rivers covering a wide climatic range and land use features was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). FT-ICR mass spectral data revealed an overall similarity in molecular components among the rivers. However, when focusing specifically on the contribution of nonoxygen heteroatomic molecular formulas (CHON, CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition and watershed land use became apparent. Greater abundances of N- and S-containing molecular formulas were identified as unique to rivers influenced by anthropogenic inputs, whereas rivers with primarily forested watersheds had DOM signatures relatively depleted in heteroatomic content. A strong correlation between cropland cover and dissolved black nitrogen was established when focusing specifically on the pyrogenic class of compounds. This study demonstrated how changes in land use directly affect downstream DOM quality and could impact C and nutrient cycling on a global scale.

  8. StarDOM: From STAR format to XML

    International Nuclear Information System (INIS)

    Linge, Jens P.; Nilges, Michael; Ehrlich, Lutz

    1999-01-01

    StarDOM is a software package for the representation of STAR files as document object models and the conversion of STAR files into XML. This allows interactive navigation by using the Document Object Model representation of the data as well as easy access by XML query languages. As an example application, the entire BioMagResBank has been transformed into XML format. Using an XML query language, statistical queries on the collected NMR data sets can be constructed with very little effort. The BioMagResBank/XML data and the software can be obtained at http://www.nmr.embl-heidelberg.de/nmr/StarDOM/

  9. DOM Scripting

    CERN Document Server

    Keith, J

    2011-01-01

    In this Second Edition of the popular DOM Scripting: Web Design with JavaScript and the Document Object Model, comes a modern revision to include current best practices and guidelines. There is also full coverage of HTML5 in a new, dedicated chapter, and details on JavaScript libraries and how they can help your scripting. The book gives you everything you need to start using JavaScript and the Document Object Model to enhance your web pages with client-side dynamic effects and user-controlled animation. It shows you how JavaScript, HTML5, and Cascading Style Sheets (CSS) work together to crea

  10. Impacts of global changes on the biogeochemistry and environmental effects of dissolved organic matter at the land-ocean interface: a review.

    Science.gov (United States)

    Zhuang, Wan-E; Yang, Liyang

    2018-02-01

    Dissolved organic matter (DOM) is an important component in the biogeochemistry and ecosystem function of aquatic environments at the highly populated land-ocean interface. The mobilization and transformation of DOM at this critical interface are increasingly affected by a series of notable global changes such as the increasing storm events, intense human activities, and accelerating glacier loss. This review provides an overview of the changes in the quantity and quality of DOM under the influences of multiple global changes. The profound implications of changing DOM for aquatic ecosystem and human society are further discussed, and future research needs are suggested for filling current knowledge gaps. The fluvial export of DOM is strongly intensified during storm events, which is accompanied with notable changes in the chemical composition and reactivity of DOM. Land use not only changes the mobilization of natural DOM source pools within watersheds but also adds DOM of distinct chemical composition and reactivity from anthropogenic sources. Glacier loss brings highly biolabile DOM to downstream water bodies. The changing DOM leads to significant changes in heterotrophic activity, CO 2 out gassing, nutrient and pollutant biogeochemistry, and disinfection by-product formation. Further studies on the source, transformations, and downstream effects of storm DOM, temporal variations of DOM and its interactions with other pollutants in human-modified watersheds, photo-degradability of glacier DOM, and potential priming effects, are essential for better understanding the responses and feedbacks of DOM at the land-ocean interface under the impacts of global changes.

  11. Relationships between Molecular Composition and Optical Properties of Dissolved Organic Matter

    Science.gov (United States)

    Cooper, W. T.; Tfaily, M.; Osborne, D.; Paul, A.; Podgorski, D. C.; Corbett, J.; Chanton, J.

    2009-12-01

    Our focus is on the relationships between the optical properties of dissolved organic matter (DOM) and its molecular composition. For example, we demonstrated that changes in the absorption and fluorescence characteristics of DOM in outwelling from Brazilian mangrove forests correlated with decreases in highly unsaturated organic compounds as DOM was transported from mangrove porewaters to the continental shelf. In that work we combined ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that provided detailed compositional information with absorption and Excitation/Emission Matrix (EEM) spectroscopy This presentation will highlight new results utilizing the combination of optical spectroscopy and FT-ICR mass spectrometry to illuminate the processes which control DOM cycling. Our focus will be on the contributions of the heteroatom components of DOM (i.e. organic sulfur and organic nitrogen) to its optical properties and how changes in optical properties correlate with important environmental processes like humification and bioavailability. Figure 1 below includes a narrow 0.20 Dalton window from a mass spectrum which demonstrates the ability of ultrahigh resolution mass spectrometry to resolve and identify nitrogen heteroatom compounds in DOM. Our study sites include the Glacial Lake Agassiz Peatlands (GLAP) in northern Minnesota and wetlands in the Caloosahatchee River basin in South Florida. Figure 1. Isolated 0.20 Da window of an ESI-FT-ICR mass spectrum of DOM from a GLAP bog. Labels identify N1 (d,e,f) and N3 classes of nitrogen heteroatoms. The 0.0031 Da mass spacing is used to confirm the N3 class.

  12. Short-term dynamics of North Sea bacterioplankton-dissolved organic matter coherence on molecular level

    Directory of Open Access Journals (Sweden)

    Judith eLucas

    2016-03-01

    Full Text Available Remineralisation and transformation of dissolved organic matter (DOM by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition at Helgoland Roads (North Sea in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of twenty days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom towards the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen concentration, temperature and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of bacterial community composition variation.

  13. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  14. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Science.gov (United States)

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  15. DomPep--a general method for predicting modular domain-mediated protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.

  16. Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change

    DEFF Research Database (Denmark)

    Hulatt, C.J.; Kaartokallio, H.; Asmala, E.

    2014-01-01

    . Bacterial growth efficiency ranged from 0.11 to 0.26 between areas of different land use, and these relatively low values reflect the humic-rich DOM released from boreal peatland. Despite the range of land-use types studied, including intensive peatland excavation areas, there was no detectable relationship...

  17. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy

    International Nuclear Information System (INIS)

    Li, Yingjie; Wei, Xiaoxuan; Chen, Jingwen; Xie, Hongbin; Zhang, Ya-nan

    2015-01-01

    Highlights: • Excited triplet state of dissolved organic matter ( 3 DOM * ) is largely responsible for the enhanced photodegradation of sulfadiazine. • Electron followed by proton transfer is a major mechanism for the reactions of sulfadiazine with 3 DOM * proxies. • Two reaction sites (amino- or sulfonyl-N) and sulfadiazine radicals were identified in the reactions of sulfadiazine with 3 DOM * proxies. - Abstract: Excited triplet states of dissolved organic matter ( 3 DOM*) are important players for photodegradation sulfonamide antibiotics (SAs) in sunlit natural waters. However, the triplet-mediated reaction mechanism was poorly understood. In this study, we investigated the reaction adopting sulfadiazine as a representative SA and 4-carboxybenzophenone (CBBP)as a proxy of DOM. Results showed that the excited triplet state of CBBP ( 3 CBBP*) is responsible for the photodegradation of sulfadiazine. The reaction of 3 CBBP* with substructure model compounds verified there are two reaction sites (amino-or sulfonyl-N atoms) of sulfadiazine. Density functional theory calculations were performed, which unveiled that electrons transfer from the N reaction sites to the carbonyl oxygen atom of 3 CBBP* moiety, followed by proton transfers, leading to the formation of sulfadiazine radicals. Laser flash photolysis experiments were performed to confirm the mechanism. Thus, this study identified that the photodegradation mechanism of SAs initiated by 3 DOM*, which is important for understanding the photochemical fate, predicting the photoproducts, and assessing the ecological risks of SAs in the aquatic environment

  18. Facile synthesis of iron oxide nanoparticle and synergistic effect of iron nanoparticle in the presence of sunlight for the degradation of DOM from textile wastewater

    Science.gov (United States)

    Parvin, Fahmida; Nayna, Omme Kulsum; Tareq, Shafi M.; Rikta, Sharmin Yousuf; Kamal, Abdul KI

    2018-05-01

    This study explores the capacity of synthesized Fe2O3 nanoparticles (NPs) under sunlight for the degradation of dissolved organic matter (DOM) from synthetic (Procion blue dye) solution as well as from textile wastewater (TWW). Fe2O3 NPs were properly synthesized and confirmed by UV absorbance, FTIR spectra and SEM image analysis. Photocatalytic degradation of DOM from TWW and synthetic solution was performed by catalyst Fe2O3 NPs (5 mg/L) in the presence of solar irradiation (up to 40 h). The DOM degradation of the TWW and synthetic solution has been analyzed by fluorescence 3D excitation emission matrix (3D EEM). Synergistic effect was expected and it was found that the rate of decrease of fluorescence intensity increased with time. Within 20 h, for the synthetic solution, reduction of fluorescence intensity (80%) reaches an equilibrium. In contrast, the rate of decrease in the fluorescence intensity is highest (91%) in 40 h of irradiation for TWW. This reduction of fluorescence intensity indicates the degradation of DOM and can be expressed well by second-order model kinetics. Reduction of TOC, BOD5 and COD load again validated the degradation of DOM from TWW by catalyst Fe2O3 NPs-induced solar irradiation. We applied the treated wastewater on the plant to observe the reusability of the treated TWW, and the morphological data analysis of the plant demonstrates that the catalyst Fe2O3 NPs-induced solar-irradiated wastewater exhibits less adverse impact on plant morphology.

  19. Selective Leaching of Dissolved Organic Matter From Alpine Permafrost Soils on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Yinghui; Xu, Yunping; Spencer, Robert G. M.; Zito, Phoebe; Kellerman, Anne; Podgorski, David; Xiao, Wenjie; Wei, Dandan; Rashid, Harunur; Yang, Yuanhe

    2018-03-01

    Ongoing global temperature rise has caused significant thaw and degradation of permafrost soils on the Qinghai-Tibetan Plateau (QTP). Leaching of organic matter from permafrost soils to aquatic systems is highly complex and difficult to reproduce in a laboratory setting. We collected samples from natural seeps of active and permafrost layers in an alpine swamp meadow on the QTP to shed light on the composition of mobilized dissolved organic matter (DOM) by combining optical measurements, ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry, radiocarbon (14C), and solid-state 13C nuclear magnetic resonance spectroscopy. Our results show that even though the active layer soils contain large amounts of proteins and carbohydrates, there is a selective release of aromatic components, whereas in the deep permafrost layer, carbohydrate and protein components are preferentially leached during the thawing process. Given these different chemical characteristics of mobilized DOM, we hypothesize that photomineralization contributes significantly to the loss of DOM that is leached from the seasonally thawed surface layer. However, with continued warming, biodegradation will become more important since biolabile materials such as protein and carbohydrate are preferentially released from deep-layer permafrost soils. This transition in DOM leachate source and associated chemical composition has ramifications for downstream fluvial networks on the QTP particularly in terms of processing of carbon and associated fluxes.

  20. Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Fan, Xiaoyun; Liu, Mingdeng; Deng, Wenye; Wang, Chuanyi

    2013-07-15

    In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Colored Dissolved Organic Matter in Shallow Estuaries: The Effects of Source and Transport on Light Attenuation and Measurement

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J.; Suttles, S. E.

    2014-12-01

    Light is of great importance to the health and ecological function of shallow estuaries. Primary production in such estuaries, which is typically dominated by seagrass, is contingent upon light penetration to the deeper part of the estuarine water column. A major component contributing to light attenuation in these systems is colored dissolved organic matter (CDOM). CDOM is most often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of taking rapid, accurate fDOM measurements. Fluorescence data can then be converted to absorbance by CDOM for use in light attenuation models. However, this fDOM-CDOM conversion has proven to be quite variable between estuaries, and even between sites along a given estuary. We displayed and attempted to explain this variability through the study of three diverse estuaries: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from wastewater treatment to agricultural operations and residential communities. Measurements of fDOM and absorbance by CDOM (quantified via spectrophotometer measurement of 0.2μm-filtered samples) were taken along a gradient from terrestrial to oceanic end-members. These measurements yielded highly variable fDOM-CDOM relationships between estuaries. The mean ratio of absorption coefficient at 340nm (m-1) to fDOM (QSU) was much higher in West Falmouth Harbor (0.874) than in Barnegat Bay (0.227) and Chincoteague Bay (0.173). This fDOM-CDOM relationship was also observed to be variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent throughout sites along Chincoteague Bay. This variability, both within and between estuaries, is likely due to differing CDOM sources as a result of differences in land use in the areas surrounding these estuaries. Stable carbon isotope analysis of DOC from each site and hydrodynamic model results will be used to differentiate sources and further elucidate the

  2. An initial investigation into the organic matter biogeochemistry of the Congo River

    Science.gov (United States)

    Spencer, Robert G.M.; Hernes, Peter J.; Aufdenkampe, Anthony K.; Baker, Andy; Gulliver, Pauline; Stubbins, Aron; Aiken, George R.; Dyda, Rachael Y.; Butler, Kenna D.; Mwamba, Vincent L.; Mangangu, Arthur M.; Wabakanghanzi, Jose N.; Six, Johan

    2012-01-01

    The Congo River, which drains pristine tropical forest and savannah and is the second largest exporter of terrestrial carbon to the ocean, was sampled in early 2008 to investigate organic matter (OM) dynamics in this historically understudied river basin. We examined the elemental (%OC, %N, C:N), isotopic (δ13C, Δ14C, δ15N) and biochemical composition (lignin phenols) of coarse particulate (>63 μm; CPOM) and fine particulate (0.7–63 μm; FPOM) OM and DOC, δ13C, Δ14C and lignin phenol composition with respect to dissolved OM (14C = -62.2 ± -13.2‰, n = 5) compared to CPOM and DOM (mean Δ14C = 55.7 ± 30.6‰, n = 4 and 73.4 ± 16.1‰, n = 5 respectively). The modern radiocarbon ages for DOM belie a degraded lignin compositional signature (i.e. elevated acid:aldehyde ratios (Ad:Al) relative to CPOM and FPOM), and indicate that the application of OM degradation patterns derived from particulate phase studies to dissolved samples needs to be reassessed: these elevated ratios are likely attributable to fractionation processes during solubilization of plant material. The relatively low DOM carbon-normalized lignin yields (Λ8; 0.67–1.12 (mg(100 mg OC)-1)) could also reflect fractionation processes, however, they have also been interpreted as an indication of significant microbial or algal sources of DOM. CPOM appears to be well preserved higher vascular plant material as evidenced by its modern radiocarbon age, elevated C:N (17.2–27.1) and Λ8 values (4.56–7.59 (mg(100 mg OC)-1)). In relation to CPOM, the aged FPOM fraction (320–580 ybp 14C ages) was comparatively degraded, as demonstrated by its nitrogen enrichment (C:N 11.4–14.3), lower Λ8 (2.80–4.31 (mg(100 mg OC)-1)) and elevated lignin Ad:Al values similar to soil derived OM. In this study we observed little modification of the OM signature from sample sites near the cities of Brazzaville and Kinshasa to the head of the estuary (~350 km) highlighting the potential for future studies to

  3. The effect of probe choice and solution conditions on the apparent photoreactivity of dissolved organic matter.

    Science.gov (United States)

    Maizel, Andrew C; Remucal, Christina K

    2017-08-16

    Excited triplet states of dissolved organic matter ( 3 DOM) are quantified directly with the species-specific probes trans,trans-hexadienoic acid (HDA) and 2,4,6-trimethylphenol (TMP), and indirectly with the singlet oxygen ( 1 O 2 ) probe furfuryl alcohol (FFA). Although previous work suggests that these probe compounds may be sensitive to solution conditions, including dissolved organic carbon concentration ([DOC]) and pH, and may quantify different 3 DOM subpopulations, the probes have not been systematically compared. Therefore, we quantify the apparent photoreactivity of diverse environmental waters using HDA, TMP, and FFA. By conducting experiments under ambient [DOC] and pH, with standardized [DOC] and pH, and with solid phase extraction isolates, we demonstrate that much of the apparent dissimilarity in photochemical measurements is attributable to solution conditions, rather than intrinsic differences in 3 DOM production. In general, apparent quantum yields (Φ 1 O 2 ≥ Φ 3 DOM,TMP ≫ Φ 3 DOM,HDA ) and pseudo-steady state concentrations ([ 1 O 2 ] ss > [ 3 DOM] ss,TMP > [ 3 DOM] ss,HDA ) show consistent relationships in all waters under standardized conditions. However, intrinsic differences in 3 DOM photoreactivity are apparent between DOM from diverse sources, as seen in the higher Φ 1 O 2 and lower Φ 3 DOM,TMP of wastewater effluents compared with oligotrophic lakes. Additionally, while conflicting trends in photoreactivity are observed under ambient conditions, all probes observe quantum yields increasing from surface wetlands to terrestrially influenced waters to oligotrophic lakes under standardized conditions. This work elucidates how probe selection and solution conditions influence the apparent photoreactivity of environmental waters and confirms that 3 DOM or 1 O 2 probes cannot be used interchangeably in waters that vary in [DOC], pH, or DOM source.

  4. Relationships between dissolved organic matter and discharge: New insights from in-situ measurements in a northern forested watershed

    Science.gov (United States)

    Pellerin, B. A.; Shanley, J. B.; Saraceno, J.; Aiken, G.; Sebestyen, S. D.; Bergamaschi, B. A.

    2012-12-01

    Quantifying the fundamental linkages between hydrology and dissolved organic matter (DOM) dynamics in streams and rivers is critical for understanding carbon loads, ecosystem food webs and metal transport. Accurately assessing this relationship is difficult, however, given that rapid changes in water flow paths and associated DOM sources are often not captured by traditional discrete sampling intervals of weeks to months. We explored DOM - discharge relationships at Sleepers River below a 40.5 hectare USGS research watershed in northern Vermont by making 30 minute chromophoric DOM fluorescence (FDOM) measurements in-situ since October 2008 along with periodic discrete sampling for dissolved organic carbon. There is a tight coupling between the timing of increases in FDOM and discharge at Sleepers during events, but the ratio of FDOM to discharge exhibited considerable variability across seasons and events, as did FDOM-discharge hysteresis (FDOM variously peaked 1-4 hours after streamflow). Discrete DOM quality indicators (spectral slope, fluorescence index, SUVA) indicate DOM was predominantly terrestrial at all but the lowest flows, highlighting the important role of DOM-rich terrestrial flow paths as the primary source of stream DOM. Our results suggest that changes in flow paths are likely to be the primary drivers of future changes in DOM transport from this site rather than changes in DOM quality. Overcoming significant challenges inherent in continuous sensor deployments in watersheds (e.g. ice cover, suspended particles, remote communication and power) will allow for new insights into watershed biogeochemistry.

  5. Effect of aluminium on dissolved organic matter mineralization in an allophanic and kaolinitic temperate rain forest soil

    Science.gov (United States)

    Merino, Carolina; Matus, Francisco; Fontaine, Sebastien

    2016-04-01

    Aluminium (Al) and it influence on the mineralization of dissolved organic matter (DOM) and thus on carbon (C) sequestration in forest soils is poorly understood. We hypothesized that an addition of Al to the soil solution beyond a molar Al:C ratio of 0.1, induces precipitation of the organic matter which leads to an excess Al in the soil solution causing an inhibitory effect for growing microorganisms. We investigated the effect of Al concentrations for the potential of C biodegradation at different Al:C ratios from DOM and Ah mineral soil horizons from two temperate rain forest soils from southern Chile. Dissolved organic matter and surface mineral horizons were incubated with initial molar Al:C ratio from 0.08 to 1.38 found under at field conditions. Mineralization was quantified by measurement of C-CO2 evolved during 15 days. Increasing the initial Al:C ratio > 0.12, led to a considerable reduction in mineralization (up to 70%). For Al:C ratio biodegradation of DOM and thus an increased in the C sequestration in mineral soils with molar Al:C ratio > 0.12. The observed DOM losses in the stream water of pristine southern forests can be explained by increasing the bioavailability of organic C for Al:C ratio < 0.12. Aluminium concentration had a marked effect at the spectral ART-FTIR bands assigned to cellulose-like and aromatic compounds in Ah mineral soil, diminishing the mineralization. The present results were also confirmed by the Al fluorescence using a confocal microscopy.

  6. Fundamentación de la pertinencia y factibilidad de la aplicación domótica mediante la tecnología Power Line Communications PLC para redes domésticas en el Ecuador.

    OpenAIRE

    Suárez Ramos, Diego Fernando

    2015-01-01

    En el presente trabajo se fundamenta la pertinencia y factibilidad de la aplicación domótica mediante la tecnología Power Line Communications PLC, para redes domésticas en el Ecuador. Demostrando que es posible utilizar esta tecnología en los hogares ecuatorianos como una alternativa en los sistemas domóticos existentes. Se presenta como ejemplo diseño para el control de un sistema de iluminación, integrándolo junto con un panel domótico en un domicilio la red eléctric existente.

  7. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  8. From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia

    Directory of Open Access Journals (Sweden)

    Rafael eGonçalves-Araujo

    2015-12-01

    Full Text Available Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like were identified by Parallel Factor Analysis (PARAFAC with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM and dissolved organic carbon (DOC were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.

  9. Lessons Learned from 2 Decades of Modelling Forest Dead Organic Matter and Soil Carbon at the National Scale

    Science.gov (United States)

    Shaw, C.; Kurz, W. A.; Metsaranta, J.; Bona, K. A.; Hararuk, O.; Smyth, C.

    2017-12-01

    The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is a forest carbon budget model that operates on individual stands. It is applied from regional to national-scales in Canada for national and international reporting of GHG emissions and removals and in support of analyses of forest sector mitigation options and other scientific and policy questions. This presentation will review the history and continuous improvement process of representations of dead organic matter (DOM) and soil carbon modelling. Early model versions in which dead organic matter (DOM) pools only included litter, downed deadwood and soil, to the current version where these pools are estimated separately to better compare model estimates against field measurements, or new pools have been added. Uncertainty analyses consistently point at soil C pools as large sources of uncertainty. With the new ground plot measurements from the National Forest Inventory, and with a newly compiled forest soil carbon database, we have recently completed a model data assimilation exercise that helped reduce parameter uncertainties. Lessons learned from the continuous improvement process will be summarised and we will discuss how model modification have led to improved representation of DOM and soil carbon dynamics. We conclude by suggesting future research priorities that can advance DOM and soil carbon modelling in Canadian forest ecosystems.

  10. The influence of DOM and microbial processes on arsenic release from karst during ASR operations in the Floridan Aquifer

    Science.gov (United States)

    Jin, J.; Zimmerman, A. R.

    2011-12-01

    The mobilization of subsurface As poses a serious threat to human health, particularly in a region such as Florida where population is heavily dependent on highly porous karstic aquifers for drinking water. Injection water used in aquifer storage and recovery (ASR) or aquifer recharge (AR) operations is commonly high in dissolved organic matter (DOM) and OM can also be present in the subsurface carbonate rock. Using batch incubation experiments, this study examined the role of core preservation methods, as well as the influence of labile and more refractory DOM on the mobilization of As from carbonate rock. Incubation experiments used sealed reaction vessels with preserved and homogenized core materials collected via coring the Suwannee Formation in southwest Florida and treatment additions consisting of 1) source water (SW) enriched in sterilized soil DOM, 2) SW enriched in soil DOM and microbes, and 3) SW enriched in sodium acetate. During an initial equilibration phase in native groundwater (NGW) with low dissolved oxygen (DO; Phase 1), we found the greatest As release of the whole incubation. In the beginning of Phase 2 (N2 headspace) in which NGW was replaced with treatment solutions, there was little As release except in the vessel with Na-acetate added, which also had the lowest ORP. At the start of Phase 3, when incubations were exposed to air, most vessels saw more ion (including As) release into solution. Vessel with Na-acetate had less As release in Phase 3 than in Phase 2. During all experimental phases, treatments of DOM or microbe additions had no apparent effect on the amount of As release. The core materials was found contain significant amount of indigenous DOM (about 8 g OC/kg core) which was released during the incubation so DOC concentrations displayed no clear pattern among different treatments. At least three abiotic As mobilization mechanisms may play a role in As released during different stages of the experiment. Desorption of As from iron

  11. Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems

    Science.gov (United States)

    Korak, J.

    2017-12-01

    Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.

  12. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    Science.gov (United States)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular

  13. Seasonal variations in dissolved organic matter composition using absorbance and fluorescence spectroscopy in the Dardanelles Straits - North Aegean Sea mixing zone

    Science.gov (United States)

    Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael

    2017-10-01

    The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.

  14. Variations of DOM quality in inflows of a drinking water reservoir: linking of van Krevelen diagrams with EEMF spectra by rank correlation.

    Science.gov (United States)

    Herzsprung, Peter; von Tümpling, Wolf; Hertkorn, Norbert; Harir, Mourad; Büttner, Olaf; Bravidor, Jenny; Friese, Kurt; Schmitt-Kopplin, Philippe

    2012-05-15

    Elevated concentrations of dissolved organic matter (DOM) such as humic substances in raw water pose significant challenges during the processing of the commercial drinking water supplies. This is a relevant issue in Saxony, Central East Germany, and many other regions worldwide, where drinking water is produced from raw waters with noticeable presence of chromophoric DOM (CDOM), which is assumed to originate from forested watersheds in spring regions of the catchment area. For improved comprehension of DOM molecular composition, the seasonal and spatial variations of humic-like fluorescence and elemental formulas in the catchment area of the Muldenberg reservoir were recorded by excitation emission matrix fluorescence (EEMF) and ultrahigh-resolution mass spectrometry (FT-ICR-MS). The Spearman rank correlation was applied to link the EEMF intensities with exact molecular formulas and their corresponding relative mass peak abundances. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids, which are suspected to have a comparatively high disinfection byproduct formation potential associated with the chlorination of raw water. Analogous relationships were established for UV absorption at 254 nm (UV(254)) and dissolved organic carbon (DOC) and compared to the EEMF correlation.

  15. Isolation and characterization of dissolved organic matter from the Callovo-Oxfordian formation

    International Nuclear Information System (INIS)

    Courdouan, Amandine; Christl, Iso; Meylan, Sebastien; Wersin, Paul; Kretzschmar, Ruben

    2007-01-01

    Characterizing dissolved organic matter (DOM) in the pore water of the Callovo-Oxfordian formation, a potential host rock for the disposal of radioactive waste, is important to estimate its potential influence on the mobility of radionuclides in the rock. To isolate DOM, crushed rock material was extracted under anoxic conditions with deionized water, 0.1 M NaOH and synthetic pore water (SPW, water containing all major ions at pore water concentrations but no organic matter), respectively. The effects of extraction parameters on the extracted DOM including the solid-to-liquid ratio, extraction time, exposure to O 2 and acid pretreatment of the rock material prior to the anoxic extraction were evaluated. In addition, DOM in one of the first pore water samples collected in the underground rock laboratory at Bure (France) was characterized for comparison. The size distribution and the low molecular weight organic acid contents of the extracts and pore water DOM were determined by liquid chromatography coupled with an organic C detector (LC-OCD) and by ion chromatography. The results revealed that only a fraction of less than 1.2% of the total organic C present in the rock was extractable. Maximum dissolved organic C (DOC) concentrations in the anoxic extracts ranged from 5.5 ± 0.3 mg/L for SPW extracts to 14.2 ± 1.1 mg/L for 0.1 M NaOH extracts. The major portion of the DOC in the anoxic extracts consisted of hydrophilic compounds (48-78%) having a molecular weight of less than 500 Da. Up to 21% of DOC in the anoxic extracts was identified as acetate, formate, lactate and malate. The short-term exposure of rock material to O 2 during rock crushing strongly increased DOC concentrations and led to a shift towards smaller molecular weight compounds and to a higher low molecular weight organic acid (LMWOA) content as compared to the strictly anoxic extraction. The pore water sampled from a packed-off borehole exhibited a higher DOC concentration (56.7 mg/L) than the

  16. Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment.

    Science.gov (United States)

    Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz

    2017-09-15

    Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Trabajadoras domésticas nicaraguenses en Costa Rica: un camino tortuoso hacia el reconocimiento

    Directory of Open Access Journals (Sweden)

    Alexandra Bonnie

    2010-12-01

    Full Text Available El trabajo doméstico es un sector históricamente vulnerable: se considera a menudo como precario, mal retribuido, inseguro y desprotegido. Los y las trabajadores/as domésticos/as sufren discriminación, aún más cuando son mujeres y extranjeros.El presente artículo pretende estudiar las condiciones laborales de las trabajadoras domésticas en Costa Rica frente a dos importantes evoluciones jurídicas recientes: la reforma del capítulo VIII del Código de Trabajo, relativo al trabajo doméstico remunerado, en 2009, y la entrada en vigor de la nueva Ley General de Migracióny Extranjería, en 2010, que afecta a las trabajadoras domésticas migrantes. Como en otros países, las trabajadoras domésticas nacionales y migrantes se organizaron para obtener el reconocimiento de sus derechos laborales, lo que se concretó en el año 2009 con la reforma del Código de Trabajo, considerado como discriminatorio.Esto fue un gran paso para el mejoramiento de su condición, y se destaca el rol importante que tuvo la Asociación de Trabajadoras Domésticas (ASTRADOMES.Sin embargo, la modificación de la normativa no se concreta de igual manera para todas las trabajadoras domésticas. Persisten situaciones de vulnerabilidad y abusos, sobre todo en el caso de las trabajadoras migrantes nicaragüenses. Ello conduce a plantear la necesidad de implementar una política pública integral que atiende a las necesidades de las personas cualquiera sea su nacionalidad y estatus migratorio.El estudio está basado en el análisis de fuentes secundarias tanto académicas como jurídicas. Se complementó la información con entrevistas semiestructuradas a informantes clave, incluyendo a representantes de trabajadoras domésticas.

  18. Chromophoric Dissolved Organic Matter across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Berman, S. L.; Frey, K. E.; Shake, K. L.; Cooper, L. W.; Grebmeier, J. M.

    2014-12-01

    Dissolved organic matter (DOM) plays an important role in marine ecosystems as both a carbon source for the microbial food web (and thus a source of CO2 to the atmosphere) and as a light inhibitor in marine environments. The presence of chromophoric dissolved organic matter (CDOM; the optically active portion of total DOM) can have significant controlling effects on transmittance of sunlight through the water column and therefore on primary production as well as the heat balance of the upper ocean. However, CDOM is also susceptible to photochemical degradation, which decreases the flux of solar radiation that is absorbed. Knowledge of the current spatial and temporal distribution of CDOM in marine environments is thus critical for understanding how ongoing and future changes in climate may impact these biological, biogeochemical, and physical processes. We describe the quantity and quality of CDOM along five key productive transects across a developing Distributed Biological Observatory (DBO) in the Pacific Arctic region. The samples were collected onboard the CCGS Sir Wilfred Laurier in July 2013 and 2014. Monitoring of the variability of CDOM along transects of high productivity can provide important insights into biological and biogeochemical cycling across the region. Our analyses include overall concentrations of CDOM, as well as proxy information such as molecular weight, lability, and source (i.e., autochthonous vs. allochthonous) of organic matter. We utilize these field observations to compare with satellite-derived CDOM concentrations determined from the Aqua MODIS satellite platform, which ultimately provides a spatially and temporally continuous synoptic view of CDOM concentrations throughout the region. Examining the current relationships among CDOM, sea ice variability, biological productivity, and biogeochemical cycling in the Pacific Arctic region will likely provide key insights for how ecosystems throughout the region will respond in future

  19. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    Science.gov (United States)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  20. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  1. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. © 2012 Elsevier B.V.

  2. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    Science.gov (United States)

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Hurricane Matthew's Effects on Wetland Sources of Organic Matter to North Carolina Coastal Waters.

    Science.gov (United States)

    Rudolph, J. C.; Osburn, C. L.; Paerl, H. W.; Hounshell, A.

    2017-12-01

    Increased frequency and intensity of storm events such as tropical cyclones will have a major impact on estuarine and coastal biogeochemical cycling. Here, we determined the sources of dissolved and particulate organic matter (DOM and POM) as part of a larger study to quantify the short-term (several months) response of carbon and nitrogen cycling in the Neuse River Estuary-Pamlico Sound (NRE-PS) ecosystem to floodwaters associated with Hurricane Matthew. Sampling was conducted weekly in both the NRE-PS (October 2016 to January 2017), the Neuse River (NR) (October to December 2016) and in freshwater wetlands of the Neuse River above head of tide in March 2017. Specific ultraviolet (UV) absorbance at 254 nm (SUVA254) and stable carbon isotope ratios (δ13C-DOC) were used to determine the sources of DOM and POM transported to the NRE-PS in post-hurricane floodwaters. For DOM, SUVA254 values increased from 3.23 ±0.52 mg C L-1 m-1 in the NR to 4.14±0.52 mg C L-1 m-1 in the NRE and then declined to 3.63±0.32 mg C L-1 m-1 in PS. Combined with depleted δ13C-DOC values (-26 to -32‰) and elevated C:N values in the estuary and sound, these results confirm continued loading of fresh terrestrial organic matter into NRE-PS weeks after the storm. For POM, δ13C-POC and C:N ratio results likewise indicated a terrestrial source in floodwaters. SUVA254 values >3.5 mg C L-1 m-1 coupled with the depleted δ13C values and large C:N values were consistent with DOM primarily sourced from wetlands (e.g., wetland SUVA254 = 3.77±0.52 mg C L-1 m-1 in March 2017). We hypothesize that floodwaters connected riverine wetlands to the main channel of the NR, exporting DOM and POM into the NRE-PS. Our results indicate that upstream wetlands play a central and potentially significant role in organic matter enrichment and metabolism of estuarine and coastal waters, in light of increasing frequencies and intensities of tropical cyclones impacting coastal watersheds.

  4. Use of ESI-FTICR-MS to Characterize Dissolved Organic Matter in Headwater Streams Draining Forest-Dominated and Pasture-Dominated Watersheds.

    Directory of Open Access Journals (Sweden)

    YueHan Lu

    Full Text Available Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%, with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7-1.5, O/C = 0.1-0.67, suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5-2.2, O/C = 0.3-0.67, lipid (H/C = 1.5-2.0, O/C = 0-0.3, and unsaturated hydrocarbon (H/C = 0.7-1.5, O/C = 0-0.1 being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light

  5. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    Science.gov (United States)

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  6. Trials and Tribulations of Fluorescent Dissolved Organic Matter Chemical Interpretations: A case study of polar ice cores

    Science.gov (United States)

    D'Andrilli, J.

    2017-12-01

    Excitation emission matrix fluorescence spectroscopy is widely applied for rapid dissolved organic matter (DOM) characterization in aquatic systems. Fluorescent DOM surveys are booming, not only as a central focus in aquatic environments, but also as an important addition to interdisciplinary research (e.g., DOM analysis in concert with ice core paleoclimate reconstructions, stream metabolism, hydrologic regimes, agricultural developments, and biological activity), opening new doors, not just for novelty, but also for more challenges with chemical interpretations. Recently, the commonly used protein- versus humic-like classifications of DOM have been ineffective at describing DOM chemistry in various systems (e.g., ice cores, wastewaters, incubations/engineered). Moreover, the oversimplification of such classifications used to describe fluorescing components, without further scrutiny, has become commonplace, ultimately producing vague reporting. For example, West Antarctic ice core DOM was shown to contain fluorescence in the low excitation/emission wavelength region, however resolved fluorophores depicting tyrosine- and tryptophan-like DOM were not observed. At first, as literature suggested, we reported this result as protein-like, and concluded that microbial contributions were dominant in deep ice. That initial interpretation would disintegrate the conservation paradigm of atmospheric composition during deposition, the crux of ice core research, and contradict other lines of evidence. This begged the question, "How can we describe DOM chemistry without distinct fluorophores?" Antarctic ice core DOM was dominated by neither tyrosine- nor tryptophan-like fluorescence, causing "unusual" looking fluorescent components. After further examination, deep ice DOM was reported to contain fluorescent species most similar to monolignols and tannin-like phenols, describing the precursors of lignin from low carbon producing environments, consistent with marine sediment

  7. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil

    NARCIS (Netherlands)

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but

  8. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen

    2017-03-15

    The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Photocatalytic degradation of dissolved organic matter in the ground water employing TiO2 film supported on stainless steel plate

    International Nuclear Information System (INIS)

    Andayani, W.; Sumartono, A.; Lindu, M.

    2012-01-01

    The Taman Palem Residences, Cengkareng, Indonesia has a groundwater problem as a main sources of drinking water in the area due to yellowish brown colour of the water, that may come from dissolved organic matter (DOM), humic substances. Photocatalytic degradation using TiO 2 coated on a stainless steel plate (8 x 8 cm) to degrade the dissolved organic matter was studied. Groundwater samples were collected at 150 m deep from Taman Palem Residences. The TiO 2 catalyst was made from deep coating in a sol-gel system of titanium (IV) diisopropoxidebisacetylacetonate (TAA) precursor and immobilized at stainless steel plate (8 x 8 cm), followed by calcination at 525°C. Two catalyst sheets were put in batch reactor containing groundwater. The ground water containing DOM were irradiated by UV black light at varying initial pH values i.e 5, 7 and 9. Sampling of solution was taken at the interval time of 0, 1, 2, 4, and 6 hours. DOM residu in water before and after irradiation were measured by spectrophotometer UV-Vis at 300 nm. Photocatalytic degradation of DOM was greater in acid solution than in basic solution. The determination of intermediate degradation products by HPLC revealed that oxalic acid was detected consistently. (author)

  10. Spatial variation of dissolved organic matter composition and characteristics in an urbanized watershed

    Science.gov (United States)

    Hsieh, C.; Li, M.

    2013-12-01

    Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their

  11. Trabalho dom?stico: uma an?lise das condi??es de trabalho das empregadas dom?sticas sindicalizadas do munic?pio de Jo?o Pessoa-PB

    OpenAIRE

    Barbosa, Luciana C?ndido

    2013-01-01

    A presente disserta??o tem como objeto de estudo o emprego dom?stico na cidade de Jo?o Pessoa, buscando investigar as condi??es de trabalho das empregadas dom?sticas sindicalizadas do munic?pio de Jo?o Pessoa; ?s dificuldades enfrentadas no trabalho e se a menor qualifica??o e remunera??o dessas empregadas est?o assentadas na perman?ncia do machismo, do racismo e da pobreza na sociedade. Apresenta o contexto hist?rico da categoria g?nero e do feminismo brasileiro, uma leitur...

  12. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    Science.gov (United States)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by

  13. Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR).

    Science.gov (United States)

    Zhang, Dongqing; Trzcinski, Antoine Prandota; Luo, Jinxue; Stuckey, David C; Tan, Soon Keat

    2018-02-01

    In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.

  14. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Género, trabajo doméstico y extradoméstico en México. Una estimación del valor económico del trabajo doméstico

    Directory of Open Access Journals (Sweden)

    Mercedes Pedrero Nieto

    2004-01-01

    Full Text Available La discusión sobre la importancia del trabajo doméstico no remunerado tiene ya varios decenios, así como sus efectos sobre la participación en el trabajo extradoméstico, particularmente porque frena a las mujeres para realizar actividades destinadas al mercado. Sin embargo, fue apenas en la última década cuando en el contexto internacional comenzaron a realizarse esfuerzos sistemáticos para hacer visible y medir el trabajo doméstico y registrarlo en las estadísticas oficiales. Las fronteras entre lo que se considera doméstico y extradoméstico no han sido estáticas, lo cual obliga a hacer una revisión conceptual permanente y a diseñar metodologías que permitan cuantificar la valoración económica del trabajo doméstico. En este artículo se emprende, primero, un recorrido conceptual, para finalizar con la presentación de algunos resultados obtenidos para México por la Encuesta Nacional sobre Uso del Tiempo de 2002. Se muestra la participación diferencial de hombres y mujeres en los dos tipos de trabajo, y se destaca sobre todo las discrepancias en el tiempo dedicado al trabajo doméstico por los hombres y por las mujeres. Finalmente se presenta un ejercicio de medición para demostrar que no se trata de una contribución marginal, pues su valor supera al de varios sectores económicos.

  16. Mercury reduction and complexation by natural organic matter

    International Nuclear Information System (INIS)

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10 6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  17. Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems.

    Science.gov (United States)

    Wu, Haiming; Zou, Yina; Lv, Jialong; Hu, Zhen

    2018-08-01

    Aquaponics as a potential alternative for conventional aquaculture industry has increasingly attracted worldwide attention in recent years. However, the sustainable application of aquaponics is facing a growing challenge. In particular, there is a pressing need to better understand and control the accumulation of dissolved organic matter (DOM) in aquaponics with the aim of optimizing nitrogen utilization efficiency. This study was aiming for assessing the characteristics of DOM in the culture water and the relationship with the nitrogen transformations in different intensified aquaponic systems with hydroponic aeration supplement and polylactic acid (PLA) addition. Two enhancing attempts altered the quantity of DOM in aquaponic systems significantly with a varying DOM content of 21.98-45.65 mg/L. The DOM could be represented by four identified fluorescence components including three humic -like materials (83-86%) and one tryptophan-like substance (14-17%). The fluorescence intensities of humic acid-like components were decreased significantly after the application of intensifying strategies, which indicating that two enhancing attempts possibly affected humic acid-like fluorescence. Variation of optical indices also suggested the reductions of water DOM which could be impacted by the enhancing nitrogen treatment processes. These findings will benefit the potential applications and sustainable operation of these strategies in aquaponics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Comparison of the chemical composition of dissolved organic matter in three lakes in Minnesota

    Science.gov (United States)

    Cao, Xiaoyan; Aiken, George R.; Butler, Kenna D.; Mao, Jingdong; Schmidt-Rohr, Klaus

    2018-01-01

    New information on the chemical composition of dissolved organic matter (DOM) in three lakes in Minnesota has been gained from spectral editing and two-dimensional nuclear magnetic resonance (NMR) methods, indicating the effects of lake hydrological settings on DOM composition. Williams Lake (WL), Shingobee Lake (SL), and Manganika Lake (ML) had different source inputs, and the lake water residence time (WRT) of WL was markedly longer than that of SL and ML. The hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions combined comprised >50% of total DOM in these lakes, and contained carboxyl-rich alicyclic molecules (CRAM), aromatics, carbohydrates, and N-containing compounds. The previously understudied TPIA fractions contained fewer aromatics, more oxygen-rich CRAM, and more N-containing compounds compared to the corresponding HPOA. CRAM represented the predominant component in DOM from all lakes studied, and more so in WL than in SL and ML. Aromatics including lignin residues and phenols decreased in relative abundances from ML to SL and WL. Carbohydrates and N-containing compounds were minor components in both HPOA and TPIA and did not show large variations among the three lakes. The increased relative abundances of CRAM in DOM from ML, SL to WL suggested the selective preservation of CRAM with increased residence time.

  19. Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific.

    Directory of Open Access Journals (Sweden)

    Mar Benavides

    Full Text Available Dinitrogen (N2 fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1 and Solomon (Transect 2 Seas (Southwest Pacific. Transparent exopolymer particles (TEP and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM compounds containing nitrogen (N and phosphorus (P were higher on Transect 1 than on Transect 2, while oxygen concentrations showed an opposite pattern. N2 fixation rates (up to ~1 nmol N L-1 d-1 were higher in Transect 1 than in Transect 2, and correlated positively with TEP, suggesting a dependence of diazotroph activity on organic matter. The scores of the multivariate ordination of DOM molecular formulae and their relative abundance correlated negatively with bacterial abundances and positively with N2 fixation rates, suggesting an active bacterial exploitation of DOM and its use to sustain diazotrophic activity. Sequences of the nifH gene clustered with Alpha-, Beta-, Gamma- and Deltaproteobacteria, and included representatives from Clusters I, III and IV. A third of the clone library included sequences close to the potentially anaerobic Cluster III, suggesting that N2 fixation was partially supported by presumably particle-attached diazotrophs. Quantitative polymerase chain reaction (qPCR primer-probe sets were designed for three phylotypes and showed low abundances, with a phylotype within Cluster III at up to 103 nifH gene copies L-1. These results provide new insights into the ecology of non-cyanobacterial diazotrophs and suggest that organic matter sustains their activity in the mesopelagic ocean.

  20. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China.

    Science.gov (United States)

    Jiang, Tao; Wang, Dingyong; Wei, Shiqiang; Yan, Jinlong; Liang, Jian; Chen, Xueshuang; Liu, Jiang; Wang, Qilei; Lu, Song; Gao, Jie; Li, Lulu; Guo, Nian; Zhao, Zheng

    2018-04-26

    Dissolved organic matter (DOM) is a crucial driver of various biogeochemical processes in aquatic systems. Thus, many lakes and streams have been investigated in the past several decades. However, fewer studies have sought to understand the changes in DOM characteristics in the waters of the Three Gorges Reservoir (TGR) areas, which are the largest artificial reservoir areas in the world. Thus, a field investigation of dissolved organic carbon (DOC) concentrations and of chromophoric dissolved organic matter (CDOM) properties was conducted from 2013 to 2015 to track the spatial-temporal variability of DOM properties in the TGR areas. The results showed that the alternations of wet and dry periods due to hydrological management have a substantial effect on the quantity and quality of aquatic DOM in TGR areas. Increases in DOC concentrations in the wet period show an apparent "dilution effect" that decreases CDOM compounds with relatively lower aromaticity (i.e., SUVA 254 ) and molecular weight (i.e., S R ). In contrast to the obvious temporal variations of DOM, significant spatial variability was not observed in this study. Additionally, DOM showed more terrigenous characteristics in the dry period but weak terrigenous characteristics in the wet period. Furthermore, the positive correlation between SUVA 254 and CDOM suggests that the aromatic component controls the CDOM dynamics in TGR areas. The first attempt to investigate the DOM dynamics in TGR areas since the Three Gorges Dam was conducted in 2012, and the unique patterns of spatial-temporal variations in DOM that are highlighted in this study might provide a new insight for understanding the role of DOM in the fates of contaminants and may help in the further management of flow loads and water quality in the TGR area. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Origin, enzymatic response and fate of dissolved organic matter during flood and non-flood conditions in a river-floodplain system of the Danube (Austria).

    Science.gov (United States)

    Sieczko, Anna; Peduzzi, Peter

    2014-01-01

    Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l -1 and CDOM from 2.94 to 14.32 m -1 . The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.

  2. Dissolved Organic Matter Influences N2 Fixation in the New Caledonian Lagoon (Western Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Mar Benavides

    2018-03-01

    Full Text Available Specialized prokaryotes performing biological dinitrogen (N2 fixation (“diazotrophs” provide an important source of fixed nitrogen in oligotrophic marine ecosystems such as tropical and subtropical oceans. In these waters, cyanobacterial photosynthetic diazotrophs are well known to be abundant and active, yet the role and contribution of non-cyanobacterial diazotrophs are currently unclear. The latter are not photosynthetic (here called “heterotrophic” and hence require external sources of organic matter to sustain N2 fixation. Here we added the photosynthesis inhibitor 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU to estimate the N2 fixation potential of heterotrophic diazotrophs as compared to autotrophic ones. Additionally, we explored the influence of dissolved organic matter (DOM on these diazotrophs along a coast to open ocean gradient in the surface waters of a subtropical coral lagoon (New Caledonia. Total N2 fixation (samples not amended with DCMU ranged from 0.66 to 1.32 nmol N L−1 d−1. The addition of DCMU reduced N2 fixation by >90%, suggesting that the contribution of heterotrophic diazotrophs to overall N2 fixation activity was minor in this environment. Higher contribution of heterotrophic diazotrophs occurred in stations closer to the shore and coincided with the decreasing lability of DOM, as shown by various colored DOM and fluorescent DOM (CDOM and FDOM indices. We tested the response of diazotrophs (in terms of nifH gene expression and bulk N2 fixation rates upon the addition of a mix of carbohydrates (“DOC” treatment, amino acids (“DON” treatment, and phosphonates and phosphomonesters (“DOP” treatment. While nifH expression increased significantly in Trichodesmium exposed to the DOC treatment, bulk N2 fixation rates increased significantly only in the DOP treatment. The lack of nifH expression by gammaproteobacteria, in any of the DOM addition treatments applied, questions the contribution of non

  3. Tracking Changes in Dissolved Organic Matter Patterns in Perennial Headwater Streams Throughout a Hydrologic Year Using In-situ Sensors and Optical Properties

    Science.gov (United States)

    Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.

    2015-12-01

    Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information

  4. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Science.gov (United States)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  5. TAILORING ACTIVATED CARBONS FOR ENHANCED REMOVAL OF NATURAL ORGANIC MATTER FROM NATURAL WATERS. (R828157)

    Science.gov (United States)

    Several pathways have been employed to systematically modify two granular activated carbons (GACs), F400 (coal-based) and Macro (wood-based), for examining adsorption of dissolved natural organic matter (DOM) from natural waters. A total of 24 activated carbons with different ...

  6. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data

    Science.gov (United States)

    Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...

  7. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  8. Organic matter linked radionuclide transport in Boom clay - Phenomenological understanding and abstraction to PA

    International Nuclear Information System (INIS)

    Maes, N.; Bruggeman, C.; Liu, D.J.; Salah, S.; Van Laer, L.; Wang, L.; Weetjens, E.; Govaerts, J.; Marivoet, J.; Brassinnes, S.

    2012-01-01

    Document available in extended abstract form only. In the frame of the Belgian research program on long term management of high-level and/or long-lived radioactive wastes coordinated by ONDRAF/NIRAS, plastic clays (i.e., Boom Clay and Ypresian clays) are investigated for their potential to host a deep geological disposal repository for radioactive waste because of, among others, their ability to significantly retard radionuclide releases to the biosphere. The Boom Clay is characterised by the presence of a relatively high amount of dissolved organic matter (DOM, humic substances) which show a strong interaction with a suite of radionuclides (RN) like lanthanides, actinides and transition metals. This interaction with DOM leads in general to an increased mobility of the radionuclide as the OM can act as a colloidal carrier for the radionuclide. Therefore, the quantification and the understanding of the underlying processes are needed for the demonstration of confidence in the host formation to act as a suitable barrier. However, this is not an easy task, given the multitude of processes involved: complexation/colloid formation, sorption, kinetics, filtration, -. In this presentation, we will provide an overview of the research work that leads to a straightforward reactive transport model capturing fairly well the experimental observations. The model can be considered as an intermediate model providing a good basis for further safety abstraction on the one hand and the way to a more detailed phenomenological understanding on the other hand. The research is focussed on the underlying processes that govern speciation, sorption and transport. These underlying processes are investigated in a bottom-up approach, from simple systems to more complex systems. Interpretation is done using thermodynamic based models. Whereas the contribution of Bruggeman et al. focusses mainly on (batch) sorption studies (of trivalent RN), this presentation will provide more details on the

  9. Effects of Particulate Organic Matter Complexation and Photo-Irradiation on the Fate and Toxicity of Mercury(II) in Aqueous Systems

    Science.gov (United States)

    Gelfond, C. E.; Kocar, B. D.; Carrasquillo, A. J.

    2015-12-01

    This project investigates how interactions between mercury (Hg) and particulate organic matter (POM) affect the fate, transport, and toxicity of Hg in the environment. Previous studies have evaluated the coordination of dissolved organic matter (DOM) with Hg, but the coordination of POM with Hg has not been thoroughly addressed. Owing to a high density of reactive functional groups, POM will sorb appreciable quantities of Hg, resulting in a large pool of Hg susceptible to organic matter dependent transformations. Particulate organic carbon is also susceptible photolysis, hence chemical changes induced by irradiation by natural sunlight is also important. Further, photo-reduction of Hg(II) to elemental mercury in the presence of DOM has been observed, yet studies examining this process with Hg(II) complexed to POM are less exhaustive. Here, we illustrate that POM derived from fresh plant detritus is a powerful sorbent of Hg(II), and sorbent properties are altered during POM photolysis. Further, we examine redox transformations of Hg(II), and examine functional groups that contribute to mercury association with POM. Batch sorption isotherms of Hg to dark and irradiated POM from ground Phragmites australis ("common reed") were performed and data was collected using ICP-MS. Coordination of Hg to POM was lower in the irradiated samples, resulting from the decrease in Hg-associated (reduced) sulfur bearing functional groups as measured using X-ray adsorption near-edge spectroscopy (XANES) and extended x-ray adsorption fine structure (EXAFS). Further analysis of the dark and irradiated POM was performed using FT-IR microscopy and STXM to determine changes in distribution and alteration of functional groups responsible for Hg sorption to POM.

  10. Estado actual y perspectivas de la domótica

    Directory of Open Access Journals (Sweden)

    Recuero, A.

    1999-02-01

    Full Text Available An Intelligent House is the one that allows "a better quality of living through technology, a reduction of domestic tasks, an increase of the well-being and safety of dwellers, and a rationalization of the different consumers power; it includes automatized groups of equipments, usually associated by functions, which have the capacity of interactively communicate between them through an "integrated multimedia domestic bus". For this purpose, the Intelligent House foresees the execution of certain functions, depending on the information captured by measuring systems and sent through the communication network according to specific standards. This paper presents an overview of the present situation regarding these aspects, and their foreseen evolution.

    Una vivienda domótica es aquélla que, a través de la tecnología, permite "una mayor calidad de vida, una reducción del trabajo doméstico, un aumento del bienestar y la seguridad de sus habitantes, y una racionalización de los distintos consumos; en ella existen agrupaciones automatizadas de equipos, normalmente asociadas por funciones, que tienen la capacidad de comunicarse interactivamente entre ellas a través de un "bus doméstico multimedia que las integra ". Para ello, la Domótica prevé la ejecución de ciertas funciones, dependiendo de la información captada por sistemas de medida y trasmitidas a través de redes de comunicación de acuerdo con ciertos estándares. En este trabajo se revisa cuál es la situación actual de estos aspectos y cuál es su evolución previsible.

  11. Inner filter correction of dissolved organic matter fluorescence

    DEFF Research Database (Denmark)

    Kothawala, D.N.,; Murphy, K.R.; Stedmon, Colin

    2013-01-01

    The fluorescence of dissolved organic matter (DOM) is suppressed by a phenomenon of self-quenching known as the inner filter effect (IFE). Despite widespread use of fluorescence to characterize DOM in surface waters, the advantages and constraints of IFE correction are poorly defined. We assessed...... the effectiveness of a commonly used absorbance-based approach (ABA), and a recently proposed controlled dilution approach (CDA) to correct for IFE. Linearity between corrected fluorescence and total absorbance (ATotal; the sum of absorbance at excitation and emission wavelengths) across the full excitation......-emission matrix (EEM) in dilution series of four samples indicated both ABA and CDA were effective to an absorbance of at least 1.5 in a 1 cm cell, regardless of wavelength positioning. In regions of the EEMs where signal to background noise (S/N) was low, CDA correction resulted in more variability than ABA...

  12. HIGH RESOLUTION SEAMLESS DOM GENERATION OVER CHANG'E-5 LANDING AREA USING LROC NAC IMAGES

    Directory of Open Access Journals (Sweden)

    K. Di

    2018-04-01

    Full Text Available Chang’e-5, China’s first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM generation, and presents the mapping result of Chang’e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude and is tied to the widely used reference DEM – SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  13. High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images

    Science.gov (United States)

    Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.

    2018-04-01

    Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  14. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters.

    Science.gov (United States)

    Wang, Qiongjie; Li, Aimin; Wang, Jinnan; Shuang, Chengdong

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water. The effect of water quality (pH, temperature, ionic strength, etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated. Among the four studied MAERs, the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time. The MAERs could also effectively remove inorganic matter such as sulfate, nitrate and fluoride. Because of the higher specific UV absorbance (SUVA) value, the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin. The temperature showed a weak influence on the removal of DOC from 6 to 26 degrees C, while a relatively strong one at 36 degrees C. The removal of DOM by NDMP was also affected to some extent by the pH value. Moreover, increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  15. [Linking optical properties of dissolved organic matter with NDMA formation potential in the Huangpu River].

    Science.gov (United States)

    Dong, Qian-Qian; Zhang, Ai; Li, Yong-Mei; Chen, Ling; Huang, Qing-Hui

    2014-03-01

    Surface water samples from the Huangpu River were filtered to measure the UV absorption and fluorescence spectrum. Dissolved organic carbon (DOC), N-nitrosodimethylamine (NDMA), and its formation potential (NDMA-FP) were also analyzed to explore relationships between the properties of dissolved organic matter (DOM) and the formation potential of disinfection byproducts-NDMA in the Huangpu River. The study found that: NDMA-FP concentration increased with the increasing of DOC concentration (r = 0.487, P NDMA-FP concentration had positive relationships with the fluorescence intensity of protein-like substances such as low-molecular-weight (LMW) tyrosine-like and tryptophan-like substances (r = 0.421, P NDMA formation potential increases with the increasing DOM content in the Huangpu River, which is significantly related with the protein-like substances, but decreases with the increasing aromaticity and humification of DOM.

  16. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. Copyright © 2014. Published by Elsevier B.V.

  17. "Baltiiski dom 2008" : uvelitshitelnoje steklo / Eteri Kekelidze

    Index Scriptorium Estoniae

    Kekelidze, Eteri, 1944-

    2008-01-01

    Peterburis toimunud kaheksteistkümnenda rahvusvahelise teatrifestivali "Baltiiski dom" lavastustest - Kristian Smedsi "Tundmatu sõdur", Alvis Hermanise "Läti rong", Luk Percevali "Kaubareisija surm", Igor Konjajevi "Matke mind põrandaliistu taha" ja Andrzej Bubeni "Vene moos". Ka teater NO99 osalemisest Tiit Ojasoo lavastusega "GEP"

  18. Chasing storms in an agricultural catchment: the stream DOM story

    Science.gov (United States)

    Hernes, P. J.; Spencer, R. G.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Dyda, R. Y.; Bergamaschi, B. A.

    2011-12-01

    Storm events are notorious for mobilizing large amounts of dissolved and particulate substances in streams and rivers. Conversion of natural landscapes to agricultural land-use can significantly amplify this effect. We investigated the impacts of two storm events on stream dissolved organic matter (DOM) in 2008 in Willow Slough, a California/Sacramento Valley agricultural catchment. The tools utilized included carbon stable isotopes, fluorescence, ultraviolet-visible absorbance, lignin, disinfection byproduct formation potential, and biodegradation experiments. Dissolved organic carbon (DOC) concentrations at the mouth at peak discharge during the storms ranged from 9-10 mg/L compared to baseline conditions of 2-4 mg/L. Other storm effects included increased dissolved organic nitrogen, depleted carbon stable isotopes, increased humic fluorescence intensity, increased specific UV absorbance (SUVA), decreased spectral slopes, increased bioavailability, and increased carbon-normalized yields of lignin. Increased frequency and intensity of storms due to climate change are likely to have a non-linear effect on riverine exports and water quality, with subsequent impacts on carbon loading, mercury transport, and drinking water quality.

  19. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  20. Disseny d'una central domòtica

    OpenAIRE

    Penelo Arias, Òscar

    2012-01-01

    Avui en dia estem envoltats de dispositius mòbils avançats, ja sigui tablets o smartphones. En aquest projecte s'ha construït un prototip d'una central domòtica amb el control basat en aquests dispositius, sense renunciar al control tradicional (interruptors).

  1. Photochemical Reactions of Particulate Organic Matter: Deciphering the Role of Direct and Indirect Processes

    Science.gov (United States)

    Carrasquillo, A. J.; Gelfond, C. E.; Kocar, B. D.

    2016-12-01

    Photochemical reactions of natural organic matter (NOM) represent potentially important pathways for biologically recalcitrant material to be chemically altered in aquatic systems. Irradiation can alter the physical state of organic matter by facilitating the cycling between the particulate (POM) and dissolved (DOM) pools, however, a molecular level understanding of this chemically dynamic system is currently lacking. Photochemical reactions of a target molecule proceed by the direct absorption of a photon, or through reaction with a second photolytically generated species (i.e. the hydroxyl radical, singlet oxygen, excited triplet state NOM, hydrogen peroxide, etc.). Here, we isolate the major direct and indirect photochemical reactions of a lignocellulose-rich POM material (Phragmites australis) to determine their relative importance in changing the the chemical structure of the parent POM, and in the production of DOM. We measured POM molecular structure using a combination of NMR and FTIR for bulk analyses and scanning transmission x-ray microscopy (STXM) for spatially resolved chemistry, while the chemical composition of photo-produced DOM was measured using ultra-high resolution mass spectrometry. Results are discussed in the context of the differences in chemical composition of both NOM pools resulting from the isolated photochemical pathways. All treatments result in an increase in DOM with reaction time, indicating that the larger POM matrix is likely fragmenting into smaller more soluble species. Spectroscopic measurements, on the other hand, point to functionalization reactions which increase the abundance of alcohol, acid, and carbonyl moieties in both carbon pools. This unique dataset provides new insight into how photochemical reactions alter the chemical composition of NOM while highlighting the relative importance of indirect pathways.

  2. Concentrations and distributions of metals associated with dissolved organic matter from the Suwannee River (GA, USA)

    Science.gov (United States)

    Kuhn, M. Keshia; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank; Aiken, George R.; Maurice, Patricia A.

    2015-01-01

    Concentrations and distributions of metals in Suwannee River (SR) raw filtered surface water (RFSW) and dissolved organic matter (DOM) processed by reverse osmosis (RO), XAD-8 resin (for humic and fulvic acids [FA]), and XAD-4 resin (for “transphilic” acids) were analyzed by asymmetrical flow field-flow fractionation (AsFlFFF). SR samples were compared with DOM samples from Nelson's Creek (NLC), a wetland-draining stream in northern Michigan; previous International Humic Substances Society (IHSS) FA and RO samples from the SR; and an XAD-8 sample from Lake Fryxell (LF), Antarctica. Despite application of cation exchange during sample processing, all XAD and RO samples contained substantial metal concentrations. AsFlFFF fractograms allowed metal distributions to be characterized as a function of DOM component molecular weight (MW). In SR RFSW, Fe, Al, and Cu were primarily associated with intermediate to higher than average MW DOM components. SR RO, XAD-8, and XAD-4 samples from May 2012 showed similar MW trends for Fe and Al but Cu tended to associate more with lower MW DOM. LF DOM had abundant Cu and Zn, perhaps due to amine groups that should be present due to its primarily algal origins. None of the fractograms showed obvious evidence for mineral nanoparticles, although some very small mineral nanoparticles might have been present at trace concentrations. This research suggests that AsFlFFF is important for understanding how metals are distributed in different DOM samples (including IHSS samples), which may be key to metal reactivity and bioavailability.

  3. Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus.

    Science.gov (United States)

    Zhang, Xin; Wang, Zhuang; Wang, Se; Fang, Hao; Zhang, Fan; Wang, De-Gao

    2017-01-02

    Freshwater dispersion stability and ecotoxicological effects of titanium nitride (TiN) with particle size of 20 nm, 50 nm, and 2-10 μm in the presence of dissolved organic matter (DOM) at various concentrations were studied. The TiN particles that had a more negative zeta potential and smaller hydrodynamic size showed more stable dispersion in an aqueous medium when DOM was present than when DOM was absent. Biochemical assays indicated that relative to the control, the TiN particles in the presence of DOM alleviated to some extent the antioxidative stress enzyme activity in Scenedesmus obliquus. In addition, it was found that the TiN with a primary size of 50 nm at a high concentration presented a significant impact on non-enzymatic antioxidant defense in algal cells.

  4. Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee

    Directory of Open Access Journals (Sweden)

    Gonzalo B. Asencio

    2011-10-01

    Full Text Available Resumen: La domótica consiste en la aplicación de técnicas provenientes de la automática industrial al hogar con objeto de ofrecer servicios que aporten, entre otras cosas, confort, seguridad y eficiencia energética a los usuarios. Hasta el momento la penetración de dichas técnicas en los hogares ha sido reducida. Una de las razones fundamentales de esta lenta transposición de técnicas de control al hogar es la dificultad de integración entre los diferentes sistemas presentes en el hogar. En este artículo se presenta un desarrollo encaminado a mejorar la integración de los sistemas domóticos con aquellos dispositivos que sean controlables mediante infrarrojos. En concreto se ha desarrollado una pasarela inalámbrica que permite a una red domótica el envío de tramas de infrarrojos. De esta manera se posibilita un despliegue rápido y económico de los nodos que sean necesarios para integrar dispositivos tales como los sistemas de aire acondicionado en una red domótica. Copyright c 2011 CEA. Publicado por Elsevier España, S.L. Todos los derechos reservados. Palabras clave: Control a través de redes de comunicación, Impacto social de la automática

  5. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Directory of Open Access Journals (Sweden)

    Sasha eWagner

    2015-11-01

    Full Text Available Optical properties are easy-to-measure proxies for dissolved organic matter (DOM composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows and DOM sources (e.g., terrestrial, microbial and marine. As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX and ultrahigh resolution mass spectrometry (FTICR-MS. Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  6. Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2016-10-01

    Full Text Available A comprehensive survey of dissolved organic carbon (DOC and chromophoric dissolved organic matter (CDOM was conducted in the Canada and Makarov Basins and adjacent seas during 2010-2012 to investigate the dynamics of dissolved organic matter (DOM in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69±6 µmol L-1, CDOM absorption (a325: 0.32±0.07 m-1 and CDOM-derived lignin phenols (3±0.4 nmol L-1 and high spectral slope values (S275-295: 31.7±2.3 µm-1, indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108±9 µmol L-1 and lignin phenol concentrations (15±3 nmol L-1, high a325 values (1.36±0.18 m-1 and low S275-295 values (22.8±0.8 µm-1, indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea, a decrease (Bering-Chukchi Seas, and negligible change (deep basins in surface DOC concentrations and a325 values. Halocline structures differed between basins, and the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65-70 µmol L-1 and lignin phenol concentrations (3-4 nmol L-1 and S275-295 values (22.9-23.7 µm-1. Deep-water DOC concentrations decreased by 6-8 µmol L-1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036-0.039 µmol L-1 yr-1 in the deep Arctic were lower than those in other ocean

  7. Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Robbins, Lisa L.; Wynn, Jonathan

    2016-01-01

    A comprehensive survey of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) was conducted in the Canada and Makarov Basins and adjacent seas during 2010–2012 to investigate the dynamics of dissolved organic matter (DOM) in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69 ± 6 μmol L−1), CDOM absorption (a325: 0.32 ± 0.07 m−1) and CDOM-derived lignin phenols (3 ± 0.4 nmol L−1), and high spectral slope values (S275–295: 31.7 ± 2.3 μm−1), indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108 ± 9 μmol L−1) and lignin phenol concentrations (15 ± 3 nmol L−1), high a325 values (1.36 ± 0.18 m−1), and low S275–295 values (22.8 ± 0.8 μm−1), indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea), a decrease (Bering-Chukchi Seas), and negligible change (deep basins) in surface DOC concentrations and a325 values. Halocline structures differed between basins, but the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65–70 μmol L−1) and lignin phenol concentrations (3–4 nmol L−1) and S275–295 values (22.9–23.7 μm−1). Deep-water DOC concentrations decreased by 6–8 μmol L−1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036–0.039 μmol L−1

  8. "Baltiiski Dom" bez Latvii i Estonii / Boris Tuch

    Index Scriptorium Estoniae

    Tuch, Boris, 1946-

    1999-01-01

    Teatrifestival IX Baltiiski Dom.Grand prix' võitis Moskva Taganka Teater Juri Ljubimovi lavastusega "Marat/Sade" Peter Weissi näidendi järgi, meesnäitleja preemia - Juri Itskov, lavastajapreemia - Eimuntas Nekroshius ( W. Shakespeare'i "Macbeth")

  9. Cosorption study of organic pollutants and dissolved organic matter in a soil.

    Science.gov (United States)

    Flores-Céspedes, F; Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E

    2006-08-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.

  10. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hui, E-mail: yuhui200@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Huang Guohe, E-mail: gordon.huang@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); An Chunjiang, E-mail: an209@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Wei Jia, E-mail: jia.wei@iseis.org [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada)

    2011-06-15

    Highlights: {yields} The combined DOM and biosurfactant significantly enhanced desorption of PAHs. {yields} Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. {yields} Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. {yields} Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  11. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    International Nuclear Information System (INIS)

    Yu Hui; Huang Guohe; An Chunjiang; Wei Jia

    2011-01-01

    Highlights: → The combined DOM and biosurfactant significantly enhanced desorption of PAHs. → Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. → Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. → Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  12. Violencia doméstica y exclusión social de mujeres maltratadas en Colombia

    OpenAIRE

    Giraldo Arias, Regina

    2016-01-01

    La presente investigación estudia el fenómeno de la violencia doméstica en Colombia, y propone para el estudio de la complejidad del problema, un abordaje eco-sistémico de la familia y la pareja, en relación con la exclusión social. Se plantearon dos objetivos principales. Primero, analizar los ejes y dimensiones de la exclusión social, en relación con la violencia doméstica en mujeres maltratadas por su compañero sentimental. Segundo, estudiar la relación entre violencia doméstica con perman...

  13. Direct and indirect photolysis of triclocarban in the presence of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Tamara D. Trouts

    2015-05-01

    Full Text Available Abstract Photolysis is an important attenuation pathway for the removal of wastewater effluent organic micropollutants from surface waters. In this work, direct and indirect processes leading to the degradation of the disinfectant, triclocarban were studied. Photo-irradiation experiments were conducted in water collected from Old Woman Creek (OWC a tributary of Lake Erie near Huron, OH, USA and in solutions of fulvic acids isolated from the Suwannee River, Georgia, USA (SRFA, Old Woman Creek (OWCFA and Pony Lake, Antarctica (PLFA. Photodegradation of triclocarban proceeded faster in the presence of all three fulvic acids relative to deionized water. PLFA, an autochthonous dissolved organic matter (DOM was found to be more reactive than the other fulvic acids, while the mostly allochthonous SRFA exhibited the lowest reactivity toward triclocarban. The later observation can be in part explained by anti-oxidant moieties present in SRFA. Photosensitized triclocarban degradation in whole water DOM from OWC was entirely attributable to the fulvic acid fraction and suggests that this component is the most photo-reactive fraction of the DOM. Anoxic and methanol-quenched experiments revealed unexpected results whereby the former suggests oxidation through reaction with triplet DOM, while the later is indicative of reaction with photo-generated hydroxyl radicals. It is possible that methanol can quench excited DOM species, which would shut down the triplet oxidation pathway. Finally, we observed no enhancement of triclocarban-photosensitized degradation through the addition of iron.

  14. Influence of the permafrost boundary on dissolved organic matter characteristics in rivers within the Boreal and Taiga plains of western Canada

    International Nuclear Information System (INIS)

    Olefeldt, D; Turetsky, M R; Persson, A

    2014-01-01

    Catchment export of terrestrial dissolved organic matter (DOM) and its downstream degradation in aquatic ecosystems are important components of landscape scale carbon balances. In order to assess the influence of peatland permafrost on river DOM characteristics, we sampled 65 rivers along a 900 km transect crossing into the southern discontinuous permafrost zone on the Boreal and Tundra Plains of western Canada. Catchment peatland cover and catchment location north or south of the permafrost boundary were found together to have strong influences on dissolved organic carbon (DOC) concentrations and DOM chemical composition. River DOC concentrations increased with catchment peatland cover, but were consistently lower for catchments north of the permafrost boundary. In contrast, protein fluorescence (PARAFAC analysis), was unrelated to catchment peatland cover but increased significantly in rivers north of the permafrost boundary. Humic and fulvic acid contribution to DOM fluorescence was lower in rivers draining catchments with large lakes than in other rivers, consistent with extensive photodegradation, but humic and fulvic acid fluorescence were also lower in rivers north of the permafrost boundary than in rivers to the south. We hypothesize that shifts in river DOM characteristics when crossing the permafrost boundary are related to the influence of permafrost on peatland hydrological connectivity to stream networks, peatland DOM characteristics and differences in DOM degradation within aquatic ecosystems. (paper)

  15. Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1988-01-01

    We derive the standard formalism of Mikheyev, Smirnov, and Wolfenstein for the oscillation of neutrinos in matter taking into account the Lorentz and second-quantized structure of the neutrino fields. We consider neutrinos with Dirac or Majorana masses

  16. The Rusty Sink: Iron Promotes the Preservation of Organic Matter in Sediments

    Science.gov (United States)

    Lalonde, K. M.; Mucci, A.; Moritz, A.; Ouellet, A.; Gelinas, Y.

    2011-12-01

    The biogeochemical cycles of iron (Fe) and organic carbon (OC) are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved Fe [1], whereas in soils, solid Fe phases provide a sheltering and preservative effect for organic matter [2]. Until now however, the role of iron in the preservation of OC in sediments has not been clearly established. Here we show that 21.5 ± 8.6% of the OC in sediments is directly bound to reactive iron phases, which promote the preservation of OC in sediments. Iron-bound OC represents a global mass of 19 to 45 × 10^15 g of OC in surface marine sediments. This pool of OC is different from the rest of sedimentary OC, with 13C and nitrogen-enriched organic matter preferentially bound to Fe which suggests that biochemical fractionation occurs with OC-Fe binding. Preferential binding also affects the recovery of high molecular weight lipid biomarkers and acidic lignin oxidation products, changing the environmental message of proxies derived from these biomarkers. [1] Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron in the world ocean? Marine Chemistry 57, 137-161 (1997). [2] Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31, 711-725 (2000).

  17. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    Science.gov (United States)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter

  18. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    Science.gov (United States)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  19. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function

    DEFF Research Database (Denmark)

    Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.

    2017-01-01

    Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects...

  20. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    Science.gov (United States)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2015-01-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off the Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolyzable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ~ 2% in the surface waters to 0.9% near 300 m. These AA yields revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Alteration state was also assessed by trends in C / N ratio, %D-AA and degradation index. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ~ 15% of POM and ~ 30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  1. Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool.

    Science.gov (United States)

    Pisani, Oliva; Yamashita, Youhei; Jaffé, Rudolf

    2011-07-01

    This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC(-1)) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Globalização e violência doméstica

    OpenAIRE

    Portugal, Sílvia

    2000-01-01

    O artigo apresenta algumas notas de reflexão suscitadas por uma breve incursão na bibliografia existente sobre as questões da violência na família e no espaço doméstico. Pretende-se equacionar alguns aspectos importantes para uma análise da dimensão e das características deste tipo de violência e definir linhas de análise sobre o papel das políticas públicas no seu tratamento. Defende-se que a visibilidade da violência doméstica e a definição de estratégias para o seu enfrentamento passam cad...

  3. Factors influencing the characteristics and distribution or surface organic matter in the Pacific-Atlantic connection

    Science.gov (United States)

    Barrera, Facundo; Lara, Rubén J.; Krock, Bernd; Garzón-Cardona, John Edison; Fabro, Elena; Koch, Boris P.

    2017-11-01

    The present work reports the first data set on particulate organic carbon (POC) and nitrogen (PON), and the high-resolution modelling of their stable isotope variability in the Patagonian Cold Estuarine System (PCES), with focus on particulate organic matter (POM) origin and distribution in dependence on physical, chemical and biological parameters. POC, PON, stable carbon (δ13C) and nitrogen isotopes (δ15N), dissolved organic nitrogen, phaeopigments, diatom, dinoflagellate and heterotrophic bacteria (HB) abundance are reported for 17 stations in different waters masses in the southern end of the Argentine shelf in late summer 2012. Most parameters denote clear differences between Beagle - Magellan Water (BMW), Subantarctic Shelf Water (SSW) and Subantarctic Water (SAW). POC and PON decreased from maxima in BMW to intermediate values in SSW and minima in SAW. There was a highly significant correlation among POC, PON and fluorescence indicators of diagenetic maturity of dissolved humic matter. This, together with the inverse correlations of salinity with POC and PON, and the wide range of C:N ratios indicate that POM in the study area is partly derived from terrestrial runoff, superimposed by autochthonous components from plankton of different life stages. HB abundance was significantly correlated with POC and dissolved organic matter (DOM), likely reflecting a resource control of HB and a significant contribution of bacterial biomass to POM in the nanoparticle fraction. The direct relationship between HB and dissolved humics suggests bacterial uptake of DOM fractions otherwise considered refractory. POM complexity was reflected in a wide variation of δ13C, despite the narrow temperature range of this region. The variability of stable isotopes of POC could be accounted for by a model with a degree of detail hitherto not reported in the literature. A multiple regression including C:N ratio, ammonium and the quotient between log abundance of diatoms

  4. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Cooper, William T. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Hodgkins, Suzanne; Chanton, Jeffrey P. [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Podgorski, David C. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2012-08-15

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation. (orig.)

  5. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  6. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

    Science.gov (United States)

    Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.

    2016-04-01

    The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a

  7. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  8. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  9. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    Science.gov (United States)

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  10. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    Science.gov (United States)

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  11. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  12. The coupling of runoff and dissolved organic matter transport: Insights from in situ fluorescence measurements in small streams and large rivers

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Shanley, J. B.; Aiken, G.; Murdoch, P. S.

    2011-12-01

    Understanding dissolved organic matter (DOM) dynamics in streams and rivers can help characterize mercury transport, assess causes of drinking water issues, and lead to improved understanding of watershed source areas and carbon loads to downstream ecosystems. However, traditional sampling approaches that collect discrete concentration data at weekly to monthly intervals often fail to adequately capture hydrological pulses ranging from early snowmelt periods to short-duration rainfall events. Continuous measurements of chromophoric dissolved organic matter fluorescence (FDOM) in rivers and streams now provide an opportunity to more accurately quantify DOM loads and processes in aquatic ecosystems at a range of scales. In this study, we used continuous FDOM data from in situ sensors along with discharge data to assess the coupling of FDOM transport and runoff in small streams and large rivers. Results from headwater catchments in New England and California show that FDOM is tightly coupled with runoff, supporting strong linkages between watershed flow paths and DOM concentrations in streams. Results also show that the magnitude of FDOM response relative to runoff varies seasonally, with highest concentrations during autumn rainfall events (after leaf fall) and lower concentrations during peak snowmelt for equivalent runoff. In large river basins, FDOM dynamics are also coupled with runoff and exhibit the same seasonal variability in the magnitude of FDOM response relative to discharge. However, the peaks in FDOM typically lag runoff by several days, reflecting the influence of a variety of factors such as water residence times, reservoir releases, and connectivity to organic matter-rich riparian floodplains and wetlands. Our results show that in situ FDOM data will be important for understanding the coupling of runoff and DOM across multiple scales and could serve a critical role in monitoring, assessment and decision-making in both small and large watersheds.

  13. High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Daniel Petras

    2017-12-01

    Full Text Available Dissolved organic matter (DOM is arguably one of the most complex exometabolomes on earth, and is comprised of thousands of compounds, that together contribute more than 600 × 1015 g carbon. This reservoir is primarily the product of interactions between the upper ocean's microbial food web, yet abiotic processes that occur over millennia have also modified many of its molecules. The compounds within this reservoir play important roles in determining the rate and extent of element exchange between inorganic reservoirs and the marine biosphere, while also mediating microbe-microbe interactions. As such, there has been a widespread effort to characterize DOM using high-resolution analytical methods including nuclear magnetic resonance spectroscopy (NMR and mass spectrometry (MS. To date, molecular information in DOM has been primarily obtained through calculated molecular formulas from exact mass. This approach has the advantage of being non-targeted, accessing the inherent complexity of DOM. Molecular structures are however still elusive and the most commonly used instruments are costly. More recently, tandem mass spectrometry has been employed to more precisely identify DOM components through comparison to library mass spectra. Here we describe a data acquisition and analysis workflow that expands the repertoire of high-resolution analytical approaches available to access the complexity of DOM molecules that are amenable to electrospray ionization (ESI MS. We couple liquid chromatographic separation with tandem MS (LC-MS/MS and a data analysis pipeline, that integrates peak extraction from extracted ion chromatograms (XIC, molecular formula calculation and molecular networking. This provides more precise structural characterization. Although only around 1% of detectable DOM compounds can be annotated through publicly available spectral libraries, community-wide participation in populating and annotating DOM datasets could rapidly increase the

  14. Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas

    Science.gov (United States)

    Logvinova, Christie L.; Frey, Karen E.; Mann, Paul J.; Stubbins, Aron; Spencer, Robert G. M.

    2015-11-01

    A warming and shifting climate in the Arctic has led to significant declines in sea ice over the last several decades. Although these changes in sea ice cover are well documented, large uncertainties remain in how associated increases in solar radiation transmitted to the underlying ocean water column will impact heating, biological, and biogeochemical processes in the Arctic Ocean. In this study, six under-ice marine, two ice-free marine, and two ice-free terrestrially influenced water samples were irradiated using a solar simulator for 72 h (representing ~10 days of ambient sunlight) to investigate dissolved organic matter (DOM) dynamics from the Chukchi and Beaufort Seas. Solar irradiation caused chromophoric DOM (CDOM) light absorption at 254 nm to decrease by 48 to 63%. An overall loss in total DOM fluorescence intensity was also observed at the end of all experiments, and each of six components identified by parallel factor (PARAFAC) analysis was shown to be photoreactive in at least one experiment. Fluorescent DOM (FDOM) also indicated that the majority of DOM in under-ice and ice-free marine waters was likely algal-derived. Measurable changes in dissolved organic carbon (DOC) were only observed for sites influenced by riverine runoff. Losses of CDOM absorbance at shorter wavelengths suggest that the beneficial UV protection currently received by marine organisms may decline with the increased light transmittance associated with sea ice melt ponding and overall reductions of sea ice. Our FDOM analyses demonstrate that DOM irrespective of source was susceptible to photobleaching. Additionally, our findings suggest that photodegradation of CDOM in under-ice waters is not currently a significant source of carbon dioxide (CO2) (i.e., we did not observe systematic DOC loss). However, increases in primary production and terrestrial freshwater export expected under future climate change scenarios may cause an increase in CDOM quantity and shift in quality

  15. Violência doméstica: um estudo bibliométrico

    Directory of Open Access Journals (Sweden)

    Fernanda Monteiro de Castro Bhona

    2011-01-01

    Full Text Available Este estudio tuvo como objetivo realizar un estudio bibliométrico sobre la violencia doméstica de los artículos indexados en bases de datos internacionales. La búsqueda electrónica se realizó en tres diferentes bases de datos (Web of Science, Psyc Info y Lilacs. Se relaciona con la expresión "violencia doméstica" por las palabras "hombre", "mujer", "niño", "adolescentes" y "ancianos". Se seleccionaron los artículos publicados entre los años 2006 y 2009, que fueron analizadas mediante la lectura de los títulos y resúmenes. De los 636 artículos recogidos en su mayor parte se publicó en 2006. Las revistas que se publicaron más: "Journal of Family Violence", "Violence Against Women" y "Journal of Interpersonal Violence". Las mujeres víctimas fueron el foco principal de los artículos, seguido por los niños, y la mayor parte de las publicaciones de la dirección sólo un tipo de víctima de violencia familiar. La identificación predominante del hombre como un practicante de la violencia doméstica.

  16. Identifying the source, transport path and sinks of sewage derived organic matter

    International Nuclear Information System (INIS)

    Mudge, Stephen M.; Duce, Caroline E.

    2005-01-01

    Since sewage discharges can significantly contribute to the contaminant loadings in coastal areas, it is important to identify sources, pathways and environmental sinks. Sterol and fatty alcohol biomarkers were quantified in source materials, suspended sediments and settling matter from the Ria Formosa Lagoon. Simple ratios between key biomarkers including 5β-coprostanol, cholesterol and epi-coprostanol were able to identify the sewage sources and effected deposition sites. Multivariate methods (PCA) were used to identify co-varying sites. PLS analysis using the sewage discharge as the signature indicated ∼ 25% of the variance in the sites could be predicted by the sewage signature. A new source of sewage derived organic matter was found with a high sewage predictable signature. The suspended sediments had relatively low sewage signatures as the material was diluted with other organic matter from in situ production. From a management viewpoint, PLS provides a useful tool in identifying the pathways and accumulation sites for such contaminants. - Multivariate statistical analysis was used to identify pathways and accumulation sites for contaminants in coastal waters

  17. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    Science.gov (United States)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  18. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  19. Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure.

    Science.gov (United States)

    Pérez, María Teresa; Sommaruga, Ruben

    2007-09-01

    We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition.

  20. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    Science.gov (United States)

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  1. Influence of hydrogen in the presence of organic matter on bacterial activity under radioactive waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chautard, C. [IRSN, PRP-DGE/SEDRAN/BERIS, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); CEA, DEN/DTN/SMTM/LMTE, bat 307, 13108 Saint Paul Lez Durance Cedex (France); Ritt, A. [IRSN, PRP-DGE/SRTG/LAME, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Libert, M. [CEA, DEN/DTN/SMTM/LMTE, bat 307, 13108 Saint Paul Lez Durance Cedex (France); De Windt, L. [Mines-ParisTech, Geosciences Dpt., 77305 Fontainebleau Cedex (France)

    2013-07-01

    According to the French design for the disposal of high-level radioactive waste (HLW), waste will be emplaced in an environment involving metallic materials into a geological clay formation. The presence of microorganisms has recently been evidenced in such environments. Therefore, based on current knowledge, the introduction of microbial species during the construction and operational phases, as well as the survival of bacteria after the disposal closure, have to be accounted for within the context of safety assessment. Sulphate-reducing bacteria (SRB) activity is notably expected to have an impact on corrosion processes, and thus influence the evolution of metallic and clay materials involved in a HLW disposal cell. The present work investigates the potential development of a SRB, Thermo-desulfovibrio hydrogeniphilus, in order to better assess its metabolism in the presence of dissolved organic matter (DOM) that is representative of the DOM present in an argillaceous pore water, as well as hydrogen that will be produced by the anaerobic corrosion of metallic materials. After 49 days of batch experiments, hydrogen enhances the bacterial development in presence of a low amount of DOM, whereas the DOM alone does not seem to sustain bacteria activities. (authors)

  2. Spatio-temporal variability of the molecular fingerprint of soil dissolved organic matter in a headwater agricultural catchment

    Science.gov (United States)

    Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard

    2013-04-01

    Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were

  3. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA.

    Science.gov (United States)

    DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong

    2016-09-15

    Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Similarities and differences in dissolved organic matter response in two headwater streams under contrasted hydro-climatic regimes

    Science.gov (United States)

    Butturini, Andrea; Guarch, Alba; Battin, Tom

    2017-04-01

    Dissolved organic matter (DOM) concentration and properties in headwater streams are strongly shaped by hydrology. Besides the direct relationship with storms and high flows, seasonal variability of base flow also influences DOM variability. This study focuses on identifying the singularities and similarities in DOM - discharge relationships between an intermittent Mediterranean stream (Fuirosos) and a perennial Alpine stream (Oberer Seebach). Oberer Seebach had a higher discharge mean, but Fuirosos had a higher variability in flow and in magnitude of storm events. During three years we performed an intensive sampling that allows us to satisfactorily capture abrupt and extreme storms. We analysed dissolved organic carbon concentration (DOC) and optical properties of DOM and we calculated the specific ultraviolet absorbance (SUVA), the spectral slopes ratio (SR), the fluorescence index (FI), the biological index (BIX) and the humification index (HIX). DOM in Fuirosos was significantly more concentrated than in Oberer Seebach, and more terrigenous (lower FI), more degraded (lower BIX), more aromatic (higher SUVA) and more humificated (higher HIX). Most of the DOM properties showed a clear relationship with discharge and the sign of the global response was identical in both streams. However, discharge was a more robust predictor of DOM variability in Oberer Seebach than in Fuirosos. In fact, low flow and rewetting periods in Fuirosos introduced considerable dispersion in the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge also decreased (DOC and BIX) or disappeared (SR, FI and HIX). The magnitude of the storm events (DQ) in Fuirosos significantly drove the changes in DOC, FI, BIX and SUVA. This suggests that the flushing/dilution patterns were essentially associated to the occurrence of storm episodes in Fuirosos. In contrast, in Oberer Seebach all DOM qualitative properties were unrelated to DQ and it significantly explained only the

  5. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

    Science.gov (United States)

    Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G.

    2014-08-01

    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31-45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1-0.5 or (2) low H/C of 0.5-1.0 spanning O/C 0.2-0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0-1.5, O/C 0.25-0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2-D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR-MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition.

  6. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River, Siberia

    Science.gov (United States)

    Frey, K. E.; Sobczak, W. V.; Mann, P. J.; Holmes, R. M.

    2015-08-01

    The Kolyma River in Northeast Siberia is among the six largest arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport will largely depend upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ∼ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorbance values were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow-path. In particular, CDOM absorption at 254 nm showed a strong relationship with dissolved organic carbon (DOC) concentrations across all water types (r2 = 0.958, p CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. The heterogeneity of environmental characteristics and extensive continuous permafrost of the Kolyma River basin combine to make this a critical region to investigate and monitor. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the Northeast Siberian

  7. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    International Nuclear Information System (INIS)

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-01-01

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with 3 DOM * for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ( 3 DOM * ) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the

  8. Characterization of DOM adsorption of CNTs by using excitation-emission matrix fluorescence spectroscopy and multiway analysis.

    Science.gov (United States)

    Peng, Mingguo; Li, Huajie; Li, Dongdong; Du, Erdeng; Li, Zhihong

    2017-06-01

    Carbon nanotubes (CNTs) were utilized to adsorb DOM in micro-polluted water. The characteristics of DOM adsorption on CNTs were investigated based on UV 254 , TOC, and fluorescence spectrum measurements. Based on PARAFAC (parallel factor) analysis, four fluorescent components were extracted, including one protein-like component (C4) and three humic acid-like components (C1, C2, and C3). The adsorption isotherms, kinetics, and thermodynamics of DOM adsorption on CNTs were further investigated. A Freundlich isotherm model fit the adsorption data well with high values of correlation. As a type of macro-porous and meso-porous adsorbent, CNTs preferably adsorb humic acid-like substances rather than protein-like substances. The increasing temperature will speed up the adsorption process. The self-organizing map (SOM) analysis further explains the fluorescent properties of water samples. The results provide a new insight into the adsorption behaviour of DOM fluorescent components on CNTs.

  9. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    Directory of Open Access Journals (Sweden)

    J. Para

    2013-04-01

    Full Text Available Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC, and optical characteristics including UV (ultraviolet radiation and PAR (photosynthetically active radiation diffuse attenuation (Kd, and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM as part of the MALINA field campaign (30 July to 27 August. Spectral absorption coefficients (aCDOM (350 nm (m−1 were significantly correlated to both diffuse attenuation coefficients (Kd in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1–C3 were identified by fluorescence excitation/emission matrix spectroscopy (EEMS and parallel factor (PARAFAC analysis. Our results showed an aquatic dissolved organic matter (DOM component (C1, probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2 in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  10. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    Science.gov (United States)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2013-04-01

    Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  11. Empleo informal : Las mujeres del servicio doméstico remunerado y no registrado

    OpenAIRE

    Burone, Elba

    2014-01-01

    La cuestión que nos interesa problematizar, constituye una trama social compleja, donde se presentan las características de las mujeres trabajadoras del servicio doméstico remunerado y no registrado –en general – mujeres pobres, con bajas calificaciones, muchas de ellas receptoras de programas sociales que combinan con el ingreso que aporta su actividad doméstica remunerada. Estas circunstancias enmarcan determinadas condiciones de vida que inciden en las percepciones y significaciones sobre ...

  12. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  13. Biophysical processes affecting DOM dynamics at the Arno river mouth (Tyrrhenian Sea).

    Science.gov (United States)

    Retelletti Brogi, S; Gonnelli, M; Vestri, S; Santinelli, C

    2015-02-01

    Dissolved organic carbon (DOC) and optical properties (absorption and fluorescence) of chromophoric dissolved organic matter (CDOM) were measured in October 2012, at the Arno river mouth and in a coastal station close to it. The data reported indicates that the Arno river represents an important source of DOC and CDOM to this coastal area, with a total DOC flux of 11.23-12.04 · 10(9)g C · y(-1). Moving from the river to the sea, CDOM absorption and fluorescence decreased, while the spectral slope increased, suggesting a change in the molecular properties of CDOM. Mineralization experiments were carried out in order to investigate the main processes of DOM removal and/or transformation in riverine and coastal water. DOC removal rates were 20 μM · month(-1) in the river and 3 μM · month(-1) in the seawater, while CDOM was released during the first 30 days and removed in the following 40 days. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Application of excitation-emission matrix spectrum combined with parallel factor analysis in dissolved organic matter in East China Sea].

    Science.gov (United States)

    Lü, Li-Sha; Zhao, Wei-Hong; Miao, Hui

    2013-03-01

    Using excitation-emission matrix spectrum(EEMs) combined with parallel factor analysis (PARAFAC) examine the fluorescent components feature of dissolved organic matter (DOM) sampled from East China Sea in the summer and autumn was examined. The type, distribution and origin of the fluorescence dissolved organic matter were also discussed. Three fluorescent components were identified by PARAFAC, including protein-like component C1 (235, 280/330), terrestrial or marine humic-like component C2 (255, 330/400) and terrestrial humic-like component C3 (275, 360/480). The good linearity of the two humic-like components showed the same source or some relationship between the chemical constitutions. As a whole, the level of the fluorescence intensity in coastal ocean was higher than that of the open ocean in different water layers in two seasons. The relationship of three components with chlorophyll-a and salinity showed the DOM in the study area is almost not influenced by the living algal matter, but the fresh water outflow of the Yangtze River might be the source of them in the Yangtze River estuary in Summer. From what has been discussed above, we can draw the conclusion that the application of EEM-PARAFAC modeling will exert a profound influence upon the research of the dissolved organic matter.

  15. Bovine Peripheral Blood Mononuclear Cells Are More Sensitive to Deoxynivalenol Than Those Derived from Poultry and Swine

    Directory of Open Access Journals (Sweden)

    Barbara Novak

    2018-04-01

    Full Text Available Deoxynivalenol (DON is one of the most prevalent mycotoxins, contaminating cereals and cereal-derived products. Its derivative deepoxy-deoxynivalenol (DOM-1 is produced by certain bacteria, which either occur naturally or are supplemented in feed additive. DON-induced impairments in protein synthesis are particularly problematic for highly proliferating immune cells. This study provides the first comparison of the effects of DON and DOM-1 on the concanavalin A-induced proliferation of porcine, chicken, and bovine peripheral blood mononuclear cells (PBMCs. Therefore, isolated PBMCs were treated with DON (0.01–3.37 µM and DOM-1 (1.39–357 µM separately, and proliferation was measured using a bromodeoxyuridine (BrdU assay. Although pigs are considered highly sensitive to DON, the present study revealed a substantially higher sensitivity of bovine (IC50 = 0.314 µM PBMCs compared to chicken (IC50 = 0.691 µM and porcine (IC50 = 0.693 µM PBMCs. Analyses on the proliferation of bovine T-cell subsets showed that all major subsets, namely, CD4+, CD8β+, and γδ T cells, were affected to a similar extent. In contrast, DOM-1 did not affect bovine PBMCs, but reduced the proliferation of chicken and porcine PBMCs at the highest tested concentration (357 µM. Results confirm the necessity of feed additives containing DON-to-DOM-1-transforming bacteria and highlights species-specific differences in the DON sensitivity of immune cells.

  16. Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter

    Science.gov (United States)

    Slowey, Aaron J.

    2010-01-01

    Mercury is a global contaminant of concern due to its transformation by microorganisms to form methylmercury, a toxic species that accumulates in biological tissues. The effect of dissolved organic matter (DOM) isolated from natural waters on reactions between mercury(II) (Hg) and sulfide (S(-II)) to form HgS(s) nanoparticles across a range of Hg and S(-II) concentrations was investigated. Hg was equilibrated with DOM, after which S(-II) was added. Dissolved Hg (Hgaq) was periodically quantified using ultracentrifugation and chemical analysis following the addition of S(-II). Particle size and identity were determined using dynamic light scattering and X-ray absorption spectroscopy. S(-II) reacts with Hg to form 20 to 200nm aggregates consisting of 1-2 nm HgS(s) subunits that are more structurally disordered than metacinnabar in the presence of 2 x 10-9 to 8 x 10-6M Hg and 10 (mg C)L-1 DOM. Some of the HgS(s) nanoparticle aggregates are subsequently dissolved by DOM and (re)precipitated by S(-II) over periods of hours to days. At least three fractions of Hg-DOM species were observed with respect to reactivity toward S(-II): 0.3 μmol reactive Hg per mmol C (60 percent), 0.1 μmol per mmol C (20 percent) that are kinetically hindered, and another 0.1 μmol Hg per mmol C (20 percent) that are inert to reaction with S(-II). Following an initial S(-II)-driven precipitation of HgS(s), HgS(s) was dissolved by DOM or organic sulfur compounds. HgS(s) formation during this second phase was counterintuitively favored by lower S(-II) concentrations, suggesting surface association of DOM moieties that are less capable of dissolving HgS(s). DOM partially inhibits HgS(s) formation and mediates reactions between Hg and S(-II) such that HgS(s) is susceptible to dissolution. These findings indicate that Hg accessibility to microorganisms could be controlled by kinetic (intermediate) species in the presence of S(-II) and DOM, undermining the premise that equilibrium Hg species

  17. Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient

    DEFF Research Database (Denmark)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.

    2018-01-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differe...

  18. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Science.gov (United States)

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  19. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter.

    Science.gov (United States)

    Mazrui, Nashaat M; Seelen, Emily; King'ondu, Cecil K; Thota, Sravan; Awino, Joseph; Rouge, Jessica; Zhao, Jing; Mason, Robert P

    2018-04-25

    The methylation of mercury is known to depend on the chemical forms of mercury (Hg) present in the environment and the methylating bacterial activity. In sulfidic sediments, under conditions of supersaturation with respect to metacinnabar, recent research has shown that mercury precipitates as β-HgS(s) nanoparticles (β-HgS(s)nano). Few studies have examined the precipitation of β-HgS(s)nano in the presence of marine dissolved organic matter (DOM). In this work, we used dynamic light scattering (DLS) coupled with UV-Vis spectroscopy and transmission electron microscopy (TEM) to investigate the formation and fate of β-HgS(s)nano formed in association with marine DOM extracted from the east and west of Long Island Sound, and at the shelf break of the North Atlantic Ocean, as well as with low molecular weight thiols. We found that while the β-HgS(s)nano formed in the presence of oceanic DOM doubled in size after 5 weeks, those forming in solutions with coastal DOM did not grow over time. In addition, when the HgII : DOM ratio was varied, β-HgS(s)nano only rapidly aggregated at high ratios (>41 μmol HgII per mg C) where the concentration of thiol groups was determined to be substantially low relative to HgII. This suggests that functional groups other than thiols could be involved in the stabilization of β-HgS(s)nano. Furthermore, we showed that β-HgS(s)nano forming under anoxic conditions remained stable and could therefore persist in the environment sufficiently to impact the methylation potential. Exposure of β-HgS(s)nano to sunlit and oxic environments, however, caused rapid aggregation and sedimentation of the nanoparticles, suggesting that photo-induced changes or oxidation of organic matter adsorbed on the surface of β-HgS(s)nano affected their stability in surface waters.

  20. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity.

    Science.gov (United States)

    Mladenov, Natalie; Pulido-Villena, Elvira; Morales-Baquero, Rafael; Ortega-Retuerta, Eva; Sommaruga, Ruben; Reche, Isabel

    2008-01-01

    The effects of many environmental stressors such as UV radiation are mediated by dissolved organic matter (DOM) properties. Therefore, determining the factors shaping spatial and temporal patterns is particularly essential in the most susceptible, low dissolved organic carbon (DOC) lakes. We analyzed spatiotemporal variations in dissolved organic carbon concentration and dissolved organic matter optical properties (absorption and fluorescence) in 11 transparent lakes located above tree line in the Sierra Nevada Mountains (Spain), and we assessed potential external (evaporation and atmospheric deposition) and internal (bacterial abundance, bacterial production, chlorophyll a, and catchment vegetation) drivers of DOM patterns. At spatial and temporal scales, bacteria were related to chromophoric DOM (CDOM). At the temporal scale, water soluble organic carbon (WSOC) in dust deposition and evaporation were found to have a significant influence on DOC and CDOM in two Sierra Nevada lakes studied during the ice-free periods of 2000-2002. DOC concentrations and absorption coefficients at 320 nm were strongly correlated over the spatial scale (n = 11, R(2) = 0.86; p DOC concentration and CDOM to these factors. At the continental scale, higher mean DOC concentrations and more CDOM in lakes of the Sierra Nevada than in lakes of the Pyrenees and Alps may be due to a combination of more extreme evaporation, and greater atmospheric dust deposition.

  1. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications.

    Science.gov (United States)

    Chen, Meilian; Kim, Sung-Han; Jung, Heon-Jae; Hyun, Jung-Ho; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2017-09-15

    In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH 4 + and the decrease of PO 4 3- , signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006

    Science.gov (United States)

    Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua

    2018-04-01

    NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.

  3. Effects of photochemical Transformations of Dissolved Organic Matter on Bacterial Metabolism and Diversity in Three Contrasting Coastal Sites in the Northwestern Mediterranean Sea during Summer

    International Nuclear Information System (INIS)

    Abboudi, M.

    2010-01-01

    The effects of photo transformation of dissolved organic matter (DOM) on bacterial growth, production, respiration, growth efficiency, and diversity were investigated during summer in two lagoons and one oligo trophic coastal water samples from the Northwestern Mediterranean Sea, differing widely in DOM and chromophoric DOM concentrations. Exposure of 0.2μm filtered waters to full sun radiation for 1 d resulted in small changes in optical properties and concentrations of DOM, and no changes in nitrate, nitrite, and phosphate concentrations. After exposure to sunlight or dark (control) treatments, the water samples were inoculated with the original bacterial com community. Photo transformation of DOM had contrasting effects on bacterial production and respiration, depending on the water's origin, resulting in an increase of bacterial growth efficiency for the oligo trophic coastal water sample (120%) and a decrease for the lagoon waters (20 to 40%) relative to that observed in dark treatments. We also observed that bacterial growth on DOM irradiated by full sun resulted in changes in community structure of total and metabolically active bacterial cells for the three locations studied when compared to the bacteria growing on unirradiated DOM, and that changes were mainly caused by photo transformation of DOM by UV radiation for the eutrophic lagoon and the oligo trophic coastal water and by photosynthetically active radiation (PAR) for the meso eutrophic lagoon. These initial results indicate that photo transformation of DOM significantly alters both bacterial metabolism and community structure in surface water for a variety of coastal ecosystems in the Mediterranean Sea. Further studies will be necessary to elucidate a more detailed appreciation of potential temporal and spatial variations of the effects measured. (author)

  4. Viviendas inteligentes (Domótica

    Directory of Open Access Journals (Sweden)

    Luis Felipe Herrera Quintero

    2005-05-01

    Full Text Available En los últimos años el avance de las telecomunicaciones a través de internet permite hablar de integración a nivel de redes IP (Internet Protocol. Numerosas redes funcionan con éxito y han sido fundamentales para las diversas áreas en la medida en que la automatización de los datos permiten a investigadores y profesionales tener una visión más amplia de la producción en los más variados sectores. Desde hace mucho tiempo el control a distancia viene desarrollándose gracias a la innovación tecnológica con que se cuenta hoy en día, y con ello se van haciendo tangibles cada vez más entornos de interacción humana basados en sistemas de telecomunicaciones y control. Gracias a este desarrollo tecnológico que se presenta, se produce el solo hecho de pensar en controlar remotamente dispositivos que existen en nuestro diario vivir. Según estas nuevas actividades que pueden ser realizadas por el hombre dentro de una vivienda, como por ejemplo controlar la intensidad de iluminación desde una PDA (Asistente Personal Digital son enmarcadas dentro de una nueva área del conocimiento denominada domótica. Cuando se menciona la palabra domótica se hace referencia a la integración de las diversas áreas del conocimiento como lo son las telecomunicaciones, la electrónica, la informática y la electricidad para mejorar la calidad de vida de los seres humanos, agregando con ello pautas para el acrecentar de la sociedad colombiana.

  5. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    International Nuclear Information System (INIS)

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-01-01

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling δ between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w DE (z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w DE and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy

  6. Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation

    Directory of Open Access Journals (Sweden)

    Maren Zark

    2017-09-01

    Full Text Available Dissolved organic matter (DOM represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1 oligotrophic phase and (2 after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS. An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals

  7. Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation.

    Science.gov (United States)

    Yang, Liyang; Hur, Jin; Lee, Sonmin; Chang, Soon-Woong; Shin, Hyun-Sang

    2015-06-01

    Dynamics of river dissolved organic matter (DOM) during storm events have profound influences on the downstream aquatic ecosystem and drinking water safety. This study investigated temporal variations in DOM during four storm events in two forest headwater streams (the EH and JH brooks, South Korea) and the impacts on the disinfection byproducts (DBPs) formation potential. The within-event variations of most DOM quantity parameters were similar to the flow rate in the EH but not in the larger JH brook. The dissolved organic carbon (DOC) showed clockwise and counterclockwise hysteresis with the flow rate in the EH and JH brooks, respectively, indicating the importance of both flow path and DOM source pool size in determining the effects of storm events. The stream DOM became less aromatic/humified from the first to the last event in both brooks, probably due to the increasing fresh plant pool and the decreasing leaf litter pool during the course of rainy season. The DOC export during each event increased 1.3-2.7- and 1.1-7.0-fold by stormflows in the EH and JH brooks, respectively. The leaf litter and soil together was the major DOM source, particularly during early events. The enhanced DOM export probably increases the risks of DBPs formation in disinfection, as indicated by a strong correlation observed between DOC and trihalomethanes formation potential (THMFP). High correlations between two humic-like fluorescent components and THMFP further suggested the potential of assessing THMFP with in situ fluorescence sensors during storms.

  8. Granular activated carbon adsorption of MIB in the presence of dissolved organic matter.

    Science.gov (United States)

    Summers, R Scott; Kim, Soo Myung; Shimabuku, Kyle; Chae, Seon-Ha; Corwin, Christopher J

    2013-06-15

    Based on the results of over twenty laboratory granular activated carbon (GAC) column runs, models were developed and utilized for the prediction of 2-methylisoborneol (MIB) breakthrough behavior at parts per trillion levels and verified with pilot-scale data. The influent MIB concentration was found not to impact the concentration normalized breakthrough. Increasing influent background dissolved organic matter (DOM) concentration was found to systematically decrease the GAC adsorption capacity for MIB. A series of empirical models were developed that related the throughput in bed volumes for a range of MIB breakthrough targets to the influent DOM concentration. The proportional diffusivity (PD) designed rapid small-scale column test (RSSCT) could be directly used to scale-up MIB breakthrough performance below 15% breakthrough. The empirical model to predict the throughput to 50% breakthrough based on the influent DOM concentration served as input to the pore diffusion model (PDM) and well-predicted the MIB breakthrough performance below a 50% breakthrough. The PDM predictions of throughput to 10% breakthrough well simulated the PD-RSSCT and pilot-scale 10% MIB breakthrough. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.

    Science.gov (United States)

    Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.

    2017-12-01

    Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.

  10. Using the DOM Tree for Content Extraction

    Directory of Open Access Journals (Sweden)

    David Insa

    2012-10-01

    Full Text Available The main information of a webpage is usually mixed between menus, advertisements, panels, and other not necessarily related information; and it is often difficult to automatically isolate this information. This is precisely the objective of content extraction, a research area of widely interest due to its many applications. Content extraction is useful not only for the final human user, but it is also frequently used as a preprocessing stage of different systems that need to extract the main content in a web document to avoid the treatment and processing of other useless information. Other interesting application where content extraction is particularly used is displaying webpages in small screens such as mobile phones or PDAs. In this work we present a new technique for content extraction that uses the DOM tree of the webpage to analyze the hierarchical relations of the elements in the webpage. Thanks to this information, the technique achieves a considerable recall and precision. Using the DOM structure for content extraction gives us the benefits of other approaches based on the syntax of the webpage (such as characters, words and tags, but it also gives us a very precise information regarding the related components in a block, thus, producing very cohesive blocks.

  11. Isolation of dissolved organic matter from permafrost soil and freshwater environments of the Kolyma River basin, east Siberia, for high resolution structural analysis

    Science.gov (United States)

    Dubinenkov, I. V.; Perminova, I. V.; Bulygina, E. B.; Holmes, R. M.; Davydov, S.; Mann, P. J.; Vonk, J.; Zimov, S. A.

    2010-12-01

    The Arctic and Subarctic ecosystems are known to be the most vulnerable with respect to climate change. Hence, research on carbon cycling in the Arctic region is very important for understanding the current climatic trends and their consequences. The Kolyma River watershed is one of the Arctic Ocean’s largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The thaw of permafrost enhanced due to global warming might provide additional large source of organic carbon to the Kolyma River and to the Arctic Ocean as a whole. For estimating the contribution of this source to the total pool of organic carbon, specific structural features of permafrost dissolved organic matter (DOM) as opposed to the waterborne DOM of the Kolyma River should be identified and monitored. The objective of this work was to isolate a representive set of the DOM samples from permafrost soil and freshwater environments of the Kolyma River basin suitable for further structural analysis using high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICR-MS) and 1H NMR spectroscopy. The isolation protocol of DOM used in this study has been developed by Dittmar et al, 2008 for sampling marine DOM for NMR studies. It is based on the solid phase extraction of DOM from seawater using PPL Varian Bond Elute cartridges Those cartridges were shown to possess the highest efficiency in DOM isolation from marine water. Prior to discharge through the cartridge, a water sample was filtered through 0.45 μm filter for separation of particulate matter and acidified to pH 2 using HCl. About 50mg of DOM could be sequestered from aqueous phase using one cartridge. Sorption extent was monitored by measurements of DOC concentration and UV-vis spectra at the inlet and outlet of the cartridge. It was determined that from 60 to 65% of the total DOC could be extracted from the tested samples of freshwater. As a result

  12. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    Science.gov (United States)

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  13. From Turnover-Oriented to Functional Soil Organic Matter Pools: a Lesson Learned from Stable Isotope Tracing

    Science.gov (United States)

    Cotrufo, M. F.

    2016-12-01

    Globally soils contain three times the amount of carbon (C) stored in the atmosphere, and 68% of this is stored in soil below 30cm. Changes to the size of the soil C stocks could significantly impact the net terrestrial-atmosphere CO2 exchange and thus either mitigate or increase concentrations of CO2. Yet we are currently unable to conduct reliable predictions of the direction and magnitude of soil C stock changes, since current soil C models fail to accurately capture the current understanding of how soil organic matter (SOM) forms and persists, and (2) the vertical movement and deep soil processing of SOM. We propose shifting soil C modelling approaches from a turnover-oriented approach to a more functional-oriented approach, where measurable SOM pools with specific function in soils, with respect to their physical structure (soluble versus particulate), microbial accessibility (free versus mineral or aggregate protection) and ability to transfer along the soil profile (through water flow or by mass transport) are represented. We will present experimental evidence from a number of studies conducted in the past few years using stable isotope tracing in support of incorporating a dissolved organic matter (DOM)-microbial path and a physical transfer of particulate organic matter path in SOM models. We will also show how, through the DOM-microbial path, fresh plant inputs quickly result in the formation of new mineral-associated organic matter.

  14. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunkyung [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shon, Ho Kyong [School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), PO Box 123, Broadway, Sydney 2007, NSW (Australia); Cho, Jaeweon, E-mail: chojw@yonsei.ac.kr [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-07-15

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with {sup 3}DOM{sup *}for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ({sup 3}DOM{sup *}) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants

  15. The Role of Physical and Human Landscape Properties on Carbon Composition of Organic Matter in Tropical Rivers

    Science.gov (United States)

    Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.

    2011-12-01

    To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.

  16. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.

    Science.gov (United States)

    Wang, Tianmin; Mori, Hiroshi; Zhang, Chong; Kurokawa, Ken; Xing, Xin-Hui; Yamada, Takuji

    2015-03-21

    Computational predictions of catalytic function are vital for in-depth understanding of enzymes. Because several novel approaches performing better than the common BLAST tool are rarely applied in research, we hypothesized that there is a large gap between the number of known annotated enzymes and the actual number in the protein universe, which significantly limits our ability to extract additional biologically relevant functional information from the available sequencing data. To reliably expand the enzyme space, we developed DomSign, a highly accurate domain signature-based enzyme functional prediction tool to assign Enzyme Commission (EC) digits. DomSign is a top-down prediction engine that yields results comparable, or superior, to those from many benchmark EC number prediction tools, including BLASTP, when a homolog with an identity >30% is not available in the database. Performance tests showed that DomSign is a highly reliable enzyme EC number annotation tool. After multiple tests, the accuracy is thought to be greater than 90%. Thus, DomSign can be applied to large-scale datasets, with the goal of expanding the enzyme space with high fidelity. Using DomSign, we successfully increased the percentage of EC-tagged enzymes from 12% to 30% in UniProt-TrEMBL. In the Kyoto Encyclopedia of Genes and Genomes bacterial database, the percentage of EC-tagged enzymes for each bacterial genome could be increased from 26.0% to 33.2% on average. Metagenomic mining was also efficient, as exemplified by the application of DomSign to the Human Microbiome Project dataset, recovering nearly one million new EC-labeled enzymes. Our results offer preliminarily confirmation of the existence of the hypothesized huge number of "hidden enzymes" in the protein universe, the identification of which could substantially further our understanding of the metabolisms of diverse organisms and also facilitate bioengineering by providing a richer enzyme resource. Furthermore, our results

  17. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts – evidence from a reconnaissance provenance study •

    International Nuclear Information System (INIS)

    Basei, M.; Frimmel, H.; Nutman, A.; Preciozzi, F.; Jacob, J.

    2005-01-01

    A provenance study of Neoproterozoic siliciclastic successions in the stratigraphically and tectonically lowermost and uppermost parts of the Pan-African Gariep Belt (Stinkfontein Subgroup and Oranjemund Group, respectively) in southwestern Africa, as well as in the Rocha Group of the Punta del Este Terrane (Dom Feliciano Belt) in Uruguay, revealed that the Oranjemund and Rocha Groups can be correlated and most likely formed in the same basin. Thus the Rocha Group is considered to represent the fill of the westernmost part of a re-activated Vendian Gariep Basin. The lower parts of the Oranjemund and Rocha Groups reflect erosion of mafic rocks, whereas the upper parts are derived from a predominantly felsic source area. Oceanic islands of within-plate geochemistry in the immediate vicinity were the most likely source of the mafic input into the lower part of the Oranjemund Group, with most of the other sediments derived from a passive continental margin, i.e. the western margin of the Kalahari Craton. Age spectra obtained by U-Pb SHRIMP analyses of detrital zircon grains from the Stinkfontein Subgroup (Port Nolloth Group), the Oranjemund Group and the Rocha Group are very similar, except for a lack of the youngest age group around 600 Ma in the Stinkfontein Subgroup. In all three units, zircon grains of 1000 – 1200 Ma dominate, with a further peak in the age distribution between 1700 and 2000 Ma. These ages compare well with the pre-Gariep basement geology in southwestern Africa, where the former age range corresponds to magmatic and high-grade metamorphic activity in the Mesoproterozoic Namaqua-Natal Belt and the latter to an extensive Palaeoproterozoic Andean-type volcanic arc (Richtersveld Terrane). Comparable ages are conspicuously absent in the basement of the Rio de la Plata Craton in South America. Derivation of the Rocha Group sediments from a similar source as the contemporaneous Oranjemund Group sediments is therefore suggested. The most likely source of

  18. Survival of Acetate in Biodegraded Stream Water DOM: New Insights Based on NMR Spectroscopy

    Science.gov (United States)

    Whitty, S.; Waggoner, D. C.; Bowen, J. C.; Cory, R. M.; Kaplan, L.; Hatcher, P.

    2017-12-01

    DOM is a complex chemical mixture of high- (HMW) and low-molecular-weight (LMW) organic molecules that serve as the primary energy sources for heterotrophic bacteria in freshwater environments. However, there are still large uncertainties on the composition of DOM that is labile and thus rapidly metabolized. The current thinking is that labile DOM is primarily composed of monosaccharides, amino acids, and other LMW organic acids such as formic, acetic, or propionic among others, although some humic substances also are biologically labile. To test the contribution of LMW organic acids to the labile fraction of DOM, freshwater samples were collected from five streams within the Rio Tempisquito watershed in Costa Rica and subjected to differing degrees of biodegradation using a series of plug-flow bioreactors with residence times ranging from 0.5-150 min. Varying the residence times of bioreactors allows for separation and identification of labile from less labile to more recalcitrant DOM. The stream water fed into the bioreactors had DOC concentrations that ranged from 0.7-1.2 ppm C and the GF/F-filtered stream water as well as the bioreactor effluents were analyzed directly without pre-treatment using proton nuclear magnetic resonance spectroscopy (1H NMR). Small molecules dominated the 1H NMR spectra with the greatest changes, as a function of bioreactor residence time, in the carbohydrate, terminal methyl, and long-chain methylene structures. In contrast, acetate remained relatively constant after 150 min of bioreactor residence time, thus raising the question of why this inherently labile volatile fatty acid was not consumed by stream microbes colonizing bioreactors that otherwise metabolized approximately 35% of the total dissolved organic carbon present in the stream water. We suggest that acetate may resist biodegradation because it is complexed strongly with inorganic cations.

  19. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    Science.gov (United States)

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  20. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    Science.gov (United States)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a

  1. Proyecto de una casa inteligente: La domótica en la vivienda

    OpenAIRE

    Torres Roca, Víctor

    2016-01-01

    Para el trabajo final de grado, se calcula y se diseña la instalación eléctrica y domótica de una vivienda unifamiliar de dos plantas con jardín y piscina, con el objetivo de plasmar todos los aspectos aprendidos referentes a la parte eléctrica así como profundizar en el tema domótico, ya que cada vez es un tema más en auge y con una proyección de cara al futuro muy elevada. Para una correcta explicación y realización de dicho trabajo me he basado en lo explicado tanto en el REBT(Reglament...

  2. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of); Choi, Ilhwan [Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711 (Korea, Republic of); Lee, Jung-Joon [Department of Biological Education, Daegu University, Gyungbuk 712-714 (Korea, Republic of); Hur, Jin, E-mail: jinhur@sejong.ac.kr [Department of Environment and Energy, Sejong University, Seoul 143-747 (Korea, Republic of)

    2016-02-15

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L{sup −1}, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  3. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland

    International Nuclear Information System (INIS)

    He, Wei; Choi, Ilhwan; Lee, Jung-Joon; Hur, Jin

    2016-01-01

    In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-C L"−"1, respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS + BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands. - Highlights: • Humic fractions varied

  4. Identifying changes in dissolved organic matter content and characteristics by fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis during wastewater treatment.

    Science.gov (United States)

    Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng

    2014-10-01

    The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Zyxin und Fyb/SLAP : Charakterisierung bekannter und neuer Bindungspartner der EVH1-Domäne der Ena/VASP Proteinfamilie

    OpenAIRE

    Krause, Matthias

    1999-01-01

    Die Ena/VASP Proteinfamilie (VASP, Mena und Evl) ist an der Regulation der aktinvermittelten Bewegung tierischer Zellen beteiligt. Deren N-terminale Ena/VASP Homologie Domäne 1 (EVH1-Domäne) bindet an ein spezifisches prolinreiches Motiv in den Zytoskelettproteinen Zyxin, Vinculin und dem Listerienprotein ActA. In der vorgelegten Dissertation wurden bekannte und neue Bindungspartner der EVH1-Domäne der Ena/VASP Familie charakterisiert. Gegen das humane Zyxin, wurden monoklonale Antikörper her...

  6. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  7. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    Energy Technology Data Exchange (ETDEWEB)

    Bu Lin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang Kun [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Zhao Qingliang, E-mail: zhql1962@yahoo.com.cn [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wei Liangliang; Zhang Jing; Yang Junchen [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-07-15

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD{sub 5}), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  8. O dom e a iniciação revisitados: o dado e o feito em religiões de matriz africana no brasil

    Directory of Open Access Journals (Sweden)

    Marcio Goldman

    2012-08-01

    Full Text Available Partindo da conhecida oposição entre o que derivaria do "dom" e o que derivaria da "iniciação" nas religiões de matriz africana no Brasil, este trabalho visa, em um primeiro movimento, demonstrar etnograficamente que esse dualismo oculta um triadismo. O desdobramento da análise etnográfica levará, contudo e em seguida, à substituição desse triadismo por um modelo simultaneamente unitário e múltiplo. Neste, a "participação", em seus múltiplos sentidos, deverá ter um lugar ao lado do "dom" e da "iniciação", e as três categorias deverão ser entendidas como atualizações de um princípio subjacente único.Beginning with the known opposition between that which derives from the "gift" and that which derives from "initiation" in African-oriented religions in Brazil, this work aims to ethnographically demonstrate that said dualism actually conceals a triadism. The unfolding of ethnographic analysis in the article will, however, lead us to replace this triadism with a model that is simultaneously unified and multiple. In this, "participation" (in its multiple meanings should have a place next to the "gift" and "initiation" and the three categories should be construed as updates of a single under-lying principle.

  9. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  11. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    International Nuclear Information System (INIS)

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas

    2013-01-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ 1D 2 ) 3/2 remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ J = (5π/G) 1/2 Q −1/3 ρ dm −1/6 . The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10 −6 M ⊙

  12. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  13. Core-size regulated aggregation/disaggregation of citrate-coated gold nanoparticles (5-50 nm) and dissolved organic matter: Extinction, emission, and scattering evidence

    Science.gov (United States)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2018-01-01

    Knowledge of the interactions between gold nanoparticles (GNPs) and dissolved organic matter (DOM) is significant in the development of detection devices for environmental sensing, studies of environmental fate and transport, and advances in antifouling water treatment membranes. The specific objective of this research was to spectroscopically investigate the fundamental interactions between citrate-stabilized gold nanoparticles (CT-GNPs) and DOM. Studies indicated that 30 and 50 nm diameter GNPs promoted disaggregation of the DOM. This result-disaggregation of an environmentally important polyelectrolyte-will be quite useful regarding antifouling properties in water treatment and water-based sensing applications. Furthermore, resonance Rayleigh scattering results showed significant enhancement in the UV range which can be useful to characterize DOM and can be exploited as an analytical tool to better sense and improve our comprehension of nanomaterial interactions with environmental systems. CT-GNPs having core size diameters of 5, 10, 30, and 50 nm were studied in the absence and presence of added DOM at 2 and 8 ppm at low ionic strength and near neutral pH (6.0-6.5) approximating surface water conditions. Interactions were monitored by cross-interpretation among ultraviolet (UV)-visible extinction spectroscopy, excitation-emission matrix (EEM) spectroscopy (emission and Rayleigh scattering), and dynamic light scattering (DLS). This comprehensive combination of spectroscopic analyses lends new insights into the antifouling behavior of GNPs. The CT-GNP-5 and -10 controls emitted light and aggregated. In contrast, the CT-GNP-30 and CT-GNP-50 controls scattered light intensely, but did not aggregate and did not emit light. The presence of any CT-GNP did not affect the extinction spectra of DOM, and the presence of DOM did not affect the extinction spectra of the CT-GNPs. The emission spectra (visible range) differed only slightly between calculated and actual

  14. Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata

    Directory of Open Access Journals (Sweden)

    Lucile Courtial

    2017-08-01

    Full Text Available Coral bleaching events are predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes depends on many factors, including the magnitude of thermal stress and irradiance. The interactions among these two factors, and in particular with ultra-violet radiation (UVR, the most harmful component of light, are more complex than assumed, and are not yet well understood. This paper explores the individual and combined effects of temperature and UVR on the metabolism of Acropora muricata, one of the most abundant coral species worldwide. Particulate and dissolved organic matter (POM/DOM fluxes and organic matter (OM degradation by the mucus-associated bacteria were also monitored in all conditions. The results show that UVR exposure exacerbated the temperature-induced bleaching, but did not affect OM fluxes, which were only altered by seawater warming. Temperature increase induced a shift from POM release and DOM uptake in healthy corals to POM uptake and DOM release in stressed ones. POM uptake was linked to a significant grazing of pico- and nanoplankton particles during the incubation, to fulfil the energetic requirements of A. muricata in the absence of autotrophy. Finally, OM degradation by mucus-associated bacterial activity was unaffected by UVR exposure, but significantly increased under high temperature. Altogether, our results demonstrate that seawater warming and UVR not only affect coral physiology, but also the way corals interact with the surrounding seawater, with potential consequences for coral reef biogeochemical cycles and food webs.

  15. Non-riverine pathways of terrigenous carbon to the ocean

    Science.gov (United States)

    Dittmar, T.

    2007-12-01

    The extent and nature of non-riverine fluxes of carbon from land to ocean are poorly understood. Tidal pumping from highly productive coastal environments, atmospheric deposition and submarine groundwater discharge can be significant transport mechanisms for carbon to the ocean. Evidence is mounting that tidally-induced porewater fluxes ("outwelling") of dissolved organic matter (DOM) from mangroves and salt marshes alone may be similar in magnitude as the global riverine flux of DOM. Tidal pumping of dissolved inorganic carbon (DIC) might exceed organic carbon fluxes by far, but the existing knowledge on DIC outwelling is too scarce for a first global estimate. Results from two case studies on the biogeochemistry of DOM outwelling are presented, from the mangroves in Northern Brazil and the salt marshes in the Northern Gulf of Mexico. Ongoing research in the Northern Gulf of Mexico indicates that outwelling and groundwater inputs probably exceed riverine DOM fluxes in this region. Similar observations were made in Northern Brazil. There, the fate of mangrove-derived DOM could be traced from its source in the mangrove sediments to the outer North Brazil shelf by using a combination of isotopic and molecular approaches. Reversed-phase liquid chromatography / mass spectrometry (LC/MS) provided a multifaceted array of information that mirrors the molecular complexity of DOM. Statistical analyses on these data revealed significant differences between mangrove and open-ocean DOM which successively disappeared by irradiating the samples with natural sunlight. Nuclear magnetic resonance analyses yielded concurrent results. Ultrahigh-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is the only technique capable of resolving and identifying individual elemental compositions in these complex mixtures. We applied this technique for characterizing mangrove-derived DOM and to assess the molecular changes that occur in the initial stages of

  16. Changes in the composition and bioavailability of dissolved organic matter during sea ice formation

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Kaartokallio, Hermanni

    2015-01-01

    matter (FDOM) fractions in sea ice, brines (contained in small pores between the ice crystals), and the underlying seawater during a 14 d experiment. Two series of mesocosms were used: one with seawater alone and one with seawater enriched with humic-rich river water. Abiotic processes increased...... processes such as sea ice formation as the source of the significant DOM removal in the Arctic Ocean. We present the results of a mesocosm experiment designed to investigate how sea ice formation affects DOM composition and bioavailability. We measured the change in different fluorescent dissolved organic...... the humic-like FDOM signal in the seawater below the ice during the initial ice formation. Humic-like FDOM fractions with a marine signal were preferentially retained in sea ice (relative to salinity), whereas humic-like FDOM with a terrestrial signal behaved more conservatively with respect to salinity...

  17. Effects of sampling methods on the quantity and quality of dissolved organic matter in sediment pore waters as revealed by absorption and fluorescence spectroscopy.

    Science.gov (United States)

    Chen, Meilian; Lee, Jong-Hyeon; Hur, Jin

    2015-10-01

    Despite literature evidence suggesting the importance of sampling methods on the properties of sediment pore waters, their effects on the dissolved organic matter (PW-DOM) have been unexplored to date. Here, we compared the effects of two commonly used sampling methods (i.e., centrifuge and Rhizon sampler) on the characteristics of PW-DOM for the first time. The bulk dissolved organic carbon (DOC), ultraviolet-visible (UV-Vis) absorption, and excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC) of the PW-DOM samples were compared for the two sampling methods with the sediments from minimal to severely contaminated sites. The centrifuged samples were found to have higher average values of DOC, UV absorption, and protein-like EEM-PARAFAC components. The samples collected with the Rhizon sampler, however, exhibited generally more humified characteristics than the centrifuged ones, implying a preferential collection of PW-DOM with respect to the sampling methods. Furthermore, the differences between the two sampling methods seem more pronounced in relatively more polluted sites. Our observations were possibly explained by either the filtration effect resulting from the smaller pore size of the Rhizon sampler or the desorption of DOM molecules loosely bound to minerals during centrifugation, or both. Our study suggests that consistent use of one sampling method is crucial for PW-DOM studies and also that caution should be taken in the comparison of data collected with different sampling methods.

  18. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    Science.gov (United States)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  19. Plan de empresa para empresa de servicios de ingeniería domótica

    OpenAIRE

    Olano Razkin, Álvaro

    2010-01-01

    En un contexto de previsible aumento de la demanda de instalación y uso de servicios domóticos, este proyecto presenta el plan para la creación de una empresa de servicios de ingeniería domótica. En concreto, la nueva empresa que se proyecta pretende dar servicio a un segmento de la demanda poco desarrollado, y por tanto poco atendido, de la demanda. Este segmento está formado principalmente por pequeñas y medianas promotoras inmobiliarias decididas a diferenciar sus viviendas ...

  20. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    Science.gov (United States)

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  1. Urinary purine derivatives as a tool to estimate dry matter intake in cattle: a meta-analysis

    Science.gov (United States)

    The objectives of this study were: 1) to investigate the relationship between dry matter intake (DMI) and urinary purine derivatives (PD) excretion in order to develop equations to predict DMI, and 2) to determine the endogenous excretion of PD for beef and dairy cattle using a meta-analytic approac...

  2. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite.

    Science.gov (United States)

    Sun, Huifang; Liu, Hang; Han, Jiarui; Zhang, Xiangru; Cheng, Fangqin; Liu, Yu

    2018-04-24

    This study characterized the dissolved organic matter (DOM) and byproducts generated after the exposure of activated sludge to ozone and NaClO in ceramic MBR. It was found that NaClO triggered more significant release of DOM than ozone. Proteins with the molecular weight greater than 20 kDa and humic acid like-substances were the principal components of DOM generated by NaClO, while ozone was found to effectively degrade larger biopolymers to low molecular weight substances. The results showed that more than 80% of DOM generated by NaClO and ozone could pass through the 0.2-μm ceramic membrane. Furthermore, total organic chlorine (TOCl) was determined to be the principal species of halogenated byproducts in both cases, while the generation of TOCl by NaClO was much more significant than that by ozone. Only a small fraction of TOCl was removed by the 0.2-μm ceramic membrane. More importantly, the toxic bioassays further revealed that the supernatant of sludge suspension and permeate in the MBR with NaClO cleaning exhibited higher developmental toxicity to the polychaete embryos than those by ozone. The results clearly showed that on-line chemical cleaning with ozone should be a more eco-friendly and safer approach for sustaining long-term membrane permeability in ceramic MBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective

    Directory of Open Access Journals (Sweden)

    W. X. Schulze

    2005-01-01

    Full Text Available Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM, this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the environmental protein pool, and (2 identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  4. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities.

    Directory of Open Access Journals (Sweden)

    J A Fonvielle

    Full Text Available Mucus, i.e., particulate and dissolved organic matter (POM, DOM released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2, but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released. Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.

  5. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    Science.gov (United States)

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  6. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  7. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc : a column experiment

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; Parsons, J.R.; de Voogt, P.; Bagnis, S.; Markus, A.; El-Shater, A.-H.; El-Haddad, A.-A.; Kalbitz, K.

    2017-01-01

    Infiltration of heavy metal (HM) polluted wastewater can seriously compromise soil and groundwater quality. Interactions between mineral soil components (e.g. clay minerals) and dissolved organic matter (DOM) play a crucial role in determining HM mobility in soils. In this study, the influence of

  8. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter

    International Nuclear Information System (INIS)

    García-Otero, Natalia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-01-01

    Highlights: ► Fractionation methods for assessing metals bound to marine DOM were developed. ► SEC and AEC with UV detection and hyphenated with inductively coupled plasma-mass spectrometry were used. ► SEC-UV showed marine DOM of molecular weights from 16 to 1 kDa. ► Cobalt, manganese, strontium and zinc are bound to marine DOM. - Abstract: Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.

  9. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  10. Effects of nitrate and phosphate supply on chromophoric and fluorescent dissolved organic matter in the Eastern Tropical North Atlantic: a mesocosm study

    Science.gov (United States)

    Loginova, A. N.; Borchard, C.; Meyer, J.; Hauss, H.; Kiko, R.; Engel, A.

    2015-12-01

    In open-ocean regions, as is the Eastern Tropical North Atlantic (ETNA), pelagic production is the main source of dissolved organic matter (DOM) and is affected by dissolved inorganic nitrogen (DIN) and phosphorus (DIP) concentrations. Changes in pelagic production under nutrient amendments were shown to also modify DOM quantity and quality. However, little information is available about the effects of nutrient variability on chromophoric (CDOM) and fluorescent (FDOM) DOM dynamics. Here we present results from two mesocosm experiments ("Varied P" and "Varied N") conducted with a natural plankton community from the ETNA, where the effects of DIP and DIN supply on DOM optical properties were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. Spectral slope (S) decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was produced by bacteria proportionally to DIN supply. The protein-like FDOM component (Comp.2) was released irrespectively to phytoplankton or bacterial biomass, but depended on DIP and DIN concentrations. Under high DIN supply, Comp.2 was removed by bacterial reworking, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation of Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and quality of optically active DOM and, therefore, might bias results of the applied in situ optical techniques for an estimation of DOC concentrations in open-ocean regions.

  11. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    Science.gov (United States)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  12. From solid to liquid: assessing the release of organic matter into soil solution in response to land-use conversion in Brazilian Oxisols

    Science.gov (United States)

    James, Jason; Gross, Cole; Dwivedi, Pranjal; Bernardi, Rodolpho; Guerrini, Irae; Harrison, Rob; Butman, David

    2017-04-01

    Recent advances in freshwater research indicate that roughly double the quantity of carbon is exported from soils to streams and rivers than was previously estimated, and that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. Consequently, it is important to understand the mechanisms that cause the release of SOM that is mineral-bound into solution in response to human disturbance and land-use change. Research methods have been established to examine both the fast turnover, dissolved pool of soil organic matter (SOM), as well as the slow turnover, mineral-associated pool. However, to better characterize the response of the total SOM pool to disturbance, it is necessary to understand the interactions between these functional pools by examining them both simultaneously. This study seeks to examine the interaction between dissolved organic matter (DOM) and bulk SOM throughout the soil profile in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantation forest on the same soil type. The water-extractable organic matter was obtained from soil samples down to 150 cm, characterized using fluorescence and NMR spectroscopy, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. SOM spectra were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than DOM, suggesting that C released into solution from deeper

  13. Aborto provocado e violência doméstica entre mulheres atendidas em uma maternidade pública de Salvador-BA

    Directory of Open Access Journals (Sweden)

    Normélia Maria Freire Diniz

    2011-12-01

    Full Text Available Estudo quantitativo, com o objetivo de estudar a violência doméstica em mulheres em situação de aborto provocado. Foram entrevistas 147 mulheres internadas por aborto provocado numa maternidade pública, na cidade de Salvador-BA. Os sujeitos foram, na maioria, mulheres jovens, negras, com baixa escolaridade, dependentes economicamente dos cônjuges, que vivenciam violência psicológica, física e sexual cometida pelos cônjuges. Quase metade das mulheres vivenciou violência doméstica durante a gravidez atual, sendo este o motivo do aborto para 67% delas. Conclui-se que existe uma associação entre a vivência de violência doméstica e o aborto provocado. Isso repercute na saúde mental das mulheres, que desenvolvem sintomas do transtorno de estresse pós-traumático. Necessita-se, portanto, de um olhar por parte dos profissionais de saúde de modo a identificar a violência doméstica enquanto agravo e associá-la ao aborto provocado, o que requer transformação no modelo de formação, incorporando a violência doméstica como objeto da saúde.

  14. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter.

    Science.gov (United States)

    Xue, Shuang; Jin, Wujisiguleng; Zhang, Zhaohong; Liu, Hong

    2017-07-01

    The reductions of dissolved organic matter (DOM) and disinfection byproduct precursors in four full-scale wastewater treatment plants (WWTPs) (Liaoning Province, China) where different biological treatment processes were employed in winter were investigated. The total removal efficiencies of dissolved organic carbon (DOC), ultraviolet light at 254 nm (UV-254), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) were in the range of 70.3-76.0%, 49.6-57.3%, 54.4-65.0%, and 53.7-63.8% in the four WWTPs, respectively. The biological treatment was the predominant process responsible for the removal of DOC, THMFP, and HAAFP in WWTPs. Differences in the reduction of UV-254 were not significant (p > 0.05) among biochemical reaction pool, secondary sedimentation tank, and disinfection tank. Biological aerated filter and suspended carrier activated sludge processes achieved higher DOM removal than the conventional active sludge and anaerobic-anoxic-oxic processes. Hydrophobic neutral and hydrophilic fraction were removed to a higher degree through biological treatment than the other three DOM fractions. HAAFP removal was more efficient than THMFP reduction during biological treatment. During primary treatment, fluorescent materials in secondary sedimentation tanks were preferentially removed, as compared to the bulk DOM. Humic-like fluorescent compounds were not readily eliminated during biological treatment. The fluorescent materials were more susceptible to chlorine than nonfluorescent compounds. Copyright © 2017. Published by Elsevier Ltd.

  15. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  16. Tracking changes in composition and amount of dissolved organic matter throughout drinking water treatment plants by comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang

    2017-12-31

    Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment

  17. Os modelos conciliatórios de solução de conflitos e a "violência doméstica" "Domestic violence" and different forms of conciliation

    Directory of Open Access Journals (Sweden)

    Guita Grin Debert

    2007-12-01

    Full Text Available Os modelos conciliatórios de solução de conflitos têm ganhado uma importância cada vez maior nas propostas interessadas em dar celeridade ao Judiciário e ampliar o acesso da população à justiça. Esse artigo propõe uma reflexão sobre esse modelo, pautado no acordo e na conciliação, quando está em jogo a violência doméstica. Tomando como base estudos etnográficos sobre a Delegacia de Defesa da Mulher e os Juizados Especiais Criminais, o argumento central é que a conciliação ganha conteúdos muito distintos nessas duas instâncias do sistema de justiça. O contraste entre valores e simbologias postas em ação no fluxo dos processos nessas duas instâncias oferece elementos para a compreensão do contexto que levou à promulgação da Lei Maria da Penha, sancionada no dia 7 de agosto 2006, que retirou do âmbito dos Juizados Especiais Criminais os delitos que envolvem violência doméstica e familiar contra a mulher.Alternative conflict resolution based on forms of conciliation have been identified as a possible response to problems of access to courts deriving from the numbers, costs and length of proceedings in the Brazilian’s judicial system. This paper focuses on these alternative forms of justice, regarding domestic violence matters. Using ethnographic methods of studies at Women’s Police Stations and at Small Claim Courts, the main argument is that the forms of conciliation can be very different, specifically, in these two institutions of the judicial system. The contrasts between moral values and the simbols used differently by these two institutions offer some elements for us to understand the context in which was created the Law called Maria da Penha, sanctioned on August 17th of 2006. After this Law, cases of domestic violence against women were excluded from Small Claim Courts in Brazil.

  18. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    Science.gov (United States)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  19. POM Pulses: Characterizing the Physical and Chemical Properties of Particulate Organic Matter (POM) Mobilized by Large Storm Events and its Influence on Receiving Fluvial Systems

    Science.gov (United States)

    Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.

    2016-12-01

    Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.

  20. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  1. Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord

    DEFF Research Database (Denmark)

    Markager, Stiig; Stedmon, Colin; Søndergaard, Morten

    2011-01-01

    of different DOM parameters i.e. dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP), light absorption and eight fluorescence components, were analysed relative to conservative mixing. Many of the parameters did not behave conservatively. For DON, DOP and absorption, more than 65......This study presents the results of a year-long study investigating the characteristics of dissolved organic matter (DOM) in the Danish estuary, Horsens Fjord. The estuary is shallow with a mean depth of 2.9 m and receives high loadings of inorganic nutrients from its catchment. The behaviour......% of the freshwater concentration was removed initially at salinities below 12. At higher salinities two general patterns were identified. Concentrations of DON, DOP and four humic fluorescent fractions were not, or only weakly, related to salinity, showing that other processes than mixing were involved. Other...

  2. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  3. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  4. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Science.gov (United States)

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Determination of natural organic matter and iron binding capacity in fen samples

    Science.gov (United States)

    Kügler, Stefan; Cooper, Rebecca E.; Frieder Mohr, Jan; Wichard, Thomas; Küsel, Kirsten

    2017-04-01

    Natural organic matter (NOM) plays an important role in ecosystem processes such as soil carbon stabilization, nutrient availability and metal complexation. Iron-NOM-complexes, for example, are known to increase the solubility and, as a result, the bioavailability of iron in natural environments leading to several effects on the microbial community. Due to the various functions of NOM in natural environments, there is a high level of interest in the characterization of the molecular composition. The complexity of NOM presents a significant challenge in the elucidation of its composition. However, the development and utilization of high resolution mass spectrometry (HR-MS) as a tool to detect single compounds in complex samples has spearheaded the effort to elucidate the composition of NOM. Over the past years, the accuracy of ion cyclotron- or Orbitrap mass spectrometers has increased dramatically resulting in the possibility to obtain a mass differentiation of the large number of compounds in NOM. Together these tools provide significant and powerful insight into the molecular composition of NOM. In the current study, we aim to understand abiotic and biotic interactions between NOM and metals, such as iron, found in the Schlöppnerbrunnen fen (Fichtelgebirge, Germany) and how these interactions impact the microbial consortia. We characterized the dissolved organic matter (DOM) as well as basic chemical parameters in the iron-rich (up to 20 mg (g wt peat)-1), slightly acidic (pH 4.8) fen to gain more information about DOM-metal interactions. This minerotrophic peatland connected to the groundwater has received Fe(II) released from the surrounding soils in the Lehstenbach catchment. Absorption spectroscopy (AAS), differential pulse polarography (DPP) and high resolution electrospray ionization mass spectrometry (HR-ESI-Orbitrap-MS) was applied to characterize the molecular composition of DOM in the peat water extract (PWE). We identified typical patterns for DOM

  6. Tratamiento Híbrido de agua residual gris doméstica

    Directory of Open Access Journals (Sweden)

    Pablo Paredes

    2013-07-01

    Full Text Available El reúso del agua residual gris doméstica es una práctica que también puede aplicarse en nuestro país. Este reúso ayudaria a reducir los costos de consumo de agua potable que actualmente poseen las personas de estratos medio y bajo en el país. Este estudio aplica un concepto nuevo de sistema de tratamiento híbrido para descontaminar el agua y poderla reusar para riego de jardines o para llenar el tanque de los inodoros en una vivienda. Un tratamiento de agua residual gris doméstica híbrido plantea la consecución de remociones totales de materia orgánica, sólidos suspendidos totales, coliformes fecales del 93 %, 92 % y 99,2 %, respectivamente. Este tipo de tratamiento puede tener un valor agregado al disminuir las descargas de aguas servidas a través del sistema de alcantarillado sanitario, con el abaratamiento de la infraestructura para los organismos seccionales del país.

  7. Optical Proxies for Terrestrial Dissolved Organic Matter in Estuaries and Coastal Waters

    Directory of Open Access Journals (Sweden)

    Christopher L. Osburn

    2016-01-01

    Full Text Available Optical proxies, especially DOM fluorescence, were used to track terrestrial DOM fluxes through estuaries and coastal waters by comparing models developed for several coastal ecosystems. Key to using optical properties is validating and calibrating them with chemical measurements, such as lignin-derived phenols - a proxy to quantify terrestrial DOM. Utilizing parallel factor analysis (PARAFAC, and comparing models statistically using the OpenFluor database (http://www.openfluor.org we have found common, ubiquitous fluorescing components which correlate most strongly with lignin phenol concentrations in several estuarine and coastal environments. Optical proxies for lignin were computed for the following regions: Mackenzie River Estuary, Atchafalaya River Estuary, Charleston Harbor, Chesapeake Bay, and Neuse River Estuary. The slope of linear regression models relating CDOM absorption at 350 nm (a350 to DOC and to lignin, varied 5 to 10 fold among systems. Where seasonal observations were available from a region, there were distinct seasonal differences in equation parameters for these optical proxies. Despite variability, overall models using single linear regression were developed that related dissolved organic carbon (DOC concentration to CDOM (DOC = 40×a350+138; R2 = 0.77; N = 130 and lignin (Σ8 to CDOM (Σ8 = 2.03×a350-0.5; R2 = 0.87; N = 130. This wide variability suggested that local or regional optical models should be developed for predicting terrestrial DOM flux into coastal oceans and taken into account when upscaling to remote sensing observations and calibrations.

  8. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter

    DEFF Research Database (Denmark)

    Logue, J.B.; Stedmon, Colin; Kellerman, A.M.

    2016-01-01

    and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover...

  9. Entrevista a Doménico Chiappe

    Directory of Open Access Journals (Sweden)

    Nohelia Meza

    2016-09-01

    Full Text Available http://dx.doi.org/10.5007/1807-9288.2016v12n1p134 En esta entrevista, Doménico Chiappe nos habla de la estructura de sus obras, de la experiencia de narrar hilando diferentes lenguajes. El autor hace énfasis en la fusión de diversas artes en las obras multimedia y subraya la necesaria convergencia de distintos artistas para su elaboración. Chiappe profundiza en los términos: brevedad, circularidad, fragmentación, hiperfonía y retórica multimedia, al mismo tiempo que nos explica cómo estos afectan tanto el proceso creativo como las diferentes formas de lectura que de él se originan.

  10. Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.

    Science.gov (United States)

    Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J

    2010-02-15

    Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.

  11. XVI "Baltiiski dom" : klassika v raznõhh izmerenijahh / Eteri Kekelidze

    Index Scriptorium Estoniae

    Kekelidze, Eteri, 1944-

    2006-01-01

    16. rahvusvahelisest teatrifestivalist "Baltiiski dom" Peterburis. Pikemalt vaadeldakse lavastusi : Anton Tshehhovi "Onu Vanja" (Belgia teater "Toneelhuis", lavastaja Luk Perceval), "Kolm õde" (lavastaja Rimas Tuminas), Goethe "Faust" (lavastaja Eimuntas Nekroshius), "Kosmos" (Witold Gombrowiczi romaani järgi lavastanud Jerzy Jarocki), Aleksandr Ostrovski "Mets" (Moskva Kunstiteater, lavastaja Kirill Serebrjannikov). Mainitakse, et festivalil osales ka Ugala teater Oleg Titovi lavastusega "Libahunt"

  12. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    Science.gov (United States)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here

  13. Mercados de trabajo secundarios e inmigración: el servicio doméstico en Estados Unidos

    Directory of Open Access Journals (Sweden)

    Marina Ariza

    2011-01-01

    Full Text Available El servicio doméstico figura entre los mercados de trabajo secundarios que han cobrado vigencia en el contexto de la globalización. Su dinamismo se relaciona con la demanda de fuerza de trabajo femenina barata para satisfacer necesidades de atención en la esfera de la reproducción doméstica. La caracterización del mercado de trabajo del servicio doméstico en Estados Unidos a principios del siglo XXI con base en datos de encuesta muestra que -ahora como antaño- su crecimiento descansa principalmente en la afluencia de fuerza de trabajo inmigrante, que en nuestros días es principalmente latinoamericana. El nivel de pobreza que acusan y su baja escolaridad, corroboran que el crecimiento de este mercado de trabajo en las sociedades desarrolladas es una más de las secuelas regresivas del mundo del trabajo en el contexto de la globalización.

  14. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  15. Chemistry of chromites from Arroio Grande Ophiolite (Dom Feliciano Belt, Brazil) and their possible connection with the Nama Group (Namibia)

    Science.gov (United States)

    Ramos, Rodrigo Chaves; Koester, Edinei; Porcher, Carla Cristine

    2017-12-01

    The present paper shows a mineral chemistry study in chromites found in serpentine-talc schists of the Arroio Grande Ophiolite, located in the southeastern Dom Feliciano Belt, near the Brazil/Uruguay border. Using electron microscope scanning and electron microprobe techniques, this study found a supra-subduction zone signature in the chromites, together with evidence of metasomatism. It corroborates previous hypothesis that suggested a supra-subduction zone origin for the protoliths of the Arroio Grande meta-igneous rocks and a metasomatic origin for the chromite-bearing magnesian schists. The studied chromites present high Cr# (0.65-0.77) and Fe2+# (0.88-0.95), low MgO (0.85-2.47 wt%) and TiO2 (0.01-0.19 wt%) and anomalous high concentration of ZnO (up to 1.97 wt%). The results were compared with chemical data from detrital chromites from the Schwarzrand and Fish River Subgroups of the Nama Group (Namibia), demonstrating that they are compositionally similar with those found in the latter. These chromites, in turn, are believed to have been derived from the oceanic Marmora Terrane (Gariep Belt) in the west (present-day coordinates). Taking into consideration that oceanic metamafites from both the latter and the Arroio Grande Ophiolite share common bulk-rock geochemical features (in this paper interpreted as fragments of the same paleo-ocean floor - the Marmora back-arc basin), it is possible to raise the hypothesis that detrital material derived from the studied ophiolite might also be found in Nama Group. It is reinforced by the fact that sediments (related to the Pelotas-Aiguá Batholith granitoids) derived from the easternmost Dom Feliciano Belt, i.e. the region where Arroio Grande Ophiolite is located, is found in both Schwarzrand and Fish River Subgroups. Thus, we suggest that Arroio Grande Ophiolite detrital sediments might also have contributed to the Nama Basin infilling during Late Ediacaran-Lower Cambrian.

  16. The decline of Dom Pedro II's empire and health: neurophatogenic implications O declínio do império e da saúde de Dom Pedro II: implicações neuropatogênicas

    Directory of Open Access Journals (Sweden)

    Marleide da Mota Gomes

    2007-12-01

    Full Text Available The main objective of this paper is to know the medical doctors of the Emperor, the preconized treatment, and the knowledge about diabetes at that time, its repercussions on the Emperor's nervous system, and the related political implications. A narrative revision was made, based on primary and secondary sources. Dom Pedro II was examined by the aristocracy of the medicine at the time, especially Jean-Martin Charcot, amongst the doctors of international reputation, and Cláudio Velho da Motta Maia, amongst the Brazilian doctors. Charcot diagnosed in the Monarch: mental stress, diabetic neuropathy, and a cerebral vascular lesion, probably a stroke, that he differentiated from other vascular obliterations elsewhere. He demonstrated his knowledge about diabetic neuropathy, possible topographical alternatives to justify the urinary incontinence, and Dom Pedro's weakness in the legs. Throughout his illness, Dom Pedro II presented others manifestations that contributed to his physical fragility, and that, certainly too, to his political decline, deposition and the proclamation of the Brazilian Republic.O objetivo principal deste artigo é conhecer os médicos do Imperador, o tratamento preconizado e o conhecimento da ocasião sobre o diabetes, principalmente sobre suas repercussões no sistema nervoso do imperador e suas implicações políticas. Isso foi feito por uma revisão narrativa, baseado em fontes primárias e secundárias. Dom Pedro II foi examinado na ocasião pela aristocracia da medicina, a ressaltar Jean-Martin Charcot, dentre os médicos de reputação internacional, e Cláudio Velho da Motta Maia, dentre os brasileiros. Charcot diagnosticou no Monarca, além de tensão mental, neuropatia diabética e quadro vascular cerebral que ele diferenciou de outras obliterações vasculares em localizações diversas. Ele demonstrou o seu conhecimento sobre a neuropatia diabética, possíveis alternativas topográficas para justificar a incontin

  17. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter

    Science.gov (United States)

    Green, Nelson W.; Perdue, E. Michael; Aiken, George R.; Butler, Kenna D.; Chen, Hongmei; Dittmar, Thorsten; Niggemann, Jutta; Stubbins, Aron

    2014-01-01

    Dissolved organic matter (DOM) was isolated from large volumes of deep (674 m) and surface (21 m) ocean water via reverse osmosis/electrodialysis (RO/ED) and two solid-phase extraction (SPE) methods (XAD-8/4 and PPL) at the Natural Energy Laboratory of Hawaii Authority (NELHA). By applying the three methods to common water samples, the efficiencies of XAD, PPL and RO/ED DOM isolation were compared. XAD recovered 42% of dissolved organic carbon (DOC) from deep water (25% with XAD-8; 17% with XAD-4) and 30% from surface water (16% with XAD-8; 14% with XAD-4). PPL recovered 61 ± 3% of DOC from deep water and 61% from surface water. RO/ED recovered 82 ± 3% of DOC from deep water, 14 ± 3% of which was recovered in a sodium hydroxide rinse, and 75 ± 5% of DOC from surface water, with 12 ± 2% in the sodium hydroxide rinse. The highest recoveries of all were achieved by the sequential isolation of DOC, first with PPL and then via RO/ED. This combined technique recovered 98% of DOC from a deep water sample and 101% of DOC from a surface water sample. In total, 1.9, 10.3 and 1.6 g-C of DOC were collected via XAD, PPL and RO/ED, respectively. Rates of DOC recovery using the XAD, PPL and RO/ED methods were 10, 33 and 10 mg-C h− 1, respectively. Based upon C/N ratios, XAD isolates were heavily C-enriched compared with water column DOM, whereas RO/ED and PPL ➔ RO/ED isolate C/N values were most representative of the original DOM. All techniques are suitable for the isolation of large amounts of DOM with purities suitable for most advanced analytical techniques. Coupling PPL and RO/ED techniques may provide substantial progress in the search for a method to quantitatively isolate oceanic DOC, bringing the entirety of the DOM pool within the marine chemist's analytical window.

  18. Lignin Contribution to the Global Carbon Pool: Investigating the Abiotic Modification of Lignin by Reactive Oxygen Species

    Science.gov (United States)

    Waggoner, Derek Charles

    Evidence suggests that reactive oxygen species (ROS), largely generated through photochemical processes, are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. The main focus of the studies within this dissertation aim to more thoroughly characterize the alterations to lignin, used as an analog for terrestrial DOM, resulting from reactions with ROS. To investigate the possibility that the alteration of lignin, through reactions involving ROS, could lead to the production of compounds not recognized as having terrestrial origin, lignin-derived DOM was prepared from a sample of Atlantic white cedar (Chamaecyparis thyoides) and used for a number of studies. Lignin-derived DOM was independently exposed to hydroxyl radical (•OH) generated by Fenton reaction, singlet oxygen (1O2) produced using the photosensitizer Rose Bengal, and superoxide (O2-•) via stable potassium superoxide solution, under controlled laboratory conditions to accentuate how each ROS is responsible for the alteration of lignin. Advanced analytical techniques including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), were employed to characterize alteration to lignin taking place following various ROS treatments. Results of these studies have shown distinct differences in the types of new compounds observed from exposure to each ROS as well as ROS reactivity. The alteration of lignin to compounds not typically associated with terrestrial DOM has been demonstrated upon exposure to ROS. It is also suggested that ROS could selectively react with different fractions of lignin like compounds based

  19. The role of priming effects on the conversion of blue carbon to CO2 in the coastal zone

    Science.gov (United States)

    Morrison, E.; Ward, N. D.; Arellano, A. R.; Liu, Y.; Rivas-Ubach, A.; Ogram, A.; Osborne, T.; Vaughn, D.; Bianchi, T. S.

    2017-12-01

    Coastal ecosystems are recognized as valuable but vulnerable carbon (C) sinks, and the C stored in these systems is often referred to as blue C. These systems face many threats, particularly along low-relief coastlines such as Florida, which are susceptible to erosion and C loss as sea levels rise. Peat-derived organic matter (OM) may be degraded within downstream estuarine systems, and its degradation may be enhanced in the presence of labile algal-derived OM via microbial priming effects. To investigate the role of microbial priming effects on the degradation of peat-derived blue C, incubations were established and a suite of analyses were conducted to evaluate changes in peat-derived OM, CO2 production, metabolites, and microbial community structure (via metagenomic sequencing) over the course of the experiment. Four treatments were established: seawater with peat and algal leachate (SWPA), seawater and peat leachate (SWP), seawater and algal leachate (SWA), and seawater alone (SW). Treatments containing peat leachate (SWPA and SWP) harbored greater total DOC concentrations compared to SWA and SW treatments. Over the course of the incubation, CO2 concentrations increased in all treatments, with the highest CO2 levels in treatments with algal-derived DOM (SWA and SWPA). Both treatments with algal-derived DOM (SWA and SWPA) showed an increase in 13C-labeled CO2 over the course of the incubation, and stable isotope mass balance indicated that the conversion of peat-derived OC to CO2 occurred approximately 30% faster with the presence of algal-derived DOC. Aromaticity indices from absorption spectra were significantly lower in the SWP treatment when compared to the SWPA treatment. Dissolved organic matter molecular formulae detected by Fourier-transformed ion cyclotron resonance spectrometry indicated an increase in the degradation of peat-derived compounds when algal material was present. Overall, these findings suggest that there is an increase in microbial

  20. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function

    DEFF Research Database (Denmark)

    Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.

    2017-01-01

    Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects of ele...... supply to the Baltic Sea will be efficiently mineralized by microbes. This will have consequences for bacterioplankton and phytoplankton community composition and function, and significantly affect nutrient biogeochemistry....