Harz, J; Klasen, M; Kovarik, K; Steppeler, P
2016-01-01
For particle physics observables at colliders such as the LHC at CERN, it has been common practice for many decades to estimate the theoretical uncertainty by studying the variations of the predicted cross sections with a priori unpredictable scales. In astroparticle physics, this has so far not been possible, since most of the observables were calculated at Born level only, so that the renormalization scheme and scale dependence could not be studied in a meaningful way. In this paper, we present the first quantitative study of the theoretical uncertainty of the neutralino dark matter relic density from scheme and scale variations. We first explain in detail how the renormalization scale enters the tree-level calculations through coupling constants, masses and mixing angles. We then demonstrate a reduction of the renormalization scale dependence through one-loop SUSY-QCD corrections in many different dark matter annihilation channels and enhanced perturbative stability of a mixed on-shell/$\\bar{\\rm DR}$ renor...
Harz, J.; Herrmann, B.; Klasen, M.; Kovařík, K.; Steppeler, P.
2016-06-01
For particle physics observables at colliders such as the LHC at CERN, it has been common practice for many decades to estimate the theoretical uncertainty by studying the variations of the predicted cross sections with a priori unpredictable scales. In astroparticle physics, this has so far not been possible, since most of the observables were calculated at Born level only, so that the renormalization scheme and scale dependence could not be studied in a meaningful way. In this paper, we present the first quantitative study of the theoretical uncertainty of the neutralino dark matter relic density from scheme and scale variations. We first explain in detail how the renormalization scale enters the tree-level calculations through coupling constants, masses and mixing angles. We then demonstrate a reduction of the renormalization scale dependence through one-loop SUSY-QCD corrections in many different dark matter annihilation channels and enhanced perturbative stability of a mixed on-shell /DR ¯ renormalization scheme over a pure DR ¯ scheme in the top-quark sector. In the stop-stop annihilation channel, the Sommerfeld enhancement and its scale dependence are shown to be of particular importance. Finally, the impact of our higher-order SUSY-QCD corrections and their scale uncertainties are studied in three typical scenarios of the phenomenological minimal supersymmetric standard model with eleven parameters (pMSSM-11). We find that the theoretical uncertainty is reduced in many cases and can become comparable to the size of the experimental one in some scenarios.
Stone J.R.
2013-12-01
Full Text Available The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has led to the necessary reliance on theoretical models. There remains great uncertainty in these models which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this contribution latest developments in construction of the Equation of State (EoS of high-density matter at zero and finite temperature assuming different composition of matter will be discussed. Critical comparison of model EoS with available experimental data from heavy ion collisions and observations on neutron stars, including gravitational mass, radii and cooling patterns and data on X-ray burst sources and low mass X-ray binaries are made. Fundamental differences between the EoS of low-density, high temperature matter, such as is created in heavy ion collisions and of high-density, low temperature compact objects is discussed.
Systematic uncertainties from halo asphericity in dark matter searches
Bernal, Nicolás [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Forero-Romero, Jaime E. [Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip, Bogotá (Colombia); Garani, Raghuveer [Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn,Germany (Germany); Palomares-Ruiz, Sergio, E-mail: nicolas@ift.unesp.br, E-mail: je.forero@uniandes.edu.co, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergio.palomares.ruiz@ific.uv.es [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071, València (Spain)
2014-09-01
Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm {sup 3}. Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.
Particle Dark Matter constraints: the effect of Galactic uncertainties
Benito, Maria; Bernal, Nicolás; Bozorgnia, Nassim; Calore, Francesca; Iocco, Fabio
2017-02-01
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present a systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.
Uncertainty for Part Density Determination: An Update
Valdez, Mario Orlando [Los Alamos National Laboratory
2016-12-14
Accurate and precise density measurements by hydrostatic weighing requires the use of an analytical balance, configured with a suspension system, to both measure the weight of a part in water and in air. Additionally, the densities of these liquid media (water and air) must be precisely known for the part density determination. To validate the accuracy and precision of these measurements, uncertainty statements are required. The work in this report is a revision of an original report written more than a decade ago, specifically applying principles and guidelines suggested by the Guide to the Expression of Uncertainty in Measurement (GUM) for determining the part density uncertainty through sensitivity analysis. In this work, updated derivations are provided; an original example is revised with the updated derivations and appendix, provided solely to uncertainty evaluations using Monte Carlo techniques, specifically using the NIST Uncertainty Machine, as a viable alternative method.
Disagreement, Uncertainty and the True Predictive Density
Fabian Krüger; Ingmar Nolte
2011-01-01
This paper generalizes the discussion about disagreement versus uncertainty in macroeconomic survey data by emphasizing the importance of the (unknown) true predictive density. Using a forecast combination approach, we ask whether cross sections of survey point forecasts help to approximate the true predictive density. We find that although these cross-sections perform poorly individually, their inclusion into combined predictive densities can significantly improve upon densities relying sole...
Thomas S Ullrich
2004-02-01
QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.
Read, J I
2014-01-01
I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for 'direct detection' dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a 'dark disc'. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data - particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I highlight several recent measurements in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way's rotation curve, I show that the Milky Way is consistent with having a spherical dark matter ...
Neutron skin uncertainties of Skyrme energy density functionals
Kortelainen, M; Nazarewicz, W; Birge, N; Gao, Y; Olsen, E
2013-01-01
Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron s...
Bidin, C Moni; Carraro, G; Mendez, R A; Moyano, M
2014-01-01
In 2012, we applied a three-dimensional formulation to kinematic measurements of the Galactic thick disk and derived a surprisingly low dark matter density at the solar position. This result was challenged by Bovy & Tremaine (2012, ApJ, 756, 89), who claimed that the observational data are consistent with the expected dark matter density if a one-dimensional approach is adopted. We analyze the assumption at the bases of their formulation and their claim that this returns a lower limit for the local dark matter density, which is accurate within 20%. We find that the validity of their formulation depends on the underlying mass distribution. We therefore analyze the predictions that their hypothesis casts on the radial gradient of the azimuthal velocity dV/dR and compare it with observational data as a testbed for the validity of their formulation. We find that their hypothesis requires too steep a profile of dV(Z)/dR, which is inconsistent with the observational data both in the Milky Way and in external ga...
Hyperon matter at low densities
Sulaksono, A., E-mail: anto.sulaksono@sci.ui.ac.id [Department Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)
2014-09-25
It was reported recently that hyperons can be present inside PSRJ1614-2230 compact star. This can be realized only if the strength of the ω-hyperons and φ-hyperons coupling of conventional hyperons coupling constant on the extended relativistic mean field (ERMF) model increase by a factor of 1.5 to 3. In the present work, the mass and radius relation of the neutron star that is calculated by using BSR28 parameter set of ERMF model augmented with maximal coupling strength of the ω-hyperons and φ-hyperons (X=1), is compared to the mass and radius relation of the neutron star that is predicted by the same RMF parameter set but by assuming that hyperons do not exist in the matter (No. Hyp) as well as those by assuming the hyperons coupling constant fulfilled the conventional SU(6) and SU(3) symmetry. The consequences of implementing X=1 prescription are also discussed. The potential depths of hyperons in symmetric nuclear matter (SNM), pure neutron matter (PNM) and pure lambda matter (PLM) based on this parameter set are also calculated by using the X=1, SU (6) and SU (3) prescriptions. The results are compared to those obtained from microscopic models, quark meson coupling model (χ QMM) and the QCD sum rule for finite density (QCD SM) result.
Dark matter astrophysical uncertainties and the neutrino floor
O'Hare, Ciaran A. J.
2016-09-01
The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. For a given WIMP mass the cross section at which neutrinos constitute a dominant background is dependent on the uncertainty on the flux of each neutrino source, principally from the Sun, supernovae or atmospheric cosmic ray collisions. However there are also considerable uncertainties with regard to the astrophysical ingredients of the predicted WIMP signal. Uncertainties in the velocity of the Sun with respect to the Milky Way dark matter halo, the local density of WIMPs, and the shape of the local WIMP speed distribution all have an effect on the expected event rate in direct detection experiments and hence will change the region of the WIMP parameter space for which neutrinos are a significant background. In this work we extend the neutrino floor calculation to account for the uncertainty in the astrophysics dependence of the WIMP signal. We show the effect of uncertainties on projected discovery limits with an emphasis on low WIMP masses (less than 10 GeV) when solar neutrino backgrounds are most important. We find that accounting for astrophysical uncertainties changes the shape of the neutrino floor as a function of WIMP mass but also causes it to appear at cross sections up to an order of magnitude larger, extremely close to existing experimental limits, indicating that neutrino backgrounds will become an issue sooner than previously thought. We also explore how neutrinos hinder the estimation of WIMP parameters and how astrophysical uncertainties impact the discrimination of WIMPs and neutrinos with the use of their respective time dependencies.
Dark matter astrophysical uncertainties and the neutrino floor
O'Hare, Ciaran A J
2016-01-01
The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. For a given WIMP mass the cross section at which neutrinos constitute a dominant background is dependent on the uncertainty on the flux of each neutrino source from either the Sun, supernovae or atmospheric cosmic ray collisions. However there are also considerable uncertainties with regard to the astrophysical ingredients to the predicted WIMP signal. Uncertainties in the velocity of the Sun with respect to the Milky Way dark matter halo, the local density of WIMPs, and the shape of the local WIMP speed distribution all have an effect on the expected event rate in direct detection experiments and hence will change the region of the WIMP parameter space for which neutrinos are a significant background. In this work we extend the WIMP+neutrino analysis to account for the uncertainty in the astrophysics dependence of the WIMP signal. We show the effect of u...
Strongly Interacting Matter at High Energy Density
McLerran,L.
2008-09-07
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.
Spin polarization in high density quark matter
Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca
2013-01-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model......, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from...
A quarksonic matter at high isospin density
Cao, Gaoqing; Huang, Xu-Guang
2016-01-01
Analogous to the quarkyonic matter at high baryon density in which the quark Fermi seas and the baryonic excitations coexist, it is argued that a "quarksonic matter" phase appears at high isospin density where the quark (antiquark) Fermi seas and the mesonic excitations coexist. We explore this phase in detail in both large $N_c$ and asymptotically free limits: In large $N_c$ limit, we sketch a phase diagram for the quarksonic matter. In the asymptotically free limit, we study the pion superfluidity and thermodynamics of the quarksonic matter by using both perturbative calculations and effective model.
Positrons from dark matter annihilation in the galactic halo: uncertainties
Fornengo, N; Lineros, R; Donato, F; Salati, P
2007-01-01
Indirect detection signals from dark matter annihilation are studied in the positron channel. We discuss in detail the positron propagation inside the galactic medium: we present novel solutions of the diffusion and propagation equations and we focus on the determination of the astrophysical uncertainties which affect the positron dark matter signal. We show that, especially in the low energy tail of the positron spectra at Earth, the uncertainty is sizeable and we quantify the effect. Comparison of our predictions with current available and foreseen experimental data are derived.
A density functional for sparse matter
Langreth, D.C.; Lundqvist, Bengt; Chakarova-Kack, S.D.;
2009-01-01
forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators......Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density...
Matter Density Perturbations in Modified Teleparallel Theories
Wu, Yi-Peng
2012-01-01
We study the matter density perturbations in modified teleparallel gravity theories, where extra degrees of freedom arise from the local Lorentz violation in the tangent space. We formulate a vierbein perturbation with variables addressing all the 16 components of the vierbein field. By assuming the perfect fluid matter source, we examine the cosmological implication of the 6 unfamiliar new degrees of freedom in modified $f(T)$ gravity theories. We find that despite the new modes in the vierbein scenario provide no explicit significant effect in the small-scale regime, they exhibit some deviation from the standard general relativity results in super-horizon scales.
Ground state of high-density matter
Copeland, ED; Kolb, Edward W.; Lee, Kimyeong
1988-01-01
It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.
Covariant density functional theory for nuclear matter
Badarch, U.
2007-07-01
The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)
Limits on the local dark matter density
Read J.I.
2012-02-01
Full Text Available We study the systematic problems in determining the local dark matter density ρdm(R☉ from kinematics of stars in the Solar Neighbourhood, using a simulated Milky Way-like galaxy. We introduce a new unbiased method for recovering ρdm(R☉ based on the moments of the Jeans equations, combined with a Monte Carlo Markov Chain (MCMC technique and apply it to real data [1].
Limits on the local dark matter density
Garbari, Silvia; Lake, George
2011-01-01
We revisit systematics in determining the local dark matter density (rho_dm) from the vertical motion of stars in the Solar Neighbourhood. Using a simulation of a Milky Way-like galaxy, we determine the data-quality required to detect the dark matter density at its expected local value. We introduce a new method for recovering rho_dm that uses moments of the Jeans equations, combined with a Monte Carlo Markov Chain technique to marginalise over the unknown parameters. Given sufficiently good data, we show that our method can recover the correct local dark matter density even in the face of disc inhomogeneities, non-isothermal tracers and a non-separable distribution function. We illustrate the power of our technique by applying it to Hipparcos data [Holmberg & Flynn 2000,2004]. We first make the assumption that the A and F star tracer populations are isothermal. This recovers rho_dm=0.003^{+0.009}_{-0.007}Msun/pc^3 (with 90 per cent confidence), consistent with previous determinations. However, the vertic...
Precise Prediction of the Dark Matter Relic Density within the MSSM
Harz, J.; Herrmann, B.; Klasen, M.; Kovarik, K.; Steppeler, P.
With the latest Planck results the dark matter relic density is determined to an unprecedented precision. In order to reduce current theoretical uncertainties in the dark matter relic density prediction, we have calculated next-to-leading order SUSY-QCD corrections to neutralino (co)annihilation processes including Coulomb enhancement effects. We demonstrate that these corrections can have significant impact on the cosmologically favoured MSSM parameter space and are thus of general interest for parameter studies and global fits.
Precise Prediction of the Dark Matter Relic Density within the MSSM
Harz, Julia; Klasen, Michael; Kovarik, Karol; Steppeler, Patrick
2015-01-01
With the latest Planck results the dark matter relic density is determined to an unprecedented precision. In order to reduce current theoretical uncertainties in the dark matter relic density prediction, we have calculated next-to-leading order SUSY-QCD corrections to neutralino (co)annihilation processes including Coulomb enhancement effects. We demonstrate that these corrections can have significant impact on the cosmologically favoured MSSM parameter space and are thus of general interest for parameter studies and global fits.
Antiprotons from dark matter annihilation in the Galaxy. Astrophysical uncertainties
Evoli, Carmelo [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Cholis, Ilias; Ullio, Piero [SISSA, Sezione di Trieste (Italy); INFN, Sezione di Trieste (Italy); Grasso, Dario [INFN, Sezione di Pisa (Italy); Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-08-15
The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date anti p measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different assumptions for the propagation of CRs and for the DM distribution in the Galaxy. We find that the impact of the astrophysical uncertainties on constraining the DM properties can be much stronger, up to a factor of {proportional_to}50, than the one due to uncertainties on the DM distribution ({proportional_to}2-6). Remarkably, even reducing the uncertainties on the propagation parameters derived by local observables, non-local effects can still change DM model constraints even by 50%. Nevertheless, current anti p data place tight constraints on DM models, excluding some of those suggested in connection with indirect and direct searches. Finally we discuss the power of upcoming CR spectral data from the AMS-02 observatory to drastically reduce the uncertainties discussed in this paper and estimate the expected sensitivity of this instrument to some sets of DM models. (orig.)
Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe
2016-08-01
Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.
Koike, Masafumi; Saito, Masako; Sato, Joe
2016-01-01
Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties
Evoli, Carmelo; Grasso, Dario; Maccione, Luca; Ullio, Piero
2011-01-01
The latest years have seen steady progresses in WIMP dark matter (DM) searches, with hints of possible signals suggested by both direct and indirect detection experiments. Antiprotons can play a key role validating those interpretations since they are copiously produced by WIMP annihilations in the Galactic halo, and the secondary antiproton background produced by Cosmic Ray (CR) interactions is predicted with fair accuracy and matches the observed spectrum very well. Using the publicly available numerical DRAGON code, we reconsider antiprotons as a tool to constrain DM models discussing its power and limitations. We provide updated constraints on a wide class of annihilating DM models by comparing our predictions against the most up-to-date ap measurements, taking also into account the latest spectral information on the p, He and other CR nuclei fluxes. Doing that, we probe carefully the uncertainties associated to both secondary and DM originated antiprotons, by using a variety of distinctively different as...
Quantification of Uncertainties in Nuclear Density Functional theory
Schunck, N; Higdon, D; Sarich, J; Wild, S
2014-01-01
Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.
Strangeness production in high density baryon matter
Ganz, R E
1999-01-01
Strangeness production in heavy-ion collisions, when compared to proton proton collisions, is potentially a sensitive probe for collective energy deposition and therefore for reaction mechanisms in general. It may therefore provide insight into possible QGP formation in dense nuclear matter. To establish an understanding of the observed yields, a systematic study of high density baryon matter at different beam energies is essential. This might also reveal possible discontinuities in the energy dependence of the reaction mechanism. We present preliminary results for kaon production in Au+Au collisions at beam kinetic energies of 6, 8, and 10.7 GeV/u obtained by the E917 experiment at the AGS (BNL). These measurements complement those carried out by the E866 collaboration at 2, 4, and 10.7 GeV/u with a significantly enlarged data sample. In both experiments a large range of rapidities was covered by taking data at different angular settings of the magnetic spectrometer.
Limits on the local dark matter density
Garbari, Silvia; Read, Justin I.; Lake, George
2011-09-01
We revisit systematics in determining the local dark matter density ρdm from the vertical motion of stars in the solar neighbourhood. Using a simulation of a Milky Way like galaxy, we determine the data quality required to detect ρdm at its expected local value. We introduce a new method for recovering ρdm that uses moments of the Jeans equations, combined with a Markov chain Monte Carlo technique, to marginalize over the unknown parameters. Given sufficiently good data, we show that our method can recover the correct local dark matter density even in the face of disc inhomogeneities, non-isothermal tracers and a non-separable distribution function. We illustrate the power of our technique by applying it to Hipparcos data. We first make the assumption that the A- and F-star tracer populations are isothermal. This recovers ρdm= 0.003+0.009- 0.007 M⊙ pc-3 (ρdm= 0.11+0.34- 0.27 GeV cm-3, with 90 per cent confidence), consistent with previous determinations. However, the vertical dispersion profile of these tracers is poorly known. If we assume instead a non-isothermal profile similar to that of the blue disc stars from SDSS DR-7 recently measured, we obtain a fit with a very similar χ2 value, but with ρdm= 0.033+0.008- 0.009 M⊙ pc-3 (ρdm= 1.25+0.30- 0.34 GeV cm-3 with 90 per cent confidence). This highlights that it is vital to measure the vertical dispersion profile of the tracers to recover an unbiased estimate of ρdm.
The Q theory of investment : does uncertainty matter
Hong Bo, [No Value
1999-01-01
This paper includes uncertainty in the Q-model of investment. A structural Q-type investment model is derived, which contains the information on uncertainty effects of random variables that affect the future profitability of a firm. We use a panel of 82 Dutch firms to test whether the presence of
The density of dark matter in the Galactic bulge and implications for indirect detection
Hooper, Dan
2017-03-01
A recent study by Portail et al., which made use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within the ± 2 . 2 × ± 1 . 4 × ± 1 . 2 kpc volume of the bulge-bar region to be (1 . 84 ± 0 . 07) × 1010M⊙, of which 9%-30% is made up of dark matter. Here, we use this result to constrain the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Although uncertainties remain significant, these results are consistent with and generally favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm3, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large (multi-kiloparsec) flat-density cores are disfavored by this information.
Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane
McLerran, L.
2010-06-09
These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.
Abazajian, Kevork N
2015-01-01
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses. Extreme changes to the Milky Way halo, which may be possible in cases of extreme adiabatic contraction, must be adopted to escape these constraints in a dark matter annihilation model for the GCE. Dark matter annihilation models that produce the gamma-ray excess via differential mechanisms in the GCE and dwarfs may circumvent this tension.
Linear response of homogeneous nuclear matter with energy density functionals
Pastore, A. [Institut d’Astronomie et d’Astrophysique, CP 226, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium); Davesne, D., E-mail: davesne@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS-IN2P3, UMR 5822, Université Lyon 1, F-69622 Villeurbanne (France); Navarro, J. [IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia (Spain)
2015-03-01
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin–orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe–Salpeter equation for the particle–hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin–isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Density of dark matter in the Galactic disk
Flynn, C.; Fuchs, B.
1994-10-01
We determine abundances, luminosities and space motions for a sample of nearby K giants. We analyse their kinematics and argue that we have isolated the local counterpart of the K giants found in a cone at the South Galactic Pole by Bahcall, Flynn & Gould (BFG). For a given description of the vertical potential of the local disc, constructed from the known matter and possible dark matter components, the velocity distribution and space density of these nearby K giants can be calculated as a function of height z above the Galactic plane. Comparison with the BFG observations then allows us to solve for the best-fitting potential. The major result is that the observations can be quite well fitted by the potential due to known matter only. The fit can be improved by invoking dark matter in the disc, but only a small amount is required: if such dark matter is distributed proportionately to the known matter (following Bahcall) our best-fitting model has a disc surface density of o = 52 t 13 M0 , compared to = 49 t 9 M0 for the known disc matter. This determination is in good accord with the Kuijken & Gilmore analysis of disc dark matter from K dwarfs. Key words: celestial mechanics, stellar dynamics - stars: fundamental parameters - stars: giant - Galaxy: kinematics and dynamics - Galaxy: structure - dark matter.
Supernovae and high density nuclear matter
Kahana, S.
1986-01-01
The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.
Three-dimensional structure of low-density nuclear matter
Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-07-09
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Three dimensional structure of low-density nuclear matter
Okamoto, Minoru; Yabana, Kazuhiro; Tatsumi, Toshitaka
2011-01-01
We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.
Matter composition at high density by effective scaled lagrangian
Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)
1998-06-01
We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)
Scaling Evolution of Universal Dark-Matter Halo Density Profiles
Raig, A; Salvador-Solé, E
1998-01-01
Dark-matter halos show a universal density profile with a scaling such that less massive systems are typically denser. This mass-density relation is well described by a proportionality between the characteristic density of halos and the mean cosmic density at halo formation time. It has recently been shown that this proportionality could be the result of the following simple evolutionary picture. Halos form in major mergers with essentially the same, cosmogony-dependent, dimensionless profile, and then grow inside-outside, as a consequence of accretion. Here we verify the consistency of this picture and show that it predicts the correct zero point of the mass-density relation.
Resolving astrophysical uncertainties in dark matter direct detection
Frandsen, Mads Toudal; Kahlhoefer, Felix; McCabe, Christopher
2012-01-01
We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without impl...
Dark matter relic density in Gauss-Bonnet braneworld cosmology
Meehan, Michael T
2014-01-01
The relic density of symmetric and asymmetric dark matter in the Gauss-Bonnet braneworld cosmology is investigated. The reduced expansion rate in this scenario delays particle freeze-out, leading to relic abundances which are suppressed by up to $\\mathcal{O}(10^{-3})$. In this case the annihilation cross section must be reduced by up to two orders of magnitude below the canonical value $\\langle\\sigma v\\rangle \\approx 2\\times 10^{-26}$ cm$^3$s$^{-1}$ to reconcile the predicted dark matter density with observation. We use the latest observational bound $\\Omega_{DM}h^2 = 0.1187 \\pm 0.0017$ to constrain the various model parameters and discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.
Simulations of cold nuclear matter at sub-saturation densities
Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Nichols, J.I. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina); López, J.A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Dorso, C.O. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)
2014-03-01
Ideal nuclear matter is expected to undergo a first order phase transition at the thermodynamic limit. At such phase transitions the size of density fluctuations (bubbles or droplets) scale with the size of the system. This means that simulations of nuclear matter at sub-saturation densities will inexorably suffer from what is vaguely referred to as “finite size effects”. It is usually thought that these finite size effects can be diminished by imposing periodic boundary conditions and making the system large enough, but as we show in this work, that is actually not the case at sub-saturation densities. In this paper we analyze the equilibrium configurations of molecular dynamics simulations of a classical model for symmetric ideal (uncharged) nuclear matter at sub-saturation densities and low temperatures, where phase coexistence is expected at the thermodynamic limit. We show that the most stable configurations in this density range are almost completely determined by artificial aspects of the simulations (i.e. boundary conditions) and can be predicted analytically by surface minimization. This result is very general and is shown to hold true for several well known semi-classical models of nuclear interaction and even for a simple Lennard-Jones potential. Also, in the limit of very large systems, when “small size” effects can be neglected, those equilibrium configurations seem to be restricted to a few structures reminiscent to the “Pasta Phases” expected in Neutron Star matter, but arising from a completely different origin: In Neutron Star matter, the non-homogeneous structures arise from a competition between nuclear and Coulomb interactions while for ideal nuclear matter they emerge from finite (yet not “small”) size effects. The role of periodic boundary conditions and finite size effects in Neutron Star matter simulations are reexamined.
Galactoseismology and the Local Density of Dark Matter
Banik, Nilanjan [Florida U.; Widrow, Lawrence M. [Queen' s U., Kingston; Dodelson, Scott [Fermilab
2016-08-10
We model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors of $10\\%$ or greater in the vertical force $K_z(z)$ at $|z|=1.1\\,{\\rm kpc}$. These errors translate to $\\gtrsim 25\\%$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.
Galactoseismology and the Local Density of Dark Matter
Banik, Nilanjan; Dodelson, Scott
2016-01-01
We model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors of $10\\%$ or greater in the vertical force $K_z(z)$ at $|z|=1.1\\,{\\rm kpc}$. These errors translate to $\\gtrsim 25\\%$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.
The phase-space density of fermionic dark matter haloes
Shao, Shi; Gao, Liang; Theuns, Tom; Frenk, Carlos S.
2013-04-01
We have performed a series of numerical experiments to investigate how the primordial thermal velocities of fermionic dark matter particles affect the physical and phase-space density profiles of the dark matter haloes into which they collect. The initial particle velocities induce central cores in both profiles, which can be understood in the framework of phase-space density theory. We find that the maximum coarse-grained phase-space density of the simulated haloes (computed in six-dimensional phase space using the ENBID code is very close to the theoretical fine-grained upper bound, while the pseudo-phase-space density, Q ˜ ρ/σ3, overestimates the maximum phase-space density by up to an order of magnitude. The density in the inner regions of the simulated haloes is well described by a `pseudo-isothermal' profile with a core. We have developed a simple model based on this profile which, given the observed surface brightness profile of a galaxy and its central velocity dispersion, accurately predicts its central phase-space density. Applying this model to the dwarf spheroidal satellites of the Milky Way yields values close to 0.5 keV for the mass of a hypothetical thermal warm dark matter particle, assuming that the satellite haloes have cores produced by warm dark matter free streaming. Such a small value is in conflict with the lower limit of 1.2 keV set by the observations of the Lyman α forest. Thus, if the Milky Way dwarf spheroidal satellites have cores, these are likely due to baryonic processes associated with the forming galaxy, perhaps of the kind proposed by Navarro, Eke and Frenk and seen in the recent simulations of galaxy formation in the cold dark matter model.
Spontaneous magnetization in high-density quark matter
Tsue, Yasuhiko; da Providência, João; Providência, Constanca;
2015-01-01
It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....
BCS Theory of Hadronic Matter at High Densities
Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca
2012-01-01
The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state...... than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV....
Matter density perturbation and power spectrum in running vacuum model
Geng, Chao-Qiang
2016-01-01
We investigate the matter density perturbation $\\delta_m$ and power spectrum $P(k)$ in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by $\\Lambda = \\Lambda_0 + 6 \\sigma H H_0+ 3\
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Duffy, Alan R; Kay, Scott T; Vecchia, Claudio Dalla; Battye, Richard A; Booth, C M
2010-01-01
The back-reaction of baryons on the dark matter halo density profile is of great interest, not least because it is an important systematic uncertainty when attempting to detect the dark matter. Here, we draw on a large suite of high resolution cosmological hydrodynamical simulations, to systematically investigate this process and its dependence on the baryonic physics associated with galaxy formation. The inclusion of baryons results in significantly more concentrated density profiles if radiative cooling is efficient and feedback is weak. The dark matter halo concentration can in that case increase by as much as 30 (10) per cent on galaxy (cluster) scales. The most significant effects occur in galaxies at high redshift, where there is a strong anti-correlation between the baryon fraction in the halo centre and the inner slope of both the total and the dark matter density profiles. If feedback is weak, isothermal inner profiles form, in agreement with observations of massive, early-type galaxies. However, we ...
Why style matters - uncertainty and structural interpretation in thrust belts.
Butler, Rob; Bond, Clare; Watkins, Hannah
2016-04-01
Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of
Neutron stars as probes of extreme energy density matter
Madappa Prakash
2015-05-01
Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.
Strongly Interacting Matter at Very High Energy Density
McLerran, L.
2011-06-05
The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.
Galactoseismology and the local density of dark matter
Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott
2017-02-01
We model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to the mid-plane, comes from three different surveys of stellar kinematics within a few kiloparsecs of the Sun. We show that their existence may lead to systematic errors of 10 per cent or greater in the vertical force Kz(z) at |z| = 1.1 kpc. These errors translate to ≳ 25 per cent errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.
Abnormalities in cortical gray matter density in borderline personality disorder
Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B
2015-01-01
Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291
Evolution of Phase-Space Density in Dark Matter Halos
Hoffman, Yehuda; Shlosman, Isaac; Heller, Clayton
2007-01-01
Evolution of the phase-space density profile in dark matter (DM) halos is investigated by means of constrained simulations, designed to control the merging history of a given DM halo. Halos evolve through a series of quiescent phases of a slow accretion intermitted by violent events of major mergers. In the quiescent phases the density of the halo closely follows the NFW profile and the phase-space density profile, Q(r), is given by the Taylor/Navarro power law, r^{-beta}, where beta ~ 1.9. Expressing the phase-space density by the NFW parameters, Q(r)=Q_s (r/R_s)^{-beta}, the evolution of Q is determined by Q_s. We have found that the effective mass surface density within R_s, Sigma_s = rho_s R_s, remains constant throughout the evolution of a given halo along the main branch of its merging tree. This invariance entails that Q_s ~ R{_s^{-5/2}} and Q(r) ~ Sigma{_s^{-1/2}} R{_s^{-5/2}} (r/R_s)^{-beta}. It follows that the phase-space density remains constant, in the sense of Q_s=const., in the quiescent phases...
Neutron stars as probes of extreme energy density matter
Prakash, Madappa
2014-01-01
Neutron stars have long been regarded as extra-terrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, I highlight some of the recent advances made in astrophysical observations and related theory. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.
Statistical ensembles of virialized halo matter density profiles
Carron, Julien
2013-01-01
We define and study statistical ensembles of matter density profiles describing spherically symmetric, virialized dark matter haloes of finite extent with a given mass and total gravitational potential energy. We provide an exact solution for the grand canonical partition functional, and show its equivalence to that of the microcanonical ensemble. We obtain analytically the mean profiles that correspond to an overwhelming majority of micro-states. All such profiles have an infinitely deep potential well, with the singular isothermal sphere arising in the infinite temperature limit. Systems with virial radius larger than gravitational radius exhibit a localization of a finite fraction of the energy in the very center. The universal logarithmic inner slope of unity of the NFW haloes is predicted at any mass and energy if an upper bound is set to the maximal depth of the potential well. In this case, the statistically favored mean profiles compare well to the NFW profiles. For very massive haloes the agreement b...
On the physical origin of dark matter density profiles
Ascasibar, Y; Gottlöber, S; Müller, V
2003-01-01
The radial mass distribution of dark matter haloes is investigated within the framework of the spherical infall model. We present a new formulation of spherical collapse including non-radial motions, and compare the analytical profiles with a set of high-resolution N-body simulations ranging from galactic to cluster scales. We argue that the dark matter density profile is entirely determined by the initial conditions, which are described by only two parameters: the height of the primordial peak and the smoothing scale. These are physically meaningful quantities in our model, related to the mass and formation time of the halo. Angular momentum is dominated by velocity dispersion, and it is responsible for the shape of the density profile near the centre. The phase-space density of our simulated haloes is well described by a power-law profile, rho/sigma^3 = 10^{1.46\\pm0.04} (rho_c/Vvir^3) (r/Rvir)^{-1.90\\pm0.05}. Setting the eccentricity of particle orbits according to the numerical results, our model is able t...
Simet, Melanie
2009-01-01
In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.
Dark Matter Halos: Velocity Anisotropy -- Density Slope Relation
Zait, Amir; Shlosman, Isaac
2007-01-01
Dark matter (DM) halos formed in CDM cosmologies seem to be characterized by a power law phase-space density profile. The density of the DM halos is often fitted by the NFW profile but a better fit is provided by the Sersic fitting formula. These relations are empirically derived from cosmological simulations of structure formation but have not yet been explained on a first principle basis. Here we solve the Jeans equation under the assumption of a spherical DM halo in dynamical equilibrium, that obeys a power law phase space density and either the NFW-like or the Sersic density profile. We then calculate the velocity anisotropy, beta(r), analytically. Our main result is that for the NFW-like profile the beta - gamma relation is not a linear one (where gamma is the logarithmic derivative of the density rho[r]). The shape of beta(r) depends mostly on the ratio of the gravitational to kinetic energy within the NFW scale radius R_s. For the Sersic profile a linear beta - gamma relation is recovered, and in parti...
Impact of SUSY-QCD corrections to neutralino-squark coannihilation on the dark matter relic density
Harz, Julia [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael [Institute for Theoretical Physics, University of Muenster (Germany); Kovarik, Karol [Karlsruhe Institute of Technology, Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)
2012-07-01
A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with data from cosmological precision measurements, in particular from the WMAP satellite. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the project DM rate at NLO is presented. This software package allows one to compute the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and to evaluate their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino pair annihilation cross section are discussed, and first results on neutralino-squark coannihilation are shown.
Szatmári, Gábor; Pásztor, László
2016-04-01
Uncertainty is a general term expressing our imperfect knowledge in describing an environmental process and we are aware of it (Bárdossy and Fodor, 2004). Sampling, laboratory measurements, models and so on are subject to uncertainty. Effective quantification and visualization of uncertainty would be indispensable to stakeholders (e.g. policy makers, society). Soil related features and their spatial models should be stressfully targeted to uncertainty assessment because their inferences are further used in modelling and decision making process. The aim of our present study was to assess and effectively visualize the local uncertainty of the countrywide soil organic matter (SOM) spatial distribution model of Hungary using geostatistical tools and concepts. The Hungarian Soil Information and Monitoring System's SOM data (approximately 1,200 observations) and environmental related, spatially exhaustive secondary information (i.e. digital elevation model, climatic maps, MODIS satellite images and geological map) were used to model the countrywide SOM spatial distribution by regression kriging. It would be common to use the calculated estimation (or kriging) variance as a measure of uncertainty, however the normality and homoscedasticity hypotheses have to be refused according to our preliminary analysis on the data. Therefore, a normal score transformation and a sequential stochastic simulation approach was introduced to be able to model and assess the local uncertainty. Five hundred equally probable realizations (i.e. stochastic images) were generated. The number of the stochastic images is fairly enough to provide a model of uncertainty at each location, which is a complete description of uncertainty in geostatistics (Deutsch and Journel, 1998). Furthermore, these models can be applied e.g. to contour the probability of any events, which can be regarded as goal oriented digital soil maps and are of interest for agricultural management and decision making as well. A
Extreme states of matter high energy density physics
Fortov, Vladimir E
2016-01-01
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Nesseris, Savvas
2009-01-01
of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation...... for the scale factor $a$ in terms of time $t$ and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model....
Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment
Greg J. Shott, Vefa Yucel, Lloyd Desotell
2007-06-01
Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.
Abnormalities in cortical gray matter density in borderline personality disorder.
Rossi, R; Lanfredi, M; Pievani, M; Boccardi, M; Rasser, P E; Thompson, P M; Cavedo, E; Cotelli, M; Rosini, S; Beneduce, R; Bignotti, S; Magni, L R; Rillosi, L; Magnaldi, S; Cobelli, M; Rossi, G; Frisoni, G B
2015-02-01
Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients' affective, cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38 ± 11; females: 16, 61%). BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (Pmultiple comparisons via permutation testing. BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Dark Matter Density Spikes around Primordial Black Holes
Eroshenko, Yu N
2016-01-01
We show that density spikes begin to form from dark matter particles around primordial black holes immediately after their formation at the radiation-dominated cosmological stage. This follows from the fact that in the thermal velocity distribution of particles there are particles with low velocities that remain in finite orbits around black holes and are not involved in the cosmological expansion. The accumulation of such particles near black holes gives rise to density spikes. These spikes are considerably denser than those that are formed later by the mechanism of secondary accretion. The density spikes must be bright gamma-ray sources. Comparison of the calculated signal from particle annihilation with the Fermi-LAT data constrains the present-day cosmological density parameter for primordial black holes with masses $M_{\\rm BH}\\geq10^{-8}M_\\odot$ from above by values from $\\Omega_{\\rm BH}\\leq1$ to $\\Omega_{\\rm BH}\\leq10^{-8}$, depending on $M_{\\rm BH}$. These constraints are several orders of magnitude mo...
Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection
Cerdeno, David G; Huh, Ji-Haeng; Peiro, Miguel
2012-01-01
We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment. We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross-section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. The method is illustrated for germanium and xenon detectors with an exposure of 300 kg yr, assuming a hypothetical detection of DM and studying a series of benchmark points for the DM properties. We find that the effect of these uncertainties can be similar in amplitude to that of astrophysical uncertainties, especially in those cases where the spin-dependent contribution to the elastic scattering cross-section i...
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2012-09-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2012-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.
Strongly interacting matter at high densities with a soliton model
Johnson, Charles Webster
1998-12-01
One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of
Neutron matter at low density and the unitary limit
Baldo, M
2007-01-01
Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.
Some Properties of π Meson in Nuclear Matter with Finite Density
YANGLan－Fei; LUXiao－Fu
2002-01-01
In the GCM we study some properties of π meson as the Goldstone bosons in a nuclear matter with finite density.Using the effective action in a nuclear matter,we calculate the decay constant and π mass as functions of the chemical potential.The relation between the chemical potential and the density of a nuclear matter is firstly given here.We find that fπ and mπ monotonously decrease as nuclear matter density increases.The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.
McDonnell, J D; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W
2015-01-01
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, w...
Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.
León Marroquin, Elsa Y; Herrera González, José A; Camacho López, Miguel A; Villarreal Barajas, José E; García-Garduño, Olivia A
2016-01-01
Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty
Radiative corrections for the direct detection of neutralino dark matter and its relic density
Steppeler, Patrick Norbert
2016-07-01
entering the Boltzmann equation in many scenarios of the MSSM. The Boltzmann equation allows to determine the neutralino relic density, i.e. to predict their present abundance. This prediction can be checked experimentally and is thus of great phenomenological relevance. Measurements of the temperature fluctuations of the cosmic microwave background permit to determine the relic density precisely. Comparing the theoretical prediction with the experimental finding allows to exclude large fractions of the MSSM parameter space. In order to maximally benefit from the experimental precision, it is necessary to minimise theoretical uncertainties and to include the aforementioned radiative corrections. The radiative corrections to the elastic neutralino-nucleon scattering and the corresponding relic density have been implemented into the numerical package Dark matter at next-to-leading order. With the help of this program, we perform a phenomenological investigation and analyse the impact of the radiative corrections. It turns out that the neutralino relic density depends not on a single but a multitude of gaugino (co)annihilation processes in parallel quite often. The calculated radiative corrections lead to a relative shift of the relic density of up to 10%, which is significantly larger than the experimental uncertainty (±2% at the 1σ confidence level) and demonstrates that these corrections should be included when identifying the cosmologically preferred region of the MSSM. Moreover, we investigate the relation between the relic density and the neutralino-nucleon cross sections. In the spin-independent case, the inclusion of radiative corrections leads to a relative shift roughly +14% in comparison to a tree-level calculation. This shift is comparable to typical recent nuclear uncertainties, which influence the prediction as well. The spin-dependent cross section is subject to even larger shifts and modified by up to -50% by radiative corrections.
Relic density of dark matter in the NMSSM
Bélanger, G; Hugonie, C; Pukhov, A E; Semenov, A
2005-01-01
We present a code to compute the relic density of dark matter in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). Dominant corrections to the Higgs masses are calculated with NMHDECAY as well as theoretical and collider constraints. All neutralino annihilation and coannihilation processes are then computed with an extended version of micrOMEGAs, taking into acount higher order corrections to Higgs vertices. We explore the parameter space of the NMSSM and consider in particular the case of a bino LSP, of a mixed bino-higgsino LSP and of a singlino LSP. As compared to the MSSM, neutralino annihilation is often more efficient as it can take place via (additional) Higgs resonances as well as annihilation into light Higgs states. Models with a large singlino component can be compatible with WMAP constraints.
Matter density perturbation and power spectrum in running vacuum model
Geng, Chao-Qiang; Lee, Chung-Chi
2016-10-01
We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behavior as that in the ΛCDM model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > ( matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ {O}(10^{-7}).
Klasen, M.; Kovařík, K.; Steppeler, P.
2016-11-01
In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the minimal supersymmetric standard model. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program dm@nlo.
Dark matter relic density in Gauss-Bonnet braneworld cosmology
Meehan, Michael T.; Whittingham, Ian B., E-mail: Michael.Meehan@my.jcu.edu.au, E-mail: Ian.Whittingham@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, 1 James Cook Dr., Townsville 4811 (Australia)
2014-12-01
The relic density of symmetric and asymmetric dark matter in a Gauss-Bonnet (GB) modified Randall-Sundrum (RS) type II braneworld cosmology is investigated. The existing study of symmetric dark matter in a GB braneworld (Okada and Okada, 2009) found that the expansion rate was reduced compared to that in standard General Relativity (GR), thereby delaying particle freeze-out and resulting in relic abundances which are suppressed by up to O(10{sup −2}). This is in direct contrast to the behaviour observed in RS braneworlds where the expansion rate is enhanced and the final relic abundance boosted. However, this finding that relic abundances are suppressed in a GB braneworld is based upon a highly contrived situation in which the GB era evolves directly into a standard GR era, rather than passing through a RS era as is the general situation. This collapse of the RS era requires equating the mass scale m{sub α} of the GB modification and the mass scale m{sub σ} of the brane tension. However, if the GB contribution is to be considered as the lowest order correction from string theory to the RS action, we would expect m{sub α} > m{sub σ}. We investigate the effect upon the relic abundance of choosing more realistic values for the ratio R{sub m} ≡ m{sub α}/m{sub σ} and find that the relic abundance can be either enhanced or suppressed by more than two orders of magnitude. However, suppression only occurs for a small range of parameter choices and, overwhelmingly, the predominant situation is that of enhancement as we recover the usual Randall-Sundrum type behaviour in the limit R{sub m} >> 1. We use the latest observational bound Ω{sub DM}h{sup 2} = 0.1187 ± 0.0017 to constrain the various model parameters and briefly discuss the implications for direct/indirect dark matter detection experiments as well as dark matter particle models.
Observing the dark matter density profile of isolated galaxies
Prada, F; Klypin, A; Holtzman, J A; Schlegel, D J; Grebel, E K; Rix, H W; Brinkmann, J; McKay, T A; Csabai, I; Prada, Francisco; Vitvitska, Mayrita; Klypin, Anatoly; Holtzman, Jon A.; Schlegel, David J.; Grebel, Eva K.
2003-01-01
Using the Sloan Digital Sky Survey (SDSS), we probe the halo mass distribution by studying the velocities of satellites orbiting isolated galaxies. In a subsample that covers 2500 sq. degrees on the sky, we detect about 3000 satellites with absolute blue magnitudes going down to M_B = -14; most of the satellites have M_B=-16 to -18, comparable to the magnitudes of M32 and the Magellanic Clouds. After a careful, model-independent removal of interlopers, we find that the line-of-sight velocity dispersion of satellites declines with distance to the primary. For an L* galaxy the r.m.s. line-of-sight velocity changes from ~120 km/s at 20 kpc to ~60 km/s at 350 kpc. This decline agrees remarkably well with theoretical expectations, as all modern cosmological models predict that the density of dark matter in the peripheral parts of galaxies declines as rho_DM propto r^{-3}. Thus, for the first time we find direct observational evidence of the density decline predicted by cosmological models; we also note that this r...
Multiple parton interactions in high-density QCD matter
Srivastava, D K; Srivastava, Dinesh K.; Geiger, Klaus
1999-01-01
Multiple interactions of quarks and gluons in high-energy heavy-ion collisions may give rise to interesting phemomena of color charges propagating in high-density QCD matter. We study the dynamics of multi-parton systems produced in nucleus-nucleus collisions at energies corresponding the the CERN SPS and the future BNL RHIC experiments. Due to the complexity of the multi-particle dynamics we choose to employ the parton cascade model in order to simulate the development of multiple parton scatterings and associated stimulated emision processes. Our results indicate a non-linear increase with nuclear mass A of, e.g., parton multiplicity, energy density, strangeness, and contrast a linear A-scaling as in Glauber-type approaches. If multiple interactions are suppressed and only single parton scatterings (no re-interactions) are considered, we recover such a linear behavior. It remains to be studied whether these results on the parton level can be experimentally seen in final-state observables, such as the charge...
Pribram-Jones, Aurora
Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the
McDonnell, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Higdon, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarich, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, S. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, W. [Michigan State Univ., East Lansing, MI (United States); Oak Ridge National Lab., Oak Ridge, TN (United States); Univ. of Warsaw, Warsaw (Poland)
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model
Qauli, A I
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...
Chae, Kyu-Hyun; Frieman, Joshua A; Bernardi, Mariangela
2012-01-01
Identifying dark matter and characterizing its distribution in the inner region of halos embedding galaxies are inter-related problems of broad importance. We devise a new procedure of determining dark matter distribution in halos. We first make a self-consistent bivariate statistical match of stellar mass and velocity dispersion with halo mass as demonstrated here for the first time. Then, selecting early-type galaxy-halo systems we perform Jeans dynamical modeling with the aid of observed statistical properties of stellar mass profiles and velocity dispersion profiles. Dark matter density profiles derived specifically using Sloan Digital Sky Survey galaxies and halos from up-to-date cosmological dissipationless simulations deviate significantly from the dissipationless profle of Navarro-Frenk-White or Einasto in terms of inner density slope and/or concentration. From these dark matter profiles we find that dark matter density is enhanced in the inner region of most early-type galactic halos providing an ind...
Quark matter at high density based on an extended confined isospin-density-dependent mass model
Qauli, A. I.; Sulaksono, A.
2016-01-01
We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.
High-density matter: current status and future challenges
Stone, J. R.
2015-05-01
There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.
High-density matter: current status and future challenges
Stone J. R.
2015-01-01
Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.
Matter density perturbation and power spectrum in running vacuum model
Geng, Chao-Qiang; Lee, Chung-Chi
2017-01-01
We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (extremely narrow with ν , |σ | ≲ O(10^{-7}).
Evolution of Characteristic Quantities for Dark Matter Halo Density Profiles
Romano-Diaz, E; Heller, C; Faltenbacher, A; Jones, D; Shlosman, I; Romano-Diaz, Emilio; Hoffman, Yehuda; Heller, Clayton; Faltenbacher, Andreas; Jones, Daniel; Shlosman, Isaac
2006-01-01
We investigate the effect of an assembly history on the evolution of dark matter (DM) halos of 10^{12} Msun/h using Constrained Realizations of random Gaussian fields. Five different realizations of a DM halo with distinct merging histories were constructed and evolved. Our main results are: A halo evolves via a sequence of quiescent phases of a slow mass accretion intermitted by violent episodes of major mergers. In the quiescent phases, the density is well fitted by an NFW profile, the inner scale radius Rs and the mass enclosed within it remain constant, and the virial radius (Rvir) grows linearly with the expansion parameter "a". Within each quiescent phase the concentration parameter ("c") scales as "a", and the mass accretion history (Mvir) is well described by the Tasitsiomi etal. fitting formula. In the violent phases the halos are not in a virial equilibrium and both Rs and Rvir grow discontinuously. The violent episodes drive the halos from one NFW dynamical equilibrium to another. The final structu...
Stewart, Robert; White, Devin; Urban, Marie; Morton, April; Webster, Clayton; Stoyanov, Miroslav; Bright, Eddie; Bhaduri, Budhendra L.
2013-05-01
The Population Density Tables (PDT) project at Oak Ridge National Laboratory (www.ornl.gov) is developing population density estimates for specific human activities under normal patterns of life based largely on information available in open source. Currently, activity-based density estimates are based on simple summary data statistics such as range and mean. Researchers are interested in improving activity estimation and uncertainty quantification by adopting a Bayesian framework that considers both data and sociocultural knowledge. Under a Bayesian approach, knowledge about population density may be encoded through the process of expert elicitation. Due to the scale of the PDT effort which considers over 250 countries, spans 50 human activity categories, and includes numerous contributors, an elicitation tool is required that can be operationalized within an enterprise data collection and reporting system. Such a method would ideally require that the contributor have minimal statistical knowledge, require minimal input by a statistician or facilitator, consider human difficulties in expressing qualitative knowledge in a quantitative setting, and provide methods by which the contributor can appraise whether their understanding and associated uncertainty was well captured. This paper introduces an algorithm that transforms answers to simple, non-statistical questions into a bivariate Gaussian distribution as the prior for the Beta distribution. Based on geometric properties of the Beta distribution parameter feasibility space and the bivariate Gaussian distribution, an automated method for encoding is developed that responds to these challenging enterprise requirements. Though created within the context of population density, this approach may be applicable to a wide array of problem domains requiring informative priors for the Beta distribution.
Stewart, Robert N [ORNL; White, Devin A [ORNL; Urban, Marie L [ORNL; Morton, April M [ORNL; Webster, Clayton G [ORNL; Stoyanov, Miroslav K [ORNL; Bright, Eddie A [ORNL; Bhaduri, Budhendra L [ORNL
2013-01-01
The Population Density Tables (PDT) project at the Oak Ridge National Laboratory (www.ornl.gov) is developing population density estimates for specific human activities under normal patterns of life based largely on information available in open source. Currently, activity based density estimates are based on simple summary data statistics such as range and mean. Researchers are interested in improving activity estimation and uncertainty quantification by adopting a Bayesian framework that considers both data and sociocultural knowledge. Under a Bayesian approach knowledge about population density may be encoded through the process of expert elicitation. Due to the scale of the PDT effort which considers over 250 countries, spans 40 human activity categories, and includes numerous contributors, an elicitation tool is required that can be operationalized within an enterprise data collection and reporting system. Such a method would ideally require that the contributor have minimal statistical knowledge, require minimal input by a statistician or facilitator, consider human difficulties in expressing qualitative knowledge in a quantitative setting, and provide methods by which the contributor can appraise whether their understanding and associated uncertainty was well captured. This paper introduces an algorithm that transforms answers to simple, non-statistical questions into a bivariate Gaussian distribution as the prior for the Beta distribution. Based on geometric properties of the Beta distribution parameter feasibility space and the bivariate Gaussian distribution, an automated method for encoding is developed that responds to these challenging enterprise requirements. Though created within the context of population density, this approach may be applicable to a wide array of problem domains requiring informative priors for the Beta distribution.
Covariant energy density functionals: nuclear matter constraints and global ground state properties
Afanasjev, A V
2016-01-01
The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Ref.\\ \\cite{RMF-nm} will not necessary lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not o...
Estimating basic wood density and its uncertainty for Pinus densiflora in the Republic of Korea
Jung Kee Pyo
2012-05-01
Full Text Available According to the Intergovernmental Panel on Climate Change(IPCC guidelines, uncertainty assessment is an important aspect of a greenhouse gas inventory, and effort should be made to incorporate it into the reporting. The goal of this study was to estimate basic wood density (BWD and its uncertainty for Pinus densiflora (Siebold & Zucc. in Korea. In this study, P. densiflora forests throughout the country were divided into two regional variants, which were the Gangwon region variant, distributed on the northeastern part of the country, and the central region variant. A total of 36 representative sampling plots were selected in both regions to collect sampletrees for destructive sampling. The trees were selected considering the distributions of tree age and diameter at breast height. Hypothesis testing was carried out to test the BWD differences between two age groups, i.e. age ≥ 20 and < 20, and differences between the two regions. The test suggested that there was no statistically significant difference between the two age classes. On the other hand, it is suggested a strong evidence of a statistically significant difference between regions. The BWD and its uncertainty were0.418 g/cm3 and 11.9% for the Gangwon region, whereas they were 0.471g/ cm3 and 3.8% for the central region. As a result, the estimated BWD for P.densiflora was more precise than the value provided by the IPCC guidelines.
Soil Organic Carbon Density in Hebei Province, China:Estimates and Uncertainty
ZHAO Yong-Cun; SHI Xue-Zheng; YU Dong-Sheng; T. F. PAGELLA; SUN Wei-Xia; XU Xiang-Hua
2005-01-01
In order to improve the precision of soil organic carbon (SOC) estimates, the sources of uncertainty in soil organic carbon density (SOCD) estimates and SOC stocks were examined using 363 soil profiles in Hebei Province, China, with three methods: the soil profile statistics (SPS), GIS-based soil type (GST), and kriging interpolation (KI). The GST method, utilizing both pedological professional knowledge and GIS technology, was considered the most accurate method of the three estimations, with SOCD estimates for SPS 10% lower and KI 10% higher. The SOCD range for GST was 84% wider than KI as KI smoothing effect narrowed the SOCD range. Nevertheless, the coefficient of variation for SOCD with KI (41.7%) was less than GST and SPS. Comparing SOCD's lower estimates for SPS versus GST, the major sources of uncertainty were the conflicting area of proportional relations. Meanwhile, the fewer number of soil profiles and the necessity of using the smoothing effect with KI were its sources of uncertainty. Moreover, for local detailed variations of SOCD, GST was more advantageous in reflecting the distribution pattern than KI.
Importance of tree basic density in biomass estimation and associated uncertainties
Njana, Marco Andrew; Meilby, Henrik; Eid, Tron
2016-01-01
Key message Aboveground and belowground tree basic densities varied between and within the three mangrove species. If appropriately determined and applied, basic density may be useful in estimation of tree biomass. Predictive accuracy of the common (i.e. multi-species) models including aboveground...... of sustainable forest management, conservation and enhancement of carbon stocks (REDD+) initiatives offer an opportunity for sustainable management of forests including mangroves. In carbon accounting for REDD+, it is required that carbon estimates prepared for monitoring reporting and verification schemes...... and examine uncertainties in estimation of tree biomass using indirect methods. Methods This study focused on three dominant mangrove species (Avicennia marina (Forssk.) Vierh, Sonneratia alba J. Smith and Rhizophora mucronata Lam.) in Tanzania. A total of 120 trees were destructively sampled for aboveground...
Hybrid stars Spin polarised nuclear matter and density dependent quark masses
Maheswari, V S U; Samaddar, S K
1998-01-01
The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.
Robles, Victor H
2012-01-01
The scalar field dark matter (SFDM) model proposes that galaxies form by condensation of a scalar field (SF) very early in the universe forming Bose-Einstein Condensates (BEC) drops, i.e., in this model haloes of galaxies are gigantic drops of SF. Here big structures form like in the LCDM model, by hierarchy, thus all the predictions of the LCDM model at big scales are reproduced by SFDM. This model predicts that all galaxies must be very similar and exist for bigger redshifts than in the LCDM model. In this work we show that BEC dark matter haloes fit high-resolution rotation curves of a sample of thirteen low surface brightness galaxies. We compare our fits to those obtained using a Navarro-Frenk-White and Pseudo-Isothermal (PI) profiles and found a better agreement with the SFDM and PI profiles. The mean value of the logarithmic inner density slopes is -0.27 +/- 0.18. As a second result we find a natural way to define the core radius with the advantage of being model-independent. Using this new definition ...
Röttgers, Rüdiger; Heymann, Kerstin; Krasemann, Hajo
2014-12-01
Measurements of total suspended matter (TSM) concentration and the discrimination of the particulate inorganic (PIM) and organic matter fraction by the loss on ignition methods are susceptible to significant and contradictory bias errors by: (a) retention of sea salt in the filter (despite washing with deionized water), and (b) filter material loss during washing and combustion procedures. Several methodological procedures are described to avoid or correct errors associated with these biases but no analysis of the final uncertainty for the overall mass concentration determination has yet been performed. Typically, the exact values of these errors are unknown and can only be estimated. Measurements were performed in coastal and estuarine waters of the German Bight that allowed the individual error for each sample to be determined with respect to a systematic mass offset. This was achieved by using different volumes of the sample and analyzing the mass over volume relationship by linear regression. The results showed that the variation in the mass offset is much larger than expected (mean mass offset: 0.85 ± 0.84 mg, range: -2.4 - 7.5 mg) and that it often leads to rather large relative errors even when TSM concentrations were high. Similarly large variations were found for the mass offset for PIM measurements. Correction with a mean offset determined with procedural control filters reduced the maximum error to errors for the TSM concentration was error was error was always errors of only a few percent were obtained. The approach proposed here can determine the individual determination error for each sample, is independent of bias errors, can be used for TSM and PIM determination, and allows individual quality control for samples from coastal and estuarine waters. It should be possible to use the approach in oceanic or fresh water environments as well. The possibility of individual quality control will allow mass-specific optical properties to be determined with
CP violation and matter effect for a variable earth density in very long baseline experiments
Brahmachari, B; Roy, P; Brahmachari, Biswajoy; Choubey, Sandhya; Roy, Probir
2003-01-01
The perturbative treatment of subdominant oscillation and the matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances $L_1$ and $L_2$ from the source while maintaining a...
Estimating basic wood density and its uncertainty for Pinus densiflora in the Republic of Korea
Jung Kee Pyo
2012-06-01
Full Text Available According to the Intergovernmental Panel on Climate Change (IPCC guidelines, uncertainty assessment is an important aspect of a greenhouse gas inventory, and effort should be made to incorporate it into the reporting. The goal of this study was to estimate basic wood density (BWD and its uncertainty for Pinus densiflora (Siebold & Zucc. in Korea. In this study, P. densiflora forests throughout the country were divided into two regional variants, which were the Gangwon region variant, distributed on the northeastern part of the country, and the central region variant. A total of 36 representative sampling plots were selected in both regions to collect sample trees for destructive sampling. The trees were selected considering the distributions of tree age and diameter at breast height. Hypothesis testing was carried out to test the BWD differences between two age groups, i.e. age over 20 and less than 20, and differences between the two regions. The test suggested that there was no statistically significant difference between the two age classes. On the other hand, it is suggested a strong evidence of a statistically significant difference between regions. The BWD and its uncertainty were 0.418 g/cm3 and 11.9% for the Gangwon region, whereas they were 0.471g/cm3 and 3.8% for the central region. As a result, the estimated BWD for P. densiflora was more precise than the value provided by the IPCC guidelines.
Dark matter relic density from observations of supersymmetry at the ILC
Lehtinen, Suvi-Leena; List, Jenny
2016-01-01
Supersymmetry can explain the observed dark matter relic density with a neutralino dark matter particle and a coannihilating, almost mass-degenerate sparticle. If this were the case in nature, a linear electron positron collider like the ILC could discover the two sparticles if their masses are in the kinematic reach of the collider. This contribution discusses which observations are necessary at the ILC for predicting the dark matter relic density correctly and for confirming that the observed lightest neutralino is the only kind of dark matter. We take the case of stau coannihilation as an example.
Pairing in neutron matter: New uncertainty estimates and three-body forces
Drischler, C; Hebeler, K; Schwenk, A
2016-01-01
We present solutions of the BCS gap equation in the channels ${}^1S_0$ and ${}^3P_2-{}^3F_2$ in neutron matter based on nuclear interactions derived within chiral effective field theory (EFT). Our studies are based on a representative set of nonlocal nucleon-nucleon (NN) plus three-nucleon (3N) interactions up to next-to-next-to-next-to-leading order (N$^3$LO) as well as local and semilocal chiral NN interactions up to N$^2$LO and N$^4$LO, respectively. In particular, we investigate for the first time the impact of subleading 3N forces at N$^3$LO on pairing gaps and also derive uncertainty estimates by taking into account results for pairing gaps at different orders in the chiral expansion. Finally, we discuss different methods for obtaining self-consistent solutions of the gap equation. Besides the widely-used quasi-linear method by Khodel et al. we demonstrate that the modified Broyden method is well applicable and exhibits a robust convergence behavior. In contrast to Khodel's method it is based on a direc...
Khruschov, V V; Nadyozhin, D K; Fomichev, S V
2014-01-01
The relative yields of active and sterile neutrinos in the matter with a high density and different degree of neutronization are calculated. A significant increase in the proportion of sterile neutrinos produced in superdense matter when approaching the medium neutronization degree to value of two is found. The results obtained can be used in the calculations of the neutrino fluxes for media with a high density and different neutronization degrees in astrophysical processes such as the formation of protoneutron core of a supernova.
Reinhard, P.-G.; Nazarewicz, W.
2016-05-01
Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations
Ahuja Tarushee
2011-04-01
Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.
Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.
2015-12-01
Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.
Dark matter relic density from observations of supersymmetry at the ILC
Lehtinen, Suvi-Leena; List, Jenny; Berggren, Mikael [DESY, Hamburg (Germany)
2016-07-01
If supersymmetric particles were discovered at the International Linear Collider (ILC), would we be able to prove that the dark matter candidate discovered is the only dark matter particle? This was investigated using a scenario with a mostly bino lightest supersymmetric particle and a coannihilating stau. In this scenario, the ILC could find the sleptons and lighter gauginos, while the LHC could discover and measure parts of the coloured spectrum. We will demonstrate which measurements and precisions are needed to determine whether the observed dark matter candidate is the sole constituent of the dark matter relic density. The required precisions will be compared to the predicted precisions at the ILC.
Reproductive behavior in horseshoe crabs: Does density matter?
Jennifer H. MATTEI, Mark A. BEEKEY, Adam RUDMAN, Alyssa WORONIK
2010-10-01
Full Text Available While the four species of horseshoe crabs share many common reproductive traits with respect to their reproductive systems, they do differ with respect to their mating behavior (monogamy vs. polygynandry. Past research has attributed these differences to a number of factors including: spawning densities, operational sex ratios (OSR’s, male condition (or age, environmental and/or genetic factors, or a combination thereof. Mating behaviors in the three Asian horseshoe crab species (Tachypleus gigas, T. tridentatus, and Carcinoscorpius rotundicauda with low spawning densities and 1:1 operational sex ratios are typically monogamous. In Limulus polyphemus, mating behavior is more variable ranging from monogamy to polygynandry. Here we provide evidence, through a long term behavioral study, that variation in mating behavior is influenced by population density in L. polyphemus. Our study population on two beaches in Connecticut (Long Island Sound have a spawning density 400 times less than that found in Delaware Bay (0.002 females/m2 vs. 0.8 females/m2 but similar operational sex ratios. Between 90%–95% of all spawning females in CT were paired with only one male, thus exhibiting monogamous behavior. In contrast, between 30 and 60% of spawning females in Delaware Bay have more than one mate and produce clutches of eggs with multiple paternities. Male condition played no role in mating behavior in CT populations. We also observed that on average 18% of the females on the spawning beaches are single. These results suggest that population density is an important condition that determines mating behavior. Also, low population density may lead to decreased mate finding ability and lost opportunities for spawning [Current Zoology 56 (5: 634–642, 2010].
Bordbar, G H; Taghizade, M
2015-01-01
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...
CP violation and matter effect for a variable earth density in very long baseline experiments
Brahmachari, Biswajoy; Choubey, Sandhya E-mail: sandhya@he.sissa.it; Roy, Probir
2003-11-03
The perturbative treatment of subdominant oscillation and matter effect in neutrino beams/superbeams, propagating over long baselines and being used to look for CP violation, is studied here for a general matter density function varying with distance. New lowest order analytic expressions are given for different flavour transition and survival probabilities in a general neutrino mixing basis and a variable earth matter density profile. It is demonstrated that the matter effect in the muon neutrino (antineutrino) flavour survival probability vanishes to this order, provided the depletion, observed for atmospheric muon neutrinos and antineutrinos at super-Kamiokande, is strictly maximal. This result is independent of the earth density profile and the distance L between the source and the detector. In the general variable density case we show that one cannot separate the matter induced asymmetry from a genuine CP effect by keeping two detectors at distances L{sub 1} and L{sub 2} from the source while maintaining a fixed ratio L{sub 1}/E{sub 1}=L{sub 2}/E{sub 2}. This needs to be done numerically and we estimate the asymmetry generated by the earth matter effect with particular density profiles and some chosen parameters for very long baseline neutrino oscillation experiments.
Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco
2017-04-01
Fractionation of soil organic matter (SOM), i.e. the separation of SOM into discrete fractions, can elucidate the temporal responses of soil organic carbon (SOC) to land-use and management changes. In order to reduce the workload and uncertainties associated with fractionation, we optimized and tested a simple size-density fractionation approach, containing a limited number of fractions and using relatively mild soil dispersion. We compared size-density fractionation, which isolated non-occluded particulate organic matter (POM), stable aggregates and silt- and clay-sized fraction, with aggregate size fractionation, i.e. an established method for aggregate separation, and with SOC content in the bulk soil. These methods were tested on soil samples collected from the mineral soil (0-20 cm) of a land-use and management gradient examining forest colonization on grassland in the Southern Alps (Italy). Differences in SOC stocks among successional stages were detected both by size-density fractions, aggregate size fractions and SOC content in the bulk soil. However, size-density fractions were better suited than aggregate size fractions for the detection of changes in SOC allocation within the study area. Therefore, the tested size-density fractionation approach may be preferred over aggregate size fractionation, considering its higher sensitivity to SOC differences in the land-use gradient. Stable aggregates obtained by size-density fractionation detected both changes in SOC allocation and stocks, and have the potential to be used as indicators of SOC changes in soils that express aggregate hierarchy. Further testing of the developed procedure across soil types, environmental conditions and land uses is required to confirm its repeatability and sensitivity to SOC changes.
Density profiles of dark matter halos with anisotropic velocity tensors
Hiotelis, N
2002-01-01
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, rho/(sigma^3) proportional to r^{-alpha}, and (ii) the velocity anisotropy parameter is given by the relation beta_a(r) = beta_1 + 2 beta_2 {(r/r_*)/(1+(r/r_*)^2)} where beta_1, beta_2 are parameters and r_* equals twice the virial radius, r_{vir}, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes gamma, defined by gamma = - {(d ln rho)/(d ln r)}. The values of gamma at r = 10^{-2.5}r_{vir}, a distance where the systems could be resolved by large N-body simulations, lie in the range 1. - 1.6. These inner values of gamma increase for increasing beta_1 and for increasing concentration of the system. On the other hand, slopes at r = r_{vir} lie in the range 2.42 - 3.82. A model density profile that fits well the results at radial d...
Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter
McDonald, John
2011-01-01
The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) coloured scalars which is responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) coloured scalars have large hypercharge, |Y| > 4/3. Production of such scalars at the LHC would be a clear signature of the model.
Can cold dark matter paradigm explain the central-surface-densities relation?
Chan, Man-Ho
2017-07-01
Recently, a very strong correlation between the central surface density of stars and dynamical mass in 135 disk galaxies has been obtained. It has been shown that this central-surface-densities relation agrees very well with Modified Newtonian Dynamics (MOND). In this article, we show that if we assume the baryons have an isothermal distribution and dark matter exists, then it is possible to derive by means of the Jeans equation an analytic central-surface-densities relation connecting dark matter and baryons that agrees with the observed relation. We find that the observed central-surface-densities relation can also be accommodated in the context of dark matter provided the latter is described by an isothermal profile. Therefore, the observed relation is consistent with not only MOND.
Exploring high-density baryonic matter: Maximum freeze-out density
Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)
2016-08-15
The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)
Klasen, Michael; Steppeler, Patrick
2016-01-01
In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program \\texttt{DMNLO}.
Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P
2016-03-01
Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings.
Toma, Takashi
2013-08-30
A gamma-ray excess from the Galactic center consistent with line emission around 130 GeV was recently found in the Fermi-LAT data. Although the Fermi-LAT Collaboration has not confirmed its significance, such a signal would be a clear signature of dark matter annihilation. Until now, there have been many attempts to explain the excess by dark matter. However, these efforts tend to give too-small cross sections into photons if consistency with the correct thermal relic density of dark matter is required. In this Letter, we consider a simple Yukawa interaction that can be compatible with both aspects and show which parameters are favored.
Nuclear "pasta" structures in low-density nuclear matter and neutron star crust
Okamoto, Minoru; Yabana, Kazuhiro; Tatsumi, Toshitaka
2013-01-01
In neutron star crust, non-uniform structure of nuclear matter is expected, which is called the "pasta" structure. From the recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron star crust. To investigate the above quantities, we numerically explore the pasta structures with a fully threedimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number-fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of "pasta".
Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D
2017-02-17
Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to
Timmers, Inge; Zhang, Hui; Bastiani, Matteo; Jansma, Bernadette M; Roebroeck, Alard; Rubio-Gozalbo, M Estela
2015-03-01
White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms.
Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes
Polisensky, E
2015-01-01
We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at scales less than one percent of the virial radius. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmolo...
Uncertainty in stormwater drainage adaptation: what matters and how much is too much?
Stack, L. J.; Simpson, M. H.; Moore, T.; Gulliver, J. S.; Roseen, R.; Eberhart, L.; Smith, J. B.; Gruber, J.; Yetka, L.; Wood, R.; Lawson, C.
2014-12-01
Published research continues to report that long-term, local-scale precipitation forecasts are too uncertain to support local-scale adaptation. Numerous studies quantify the range of uncertainty in downscaled model output; compare this with uncertainty from other sources such as hydrological modeling; and propose circumventing uncertainty via "soft" or "low regret" actions, or adaptive management. Yet non-structural adaptations alone are likely insufficient. Structural adaptation requires quantified engineering design specifications. However, the literature does not define a tolerable level of uncertainty. Without such a benchmark, how can we determine whether the climate-change-cognizant design specifications that we are capable of, for example the climate change factors increasingly utilized in European practice, are viable? The presentation will explore this question, in the context of reporting results and observations from an ongoing ten-year program assessing local-scale stormwater drainage system vulnerabilities, required capacities, and adaptation options and costs. This program has studied stormwater systems of varying complexity in a variety of regions, topographies, and levels of urbanization, in northern-New England and the upper-Midwestern United States. These studies demonstrate the feasibility of local-scale design specifications, and provide tangible information on risk to enable valid cost/benefit decisions. The research program has found that stormwater planners and engineers have routinely accepted, in the normal course of professional practice, a level of uncertainty in hydrological modeling comparable to that in long-term precipitation projections. Moreover, the ability to quantify required capacity and related construction costs for specific climate change scenarios, the insensitivity of capacity and costs to uncertainty, and the percentage of pipes and culverts that never require upsizing, all serve to limit the impact of uncertainty inherent
The force density and the kinetic energy-momentum tensor of electromagnetic fields in matter
Medina, Rodrigo
2014-01-01
We determine the invariant expression for the force density that the electromagnetic field exerts on dipolar matter. We construct the non-symmetric energy-momentum tensor of the electromagnetic field in matter which is consistent with that force and with Maxwell equations. We recover Minkowski's expression for the momentum density. We use our results to discuss momentum exchange of an electromagnetic wave-packet which falls into a dielectric block. In particular we show that the wave-packet pulls the block when it enters and drags it when it leaves.
SunYongsheng; MengXujun
1990-01-01
Schroedinger's wave equation is solved in Thomas-Fermi potential including the self-interaction modification of elctrons for arbitrary matter density and temperature,In order to describe relativistic effects,the mass-velocity correction,the Darwin correction and the spin-orbit coupling terms are included in the wave equation.Calculations are presented for the Fe26 and Rb37 atoms at a few temperatures and matter densities.Comparisons of present results with other more accurate one[9] are given in Table.The data obtained by the present method are not bad.
Constraining the nuclear matter equation of state around twice saturation density
Leifels Y.
2015-01-01
Full Text Available Using data on elliptic flow measured by the FOPI collaboration we extract constraints for the equation of state (EOS of symmetric nuclear matter with the help of the microscopic transport code IQMD. Best agreement between data and calculations is obtained with a ’soft’ equation of state including a momentum dependent interaction. From the model it can be deduced that the characteristic density related to the observed flow signal is around twice saturation density and that both compression within the fireball and the presence of the surrounding spectator matter is necessary for the development of the signal and its sensitivity to the nuclear equation of state.
Sarangi, Bighnaraj; Aggarwal, Shankar G.; Sinha, Deepak; Gupta, Prabhat K.
2016-03-01
In this work, we have used a scanning mobility particle sizer (SMPS) and a quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyser (DMA), where size segregation is done based on particle electrical mobility. Downstream of the DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas the other one is sent to the QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of the SMPS and mass concentration data obtained from the QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10-478 nm), i.e. AS, SC and AN, is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, values which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Using this technique, the percentage contribution of error in the measurement of effective density is calculated to be in the range of 9-17 %. Among the individual uncertainty components, repeatability of particle mass obtained by the QCM, the QCM crystal frequency, CPC counting efficiency, and the equivalence of CPC- and QCM-derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of the winter period in New Delhi was measured to be 1.28 ± 0.12 g cm-3
Yamasaki, H.; Mawatari, Y.; Nakagawa, Y.; Yamada, H.
2012-10-01
Several techniques can be used for inductive measurement of the critical current density Jc of large-area superconducting thin films used in microwave devices and fault-current limiters. The most popular of these methods employs the third-harmonic voltages V3. We have proposed a standard method using V3 for determining Jc under a criterion of electric field E. Here, the uncertainty in the standard method is evaluated. Since the measured Jc is directly proportional to the magnetic field at the upper surface of the superconducting film, the most significant systematic effect is the deviation of the coil-to-film distance Z1 from the prescribed value. The principal origins of this deviation of Z1 are (1) inadequate pressing of the coil onto the film and (2) ice layers occasionally forming between the coil and the protective polyimide film. If these effects are eliminated, uncertainty of Jc originates mainly from (a) uncertainty of the experimental coil coefficient k', which is dominated by uncertainty of the transport Jc, and (b) underestimation of the induced electric field E when using a simple Bean model. For a typical DyBa2Cu3O7 film specimen, the relative combined standard uncertainty in the standard method was evaluated as ˜5%. The effect of the film edge on Jc measurements is also described.
The phase diagram of nuclear and quark matter at high baryon density
Fukushima, Kenji
2013-01-01
We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....
Foundations of high-energy-density physics physical processes of matter at extreme conditions
Larsen, Jon
2017-01-01
High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...
B. Ford
2015-09-01
Full Text Available The negative impacts of fine particulate matter (PM2.5 exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004–2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure, which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.
Ford, Bonne; Heald, Colette L.
2016-03-01
The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.
James, Clara E; Oechslin, Mathias S; Van De Ville, Dimitri; Hauert, Claude-Alain; Descloux, Céline; Lazeyras, François
2014-01-01
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Density dependent magnetic field and the equation of state of hyperonic matter
Casali, Rudiney Hoffmann
2013-01-01
We are interested on the effects, caused by strong variable density dependent magnetic fields, on hyperonic matter, its symmetry energy, equations of state and mass-radius relations. The inclusion of the anomalous magnetic moment of the particles involved in a stellar system is performed, and some results are compared with the cases that do not take this correction under consideration. The Lagrangian density used follows the nonlinear Walecka model plus the leptons subjected to an external magnetic field.
B. Sarangi
2015-12-01
Full Text Available In this work, we have used scanning mobility particle sizer (SMPS and quartz crystal microbalance (QCM to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS, ammonium nitrate (AN and sodium chloride (SC, and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA, where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff with uncertainty of inorganic salt particles (for particle count mean diameter (CMD over a size range 10 to 478 nm, i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm−3, which are comparable with the material density (ρ values, 1.77, 2.17 and 1.72 g cm−3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2 in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm−3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an
Evolution of density and velocity profiles of dark matter and dark energy in spherical voids
Novosyadlyj, Bohdan; Kulinich, Yurij
2016-01-01
We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with perfect fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range $\\sim$4-7...
Spin polarization versus color–flavor locking in high-density quark matter
Tsue, Yasuhiko; da Providência, João; Providência, Constança;
2015-01-01
It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...
Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei
Hofmann, F. Keil; Lenske, H.
2001-01-01
Published in: Phys. Rev. C 64 (2001) , pp.034314 citations recorded in [Science Citation Index] Abstract: The density dependent relativistic hadron field (DDRH) theory is applied to strongly asymmetric nuclear matter and finite nuclei far off stability. A new set of in-medium meson-nucleon vertices
Primitive ontology and quantum state in the GRW matter density theory
Egg, Matthias
2014-01-01
The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
An Off-center Density Peak in the Milky Way's Dark Matter Halo?
Kuhlen, Michael; Pillepich, Annalisa; Madau, Piero; Mayer, Lucio
2012-01-01
We show that the position of the central dark matter density peak may be expected to differ from the dynamical center of the Galaxy by several hundred parsec. In Eris, a high resolution cosmological hydrodynamics simulation of a realistic Milky-Way-analog disk galaxy, this offset is 300 - 400 pc (~3 gravitational softening lengths) after z=1. In its dissipationless dark-matter-only twin simulation ErisDark, as well as in the Via Lactea II and GHalo simulations, the offset remains below one softening length for most of its evolution. The growth of the DM offset coincides with a flattening of the central DM density profile in Eris inwards of ~1 kpc, and the direction from the dynamical center to the point of maximum DM density is correlated with the orientation of the stellar bar, suggesting a bar-halo interaction as a possible explanation. A dark matter density offset of several hundred parsec greatly affects expectations of the dark matter annihilation signals from the Galactic Center. It may also support a d...
The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning.
Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O'Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo
2015-05-01
The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.
The effect of random matter density perturbations on the MSW solution to the solar neutrino problem
Nunokawa, H; Semikoz, V B; Valle, José W F
1996-01-01
We consider the implications of solar matter density random noise upon resonant neutrino conversion. The evolution equation describing MSW-like conversion is derived in the framework of the Schr\\"odinger approach. We study quantitatively their effect upon both large and small mixing angle MSW solutions to the solar neutrino problem. This is carried out both for the active-active \
From dilute matter to the equilibrium point in the energy--density--functional theory
Yang, C J; Lacroix, D
2016-01-01
Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.
Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.
2017-05-01
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
Climate impacts on human livelihoods: where uncertainty matters in projections of water availability
T. K. Lissner
2014-03-01
Full Text Available Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD. Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions – and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water
Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano
2015-04-01
Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.
Rossi, A
1996-01-01
We present a generalization of the resonant neutrino conversion in matter, including a random component in the matter density profile. The study is focused on the effect of such matter perturbations upon both large and small mixing angle MSW solutions to the solar neutrino problem. This is carried out both for the active-active \
A mass-dependent density profile for dark matter haloes including the influence of galaxy formation
Di Cintio, Arianna; Dutton, Aaron A; Macciò, Andrea V; Stinson, Greg S; Knebe, Alexander
2014-01-01
We introduce a mass dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the MaGICC project, which have been shown to match a wide range of disk scaling relationships. We find that the best fit parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity Mstar/Mhalo constrains the inner ($\\gamma$) and outer ($\\beta$) slopes of dark matter density, and the sharpness of transition between the slopes($\\alpha$), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The ...
MultiDark simulations: the story of dark matter halo concentrations and density profiles
Klypin, Anatoly; Gottlober, Stefan; Prada, Francisco; Hess, Steffen
2014-01-01
Accurately predicting structural properties of dark matter halos is one of the fundamental goals of modern cosmology. We use the new suite of MultiDark cosmological simulations to study the evolution of dark matter halo density profiles, concentrations, and velocity anisotropies. The MultiDark simulations cover a large range of masses 1e10-1e15Msun and volumes upto 50Gpc**3. The total number of dark matter halos in all the simulations exceeds 60 billion. We find that in order to understand the structure of dark matter halos and to make ~1% accurate predictions for density profiles, one needs to realize that halo concentration is more complex than the traditional ratio of the virial radius to the core radius in the NFW profile. For massive halos the averge density profile is far from the NFW shape and the concentration is defined by both the core radius and the shape parameter alpha in the Einasto approximation. Combining results from different redshifts, masses and cosmologies, we show that halos progress thr...
Indirect detection of a subdominant density component of cold dark matter
Duda, G; Gondolo, P; Edsjö, J; Silk, J; Duda, Gintaras; Gelmini, Graciela; Gondolo, Paolo; Edsjo, Joakim; Silk, Joseph
2003-01-01
We examine the detectability through indirect means of weakly interacting dark matter candidates that may constitute not all but only a subdominant component of galactic cold dark matter. We show that the possibility of indirect detection of neutralinos from their annihilations in the Earth and Sun is not severely hampered by decreasing neutralino relic density. Upward-going muon fluxes in underground detectors from neutralino annihilations in the Sun can remain above the threshold of detectability of 10 muons/km^2/yr for neutralinos composing 1% or more of the halo dark matter. Similarly, signals from neutralino annihilations in the Earth can also remain high for neutralino densities of 1% of the halo and actually would only be observable close to this low density for neutralinos lighter than 150 GeV. We also show that there are many models which simultaneously have high direct and indirect detection rates making some model discrimination possible if a signal is seen in any of the current dark matter searche...
Uncertainty propagation within the UNEDF models
Haverinen, T.; Kortelainen, M.
2017-04-01
The parameters of the nuclear energy density have to be adjusted to experimental data. As a result they carry certain uncertainty which then propagates to calculated values of observables. In the present work we quantify the statistical uncertainties of binding energies, proton quadrupole moments and proton matter radius for three UNEDF Skyrme energy density functionals by taking advantage of the knowledge of the model parameter uncertainties. We find that the uncertainty of UNEDF models increases rapidly when going towards proton or neutron rich nuclei. We also investigate the impact of each model parameter on the total error budget.
Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas
2016-04-01
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
Arnowitt, Richard; Gurrola, Alfredo; Kamon, Teruki; Krislock, Abram; Toback, David
2008-01-01
We examine the stau-neutralino co-annihilation mechanism of the early universe. We use the minimal supergravity (mSUGRA) model and show that from measurements at the LHC one can predict the dark matter relic density with an uncertainty of 6% with 30 fb-1 of data, which is comparable to the direct measurement by WMAP. This is possible by introducing measurements involving b-quark jets to determine the mSUGRA parameters A0 and tan(beta) without direct measurements of the stop and sbottom masses. Our methods provide precision mass measurements of the gauginos, squark, and lighter stau without the mSUGRA assumption.
Katharina Stegmayer
2014-01-01
Discussion: Decreased gray matter density in a large cluster including the right ventral striatum was associated with severe symptoms of emotional dysregulation in patients with schizophrenia. The ventral striatum is an important part of the limbic system, and was indicated to be involved in the generation of incentive salience and psychotic symptoms. Only patients with severe emotional dysregulation had decreased gray matter in several brain structures associated with emotion and reward processing compared to healthy controls. The results support the hypothesis that grouping patients according to specific clinical symptoms matched to the limbic system allows identifying patient subgroups with structural abnormalities in the limbic network.
Pairing effects on neutrino transport in low-density stellar matter
Burrello, S; Matera, F
2016-01-01
We investigate the impact of pairing correlations on neutrino transport in stellar matter. Our analysis is extended to nuclear matter conditions where large density fluctuations develop, associated with the onset of the liquid-vapor phase transition, and clustering phenomena occur. Within a thermodynamical treatment, we show that at moderate temperatures, where pairing effects are still active, the scattering of neutrinos in the nuclear medium is significantly affected by pairing correlations, which increase the neutrino trapping, thus modifying the cooling mechanism, by neutrino emission, of neutron stars.
Phase transitions in Core-Collapse Supernova Matter at sub-saturation densities
Pais, Helena; Stone, Jirina R
2014-01-01
We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM$^*$, SLy4, NRAPR and SQMC700, which span a range of saturation-density symmetry energy behaviours constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02 - 0.12 fm$^{-3}$, temperatures 2 - 8 MeV and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of first-order phase transition between the pasta phases is observed, and it is argued that the therm...
The density of dark matter haloes of early-type galaxies in low density environments
Corsini, E M; Thomas, J; Saglia, R P; Bender, R
2016-01-01
New photometric and long-slit spectroscopic observations are presented for NGC 7113, PGC 1852, and PGC 67207, which are three bright galaxies residing in low density environments. The surface-brightness distribution is analysed from K_S-band images taken with adaptive optics at the Gemini North Telescope and ugriz-band images from the Sloan Digital Sky Survey while the line-of-sight stellar velocity distribution and line-strength Lick indices inside the effective radius are measured along several position angles. The age, metallicity, and alpha-element abundance of the galaxies are estimated from single stellar-population models. In spite of the available morphological classification, images show that PGC 1852 is a barred spiral which we do not further consider for mass modelling. The structural parameters of the two early-type galaxies NGC 7113 and PGC 67207 are obtained from a two-dimensional photometric decomposition and the mass-to-light ratio of all the (luminous and dark) mass that follows the light is ...
$E_6$ Inspired SUSY Benchmarks, Dark Matter Relic Density and a 125 GeV Higgs
Athron, P; Nevzorov, R; Williams, A G
2015-01-01
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
E6 inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs
Athron, Peter; Harries, Dylan; Nevzorov, Roman; Williams, Anthony G.
2016-09-01
We explore the relic density of dark matter and the particle spectrum within a constrained version of an E6 inspired SUSY model with an extra U(1)N gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
Duchatel, Ryan J; Jobling, Phillip; Graham, Brett A; Harms, Lauren R; Michie, Patricia T; Hodgson, Deborah M; Tooney, Paul A
2016-02-01
Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (PolyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN(+) and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia.
Haataja, Mikko; Gránásy, László; Löwen, Hartmut
2010-08-01
Herein we provide a brief summary of the background, events and results/outcome of the CECAM workshop 'Classical density functional theory methods in soft and hard matter held in Lausanne between October 21 and October 23 2009, which brought together two largely separately working communities, both of whom employ classical density functional techniques: the soft-matter community and the theoretical materials science community with interests in phase transformations and evolving microstructures in engineering materials. After outlining the motivation for the workshop, we first provide a brief overview of the articles submitted by the invited speakers for this special issue of Journal of Physics: Condensed Matter, followed by a collection of outstanding problems identified and discussed during the workshop. 1. Introduction Classical density functional theory (DFT) is a theoretical framework, which has been extensively employed in the past to study inhomogeneous complex fluids (CF) [1-4] and freezing transitions for simple fluids, amongst other things. Furthermore, classical DFT has been extended to include dynamics of the density field, thereby opening a new avenue to study phase transformation kinetics in colloidal systems via dynamical DFT (DDFT) [5]. While DDFT is highly accurate, the computations are numerically rather demanding, and cannot easily access the mesoscopic temporal and spatial scales where diffusional instabilities lead to complex solidification morphologies. Adaptation of more efficient numerical methods would extend the domain of DDFT towards this regime of particular interest to materials scientists. In recent years, DFT has re-emerged in the form of the so-called 'phase-field crystal' (PFC) method for solid-state systems [6, 7], and it has been successfully employed to study a broad variety of interesting materials phenomena in both atomic and colloidal systems, including elastic and plastic deformations, grain growth, thin film growth, solid
Density of Saturated Nuclear Matter at Large $N_{c}$ and Heavy Quark Mass Limits
Adhikari, Prabal; Datta, Ishaun
2013-01-01
We exhibit the existence of stable, saturated nuclear matter in the large $N_{c}$ and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in $N_{c}$ via a repulsive interaction due to the Pauli exclusion principle and at subleading order in $1/N_c$ via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered cubic or a hexagonal-close-packed symmetry with baryon densities of $\\mathcal{O}((\\, \\tilde{\\alpha}_{s} m_q (\\ln (N_{c}m_{q}\\Lambda_{\\textrm{QCD}}^{-1}))^{-1})^3 )$. Remarkably, the leading order expression for the density of saturated nuclear matter is independent of the lighest glueball mass and scalar-glueball-baryon coupling in...
Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates.
Bartl, A; Pethick, C J; Schwenk, A
2014-08-22
At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10(13) g cm(-3) compared to rates used in supernova simulations.
Interplay between spin polarization and color superconductivity in high density quark matter
Tsue, Yasuhiko; da Providência, João; Providência, Constança;
2013-01-01
Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...
Properties of Dark Matter Halos as a Function of Local Environment Density
Lee, Christoph T; Behroozi, Peter; Rodriguez-Puebla, Aldo; Hellinger, Doug; Dekel, Avishai
2016-01-01
We study how properties of discrete dark matter halos depend on halo environment, characterized by the mass density around the halos on scales from 0.5 to 16 $\\hmpc$. We find that low mass halos (those less massive than the characteristic mass $M_{\\rm C}$ of halos collapsing at a given epoch) in high-density environments have lower accretion rates, lower spins, higher concentrations, and rounder shapes than halos in median density environments. Halos in median and low-density environments have similar accretion rates and concentrations, but halos in low density environments have lower spins and are more elongated. Halos of a given mass in high-density regions accrete material earlier than halos of the same mass in lower-density regions. All but the most massive halos in high-density regions are losing mass (i.e., being stripped) at low redshifts, which causes artificially lowered NFW scale radii and increased concentrations. Tidal effects are also responsible for the decreasing spins of low mass halos in high...
Relating the baryon asymmetry to the thermal relic dark matter density
McDonald, John
2011-04-01
We present a generic framework, baryomorphosis, which modifies the baryon asymmetry to be naturally of the order of a typical thermal relic weakly interacting massive particle (WIMP) density. We consider a simple scalar-based model to show how this is possible. This model introduces a sector in which a large initial baryon asymmetry is injected into particles (”annihilons”), ϕB, ϕ^B, of mass ˜100GeV-1TeV. ϕBϕ^B annihilations convert the initial ϕB, ϕ^B asymmetry to a final asymmetry with a thermal relic WIMP-like density. This subsequently decays to a conventional baryon asymmetry whose magnitude is naturally related to the density of thermal relic WIMP dark matter. In this way the two coincidences of baryons and dark matter, i.e. why their densities are similar to each other and why they are both similar to a WIMP thermal relic density (the “WIMP miracle”), may be understood. The model may be tested by the production of annihilons at colliders.
Hamid MADANI
2012-05-01
Full Text Available Chicory is considered one of the alternatives crops that can be used in crop rotation and contains many phytochemicals that can be used in medicine. In addition, lengthening the growing season by early sowing may increase root chicory yield potential, and thus increase its competitiveness with traditional crops. The objectives of the present study were to determine whether early sowing date risks can be decreased by higher sowing density and also to study the effect of sowing date and sowing density on dry matter accumulation and partitioning of chicory. Growing season did not affect any of the characteristics that were studied. Also plant density affected the flowers biomass, root biomass per plant and the respective yield together with the plant height and essence yield and total yield. The sowing date affected the leaf, flower and stem biomass on a plant basis. However, the interaction between plant density and sowing date affected the total biomass per plant, the flower biomass per plant, the root biomass per plant, the flower yield, the root yield and the essence yield. These results indicate that for higher production it is important to determine the right plant density and sowing date which can affect growth, dry matter accumulation and essence yield.
Neutron-star matter within the energy-density functional theory and neutron-star structure
Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)
2015-02-24
In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.
Eres, Robert; Decety, Jean; Louis, Winnifred R; Molenberghs, Pascal
2015-08-15
The understanding of empathy from a neuroscientific perspective has recently developed quickly, with numerous functional MRI studies associating different brain regions with different components of empathy. A recent meta-analysis across 40 fMRI studies revealed that affective empathy is most often associated with increased activity in the insula, whereas cognitive empathy is most often associated with activity in the midcingulate cortex and adjacent dorsomedial prefrontal cortex (MCC/dmPFC). To date, however, it remains unclear whether individual differences in brain morphometry in these regions underlie different dispositions in affective and cognitive empathy. In order to test this hypothesis, voxel-based morphometry (VBM) was used to examine the extent to which gray matter density predicts scores from an established empathy measure (Questionnaire of Cognitive and Affective Empathy; QCAE). One hundred and seventy-six participants completed the QCAE and underwent MRI in order to acquire a high-resolution, three-dimensional T1-weighted structural scans. A factor analysis of the questionnaire scores revealed two distinct factors of empathy, affective and cognitive, which confirmed the validity of the QCAE. VBM results revealed gray matter density differences associated with the distinct components of empathy. Higher scores on affective empathy were associated with greater gray matter density in the insula cortex and higher scores of cognitive empathy were associated with greater gray matter density in the MCC/dmPFC. Taken together, these results provide validation for empathy being a multi-component construct, suggesting that affective and cognitive empathy are differentially represented in brain morphometry as well as providing convergent evidence for empathy being represented by different neural and structural correlates. Copyright © 2015 Elsevier Inc. All rights reserved.
Gray matter density in relation to different facets of verbal creativity.
Fink, Andreas; Koschutnig, Karl; Hutterer, Lisa; Steiner, Elisabeth; Benedek, Mathias; Weber, Bernhard; Reishofer, Gernot; Papousek, Ilona; Weiss, Elisabeth M
2014-07-01
Neuroscience studies on creativity have revealed highly variegated findings that often seem to be inconsistent. As recently argued in Fink and Benedek (Neurosci Biobehav Rev, 2012), this might be primarily due to the broad diversity in defining and measuring creativity as well as to the diversity of experimental procedures and methodologies used in this field of research. In specifically focusing on one measure of brain activation and on the well-established process of creative ideation (i.e., divergent thinking), EEG studies revealed a quite consistent and replicable pattern of right-lateralized brain activity over posterior parietal and occipital sites. In this study, we related regional gray matter density (as assessed by means of voxel-based morphometry) to different facets of psychometrically determined verbal creativity in a sample of 71 participants. Results revealed that verbal creativity was significantly and positively associated with gray matter density in clusters involving the right cuneus and the right precuneus. Enhanced gray matter density in these regions may be indicative of vivid imaginative abilities in more creative individuals. These findings complement existing functional studies on creative ideation which are, taken as a whole, among the most consistent findings in this field.
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling
Lopez, Annette; ATLAS Collaboration
2017-01-01
Investigating the properties of a proton involved in a proton-proton collision at the Large Hadron Collider furthers our understanding of resulting processes from the collision. In the search for dark matter produced alongside a new heavy resonance, Z', or a W/Z boson, a process characterized by large missing transverse momentum from the undetected dark matter particles, parton distribution functions (PDFs) of protons were utilized to improve the Monte Carlo simulation of proton-proton collisions at &sqrt;s = 13 TeV with the ATLAS detector. The PDF set NNPDF30 leading order was used to generate events with applied cuts: missing transverse momentum greater than 250 GeV, pseudorapidity of | η | < 2 . 5 , and groomed jets with R = 1 . 0 . An algorithm was developed to do PDF reweighting from NNPDF30 leading order to the following PDF sets: NNPDF30 next-to-leading order, MMHT2014, HERAPDF20, CT14, and MSTW2008. Distributions of the transverse momentum, mass, azimuthal angle, rapidity, and pseudorapidity for the leading and subleading jets, as well as the missing transverse momentum, were produced with the PDF reweighting algorithm. The uncertainty associated with the choice of a particular PDF in creating these distributions was calculated.
Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †
M. W. C. Dharma-wardana
2016-03-01
Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm
Aldegunde, Manuel; Kermode, James R.; Zabaras, Nicholas
2016-04-01
This paper presents the development of a new exchange-correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.
Surface Density of dark matter haloes on galactic and cluster scales
Del Popolo, A; Belvedere, G
2013-01-01
In this paper, in the framework of the secondary infall model, the correlation between the central surface density and the halo core radius of galaxy, and cluster of galaxies, dark matter haloes was analyzed, this having recently been studied on a wide range of scales. We used Del Popolo (2009) secondary infall model taking into account ordered and random angular momentum, dynamical friction, and dark matter (DM) adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that $r_\\ast$ (the halo characteristic radius) is not an universal quantity as claimed by Donato et al. (2009) and Gentile et al. (2009). On the contrary, we find a correlation with the halo mass $M_{200}$ in agreement with Cardone & Tortora (2010), Boyarsky at al. (2009) and Napolitano et al. (2010), but with a significantly smaller scatter, namely $0.16 \\pm 0.05$. We also consider the baryon column density finding this latter being ...
Galli, Silvia; Valdes, Marcos; Iocco, Fabio
2013-01-01
Anisotropies of the cosmic microwave background (CMB) have proven to be a very powerful tool to constrain dark matter annihilation at the epoch of recombination. However, CMB constraints are currently derived using a number of reasonable but yet un-tested assumptions that could potentially lead to a misestimation of the true bounds. In this paper we examine the potential impact of these systematic effects. In particular, we separately study the propagation of the secondary particles produced by annihilation in two energy regimes; first following the shower from the initial particle energy to the keV scale, and then tracking the resulting secondary particles from this scale to the absorption of their energy as heat, ionization, or excitation of the medium. We improve both the high and low energy parts of the calculation, in particular finding that our more accurate treatment of losses to sub-10.2 eV photons produced by scattering of high-energy electrons weakens the constraints on particular DM annihilation mo...
MultiDark simulations: the story of dark matter halo concentrations and density profiles
Klypin, Anatoly; Yepes, Gustavo; Gottlöber, Stefan; Prada, Francisco; Heß, Steffen
2016-04-01
Predicting structural properties of dark matter haloes is one of the fundamental goals of modern cosmology. We use the suite of MultiDark cosmological simulations to study the evolution of dark matter halo density profiles, concentrations, and velocity anisotropies. We find that in order to understand the structure of dark matter haloes and to make 1-2 per cent accurate predictions for density profiles, one needs to realize that halo concentration is more complex than the ratio of the virial radius to the core radius in the Navarro-Frenk-White (NFW) profile. For massive haloes, the average density profile is far from the NFW shape and the concentration is defined by both the core radius and the shape parameter α in the Einasto approximation. We show that haloes progress through three stages of evolution. They start as rare density peaks and experience fast and nearly radial infall that brings mass closer to the centre, producing a highly concentrated halo. Here, the halo concentration increases with increasing halo mass and the concentration is defined by the α parameter with a nearly constant core radius. Later haloes slide into the plateau regime where the accretion becomes less radial, but frequent mergers still affect even the central region. At this stage, the concentration does not depend on halo mass. Once the rate of accretion and merging slows down, haloes move into the domain of declining concentration-mass relation because new accretion piles up mass close to the virial radius while the core radius is staying constant. Accurate analytical fits are provided.
Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Mayer, Lucio, E-mail: stelios@mps.ohio-state.edu [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland)
2013-02-20
According to the tidal stirring model, late type, rotationally supported dwarfs resembling present day dwarf irregular (dIrr) galaxies can transform into dwarf spheroidals (dSphs) via interactions with Milky-Way-sized hosts. We perform collisionless N-body simulations to investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes {gamma} of the dwarf DM density profiles ({rho}{proportional_to}r {sup -{gamma}}). For a given orbit inside the primary galaxy, rotationally supported dwarfs embedded in DM halos with core-like distributions ({gamma} = 0.2) and mild density cusps ({gamma} = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles ({gamma} = 1). Such shallow DM distributions are akin to those of observed dIrrs highlighting tidal stirring as a plausible model for the Local Group (LG) morphology-density relation. When {gamma} < 1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform; these new results allow tidal stirring to explain virtually all known dSphs across a wide range of distances from their hosts. A subset of disky dwarfs initially embedded in DM halos with shallow density profiles are eventually disrupted by the primary; those that survive as dSphs are generally on orbits with lower eccentricities and/or larger pericenters compared to those of typical cold dark matter satellites. The latter could explain the peculiar orbits of several LG dSphs such as Fornax, Leo I, Tucana, and Cetus.
Evolution of density and velocity profiles of dark matter and dark energy in spherical voids
Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij
2017-02-01
We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.
Surface density of dark matter haloes on galactic and cluster scales
Del Popolo, A.; Cardone, V. F.; Belvedere, G.
2013-02-01
In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.
Strange matter equation of state in the quark mass-density-dependent model
Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))
1995-02-15
We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.
Evolution of density and velocity profiles of matter in large voids
Tsizh, Maksym
2016-01-01
We analyse the evolution of cosmological perturbations which leads to the formation of large voids in the distribution of galaxies. We assume that perturbations are spherical and all components of the Universe - radiation, matter and dark energy - are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations in the comoving to cosmological background reference frame for every component are obtained from equations of conservation and Einstein's ones and are integrated by modified Euler method. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is mush larger than the particle horizon. Results show how the profiles of density and velocity of matter in spherical voids with different overdensity shells are formed.
Evolution of density and velocity profiles of matter in large voids
Tsizh, M.; Novosyadlyj, B.
2016-09-01
We analyse the evolution of cosmological perturbations which leads to the formation of large voids in the distribution of galaxies. We assume that perturbations are spherical and all components of the Universe - radiation, matter and dark energy - are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations in the comoving to cosmological background reference frame for every component are obtained from equations of conservation and Einstein's ones and are integrated by modified Euler method. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is mush larger than the particle horizon. Results show how the profiles of density and velocity of matter in spherical voids with different overdensity shells are formed.
Albright, M
2016-01-01
We develop a flexible quasiparticle theory of transport coefficients of hot hadronic matter at finite baryon density. We begin with a hadronic quasiparticle model which includes a scalar and a vector mean field. Quasiparticle energies and the mean fields depend on temperature and baryon chemical potential. Starting with the quasiparticle dispersion relation, we derive the Boltzmann equation and use the Chapman-Enskog expansion to derive formulas for the shear and bulk viscosities and thermal conductivity. We obtain both relaxation time approximation formulas and more general integral equations. Throughout the work, we explicitly enforce the Landau-Lifshitz conditions of fit and ensure the theory is thermodynamically self-consistent. The derived formulas should be useful for predicting the transport coefficients of the hadronic phase of matter produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and at other accelerators.
Belloni, Fabio [Institute for Transuranium Elements, European Commission, Joint Research Centre, Postfach 2340, Karlsruhe (Germany)
2016-02-15
The influence of the electron environment on the α decay is elucidated. Within the frame of a simple model based on the generalized Thomas-Fermi theory of the atom, it is shown that the increase of the electron density around the parent nucleus drives a mechanism which shortens the lifetime. Numerical results are provided for {sup 144}Nd, {sup 154}Yb and {sup 210}Po. Depending on the nuclide, fractional lifetime reduction relative to the bare nucleus is of the order of 0.1-1% in free ions, neutral atoms and ordinary matter, but may reach up to 10% at matter densities as high as 10{sup 4}g/cm{sup 3}, in a high-Z matrix. The effect induced by means of state-of-the-art compression techniques, although much smaller than previously found, would however be measurable. The extent of the effect in ultra-high-density stellar environments might become significant and would deserve further investigation. (orig.)
What does the N-point function hierarchy of the cosmological matter density field really measure ?
Carron, Julien
2015-01-01
The cosmological dark matter field is not completely described by its hierarchy of $N$-point functions, a non-perturbative effect with the consequence that only part of the theory can be probed with the hierarchy. We give here an exact characterization of the joint information of the full set of $N$-point correlators of the lognormal field. The lognormal field is the archetypal example of a field where this effect occurs, and, at the same time, one of the few tractable and insightful available models to specify fully the statistical properties of the evolved matter density field beyond the perturbative regime. Nonlinear growth in the Universe in that model is set letting the log-density field probability density functional evolve keeping its Gaussian shape, according to the diffusion equation in Euclidean space. We show that the hierarchy probes a different evolution equation, the diffusion equation defined not in Euclidean space but on the compact torus, with uniformity as the long-term solution. The extract...
What does the N-point function hierarchy of the cosmological matter density field really measure?
Carron, J.; Szapudi, I.
2017-08-01
The cosmological dark matter field is not completely described by its hierarchy of N-point functions, a non-perturbative effect with the consequence that only part of the theory can be probed with the hierarchy. We give here an exact characterization of the joint information of the hierarchy within the lognormal field. The lognormal field is the archetypal example of a field where this effect occurs, and, at the same time, one of the few tractable and insightful available models to specify fully the statistical properties of the evolved matter density field beyond the perturbative regime. Non-linear growth in the Universe in that model is set letting the log-density field probability density functional evolve keeping its Gaussian shape, according to the diffusion equation in Euclidean space. We show that the hierarchy probes a different evolution equation, the diffusion equation defined not in Euclidean space but on the compact torus, with uniformity as the long-term solution. The extraction of the hierarchy of correlators can be recast in the form of a non-linear transformation applied to the field, 'wrapping', undergoing a sharp transition towards complete disorder in the deeply non-linear regime, where all memory of the initial conditions is lost.
Samantha J Fung
Full Text Available Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC. Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX, a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque and density of white matter neurons (humans during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37 and matched controls (n = 37 and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in
Yi Shin Chang
Full Text Available Diffusion tensor imaging (DTI studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation dispersion and density imaging (NODDI is a recently proposed multi-compartment biophysical model of brain microstructure that can estimate non-collinear properties of white matter, such as neurite orientation dispersion index (ODI and neurite density index (NDI. In this study, we apply NODDI to 66 healthy controls aged 7-63 years to investigate changes of ODI and NDI with brain maturation, with comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses, we find that NDI exhibits striking increases over the studied age range following a logarithmic growth pattern, while ODI rises following an exponential growth pattern. This novel finding is consistent with well-established age-related changes of FA over the lifespan that show growth during childhood and adolescence, plateau during early adulthood, and accelerating decay after the fourth decade of life. Our results suggest that the rise of FA during the first two decades of life is dominated by increasing NDI, while the fall in FA after the fourth decade is driven by the exponential rise of ODI that overcomes the slower increases of NDI. Using partial least squares regression, we further demonstrate that NODDI better predicts chronological age than DTI. Finally, we show excellent test-retest reliability of NODDI metrics, with coefficients of variation below 5% in all measured regions of interest. Our results support the conclusion that NODDI reveals biologically specific characteristics of brain development that are more closely linked to the microstructural features of white
Planning Uncertainty: Creating an Artefact Density Index for North Yorkshire, England
Nick Boldrini
2007-04-01
Full Text Available Portable antiquities (sometimes known as small finds or chance finds are often recorded within most Historic Environment Records to a spurious level of precision. For example, finds located only within a parish, or general area, are often mapped within GIS systems to exact points. Similarly, finds known only to the nearest kilometre square are usually mapped in the bottom left-hand corner of the square in GIS. While such mappings can be taken into account to some extent when trying to assess the archaeological potential of an area, the degree to which the records may give distorted views of the archaeological potential of an area may not be fully appreciated. This may mean that the full archaeological impacts of development may not be taken into account during development control decision making. This article looks at an alternative method for mapping such finds in order to produce an Artefact Density Index for areas, which more usefully reflects the pattern of activities across the landscape. The Artefact Density Index (ADI was divided to reflect broad archaeological periods (e.g. Roman, medieval etc., as well as broad artefact types (e.g. weapons, tools etc.. The ADI was based on combining weighted values for finds types, with the weight reflecting the precision of the location of the finds (i.e. finds recorded only at parish level will be given less weight than those recorded more precisely. An ADI was developed for a sub-area of the North Yorkshire County Council HER area, and also incorporated data from the Portable Antiquities scheme as a case study for the project.
Radożycki, Tomasz
2016-11-01
The probability density distributions for the ground states of certain model systems in quantum mechanics and for their classical counterparts are considered. It is shown, that classical distributions are remarkably improved by incorporating into them the Heisenberg uncertainty relation between position and momentum. Even the crude form of this incorporation makes the agreement between classical and quantum distributions unexpectedly good, except for the small area, where classical momenta are large. It is demonstrated that the slight improvement of this form, makes the classical distribution very similar to the quantum one in the whole space. The obtained results are much better than those from the WKB method. The paper is devoted to ground states, but the method applies to excited states too.
Bulk viscosity of strange quark matter in density dependent quark mass model
J D Anand; N Chandrika Devi; V K Gupta; S Singh
2000-05-01
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and ﬁrst order interactions were taken into account. We ﬁnd that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.
Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2015-09-15
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.
Long-term meditation is associated with increased gray matter density in the brain stem
Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua
2009-01-01
Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...... of the cardiorespiratory parasympathetic effects and traits, as well as the cognitive, emotional, and immunoreactive impact reported in several studies of different meditation practices....
Reggiani, N; Colonia, J H; De Holanda, P C
1998-01-01
Taking into account the stringent limits from helioseismology observations on possible matter density fluctuations described by magnetohydrodynamics theory, we find the corresponding time variations of solar neutrino survival probability due to the resonant spin-flavor precession phenomenon with amplitude of order O(10%). We discuss the physics potential of high statistics real time experiments, like as Superkamiokande, to observe the effects of such magnetohydrodynamics fluctuations on their data. We conclude that these observations could be thought as a test of the resonant spin-flavor precession solution to the solar neutrino anomaly.
Long-term meditation is associated with increased gray matter density in the brain stem
Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua
2009-01-01
Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter dens...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...
Pastina formation in low density nucleonic matter: a mechanism for ternary fission
Wuenschel, S; Hagel, K; Meyer, B; Barbui, M; Kim, E J; Roepke, G; Natowitz, J B
2014-01-01
Ternary fission yields in the reaction 241Pu(nth,f) are calculated using a new model which assumes a nucleation-time moderated chemical equilibrium in the low density matter which constitutes the neck region of the scissioning system. The temperature, density, proton fraction and fission time required to fit the experimental data are derived and discussed. A reasonably good fit to the experimental data is obtained. This model provides a natural explanation for the observed yields of heavier isotopes relative to those of the lighter isotopes, the observation of low proton yields relative to 2H and 3H yields and the non-observation of 3He, all features which are shared by similar thermal neutron induced and spontaneous fissioning systems.
Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission
Wuenschel, S.; Zheng, H.; Hagel, K.; Meyer, B.; Barbui, M.; Kim, E. J.; Röpke, G.; Natowitz, J. B.
2014-07-01
Ternary fission yields in the reaction Pu241(nth,f ) are calculated using a new model which assumes a nucleation-time-moderated chemical equilibrium in the low-density matter which constitutes the neck region of the scissioning system. The temperature, density, proton fraction, and fission time required to fit the experimental data are derived and discussed. A reasonably good fit to the experimental data is obtained. This model provides a natural explanation for the observed yields of heavier isotopes relative to those of the lighter isotopes, the observation of low proton yields relative to H2 and H3 yields, and the nonobservation of He3, all features which are shared by similar thermal neutron-induced and spontaneous fissioning systems.
Nonsingular density profiles of dark matter halos and Strong gravitational lensing
Chen, D M
2005-01-01
We use the statistics of strong gravitational lenses to investigate whether the mass profiles with a flat density core are supported. The probability for lensing by halos modeled by nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranges from zero to ten arcseconds) is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev & Raga (1999). This profile has a soft core and matches quite well with the mass profiles of dark matter dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with NFW (Navarro, Frenk & White) at all radii outside of a few NTIS core radii. Unfortunately, compared the results with those for singular lensing halos (NFW and SIS+NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. While this result is valid for any other nonsingular density profiles (with a large core radius), we c...
Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm Dense Matter
Militzer, Burkhard; Driver, Kevin
2011-10-01
We analyze the applicability of two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), to study the regime of warm dense matter. We discuss the advantages as well as the limitations of each method and propose directions for future development. Results for dense, liquid helium, where both methods have been applied, demonstrate the range of each method's applicability. Comparison of the equations of state from simulations with analytical theories and free energy models show that DFT is useful for temperatures below 100000 K and then PIMC provides accurate results for all higher temperatures. We characterize the structure of the liquid in terms of pair correlation functions and study the closure of the band gap with increasing density and temperature. Finally, we discuss simulations of heavier elements and demonstrate the reliability are both methods in such cases with preliminary results.
Braghin, F L
2004-01-01
Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.
Tidal Disruption of Milky Way Satellites with Shallow Dark Matter Density Profiles
Ewa L. Łokas
2016-11-01
Full Text Available Dwarf galaxies of the Local Group provide unique possibilities to test current theories of structure formation. Their number and properties have put the broadly accepted cold dark matter model into question, posing a few problems. These problems now seem close to resolution due to the improved treatment of baryonic processes in dwarf galaxy simulations which now predict cored rather than cuspy dark matter profiles in isolated dwarfs with important consequences for their subsequent environmental evolution. Using N-body simulations, we study the evolution of a disky dwarf galaxy with such a shallow dark matter profile on a typical orbit around the Milky Way. The dwarf survives the first pericenter passage but is disrupted after the second due to tidal forces from the host. We discuss the evolution of the dwarf’s properties in time prior to and at the time of disruption. We demonstrate that the dissolution occurs on a rather short timescale as the dwarf expands from a spheroid into a stream with non-zero mean radial velocity. We point out that the properties of the dwarf at the time of disruption may be difficult to distinguish from bound configurations, such as tidally induced bars, both in terms of surface density and line-of-sight kinematics.
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-09-01
Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry.
Leptogenesis as the source of gravitino dark matter and density perturbations
Allahverdi, R; Allahverdi, Rouzbeh; Drees, Manuel
2004-01-01
We investigate the possibility that the entropy producing decay of a right-handed sneutrino condensate can simultaneously be the source of the baryon asymmetry, of gravitino dark matter, and of cosmological density perturbations. For generic values of soft supersymmetry breaking terms in the visible sector of 1-10 TeV, condensate decay can yield the dark matter abundance for gravitinos in the mass range 1 MeV to 1 TeV, provided that the resulting reheat temperature is below $10^6$ GeV. The abundance of thermally produced gravitinos before and after sneutrino decay is then negligible. We consider different leptogenesis mechanisms to generate a sufficient asymmetry, and find that low-scale soft leptogenesis works most naturally at such temperatures. The condensate can easily generate sufficient density perturbations if its initial amplitude is $\\sim {\\cal O}(M_{\\rm GUT})$, for a Hubble expansion rate during inflation $> 10^9$ GeV. Right-handed sneutrinos may therefore at the same time provide a source for baryo...
Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics
Adams, Joshua J; Fabricius, Maximilian H; Bosch, Remco C E van den; Barentine, John C; Bender, Ralf; Gebhardt, Karl; Hill, Gary J; Murphy, Jeremy D; Swaters, R A; Thomas, Jens; van de Ven, Glenn
2014-01-01
We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We als...
AN OFF-CENTER DENSITY PEAK IN THE MILKY WAY'S DARK MATTER HALO?
Kuhlen, Michael [Theoretical Astrophysics Center, University of California Berkeley, Hearst Field Annex, Berkeley, CA 94720 (United States); Guedes, Javiera [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, Zurich 8049 (Switzerland); Pillepich, Annalisa; Madau, Piero [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Mayer, Lucio, E-mail: mqk@astro.berkeley.edu [University of Zurich, Institute for Theoretical Physics, Zurich 8057 (Switzerland)
2013-03-01
We show that the position of the central dark matter (DM) density peak may be expected to differ from the dynamical center of the Galaxy by several hundred parsecs. In Eris, a high-resolution cosmological hydrodynamics simulation of a realistic Milky-Way-analog disk galaxy, this offset is 300-400 pc ({approx}3 gravitational softening lengths) after z = 1. In its dissipationless DM-only twin simulation ErisDark, as well as in the Via Lactea II and GHalo simulations, the offset remains below one softening length for most of its evolution. The growth of the DM offset coincides with a flattening of the central DM density profile in Eris inward of {approx}1 kpc, and the direction from the dynamical center to the point of maximum DM density is correlated with the orientation of the stellar bar, suggesting a bar-halo interaction as a possible explanation. A DM density offset of several hundred parsecs greatly affects expectations of the DM annihilation signals from the Galactic center. It may also support a DM annihilation interpretation of recent reports by Weniger and Su and Finkbeiner of highly significant 130 GeV gamma-ray line emission from a region 1. Degree-Sign 5 ({approx}200 pc projected) away from Sgr A* in the Galactic plane.
Lassen, Inger
are equally important, but some semiotic events tend to foreground one parameter more than others. For instance texts (spoken as well as written) with salient tenor relationships tend to select interpersonal lexico-grammatical resources to express intersubjective stance and psychological states of mind...... semiotic events, which all focus on genetically modified food. The data analyzed are derived from a focus group discussion where members of the general public interacted with food biotechnology scientists. The results will be compared with examples from information leaflets made available to the general...
Spin polarization in high density quark matter under a strong external magnetic field
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor......-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....
Spin polarization in high density quark matter under a strong external magnetic field
Tsue, Yasuhiko; Providencia, Constanca; Yamamura, Masatoshi; Bohr, Henrik
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the Nambu-Jona-Lasinio model with axial vector-type four-point interaction or tensor-type four-point interaction between quarks. In the axial vector-type interaction, it is shown that a quark spin polarized phase is realized in all region of the quark chemical potential under a strong external magnetic field within the lowest Landau level approximation. Each phase is characterized by the chiral condensate or dynamical quark mass. On the other hand, in the tensor-type interaction, it is also shown that the quark spin polarized phase does not appear even if there exists the strong external magnetic field. However, if the anomalous magnetic moment of quark is taken into account, it may be possible to realize the quark spin polarized phase.
Riley, H. C. F.
1981-01-01
Specimens from the surface horizon and the subsoil of 62 soil horizons in Hedmark and Oppland were investigated to study how the mechanical composition of the soil, the organic matter content and the bulk density affect their porosity and air capacity and their total and available water content. Most of the specimens belonged to the loam group, and a smaller number was from sandy and silty types of soil. Equations were established to make it possible to calculate the water retention curves and the amount of available water from the above mentioned parameters. As a rule, errors derived from the equations are no greater than those which are found in similar research in other countries.
Predicting soil particle density from clay and soil organic matter contents
Schjønning, Per; McBride, R.A.; Keller, T.
2017-01-01
Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...... of clay particles was approximately 2.86 Mg m−3, while that of sand+silt particles could be estimated to ~2.65 Mgm−3. Multiple linear regression showed that a combination of clay and SOMcontents could explain nearly 92% of the variation in measured Dp. The clay and SOMprediction equation was validated...... against a combined data set with 227 soil samples representing A, B, and C horizons from temperate North America and Europe. The new prediction equation performed better than two SOM-based models from the literature. Validation of the new clay and SOM model using the 227 soil samples gave a root mean...
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
Derakhshani, Maaneli, E-mail: maanelid@yahoo.com
2014-03-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Upper bound on hot dark matter density from SO(10) Yukawa unification
Brignole, A; Rattazzi, Riccardo; Andrea Brignole; Hitoshi Murayama; Riccardo Rattazzi
1994-01-01
We study low-energy consequences of supersymmetric SO(10) models with Yukawa unification h_t = h_N and h_b = h_\\tau. We find that it is difficult to reproduce the observed m_b/m_\\tau ratio when the third-generation right-handed neutrino is at an intermediate scale, especially for small \\tan \\beta. We obtain a conservative lower bound on the mass of the right-handed neutrino M_N > 6 \\times 10^{13}~GeV for \\tan \\beta < 10. This bound translates into an upper bound on the \\tau-neutrino mass, and therefore on its contribution to the hot dark matter density of the present universe, \\Omega_\
Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement
Zavala, Jesús; Vogelsberger, Mark; White, Simon D. M.
2010-04-01
We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the μ-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |μ|≤9.0×10-5 found by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument on the COBE (Cosmic Background Explorer) satellite.
Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement
Zavala, Jesus; White, Simon D M
2009-01-01
We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. We find that the cross section can be reduced by as much as an order of magnitude for extreme cases. We also compute the mu-type distortion of the CMB energy spectrum caused by energy injection from such Sommerfeld-enhanced annihilation. Our results indicate that in the vicinity of resonances, associated with bound states, distortions can be large enough to be excluded by the upper limit |mu|<9.0x10^(-5) found by the COBE/FIRAS experiment.
High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9
NONE
1998-12-01
This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.
Large Hadron Collider at CERN: Beams generating high-energy-density matter.
Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-04-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has
Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Chu, Xiaoyong; Hambye, Thomas
2016-01-01
Motivated by the hypothesis that dark matter self-interactions provide a solution to the small-scale structure formation problems, we investigate the possibilities that the relic density of a self-interacting dark matter candidate can proceed from the thermal freeze-out of annihilations into Standard Model particles. We find that scalar and Majorana dark matter in the mass range of $10-500$ MeV, coupled to a slightly heavier massive gauge boson, are the only possible candidates in agreement with multiple current experimental constraints. Here dark matter annihilations take place at a much slower rate than the self-interactions simply because the interaction connecting the Standard Model and the dark matter sectors is small. We also discuss prospects of establishing or excluding these two scenarios in future experiments.
The role of the wave function in the GRW matter density theory
Egg, Matthias [University of Lausanne (Switzerland)
2014-07-01
Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.
Shantappa, A.; Hanagodimath, S. M.
2014-01-01
Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.
Effect of Cultural Practices in Night on Weed Density and Weed Dry Matter
M.H Rashed Mohasel
2011-01-01
Full Text Available Abstract In order to evaluate the response of weed seeds to light, two experiments, at two different locations were conducted at Ferdowsi university of Mashhad in 2009. At the first experiment, field was ploughed in day and night. Weed density was evaluated 70 d after plough, with 1×1 quadrate. At the second experiment, at night treatment, ploughing, potato planting and weeding with cultivator were done at night. Weed sampling was done twice at 43 and 130 days after planting with 1×1 quadrate and weeds were identified and counted. Result showed pigweed (Amaranthus retroflexus L., sowthistle (Sonchus oleraceus L., crabgrass (Digitaria sanguinalis (L. scop, jimsonweed (Datura stramonium L. and mallow (Hibiscus trionum L. did not observed at night plough, in contrast, night plough has no significance influence on common lambsquarters (Chenopodium album L., and black nightshade (Solanum nigrum L.. Only common lambsquarters had similar appearance in two treatments, indicating insusceptibility of this weed to time of plough. Interestingly, at the second experiment, result was very similar. Potato yield was higher at night treatment, but not significant. This research showed that some cultural practice like plough, planting and weeding with cultivator in night can reduce weed density and weed dry matter. Keywords: Germination, Time of plough, Sustainable weeds management, Light
Magnetic resonance fiber density mapping of age-related white matter changes
Stadlbauer, Andreas, E-mail: andi@nmr.at [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Ganslandt, Oliver [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Salomonowitz, Erich [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Buchfelder, Michael [Department of Neurosurgery, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Hammen, Thilo [Department of Neurology, Epilepsy Center, University of Erlangen-Nuremberg, Schwabachanlage 6, D-90429 Erlangen (Germany); Bachmair, Johanna [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten, Propst Fuehrer Strasse 4, A-3100 St. Poelten (Austria); Eberhardt, Knut [Krankenhaus Schloss Werneck, MRT-Kompetenzzentrum, Balthasar-Neumann-Platz 1, D-97440 Werneck (Germany)
2012-12-15
Objectives: To introduce fiber density mapping (FDM) for investigation of age-related white matter (WM) changes and to compare its capabilities with conventional diffusion tensor imaging (DTI) post-processing. Methods: DTI data with 1.9 mm{sup 3} isotropic voxels were acquired from 44 healthy volunteers (18–88 years) at 3 T. FDM is a 3-step approach which includes diagonalization of the diffusion tensor, fiber reconstruction for the whole brain, and calculation of fiber density (FD) values. Maps of fractional anisotropy (FA) and mean diffusivity (MD) were additionally calculated. Voxel-based analyses were performed to determine volume clusters of significant correlation with age. Bivariate linear regression models and Hotelling–Williams tests were used to detect significant differences between correlations. Results: FDM detected a larger WM volume affected by age-related changes concomitant with fewer significant clusters compared to FA and MD. This indicates that WM alterations due to normal aging occur rather globally than locally. FD values showed a significant stronger correlation with age in frontal lobes (prefrontal and precentral gyrus), limbic lobes (cingulate and parahippocampal gyrus), the corpus callosum (genu) and temporal lobes. Conclusions: FDM shows higher sensitivity for detection of age-related WM changes because it includes all surrounding fiber structures into the evaluation of each DTI data voxel.
Radiative Neutrino Mass with $Z_3$ Dark matter: From Relic Density to LHC Signatures
Ding, Ran; Liao, Yi; Xie, Wan-Peng
2016-01-01
In this work we give a comprehensive analysis on the phenomenology of a specific $\\mathbb{Z}_3$ dark matter (DM) model in which neutrino mass is induced at two loops by interactions with a DM particle that can be a complex scalar or a Dirac fermion. Both the DM properties in relic density and direct detection and the LHC signatures are examined in great detail, and indirect detection for gamma-ray excess from the Galactic Center is also discussed briefly. On the DM side, both semi-annihilation and co-annihilation processes play a crucial role in alleviating the tension of parameter space between relic density and direct detection. On the collider side, new decay channels resulting from $\\mathbb{Z}_3$ particles lead to distinct signals at LHC. Currently the trilepton signal is expected to give the most stringent bound for both scalar and fermion DM candidates, and the signatures of fermion DM are very similar to those of electroweakinos in simplified supersymmetric models.
Pairing in high-density neutron matter including short- and long-range correlations
Ding, D; Dickhoff, W H; Dussan, H; Polls, A; Witte, S J
2015-01-01
The influence of short-range correlations (SRC) on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the ${}^3P_2-{}^3F_2$ coupled channel in pure neutron matter at high density. This effect is studied for three different realistic interactions. The gap in this channel is strongly suppressed by these correlations but does not vanish. For a consistent treatment we also include for the first time the effect of long-range correlations (LRC) by incorporating polarization terms in addition to the bare interaction. This allows the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters with values that are consistent with the available literature. While these LRC have an antiscreening tendency, they only slightly increase the gap in the ${}^3P_2-{}^3F_2$ coupled channel for all three realistic interactions as long as SRC are included. All three interactions generate maximum gaps around 0.1 to 0.2 MeV at most with a small dependence...
Relic density of wino-like dark matter in the MSSM
Beneke, M; Dighera, F; Hellmann, C; Hryczuk, A; Recksiegel, S; Ruiz-Femenia, P
2016-01-01
The relic density of TeV-scale wino-like neutralino dark matter in the MSSM is subject to potentially large corrections as a result of the Sommerfeld effect. A recently developed framework enables us to calculate the Sommerfeld-enhanced relic density in general MSSM scenarios, properly treating mixed states and multiple co-annihilating channels as well as including off-diagonal contributions. Using this framework, including on-shell one-loop mass splittings and running couplings and taking into account the latest experimental constraints, we perform a thorough study of the regions of parameter space surrounding the well known pure-wino scenario: namely the effect of sfermion masses being non-decoupled and of allowing non-negligible Higgsino or bino components in the lightest neutralino. We further perform an investigation into the effect of thermal corrections and show that these can safely be neglected. The results reveal a number of phenomenologically interesting but so far unexplored regions where the Somm...
SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density
Weise Wolfram
2012-02-01
Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.
Evaluation of Measurement Uncertainty for Density of Polypropylene Bottles%药用聚丙烯密度测量的不确定度评定
李宝林
2012-01-01
目的：评估药用聚丙烯瓶密度测定的不确定度，以控制药品包装材料的质量。方法：通过建立数学模型，分析称量、温度、容积密度等因素对密度测量不确定度的贡献，计算各不确定度分量，对药用聚丙烯瓶密度的不确定度进行评估。结果：给出合成不确定度和扩展不确定度，不确定度主要来源于样品质量的称量。结论：建立的方法可用于药用聚丙烯瓶密度测定的不确定度评价。%To estimate the inevitable uncertainty of polypropylene bottle to make phar- maceutical packaging material under controlled. Methods： It was established the model of mathematics based on the determination of density, and calculated various components of standard uncertainty by analyzing uncertainty sources such as mass, temperature. Results： A combined standard uncertainty and expanded standard un- certainty was obtained by combining all standard uncertainty, weighting was major sources of the density of pharmaceutical packaging material, it was been controlled for measurement temperature. Conclusion： It was established to evaluate primary source of measurement uncertainty for density of polypropylene bottles.
Bonnivard, V.; Maurin, D.; Walker, M. G.
2016-10-01
The expected gamma-ray flux coming from dark matter annihilation in dwarf spheroidal (dSph) galaxies depends on the so-called J-factor, the integral of the squared dark matter density along the line of sight. We examine the degree to which estimates of J are sensitive to contamination (by foreground Milky Way stars and stellar streams) of the stellar-kinematic samples that are used to infer dark matter densities in `ultrafaint' dSphs. Applying standard kinematic analyses to hundreds of mock data sets that include varying levels of contamination, we find that misclassified contaminants can cause J-factors to be overestimated by orders of magnitude. Stellar-kinematic data sets for which we obtain such biased estimates tend (1) to include relatively large fractions of stars with ambiguous membership status, and (2) to give estimates for J that are sensitive to specific choices about how to weight and/or to exclude stars with ambiguous status. Comparing publicly available stellar-kinematic samples for the nearby dSphs Reticulum II and Segue I, we find that only the latter displays both of these characteristics. Estimates of Segue I's J-factor should therefore be regarded with a larger degree of caution when planning and interpreting gamma-ray observations. Moreover, robust interpretations regarding dark matter annihilation in dSph galaxies in general will require explicit examination of how interlopers might affect the inferred dark matter density profiles.
Exploring properties of high-density matter through remnants of neutron-star mergers
Bauswein, Andreas [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Heidelberger Institut fuer Theoretische Studien, Heidelberg (Germany); Stergioulas, Nikolaos [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Janka, Hans-Thomas [Max-Planck-Institut fuer Astrophysik, Garching (Germany)
2016-03-15
Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational
Brooks, John O; Foland-Ross, Lara C; Thompson, Paul M; Altshuler, Lori L
2011-07-30
A preliminary within-subjects MRI study of seven patients with a diagnosis of bipolar I disorder revealed that, compared to remission, depression was associated with gray matter density increases in subgenual prefrontal cortex, parahippocampal gyrus, and inferior temporal gyri. Decreases were observed in superior and inferior frontal gyri and anterior cingulate.
Peng, Bin; Lai, Shang-kun; Li, Pan-lin; Wang, Yun-xia; Zhu, Jian-guo; Yang, Lian-xin; Wang, Yu-long
2015-01-01
In order to investigate the effects of ozone stress on photosynthesis, dry matter production, non-structural carbohydrate and yield formation of rice, a free air ozone concentration enrichment (FACE) experiment was conducted. A super hybrid rice cultivar II-you 084 with 3 spacing levels, low plant density (LD, 16 hills per m2), medium (MD, 24 hills per m2) and high plant density (HD, 32 hills per m2), was grown in the field at current and elevated ozone concentrations (current × 1.5). The results were as follows: Elevated ozone significantly reduced leaf SPAD value of UI-you 084 by 6%, 11% and 13%, at 63, 77, and 86 days after transplanting, respectively. The declines in leaf net photosynthetic rate, stomatal conductance and transpiration rate at filling stage increased significantly on ozone stress over time. Ozone stress decreased dry matter production of rice by 46% from heading stage to plant maturity, thus reduced biomass yield by 25%. Elevated ozone decreased the concentration and accumulation of soluble carbohydrate and starch in stem of II-you 084 at jointing, heading and plant maturity, but significantly increased the dry matter transportation rate. No significant interaction was observed between ozone and planting density for photosynthesis, dry matter production and non-structural carbohydrate of rice. The above results indicated that elevated ozone reduced photosynthesis and growth of rice II-you 084 at late growth stage, which had no relationship with planting density.
Yuan, Yi; Zhu, Zude; Shi, Jinfu; Zou, Zhiling; Yuan, Fei; Liu, Yijun; Lee, Tatia M. C.; Weng, Xuchu
2009-01-01
Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based…
da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik
2013-01-01
Superconductivity is described by the well-known Bardeen-Cooper-Schrieffer (BCS) theory, which is a symmetry breaking approximation. Color superconductivity shows up in extremely high density matter and temperature, which is here investigated and compared to the other end of the scale of low ener...
The CERN Large Hadron Collider as a tool to study high-energy density matter
Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M
2005-01-01
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
The CERN Large Hadron Collider as a tool to study high-energy density matter.
Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E
2005-04-08
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases
Arellano, Hugo F. [University of Chile, Department of Physics, Santiago (Chile); DAM, CEA, Arpajon (France); Delaroche, Jean-Paul [DAM, CEA, Arpajon (France)
2015-01-01
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels are explicitly accounted for -within the continuous choice for the auxiliary fields- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range 0 < k{sub F} ≤ 1.75 fm{sup -1}, using the Argonne v{sub 18} bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm{sup -1} ≤ k{sub F} ≤ 0.285 fm{sup -1}, corresponding to mass densities between 10{sup 11.4} and 10{sup 12.4} g cm{sup -3}. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed. (orig.)
Kamikura, Isao; Mizutani, Tomohiko; Sakamaki, Shuji; Takasu, Toshiaki; Kawamura, Toshiaki
1988-01-01
A 34-year-old woman presented with urination difficulty and consciousness disturbance, followed by persistent neurologic findings, such as semicomatose mental status and bilateral optic neuritis, and monophasic clinical course. Cranial CT showed multifocal low density areas in cerebral white matter. The patient was clinically diagnosed as having acute disseminated encephalomyelitis. She died of sepsis four months later. Autopsy revealed multifocal large demyelinating lesions confined to the cerebral white matter, shown as low density areas on CT scans, and demyelinating plaques scattered in the optic nerves and chiasm, and cerebral peduncle. The final diagnosis was acute multiple sclerosis. The CT appearance of multifocal low density areas was most likely due to demyelinating lesions causing edema and tissue necrosis. (Namekawa, K.).
Peng Y
2016-05-01
Full Text Available Yan Peng,1,* Shenhong Li,2,* Ying Zhuang,3,* Xiaojia Liu,4 Lin Wu,2 Honghan Gong,2 Dewu Liu,1 Fuqing Zhou2 1Burn Center, 2Department of Radiology, The First Affiliated Hospital, Nanchang University, 3Department of Oncology, The Second Hospital of Nanchang, Nanchang, Jiangxi Province, 4Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China *These authors contributed equally to this work Background and purpose: Little is known about the structural alterations within gray matter (GM in middle-aged subjects with white matter hyperintense (WMH lesions. Here, we aimed to examine the anatomical changes within the GM and their relationship to WMH lesion loads in middle-aged subjects. Participants and methods: Twenty-three middle-aged subjects with WMH lesions (WMH group and 23 demographically matched healthy control subjects participated in the study. A Diffeomorphic Anatomical Registration Through Exponentiated Liealgebra-enhanced voxel-based morphometry was used to measure the GM density, and the correlations between WMH lesion volume and extracted GM values in abnormal regions were identified by voxel-based morphometry analysis. Results: Compared with the healthy control subjects, the WMH group had a significantly decreased GM density in the left middle frontal gyrus, bilateral anterior cingulate cortex, left and right premotor cortex, and left and right middle cingulate cortex and an increased GM density in the bilateral cerebellum anterior lobe, left middle temporal gyrus, right temporoparietal junction, left and right prefrontal cortex (PFC, and left inferior parietal lobule. A relationship was observed between the normalized WMH lesion volume and the decreased GM density, including the left middle frontal gyrus (ρ=-0.629, P=0.002, bilateral anterior cingulate cortex (ρ=-0.507, P=0.019, right middle cingulate cortex (ρ=-0.484, P=0.026, and
廖惠媚; 黄亮
2014-01-01
目的：对使用DMA4500数字式密度仪测定精油密度的不确定度进行评定，确定影响不确定度的关键因素，判定该仪器是否满足标准要求。方法依据JJF 1059-2012对使用DMA4500数字式密度仪测定精油密度结果的不确定度进行评定，分析影响测量不确定度的各个因素，对各个分量进行计算和合成。结果该实验的不确定度主要来自重复性测量和仪器本身的准确性；其扩展不确定度U＝6×10-5 g/cm3，置信概率95％。结论用DMA4500数字式密度仪测定精油密度能较好地满足标准要求。%Objective Evaluation of the uncertainty of density measurement of essential oil by DMA 4500 digital density meter .The factors affecting the results were analyzed .Determine if the DMA4500 digital density meter meets the standard requirements .Method The uncertainty of the results were evaluated and analyzed according to the JJF 1059 -2012.The factors affecting the results were analyzed . The components are counted and combined . Result The experiment of uncertainty mainly from the repeatability and the accuracy of the meter .The expanded uncertainty is U =6 ×10 -5 g/cm3 , the confidence probability is 95%.Conclusion The method of measuring the density of essential oil by DMA4500 digital density meter meets the standard requirements .
48Ca Production in Matter Expanding from High Temperature and Density
Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.
1996-05-01
We calculate with a large nuclear reaction network the nuclear dynamics associated with the expansions and cooling of initially hot and dense matter. We study matter with neutron excess near that of 48Ca, because one objective is to clarify the nucleosynthesis of that abundant neutron-rich nucleus, whose origin has been enigmatic. Expecting that supernovae provide the site of its origin, we take initial temperatures near T9 = 10 but survey a wide range of initial densities, corresponding to a wide range in initial entropies. The highest entropies are probably associated with winds from newborn neutron stars in Type II collapse events, whereas the smallest entropies are probably associated with very high density Type Ia cores. Our survey objective is the analysis of the dynamics of the nuclear assembly as it cools, and how the correct description of it depends on the specific entropy. We show that resultant abundances of neutron-rich nuclei are very poorly represented by nuclear statistical equilibrium (NSE). The deviations from NSE are governed by the number of heavy nuclei assembled during the expansion, which differs significantly from the number demanded by NSE at both high and low entropy. High-entropy expansions are shown to contain too few nuclei, with the result that 48Ca cannot survive the expansion even though it would be expected to be abundant using NSE guidelines. Low-entropy expansions contain too many nuclei with respect to that guideline, with the result that 48Ca is more abundant than expected. In this case it is especially significant that the ratio of 48Ca to other major neutron-rich nuclei (e.g., 66Zn, 82Se) is substantially greater than NSE guidelines, which ameliorates overproduction limits from the latter. We show, furthermore, that the 48Ca nucleus itself plays a key role in the nuclear dynamics. In the low-entropy expansion, which is the one to which we must look for 48Ca origin, abundant 48Ca is a refractory post, a local abundance maximum
Timmers, Inge; van der Korput, Lisanne D; Jansma, Bernadette M; Rubio-Gozalbo, M Estela
2016-10-01
Brain impairments have been observed in patients with classic galactosemia, an inherited metabolic disorder resulting in a particular neuro-cognitive profile. Neuroimaging studies showed abnormalities such as diffuse white mater (WM) abnormalities and grey matter (GM) atrophy. Our current study analysed grey matter density using voxel-based morphometry (VBM) and compared the brains of eight adolescent patients with classic galactosemia with eight healthy gender- and aged-matched controls. GM density differences were found in several regions. Decreased GM density was found in the patients in the bilateral putamen and bilateral occipital cortex. Increased GM density in the patients, on the other hand, was found in the bilateral inferior frontal and medial prefrontal cortex. The anatomical profile of the abnormalities is in line with the neuro-cognitive profile of patients with classic galactosemia, including motor dysfunction, speech and language difficulties and higher order cognitive problems. Less favourable GM densities in patients (either increased or decreased compared to controls) correlated with younger age, a worse visual working memory performance, and an older age at initiation of the galactose-restricted diet. To conclude, this explorative study is the first to analyse the GM using VBM in this population, and demonstrates a mixed profile of both increased and decreased GM density in these patients.
Nuclear forces and the properties of matter at high temperature and density
Rayet, M.; Arnould, M.; Paulus, G.; Tondeur, F.
1982-12-01
We present two Skyrme-type forces which are particularly well suited for the description of presupernova core or matter in nascent neutron star. They are compared to other forces currently used in this field, with regard to finite nuclei and infinite matter properties, and to the coexistence of nuclei in a hot and dense nucleon gas.
Parton Distribution Function Uncertainties
Giele, Walter T.; Kosower, David A.; Giele, Walter T.; Keller, Stephane A.; Kosower, David A.
2001-01-01
We present parton distribution functions which include a quantitative estimate of its uncertainties. The parton distribution functions are optimized with respect to deep inelastic proton data, expressing the uncertainties as a density measure over the functional space of parton distribution functions. This leads to a convenient method of propagating the parton distribution function uncertainties to new observables, now expressing the uncertainty as a density in the prediction of the observable. New measurements can easily be included in the optimized sets as added weight functions to the density measure. Using the optimized method nowhere in the analysis compromises have to be made with regard to the treatment of the uncertainties.
Brook, Chris B.
2015-12-01
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
Furumoto, T; Yamamoto, Y
2016-01-01
We investigate the property of the high-density nuclear matter probed by the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body-force (TBF) effect is investigated with present two methods based on the frozen density approximation. With the both methods, the medium effect in the high density region is clearly seen on the potential and the elastic cross section of the $^{16}$O + $^{16}$O system at $E/A =$ 70 MeV. The crucial role of the medium effect for the high-density nuclear matter is also confirmed with other effective nucleon-nucleon ($NN$) interactions. In addition, present methods are applied to other heavy-ion elastic scattering systems. Again, the medium effect in the high-density region is clearly seen in the heavy-ion elastic cross section. The effect on the elastic cross section becomes invisible with the increase of the target mass and the incident energy within existing the experiment...
Li, Xiao-ya; Wang, Bin; Sun, Win-min; Zong, Hong-shi
2008-01-01
The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond $1150 \\mathrm{MeV}$, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.
Coherent {lambda}-{sigma}{sup 0} mixing in high-density neutron matter
Shinmura, S. [Department of Information Science, Gifu University, Gifu (Japan); Khin Swe Myint [Department of Physics, Mandalay University, Mandalay (Myanmar); Harada, T. [Osaka Electro-Communication University, Neyagawa, Osaka (Japan); Akaishi, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba (Japan)
2002-02-01
The Brueckner theory is applied to hyperon properties in dense neutron matter. The coupled-channel Bethe-Goldstone equations are solved for the Nijmegen hyperon-nucleon potentials, NSC97 and NSC89. The coherent {lambda}-{sigma} coupling is strongly enhanced in neutron matter and causes large {sigma}{sup 0} mixing of 5 {approx} 25% at {rho}={rho}{sub 0}{approx}3{rho}{sub 0}. The coherent mixing drastically affects the hyperon composition of neutron-star matter. (author)
Lee, Ji E; Park, Bosuk; Song, Sook K; Sohn, Young H; Park, Hae-Jeong; Lee, Phil Hyu
2010-01-15
Despite clinical and neuropsychological similarities between Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), recent studies have demonstrated that structural and pathological changes are more severe in DLB than in PDD. We used voxel-based morphometry using a 3-T MRI scanner to compare gray and white matter densities in 20 patients with probable PDD and 18 patients with probable DLB, who had similar overall severity of dementia and similar demographic characteristics. The gray matter density was significantly decreased in the left occipital, parietal, and striatal areas in patients with DLB compared with patients with PDD. The white matter density was significantly decreased in bilateral occipital and left occipito-parietal areas in patients with DLB compared with those with PDD. The degree of white and gray matter atrophy was similar in patients with DLB; in contrast, there was markedly less atrophy in the white matter than in the gray matter in patients with PDD. On analyzing the change of WM density relative to that of GM density in patients with DLB compared to those with PDD, the area of WM atrophy in the occipital areas was more extensive than that of GM atrophy. Our data demonstrate that atrophy of both gray and white matter was more severe in patients with DLB and that white matter atrophy relative to gray matter atrophy was less severe in patients with PDD. These data may reflect a difference in the underlying nature of PDD and DLB.
Duffy, P.; Keller, M. M.; Morton, D. C.
2016-12-01
Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.
Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime [Shimane University Faculty of Medicine, Department of Radiology, Izumo-shi, Shimane (Japan); Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi [Shimane University Hospital, Department of Radiology, Izumo-shi, Shimane (Japan); Takeshita, Haruo [Shimane University Faculty of Medicine, Department of Legal Medicine, Izumo-shi, Shimane (Japan); Kawakami, Kazunori [Fujifilm RI Pharma, Co., Ltd., Tokyo (Japan)
2017-06-15
This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)
Peirani, S; Volonteri, M; Devriendt, J; Bundy, K; Silk, J; Pichon, C; Kaviraj, S; Gavazzi, R; Habouzit, M
2016-01-01
Using a suite of three large cosmological hydrodynamical simulations, Horizon-AGN, Horizon-noAGN (no AGN feedback) and Horizon-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, H_AGN, H_noAGN and H_DM) significantly evolve with time. More specifically, at high redshift (z~5), the mean central density profiles of H_AGN and H_noAGN dark matter haloes tend to be much steeper than their H_DM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z~1.5, these mean halo density profiles in H_AGN have flattened, pummelled by powerful AGN activity ("quasar mode"): the integrated inner mass difference gaps with H_noAGN haloes have widened, and those with H_DM haloes have narrowed...
Hiroaki Kawamichi
2016-11-01
Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.
Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro
2016-01-01
Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68). Furthermore, we also conducted a voxel-based morphometry study of the effects of being in a romantic relationship (N = 113). Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.
Rakotozafindrabe, A; Fleuret, F; Lansberg, J P
2010-01-01
We investigate the cold nuclear matter effects on $J/\\psi$ production, whose understanding is fundamental to study the quark-gluon plasma. Two of these effects are of particular relevance: the shadowing of the parton distributions and the nuclear absorption of the $c\\bar{c}$ pair. If $J/\\psi$'s are not produced {\\it via} a $2 \\to 1$ process as suggested by recent theoretical works, one has to modify accordingly the way to compute the nuclear shadowing. This naturally induces differences in the absorption cross-section fit to the data. A careful analysis of these differences however requires taking into account the experimental uncertainties and their correlations, as done in this work for $d$Au collisions at $\\sqrtsNN=200\\mathrm{GeV}$, using several shadowing parametrisations.
Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard
2016-09-01
Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.
Butsky, Iryna; Dutton, Aaron A; Wang, Liang; Stinson, Greg S; Penzo, Camilla; Kang, Xi; Keller, Ben W; Wadsley, James
2015-01-01
We show the effect of galaxy formation on the dark matter (DM) distribution across a wide range of halo masses. We focus on how baryon physics changes the dark matter halo shape, the so called "pseudo phase-space density distribution" and the velocity distribution within the virial radius, Rvir and in the solar neighborhood. This study is based on the NIHAO galaxy formation simulations, a large suite of cosmological zoom-in simulations. The galaxies reproduce key properties of observed galaxies, and hence offer unique insight into how baryons change the dark matter morphology and kinematics. When compared to dark matter only simulations, the NIHAO haloes have similar shapes at Rvir, but are substantially rounder inside ~0.1 Rvir. In DM-only simulations the inner halo has a minor-to-major axis ratio of c/a~0.5. In hydro simulations c/a increases with halo mass and integrated star formation efficiency, reaching ~0.8 at the Milky Way mass, reconciling a long-standing conflict between observations and DM only sim...
Mindfulness practice leads to increases in regional brain gray matter density.
Hölzel, Britta K; Carmody, James; Vangel, Mark; Congleton, Christina; Yerramsetti, Sita M; Gard, Tim; Lazar, Sara W
2011-01-30
Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular, but to date little is known about neural mechanisms associated with these interventions. Mindfulness-Based Stress Reduction (MBSR), one of the most widely used mindfulness training programs, has been reported to produce positive effects on psychological well-being and to ameliorate symptoms of a number of disorders. Here, we report a controlled longitudinal study to investigate pre-post changes in brain gray matter concentration attributable to participation in an MBSR program. Anatomical magnetic resonance (MR) images from 16 healthy, meditation-naïve participants were obtained before and after they underwent the 8-week program. Changes in gray matter concentration were investigated using voxel-based morphometry, and compared with a waiting list control group of 17 individuals. Analyses in a priori regions of interest confirmed increases in gray matter concentration within the left hippocampus. Whole brain analyses identified increases in the posterior cingulate cortex, the temporo-parietal junction, and the cerebellum in the MBSR group compared with the controls. The results suggest that participation in MBSR is associated with changes in gray matter concentration in brain regions involved in learning and memory processes, emotion regulation, self-referential processing, and perspective taking.
Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol
Roscoe, R.; Buurman, P.
2003-01-01
Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C seque
Sinninghe Damsté, J.S.; Hartgers, W.A.; Leeuw, J.W. de; Ling, Y.; Crelling, J.C.
1995-01-01
Three relatively immature amorphous marine kerogens were subjected to density gradient centrifugation (DGC). The density fractions obtained were analyzed by Curie-point pyrolysis in combination with gas chromatography (Py-GC) and with gas chromatography-mass spectrometry (Py-GC-MS). Despite the
Remus, Rhea-Silvia; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L; Johansson, Peter H
2016-01-01
We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profiles, gamma_tot, and the dark matter fractions within the half-mass radius, f_DM, in early-type galaxies. The relation can be described as gamma_tot = A f_DM + B and holds for all systems at all redshifts. We test different feedback models and find that the general trend is independent of the assumed feedback processes and is set by the decreasing importance of dissipative processes towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower dark matter fractions and steeper total density slopes at high redshifts and at lower masses for a given redshift. The values for A and B change distinctively with the assumed feedback model, and thus this relation can be used as a test for feedback models. A similar correlation exists between gamma_tot and the stellar mass surface density Sigma_*. The model with weak stel...
Izmailov, Ramil; Filippov, Alexander I; Ghosh, Mithun; Nandi, Kamal K
2015-01-01
We investigate the stability of circular material orbits in the analytic galactic metric recently derived by Harko \\textit{et al.} (2014). It turnsout that stability depends more strongly on the dark matter central density $%\\rho_{0}$ than on other parameters of the solution. This property then yields an upper limit on $\\rho _{0}$ for each individual galaxy, which we call here $\\rho _{0}^{\\text{upper}}$, such that stable circular orbits are possible \\textit{only} when the constraint $\\rho _{0}\\leq \\rho _{0}^{\\text{upper}}$ is satisfied. This is our new result. To approximately quantify the upper limit, we consider as a familiar example our Milky Way galaxy that has a projected dark matter radius $R_{\\text{DM}}\\sim 180$ kpc and find that $\\rho _{0}^{\\text{upper}}\\sim 2.37\\times 10^{11}$ $M_{\\odot }$kpc$^{-3}$. This limit turns out to be about four orders of magnitude larger than the latest data on central density $\\rho _{0}$ arising from the fit to the Navarro-Frenk-White (NFW) and Burkert density profiles. Su...
Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang
2016-12-01
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ(13)C, Δ(14)C, δ(15)N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ(13)C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications
Ahn, Kyungjin
2016-01-01
We study the dynamical effect of relative velocities between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata (2010), in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be those of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakho...
Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy
2016-10-18
The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.
Large mixing angle solution to the solar neutrino problem and random matter density perturbations
Guzzo, M M; Reggiani, N
2003-01-01
There are reasons to believe that mechanisms exist in the solar interior which lead to random density perturbations in the resonant region of the Large Mixing Angle solution to the solar neutrino problem. We find that, in the presence of these density perturbations, the best fit point in the (sin^2(2\\theta), Delta_m^2) parameter space moves to smaller values, compared with the values obtained for the standard LMA solution. Combining solar data with KamLAND results, we find a new compatibility region, which we call VERY-LOW LMA, where sin^2(2\\theta) ~ 0.6 and Delta_m^2~2e-5 eV^2, for random density fluctuations of order 5% < \\xi< 8%. We argue that such values of density fluctuations are still allowed by helioseismological observations at small scales of order 10 - 1000 km deep inside the solar core.
Developments in lattice quantum chromodynamics for matter at high temperature and density
Gert Aarts
2015-05-01
A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. A selection of recent lattice approaches that attempt to evade the sign problem are then discussed and classified according to the underlying principle: constrained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong coupling, dual formulations).
Pande, Vikram
2016-01-01
Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. Lithium intercalation into graphite has been extensively studied theoretically using density functional theory (DFT) calculations, complemented by experimental studies through X-ray diffraction, spectroscopy, optical imaging and other techniques. However, previous theoretical studies have not directly included van der Waals (vdW) interactions in their density functional theory calculations and vdW interactions play a crucial role in determining the stable phases. In this work, we present a first principles based model using DFT calculations, employing Bayesian Error Estimation Functional with van der Waals (BEEF-vdW) as the exchange correlation functional, and statistical thermodynamics to determine the phase transformations and subsequently, the thermodynamic intercalation potential diagram. We explore the entire configurational phase space by determining the important interactions and applying clust...
mohamad reza asghari poor
2009-06-01
Full Text Available The effect of plant density and nitrogen fertilizer on canopy light interception and on flowering was investigated in hemp (Cannabis sativa L. cv. ‘Kompolti’ Crop grown at initial densities of 50, 150 and 250 plants/m2 at the Mashhad and 30, 90 and 150 plants/m2 at the Shirvan. Nitrogen fertilizer was applied before and 45 days after sowing at a rates of 50 and 200 kg/ha at the Mashhad, and 50, 150 and 250 kg/ha at the Shirvan. Rate of canopy development increased with increasing plant density and nitrogen fertilizer in both sites. At the Mashhad, interception of 90% of light was attained at 380 to 665 degree days (base 2°C from emergence for the crop grown at different densities. At Shirvan, rate of canopy development was slower. Interception of 90% of light was attained at 586 degree days from emergence for the crop grown at 30 plants/m2 and at 712 degree days for the crop grown at 150 plants/m2, probably as a result of cold weather. Nitrogen fertilizer in a similar way as plant density increased light interception. Maximum light interception did not depend on plant density and nitrogen fertilizer and was about 95%. In both sites, the flowering date was later with increasing plant density. Dates of 75% flowering for the initial densities of 50, 150 and 250 plants/m2 in Mashhad and 30, 90 and 150 plants/m2 in Shirvan were, respectively 26 August, 1, 6, 6, 11 and 12 September. Independent of plant density, canopy light interception started to decline at about 150 degree days after flowering, reaching 58 to 75% at about 700 degree days post-flowering. Morphological characteristics at both sites were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained in Mashhad at 250 plant/m-2 and in Shirvan at 150 plant m-2 when 200 kg N ha-1 in Mashhad and 250 kg N/ha in Shirvan was used. Above ground dry matter increased at both sites with increasing plant density and
Romano, Andrea; Fasoli, Fabrizio; Ferrante, Michele; Ferrante, Luigi; Fantozzi, Luigi Maria; Bozzao, Alessandro
2008-02-01
Whether fractional anisotropy (FA), apparent diffusion coefficient (ADC), and fiber density index (FDi) values differ in the white matter close to glioblastomas of both symptomatic and asymptomatic patients was investigated. Twenty patients with glioblastomas underwent magnetic resonance imaging study. The FDi, FA and ADC values were calculated in areas of white matter in close proximity to the tumor (perWM) and encompassing fibers of cortico-spinal tract and in the contralateral normal-appearing white matter (nWM). The clinical compromise of the cortico-spinal tract was graded using Brunnstrom's criteria. FA and FDi were significantly decreased and ADC increased in perWM compared with the contralateral. Mean FDi, FA, and ADC values comparing perWM and nWM in symptomatic patients showed similar differences. Comparing the perWM of symptomatic and asymptomatic patients, mean FDi and ADC values were lower in symptomatic patients than in asymptomatic ones. A positive correlation was found between the clinical score (CS) and, separately, FDi, FA and ADC per WM values. In a multiple stepwise regression among the same factors, only the ADC of perWM values showed a positive correlation with the CS. An increased ADC plays a major role in reducing the number of fibers (reduced FDi) in symptomatic patients.
Tainio, M.; Tuomisto, J. T.; Pekkanen, J.; Karvosenoja, N.; Kupiainen, K.; Porvari, P.; Sofiev, M.; Karppinen, A.; Kangas, L.; Kukkonen, J.
2010-06-01
The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM 2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM 2.5 emissions from the whole of Europe. The primary PM 2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM 2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM 2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM 2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6-739) and 357 (mean, 95% CI 8-1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM 2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature
Uncertainty and Cognitive Control
Faisal eMushtaq
2011-10-01
Full Text Available A growing trend of neuroimaging, behavioural and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1 There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2 There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3 The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the need for control; (4 Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders.
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.
Tao, Jianmin; Mo, Yuxiang
2016-08-12
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry
Tao, Jianmin; Mo, Yuxiang
2016-08-01
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
On the density profile of dark matter substructure in gravitational lens galaxies
Vegetti, Simona
2014-01-01
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. In particular, we find that the gravitational imaging technique can be used to exclude specific regions of the considered parameter space, and therefore, models that predict a large number of satellites in those regions. By comparing the lensing degeneracy with the intrinsic density profile degeneracies, we show that theoretical predictions based on fits that are dominated by the density profile at larger radii may significantly over- or underestimate the number of satellites that are detectable with gravitational lensing. Finally, using the previously reported detection of a satellite in the gravitational lens system JVAS B1938+666 as an example, we derive for this detected satellite values of r_max and v_max that are, for each considered profile, consistent withi...
Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Wouchuk, G; Deutsch, C; Fortov, V E; Hoffmann, D H H; Schmidt, R
2007-01-01
This paper presents an overview of the theoretical work that has been carried out during the past few years to assess the capabilities of intense heavy ion beams to induce states of High-Energy Density (HED) in matter. This work has shown that two different experimental schemes can be used to study HED physics employing intense ion beams. These schemes have been named HIHEX [Heavy Ion Heating and EXpansion] and LAPLAS [LAboratory PLAnetary Sciences], respectively. The first scheme involves isochoric and uniform heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB [High Energy Density Matter Generated by Heavy Ion Beams] collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future accelerator facility, FAIR [Facility for Antipr...
Tahir, N.A. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany)]. E-mail: n.tahir@gsi.de; Spiller, P. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Udrea, S. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Cortazar, O.D. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Deutsch, C. [LPGP, Universite Paris-Sud, 91405 Orsay (France); Fortov, V.E. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Gryaznov, V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Hoffmann, D.H.H. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Lomonosov, I.V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Ni, P. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Piriz, A.R. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Temporal, M. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Varentsov, D. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany)
2006-04-15
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Tahir, N. A.; Spiller, P.; Udrea, S.; Cortazar, O. D.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Lomonosov, I. V.; Ni, P.; Piriz, A. R.; Shutov, A.; Temporal, M.; Varentsov, D.
2006-04-01
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Abdullah, Malik Muhammad; Anurag, Jurek, Zoltan; Son, Sang-Kil; Santra, Robin
2017-08-01
When matter is exposed to a high-intensity x-ray free-electron-laser pulse, the x rays excite inner-shell electrons leading to the ionization of the electrons through various atomic processes and creating high-energy-density plasma, i.e., warm or hot dense matter. The resulting system consists of atoms in various electronic configurations, thermalizing on subpicosecond to picosecond timescales after photoexcitation. We present a simulation study of x-ray-heated solid-density matter. For this we use XMDYN, a Monte Carlo molecular-dynamics-based code with periodic boundary conditions, which allows one to investigate nonequilibrium dynamics. XMDYN is capable of treating systems containing light and heavy atomic species with full electronic configuration space and three-dimensional spatial inhomogeneity. For the validation of our approach we compare for a model system the electron temperatures and the ion charge-state distribution from XMDYN to results for the thermalized system based on the average-atom model implemented in XATOM, an ab initio x-ray atomic physics toolkit extended to include a plasma environment. Further, we also compare the average charge evolution of diamond with the predictions of a Boltzmann continuum approach. We demonstrate that XMDYN results are in good quantitative agreement with the above-mentioned approaches, suggesting that the current implementation of XMDYN is a viable approach to simulate the dynamics of x-ray-driven nonequilibrium dynamics in solids. To illustrate the potential of XMDYN for treating complex systems, we present calculations on the triiodo benzene derivative 5-amino-2,4,6-triiodoisophthalic acid (I3C), a compound of relevance of biomolecular imaging, consisting of heavy and light atomic species.
New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state
Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.
2013-06-01
A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...
Density profiles of dark matter halos in an improved Secondary Infall model
Del Popolo, A; Recami, E; Spedicato, E
2000-01-01
In this paper we calculate the density profiles of virialized halos both in the case of structure evolving hierarchically from a scale-free Gaussian delta-field having a power spectrum P(k)=A k^n in a Omega=1 Universe and in the case of the CDM model, by using a modified version of Hoffman & Shaham's (1985) (hereafter HS) and Hoffman's (1988) model. We suppose that the initial density contrast profile around local maxima is given by the mean peak profile introduced by Bardeen et al. (1986) (hereafter BBKS), and is not just proportional to the two-point correlation function, as assumed by HS. We show that the density profiles, both for scale-free Universes and the CDM model, are not power-laws but have a logarithmic slope that increases from the inner halo to its outer parts. Both scale-free, for n >=-1, and CDM density profiles are well approximated by Navarro et al. (1995, 1996, 1997) profile. The radius a, at which the slope alpha=-2, is a function of the mass of the halo and in the scale-free models al...
Nandi, Rana
2016-01-01
We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the crust studies we investigate the dependence of the particular pasta phases on the slope of the symmetry energy slope L. To isolate the effect of different values of L, we adopt an established QMD Hamiltonian and extend it to include non-linear terms in the isospin-dependent interaction. The strengths of the isospin-dependent forces are used to adjust the asymmetry energy and slope of the matter. Our results indicate that in contrast to earlier studies the phase diagram of the pasta phase is not very sensitive to the value of L.
Phase transitions and gluodynamics in 2-colour matter at high density
Boz, Tamer; Fister, Leonard; Mehta, Dhagash; Skullerud, Jon-Ivar
2013-01-01
We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu. From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We find indications of a region of superfluid but deconfined matter at high mu and intermediate T. The static quark potential determined from the Wilson loop is found to exhibit a 'string tension' that increases at large mu in the 'deconfined' region. The electric (longitudinal) gluon propagator in Landau gauge becomes strongly screened with increasing temperature and chemical potential. The magnetic (transverse) gluon shows little sensitivity to temperature, and exhibits a mild enhancement at intermediate mu before becoming suppressed at large mu.
Density functional theory approach for calculation of dielectric properties of warm dense matter
Saitov, Ilnur
2015-06-01
The reflectivity of shocked xenon was measured in the experiments of Mintsev and Zaporoghets for wavelength 1064 nm. But there is no adequate theoretical explanation of these reflectivity results in the framework of the standard methods of nonideal plasma theory. The assumption of significant width to the shock front gives a good agreement with the experimental data. However, there are no evidences of this effect in the experiment. Reflectivity of shocked compressed xenon plasma is calculated in the framework of the density functional theory approach as in. Dependencies on the frequency of incident radiation and on the plasma density are analyzed. The Fresnel formula for the reflectivity is used. The longitudinal expression in the long wavelength limit is applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function is calculated by means of the Kramers-Kronig transformation. The approach for the calculation of plasma frequency is developed.
Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S
2015-02-27
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24} cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.
Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks
Adhikari, Prabal; Jamgochian, Arec; Kumar, Nilay
2012-01-01
This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite...
Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta
2013-08-01
We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure.
Effect of small scale density perturbations on the formation of dark matter halo profiles
Pilipenko, S V; Lukash, V N; Mikheeva, E V
2012-01-01
With help of a set of toy N-body models of dark halo formation we study the impact of small scale initial perturbations on the inner density profiles of haloes. We find a significant flattening of the inner slope $\\alpha={d \\log \\rho \\over d \\log r}$ to $\\alpha=-0.5$ in some range of scales and amplitudes of the perturbations (while in the case of absence of these perturbations the NFW profile with $\\alpha=-1$ is reproduced). This effect may be responsible for the formation of cuspless galactic haloes.
Effect of small-scale density perturbations on the formation of dark matter halo profiles
Pilipenko, S. V.; Doroshkevich, A. G.; Lukash, V. N.; Mikheeva, E. V.
2012-11-01
With the help of a set of toy N-body models of dark halo formation, we study the impact of small-scale initial perturbations on the inner density profiles of haloes. We find a significant flattening of the inner slope ? to α=-0.5 in some range of scales and amplitudes of the perturbations (while in the case of absence of these perturbations, the Navarro-Frenk-White profile with α=-1 is reproduced). This effect may be responsible for the formation of cuspless galactic haloes.
Effect of small scale density perturbations on the formation of dark matter halo profiles
Pilipenko, S. V.; Doroshkevich, A. G.; Lukash, V. N.; Mikheeva, E. V.
2012-01-01
With help of a set of toy N-body models of dark halo formation we study the impact of small scale initial perturbations on the inner density profiles of haloes. We find a significant flattening of the inner slope $\\alpha={d \\log \\rho \\over d \\log r}$ to $\\alpha=-0.5$ in some range of scales and amplitudes of the perturbations (while in the case of absence of these perturbations the NFW profile with $\\alpha=-1$ is reproduced). This effect may be responsible for the formation of cuspless galact...
Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter
Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-01-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...
Dynamics of laser-driven proton beam focusing and transport into solid density matter
Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.
2016-10-01
Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.
Akaishi, Yoshinori
2016-01-01
We propose and examine a new high-density composite of Lambda* equiv K-p = (s ubar) times (uud), which may be called Kaonic Proton Matter (KPM), or simply, Lambda*-Matter (Lambda*-M}, where substantial shrinkage of baryonic bound systems originating from the strong attraction of the (KbarN) I=0 interaction takes place, providing a ground-state neutral baryonic system with a huge energy gap. The mass of an ensemble of (K-p) m, where m, the number of the K-p pair, is larger than m approx 10, is predicted to drop down below its corresponding neutron ensemble, (n) m, since the attractive interaction is further increased by the Heitler-London type molecular covalency, as well as by chiral symmetry restoration of the QCD vacuum. Since the seed clusters K-p, K-pp and K-K-pp) are short-lived, the formation of such a stabilized relic ensemble, (K-p) m, may only be conceived during the Big-Bang Quark Gluon Plasma (QGP) period in the early universe before the hadronization and quark-anti-quark annihilation proceed. At t...
Dark matter and LHC: Complementarities and limitations arXiv
Robbins, G.; Arbey, A.; Boudaud, M.
It is well known that dark matter density measurements, indirect and direct detection experiments, importantly complement the LHC in setting strong constraints on new physics scenarios. Yet, dark matter searches are subject to limitations which need to be considered for realistic analyses. For illustration, we explore the parameter space of the phenomenological MSSM and discuss the interplay of the constraints from dark matter searches and the LHC, and analyse the impact of the astrophysical uncertainties in some detail.
Bradley J MacIntosh
Full Text Available PURPOSE: Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD, a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation. METHODS: CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak was measured at baseline and after 6 months of training. T1-weighted structural images were used to perform grey matter (GM voxel-based morphometry (VBM. Pseudo-continuous arterial spin labeling (pcASL was used to produce cerebral blood flow (CBF images. VBM and CBF data were tested voxel-wise using VO2Peak and age as explanatory variables. RESULTS: In 30 men with CAD (mean age 65±7 years, VBM and CBF identified 7 and 5 respective regions positively associated with baseline VO2Peak. These included the pre- and post-central, paracingulate, caudate, hippocampal regions and converging findings in the putamen. VO2Peak increased by 20% at follow-up in 29 patients (t = 9.6, df = 28, p<0.0001. Baseline CBF in the left post-central gyrus and baseline GM density in the right putamen predicted greater change in VO2Peak. CONCLUSION: Perfusion and GM density were associated with fitness at baseline and with greater fitness gains with exercise. This study identifies new neurobiological correlates of fitness and demonstrates the utility of multi-modal MRI to evaluate the effects of exercise in CAD patients.
Using Magnetic Fields to Create and Control High Energy Density Matter
Herrmann, Mark [Sandia National Laboratory
2012-05-09
The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.
Coelho, Eduardo L.; Chiapparini, Marcelo [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil); Bracco, Mirian E. [Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, 27537-000, Resende, RJ (Brazil)
2013-03-25
Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.
Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.
2013-03-01
Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 1015 G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.
Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.
2017-01-01
We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.
Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke
2014-11-01
The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, fractions (LF1, fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive
赵秀芬; 侯玮; 郭宇飞; 关桂云
2014-01-01
Objective:To establish density bottle method to evalu-ate uncertainty in determination of relative density of smoothing toner. Method:According to JJF1059.1-2012 evaluation and ex-pression of uncertainty in measurement and GB/T 13531.4 2013 general methods on determination of cosmetics-determination of relative density, measurement model was established, and cause-effect diagram of sources of uncertainty was drawn up, and each component of uncertainty was calculated and classified, the expanded uncertainty was U=0.0002. Result:The results of rela-tive density of smoothing toner was 1.009 7 ±0.000 2. Conclu-sion:The study can provide reference basis for uncertainty eval-uation in determination of relative density.%目的：院建立密度瓶法测定柔肤水相对密度不确定度评定的方法。方法院依据JJF1059.1-2012《测量不确定度评定与表示》，采用GB/T 13531.4要2013《化妆品通用检验方法相对密度的测定》，建立测量模型，绘制不确定度来源因果图，对检测过程中引入的不确定度进行了分类和量化，得到扩展不确定度U=0.0002。结果院柔肤水相对密度测定结果表示为1.0097依0.0002。结论院研究为相对密度测定的不确定度评定提供参考依据。
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick
2014-05-01
The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including
Thomas, R.E.
1982-03-01
An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software.
Schoenlein, Andreas
2015-07-01
Aim of this thesis was to study the processes of the interaction between highly intense short-pulse laser and matter. The focus lied thereby on the generation of intense X-radiation and warm dense matter. The studies performed for this thesis comprehend thereby the influence of laser parameters like energy, pulse length, focus size, and intensity as well as the influence of the target geometry on the interaction and generation of high-energy-density matter. In this thesis for this two selected experiments are presented. First a silver foil was used as target, in order to study the generation of radiation at 21 keV. Both bremsstrahlung and characteristic X-radiation were used in order to characterize the interaction. For the second experiment freely standing titanium wires were used as target. Hereby the focus lied on the characterization of the heated matter.
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
Elliott, J B; Moretto, L G; Phair, L
2012-01-01
Infinite, neutron-proton symmetric, neutral nuclear matter has a critical temperature of 17.9+-0.4 MeV, a critical density of 0.06+-0.01 nucleons per cubic fermi and a critical pressure of 0.31+-0.07 MeV per cubic fermi. These values have been obtained from our analysis of data from six different reactions studied in three different experiments: two "compound nuclear" reactions: 58Ni+12C-->70Se and 64Ni+12C-->76Se (both performed at the LBNL 88" Cyclotron) and four "multifragmentation" reactions: 1 GeV/c pi+197Au (performed by the ISiS collaboration), 1 AGeV 197Au+C, 1 AGeV 139La+12C and 1 AGeV 84Kr+12C (all performed by the EOS collaboration). The charge yields of all reactions as a function of excitation energy were fit with a version of Fisher's droplet model modified to account for the dual components of the fluid (i.e. protons and neutrons), Coulomb effects, finite size effects and angular momentum arising from the nuclear collisions.
Kep Kee Loh
Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.
Correa, Camila A; Schaye, Joop; Duffy, Alan R
2015-01-01
We explore the relation between the structure and mass accretion histories of dark matter halos using a suite of cosmological simulations. We confirm that the formation time, defined as the time when the virial mass of the main progenitor equals the mass enclosed within the scale radius, correlates strongly with concentration. We provide a semi-analytic model for halo mass history that combines analytic relations with fits to simulations. This model has the functional form, $M(z) = M_{0}(1+z)^{\\alpha}e^{\\beta z}$, where the parameters $\\alpha$ and $\\beta$ are directly correlated with concentration. We then combine this model for the halo mass history with the analytic relations between $\\alpha$, $\\beta$ and the linear power spectrum derived by Correa et al. (2014) to establish the physical link between halo concentration and the initial density perturbation field. Finally, we provide fitting formulas for the halo mass history as well as numerical routines, we derive the accretion rate as a function of halo ma...
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
micrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model
Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A.
2007-03-01
micrOMEGAs 2.0 is a code which calculates the relic density of a stable massive particle in an arbitrary model. The underlying assumption is that there is a conservation law like R-parity in supersymmetry which guarantees the stability of the lightest odd particle. The new physics model must be incorporated in the notation of CalcHEP, a package for the automatic generation of squared matrix elements. Once this is done, all annihilation and coannihilation channels are included automatically in any model. Cross-sections at v=0, relevant for indirect detection of dark matter, are also computed automatically. The package includes three sample models: the minimal supersymmetric standard model (MSSM), the MSSM with complex phases and the NMSSM. Extension to other models, including non-supersymmetric models, is described. Program summaryTitle of program:micrOMEGAs2.0 Catalogue identifier:ADQR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQR_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers for which the program is designed and others on which it has been tested:PC, Alpha, Mac, Sun Operating systems under which the program has been tested:UNIX (Linux, OSF1, SunOS, Darwin, Cygwin) Programming language used:C and Fortran Memory required to execute with typical data:17 MB depending on the number of processes required No. of processors used:1 Has the code been vectorized or parallelized:no No. of lines in distributed program, including test data, etc.:91 778 No. of bytes in distributed program, including test data, etc.:1 306 726 Distribution format:tar.gz External routines/libraries used:no Catalogue identifier of previous version:ADQR_v1_3 Journal reference of previous version:Comput. Phys. Comm. 174 (2006) 577 Does the new version supersede the previous version:yes Nature of physical problem:Calculation of the relic density of the lightest stable particle in a generic new model of particle physics. Method
,
2015-01-01
An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated ON/OFF observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of $\\sim 9$ h of ON/OFF observations. Upper limits on the velocity averaged cross section, $$, for the annihilation of dark matter particles with masses in the range of $\\sim 300$ GeV to $\\sim 10$ TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of $$ that are larger than $3\\cdot 10^{-24}\\:\\mathrm{cm^3/s}$ are excluded for dark matter particles with masses between $\\sim 1$ and $\\sim 4$ TeV at $95%$ CL if the radius of the central dark matter density core does not exceed $500$ pc. This is the strongest constraint that is derived on $$ for...
Bartley, David; Lidén, Göran
2008-08-01
The reporting of measurement uncertainty has recently undergone a major harmonization whereby characteristics of a measurement method obtained during establishment and application are combined componentwise. For example, the sometimes-pesky systematic error is included. A bias component of uncertainty can be often easily established as the uncertainty in the bias. However, beyond simply arriving at a value for uncertainty, meaning to this uncertainty if needed can sometimes be developed in terms of prediction confidence in uncertainty-based intervals covering what is to be measured. To this end, a link between concepts of accuracy and uncertainty is established through a simple yet accurate approximation to a random variable known as the non-central Student's t-distribution. Without a measureless and perpetual uncertainty, the drama of human life would be destroyed. Winston Churchill.
Kaiser, Michael; Grunwald, Dennis; Marhan, Sven; Poll, Christian; Bamminger, Chris; Ludwig, Bernard
2016-04-01
Potential increases in soil temperature due to climate change might result in intensified soil organic matter (SOM) decomposition and thus higher CO2 emissions. Management options to increase and stabilize SOM include the application of biochar. However, the effects of biochar amendments under elevated soil temperatures on SOM dynamics are largely unknown. The objective of this study was to analyze the effect of biochar application and elevated soil temperature on the amount and composition of OM associated with fractions of different turnover kinetics. Samples were taken from four treatments of the Hohenheim Climate Change Experiment with the factors temperature (ambient or elevated by 2.5 °C in 4 cm depth, six years before sampling) and biochar (control and 30 t / ha Miscanthus pyrolysis biochar, one year before sampling) in two depths (0 - 5 and 5 - 15 cm). Basal respiration and microbial biomass C were analyzed within an incubation experiment. Aggregate size-fractions were separated by wet-sieving and the free light, occluded light (oLF), and heavy fractions were isolated by density fractionation. All fractions were analyzed for organic C and δ13C as well as by infrared spectroscopy. Preliminary data suggest that biochar significantly increased basal respiration and that the microbial biomass C was significantly affected by elevated temperature. No biochar-C was found in the microbial biomass. Biochar and elevated temperature had only minor effects on the organic C associated with aggregate-size classes, although biochar was incorporated into all fractions already after one year of application. Biochar application significantly increased the organic C associated with oLF. In most samples affected by biochar, the proportion of C=O groups was significantly increased. The results suggest that already after one year, biochar-mineral interactions were formed leading to an aggregate occlusion of applied biochar. At least in the short-term, the effect of biochar on
Zvinka Zoe Zlatar
2015-02-01
Full Text Available Aerobic fitness (AF and self-reported physical activity (srPA do not represent the same construct. However, many exercise and brain aging studies interchangeably use AF and srPA measures, which may be problematic with regards to how these metrics are associated with brain outcomes, such as morphology. If AF and PA measures captured the same phenomena, regional brain volumes associated with these measures should directly overlap. This study employed the general linear model to examine the differential association between objectively-measured AF (treadmill assessment and srPA (questionnaire with gray matter density (GMd in 29 cognitively unimpaired community-dwelling older adults using voxel based morphometry. The results show significant regional variance in terms of GMd when comparing AF and srPA as predictors. Higher AF was associated with greater GMd in the cerebellum only, while srPA displayed positive associations with GMd in occipito-temporal, left perisylvian, and frontal regions after correcting for age. Importantly, only AF level, and not srPA, modified the relationship between age and GMd, such that higher levels of AF were associated with increased GMd in older age, while decreased GMd was seen in those with lower AF as a function of age. These results support existing literature suggesting that both AF and PA exert beneficial effects on GMd, but only AF served as a buffer against age-related GMd loss. Furthermore, these results highlight the need for use of objective PA measurement and comparability of tools across studies, since results vary dependent upon the measures used and whether these are objective or subjective in nature.
Lindley, Dennis V
2013-01-01
Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.
Tierz, Pablo; Ramona Stefanescu, Elena; Sandri, Laura; Patra, Abani; Marzocchi, Warner; Sulpizio, Roberto
2014-05-01
Probabilistic hazard assessments of Pyroclastic Density Currents (PDCs) are of great interest for decision-making purposes. However, there is a limited number of published works available on this topic. Recent advances in computation and statistical methods are offering new opportunities beyond the classical Monte Carlo (MC) sampling which is known as a simple and robust method but it usually turns out to be slow and computationally intractable. In this work, Titan2D numerical simulator has been coupled to Polynomial Chaos Quadrature (PCQ) to propagate the simulator parametric uncertainty and compute VEI-based probabilistic hazard maps of dense PDCs formed as a result of column collapse at Vesuvius volcano, Italy. Due to the lack of knowledge about the exact conditions under which these PDCs will form, Probability Distribution Functions (PDFs) are assigned to the simulator input parameters (Bed Friction Angle and Volume) according to three VEI sizes. Uniform distributions were used for both parameters since there is insufficient information to assume that any value in the range is more likely that any other value. Reasonable (and compatible) ranges for both variables were constrained according to past eruptions at Vesuvius volcanic system. On the basis of reasoning above a number of quadrature points were taken within those ranges, which resulted in one execution of the TITAN2D code at each quadrature point. With a computational cost several orders of magnitude smaller than MC, exceedance probabilities for a given threshold of flow depth (and conditional to the occurrence of VEI3, VEI4 and VEI5 eruptions) were calculated using PCQ. Moreover, PCQ can be run at different threshold values of the same output variable (flow depth, speed, kinetic energy, …) and, therefore, it can serve to compute Exceedance Probability curves (aka hazard curves) at singular points inside the hazard domain, representing the most important and useful scientific input to quantitative risk
Microscopic calculations and energy expansions for neutron-rich matter
Drischler, Christian; Soma, Vittorio [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Schwenk, Achim [ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)
2014-07-01
We investigate the properties of asymmetric nuclear matter with two- and three-nucleon interactions based on chiral effective field theory. Focusing on neutron-rich matter, we calculate the energy for different proton fractions and include estimates of the theoretical uncertainty. We use our ab-initio results to test the quadratic expansion around symmetric matter with the symmetry energy term, and confirm its validity for highly asymmetric systems. Our calculated energy densities are in remarkable agreement with an empirical parameterization, developed to interpolate between pure neutron and symmetric nuclear matter. These findings are very useful for astrophysical applications and for developing new equations of state.
LIU Yu-Xin; CHAO Jing-Yi; CHANG Lei; YUAN Wei
2005-01-01
@@ With the Dyson-Schwinger equation formalism at finite chemical potential, we study the density dependence of the mass and decay constant of pion in nuclear matter. The calculated results indicate that both the mass and the decay constant remain almost constant at small chemical potential. As the chemical potential gets quite large, the decay constant increases and the mass decreases with the increasing of the chemical potential, and both of them vanish suddenly as a critical value is reached.
韩春红
2016-01-01
To satisfy the requirement of the online vibrating liquid density meter compulsory verification, an online vibrating density standard device should be established. Through ana-lysing the sources of measurement uncertainty for the density standard device, the evaluation of the measurement uncertainty is carried out for each input component, such as repeatabili-ty, a first-class standard density meter, frequency meter resolution and the temperature measurement. The expanded uncertainty of density standard device is 0.32 kg/m3, and the verification/calibration work for the liquid density meter with the accuracy of 0.5 degree could be carried out.%为满足在线振动管液体密度计的强制检定要求,需建立在线振动管密度标准装置.通过对密度标准装置的测量不确定度来源分析,分别对重复性、一等标准密度计、频率计分辨率、温度测量等各输入分量进行测量不确定度的评定.评定密度标准装置的扩展不确定度为0.32 kg/m3,符合国家计量检定系统表的要求,可以开展准确度等级为0.5级的液体密度计的检定/校准工作.
Roe, Byron
2017-06-01
This paper is divided into two parts. In the first part, the material densities passed through for neutrinos going from FNAL to Sanford Laboratory are calculated using two recent density tables, Crustal [G. Laske, G. Masters, Z. Ma, and M. Pasyanos, Update on CRUST1.0—A 1-degree global model of Earth's crust, Geophys. Res. Abstracts 15, EGU2013-2658 (2013),; For the programs and tables, see the website: http://igppweb.ucsd.edu/ gabi/crust1.html.] and Shen-Ritzwoller [W. Shen and M. H. Ritzwoller, Crustal and uppermost mantle structure beneath the United States, J. Geophys. Res.: Solid Earth 121, 4306 (2016)], as well as the values from an older table PEMC [A. M. Dziewonski, A. L. Hales, and E. R. Lapwood, Parametrically simple earth models consistent with geophysical data, Phys. Earth Plan. Int. 10, 12 (1975); For further information see the website: http://ds.iris.edu/ds/products/emc-pem/.]. In the second part, neutrino oscillations at Sanford Laboratory are examined for the variable density table of Shen-Ritzwoller. These results are then compared with oscillation results using the mean density from the Shen-Ritzwoller tables and with one other fixed density. For the tests made here, the mean density results are quite similar to the results using the variable density vs distance.
Afanasjev, A V
2015-01-01
The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.
Uncertainty in hydrological signatures
McMillan, Hilary; Westerberg, Ida
2015-04-01
magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
Model Uncertainty for Bilinear Hysteric Systems
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
In structural reliability analysis at least three types of uncertainty must be considered, namely physical uncertainty, statistical uncertainty, and model uncertainty (see e.g. Thoft-Christensen & Baker [1]). The physical uncertainty is usually modelled by a number of basic variables by predictive...... density functions, Veneziano [2]. In general, model uncertainty is the uncertainty connected with mathematical modelling of the physical reality. When structural reliability analysis is related to the concept of a failure surface (or limit state surface) in the n-dimension basic variable space then model...... uncertainty is at least due to the neglected variables, the modelling of the failure surface and the computational technique used....
Neutron star radii and crusts: uncertainties and unified equations of state
Fortin, M; Raduta, A R; Gulminelli, F; Zdunik, J L; Haensel, P; Bejger, M
2016-01-01
The uncertainties in neutron star (NS) radii and crust properties due to our limited knowledge of the equation of state (EOS) are quantitatively analysed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core EOS based on models with different properties at nuclear matter saturation, the uncertainties can be as large as $\\sim 30\\%$ for the crust thickness and $4\\%$ for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified EOS for purely nucleonic matter is obtained based on 24 Skyrme interactions and 9 relativistic mean-field nuclear parametrizations. In addition, for relativistic models 17 EOS including a transition to hyperonic matter at high density are presented. All these EOS have in common the property of describing a $2\\;M_\\odot$ star a...
Neutralino dark matter with a light Higgs
Goudelis, Andreas
2011-06-15
We examine the neutralino dark matter (DM) phenomenology in supersymmetric scenarios with nonuniversal Higgs masses (NUHM) at the gauge coupling unification scale that can accommodate a light Higgs boson, where the correct relic density is obtained mostly through the annihilation into a pseudoscalar A. Our analysis shows that most part of the A pole region can produce detectable gamma-ray and antiproton signals. We further focus on uncertainties influencing the results in indirect and mainly direct detection. (orig.)
Timmers, Inge; van der Korput, Lisanne D; Jansma, Bernadette M; Rubio-Gozalbo, M Estela
2016-01-01
Brain impairments have been observed in patients with classic galactosemia, an inherited metabolic disorder resulting in a particular neuro-cognitive profile. Neuroimaging studies showed abnormalities such as diffuse white mater (WM) abnormalities and grey matter (GM) atrophy. Our current study anal
Liu, Baoding
2015-01-01
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...
M. Z. Bieroza; Heathwaite, A. L.
2016-01-01
In agricultural catchments, diffuse nutrient fluxes (mainly nitrogen N and phosphorus P), are observed to pollute receiving waters and cause eutrophication. Organic matter (OM) is important in mediating biogeochemical processes in freshwaters. Time series of the variation in nutrient and OM loads give insights into flux processes and their impact on biogeochemistry but are costly to maintain and challenging to analyse for elements that are highly reactive in the environment. We evaluated the ...
López-Martín, María; Knicker, Heike
2017-04-01
Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (competitividad de España (MINECO) and the European Regional Development Fund (ERDF) for financial support of the project (CGL2009-10557). The MINECO is also acknowledged for providing the Formación de Professional Investigator (FPI) grant (BES-2010-42581). REFERENCES Golchin, A., Oades, J., Skjemstad, J., Clarke, P., 1994. Soil structure and carbon cycling. Soil Research 32, 1043-1068. Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B., Gaunt, J.L., 2001. A procedure for isolating soil organic matter fractions suitable for modelling. Soil Science Society of America Journal 65, 1121.
Buss, Claudia; Davis, Elysia Poggi; Muftuler, L Tugan; Head, Kevin; Sandman, Curt A
2010-01-01
Because the brain undergoes dramatic changes during fetal development it is vulnerable to environmental insults. There is evidence that maternal stress and anxiety during pregnancy influences birth outcome but there are no studies that have evaluated the influence of stress during human pregnancy on brain morphology. In the current prospective longitudinal study we included 35 women for whom serial data on pregnancy anxiety was available at 19 (+/-0.83), 25 (+/-0.9) and 31 (+/-0.9) weeks gestation. When the offspring from the target pregnancy were between 6 and 9 years of age, their neurodevelopmental stage was assessed by a structural MRI scan. With the application of voxel-based morphometry, we found regional reductions in gray matter density in association with pregnancy anxiety after controlling for total gray matter volume, age, gestational age at birth, handedness and postpartum perceived stress. Specifically, independent of postnatal stress, pregnancy anxiety at 19 weeks gestation was associated with gray matter volume reductions in the prefrontal cortex, the premotor cortex, the medial temporal lobe, the lateral temporal cortex, the postcentral gyrus as well as the cerebellum extending to the middle occipital gyrus and the fusiform gyrus. High pregnancy anxiety at 25 and 31 weeks gestation was not significantly associated with local reductions in gray matter volume.This is the first prospective study to show that a specific temporal pattern of pregnancy anxiety is related to specific changes in brain morphology. Altered gray matter volume in brain regions affected by prenatal maternal anxiety may render the developing individual more vulnerable to neurodevelopmental and psychiatric disorders as well as cognitive and intellectual impairment.
Buss, Claudia; Davis, Elysia Poggi; Muftuler, L. Tugan; Head, Kevin; Sandman, Curt A.
2009-01-01
Summary Because the brain undergoes dramatic changes during fetal development it is vulnerable to environmental insults. There is evidence that maternal stress and anxiety during pregnancy influences birth outcome but there are no studies that have evaluated the influence of stress during human pregnancy on brain morphology. In the current prospective longitudinal study we included 35 women for whom serial data on pregnancy anxiety was available at 19 (±0.83), 25 (±0.9) and 31 (±0.9) weeks gestation. When the offspring from the target pregnancy were between six to nine years of age, their neurodevelopmental stage was assessed by a structural MRI scan. With the application of voxel based morphometry, we found regional reductions in gray matter density in association with pregnancy anxiety after controlling for total gray matter volume, age, gestational age at birth, handedness and postpartum perceived stress. Specifically, independent of postnatal stress, pregnancy anxiety at 19 weeks gestation was associated with gray matter volume reductions in the prefrontal cortex, the premotor cortex, the medial temporal lobe, the lateral temporal cortex, the postcentral gyrus as well as the cerebellum extending to the middle occipital gyrus and the fusiform gyrus. High pregnancy anxiety at 25 and 31 weeks gestation was not significantly associated with local reductions in gray matter volume. This is the first prospective study to show that a specific temporal pattern of pregnancy anxiety is related to specific changes in brain morphology. Altered gray matter volume in brain regions affected by prenatal maternal anxiety may render the developing individual more vulnerable to neurodevelopmental and psychiatric disorders as well as cognitive and intellectual impairment. PMID:19674845
杨玉佩
2014-01-01
按照FZ/T 01093-2008《机织物结构分析方法织物中拆下纱线线密度的测定》测量机织物拆下纱线线密度。详细分析了测量过程中影响结果的各个分量，并对各分量进行评定。对结果的标准不确定度进行合成评定、扩展评定，结果表明：机织物拆下纱线线密度的不确定度主要来自于纱长测定仪确定伸直张力，其次是样品称量和重复性测量。%The linear density of yarn removed from woven fabric was measured according to FZ/T 01093-2008“Woven fabrics- Construction- Methods of analysis- Determination of linear density of yarn removed from fabric”. The factors affecting the results during the measurement were detailed analyzed and the factors were assessed. The combined and expanded uncertainty of measurement result was assessed. The results showed that the uncertainty of linear density of yarn removed from woven fabrics mainly derived from the measuring the expansion tension by using yarn length tester, and sample weighing and repeated measure-ment were in the second place.
S. Weber
2017-07-01
Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.
Arthur, Emmanuel; Schjønning, Per; Møldrup, Per
2013-01-01
Pa). Investigated indicators for compression resistance included compression index, precompression stress, and resistance and resilience indices based on measured soil physical properties (bulk density, air-filled porosity, air permeability, and void ratio). Soil resilience was assessed following exposure...... of compacted cores to freeze-thaw (FT) and wet-dry (WD) cycles. The OC content increased with increased fertilisation and resulted in decreased initial bulk density, higher air-filled and total porosities, and increased organisation of the pore space. Soil resistance decreased with increasing OC content...... but the correlation was not significant. However, initial bulk density (ρbi) and initial gravimetric water content (wi) were significantly positively correlated to the indices of soil compression resistance, with the effect of ρbi being significantly stronger. Significant recovery of airfilled porosity and air...
Sluming, Vanessa; Barrick, Thomas; Howard, Matthew; Cezayirli, Enis; Mayes, Andrew; Roberts, Neil
2002-11-01
Broca's area is a major neuroanatomical substrate for spoken language and various musically relevant abilities, including visuospatial and audiospatial localization. Sight reading is a musician-specific visuospatial analysis task, and spatial ability is known to be amenable to training effects. Musicians have been reported to perform significantly better than nonmusicians on spatial ability tests, which is supported by our findings with the Benton judgement of line orientation (JOL) test (P musical performance promotes use-dependent retention, and possibly expansion, of gray matter involving Broca's area and that this provides further support for shared neural substrates underpinning expressive output in music and language.
Limousin, Marceau; Sommer-Larsen, Jesper; Natarajan, Priyamvada; Milvang-Jensen, Bo
2009-05-01
We analyze high-resolution, N-body hydrodynamical simulations of fiducial galaxy clusters to probe tidal stripping of the dark matter subhalos. These simulations include a prescription for star formation allowing us to track the fate of the stellar component as well. We investigate the effect of tidal stripping on cluster galaxies hosted in these dark matter subhalos as a function of projected cluster-centric radius. To quantify the extent of the dark matter halos of cluster galaxies, we introduce the half-mass radius r 1/2 as a diagnostic, and study its evolution with projected cluster-centric distance R as a function of redshift. We find a well-defined trend for (r 1/2, R): the closer the galaxies are to the center of the cluster, the smaller the half-mass radius. Interestingly, this trend is inferred in all redshift frames examined in this work ranging from z = 0 to z = 0.7. At z = 0, galaxy halos in the central regions of clusters are found to be highly truncated, with the most compact half-mass radius of 10 kpc. We also find that r 1/2 depends on luminosity and we present scaling relations of r 1/2 with galaxy luminosity. The corresponding total mass of the cluster galaxies is also found to increase with projected cluster-centric distance and luminosity, but with more scatter than the (r 1/2, R) trend. Comparing the distribution of stellar mass to total mass for cluster galaxies, we find that the dark matter component is preferentially stripped, whereas the stellar component is much less affected by tidal forces. We compare these results with galaxy-galaxy lensing probes of r 1/2 and find qualitative agreement. Future surveys with space-based telescopes such as DUNE and SNAP, that combine wide-field and high-resolution imaging, will be able to probe the predicted (r 1/2, R) relation observationally.
Di Cintio, Arianna; Tremmel, Michael; Governato, Fabio; Pontzen, Andrew; Zavala, Jesús; Bastidas Fry, Alexander; Brooks, Alyson; Vogelsberger, Mark
2017-08-01
We explore for the first time the effect of self-interacting dark matter (SIDM) on the dark matter (DM) and baryonic distribution in massive galaxies formed in hydrodynamical cosmological simulations, including explicit baryonic physics treatment. A novel implementation of supermassive black hole (SMBH) formation and evolution is used, as in Tremmel et al., allowing us to explicitly follow the SMBH dynamics at the centre of galaxies. A high SIDM constant cross-section is chosen, σ = 10 cm2gr-1, to amplify differences from CDM models. Milky Way-like galaxies form a shallower DM density profile in SIDM than they do in cold dark matter (CDM), with differences already at 20 kpc scales. This demonstrates that even for the most massive spirals, the effect of SIDM dominates over the adiabatic contraction due to baryons. Strikingly, the dynamics of SMBHs differs in the SIDM and reference CDM case. SMBHs in massive spirals have sunk to the centre of their host galaxy in both the SIDM and CDM run, while in less massive galaxies about 80 per cent of the SMBH population is off-centred in the SIDM case, as opposed to the CDM case in which ∼ 90 per cent of SMBHs have reached their host's centre. SMBHs are found as far as ∼9 kpc away from the centre of their host SIDM galaxy. This difference is due to the increased dynamical friction time-scale caused by the lower DM density in SIDM galaxies compared to CDM, resulting in core stalling. This pilot work highlights the importance of simulating in a full hydrodynamical context different DM models combined to the SMBH physics to study their influence on galaxy formation.
Lagana, Tatiana F. [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Departamento de Astronomia, Cidade Universitaria, CEP:05508-090, Sao Paulo, SP (Brazil); Zhang Yuying; Reiprich, Thomas H.; Schneider, Peter [Argelander-Institut fuer Astronomie, Universitaet Bonn, 53121 Bonn (Germany)
2011-12-10
It is believed that the global baryon content of clusters of galaxies is representative of the matter distribution of the universe, and can, therefore, be used to reliably determine the matter-density parameter {Omega}{sub m}. This assumption is challenged by the growing evidence from optical and X-ray observations that the total baryon mass fraction increases toward rich clusters. In this context, we investigate the dependence of stellar and total baryon mass fractions as a function of mass. To do so, we used a subsample of 19 clusters extracted from the X-ray flux-limited sample HIFLUGCS that have available Sloan Digital Sky Survey Data Release 7 data. From the optical analysis we derived the stellar masses. Using XMM-Newton we derived the gas masses. Then, adopting a scaling relation we estimate the total masses. Adding the gas and the stellar mass fractions we obtain the total baryonic content that we find to increase with cluster mass, reaching seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) prediction for clusters with M{sub 500} = 1.6 Multiplication-Sign 10{sup 15} M{sub Sun }. We observe a decrease of the stellar mass fraction (from 4.5% to {approx}1.0%) with increasing total mass where our findings for the stellar mass fraction agree with previous studies. This result suggests a difference in the number of stars formed per unit of halo mass, though with a large scatter for low-mass systems. That is, the efficiency of star formation varies on a cluster scale that lower mass systems are likely to have higher star formation efficiencies. It follows immediately that the dependence of the stellar mass fraction on total mass results in an increase of the mass-to-light ratio from lower to higher mass systems. We also discuss the consequences of these results in the context of determining the cosmic matter-density parameter {Omega}{sub m}.
Huang, Wenming; Tian, Yujia; Wang, Yajing; Simayi, Aminamu; Yasheng, Amingguli; Wu, Zhaohai; Li, Shengli; Cao, Zhijun
2014-01-01
Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of close-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEL/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEL/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEL intake prepartum were decreased by the reduced energy density diets (P consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1% of their calculated energy requirements prepartum (P < 0.05), and 72.7%, 73.1% and 75.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NEL intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.
Nguyen, Daniel Xuyen
This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles...
Schubmehl, M. [Harley School, Rochester, NY (United States)
1999-03-01
Temperature and density histories of direct-drive laser fusion implosions are important to an understanding of the reaction`s progress. Such measurements also document phenomena such as preheating of the core and improper compression that can interfere with the thermonuclear reaction. Model x-ray spectra from the non-LTE (local thermodynamic equilibrium) radiation transport post-processor for LILAC have recently been fitted to OMEGA data. The spectrum fitting code reads in a grid of model spectra and uses an iterative weighted least-squares algorithm to perform a fit to experimental data, based on user-input parameter estimates. The purpose of this research was to upgrade the fitting code to compute formal uncertainties on fitted quantities, and to provide temperature and density estimates with error bars. A standard error-analysis process was modified to compute these formal uncertainties from information about the random measurement error in the data. Preliminary tests of the code indicate that the variances it returns are both reasonable and useful.
Schubmehl, M. [Harley School, Rochester, NY (United States)
1999-03-01
Temperature and density histories of direct-drive laser fusion implosions are important to an understanding of the reaction`s progress. Such measurements also document phenomena such as preheating of the core and improper compression that can interfere with the thermonuclear reaction. Model x-ray spectra from the non-LTE (local thermodynamic equilibrium) radiation transport post-processor for LILAC have recently been fitted to OMEGA data. The spectrum fitting code reads in a grid of model spectra and uses an iterative weighted least-squares algorithm to perform a fit to experimental data, based on user-input parameter estimates. The purpose of this research was to upgrade the fitting code to compute formal uncertainties on fitted quantities, and to provide temperature and density estimates with error bars. A standard error-analysis process was modified to compute these formal uncertainties from information about the random measurement error in the data. Preliminary tests of the code indicate that the variances it returns are both reasonable and useful.
聂少姬; 卓梅芳; 吕立盈; 李春燕
2015-01-01
DM45 automatic density analyzer was used to determine density of turpentine, and the influencing factors of the measurement results was analyzed.According to the People's Republic of China National Measurement Technology Specifications JJG1059.1-2012 , the uncertainty of the measurement results were evaluated and expressed.Its expanded uncertainty was U=7×10-5 g/cm3 , and the confidence probability was 95%, meeting the requirements of standard D4052-2011 of American Society for Testing and Materials ( ASTM) and Chinese industry-standard SN/T 2383-2009.%采用DM45全自动密度仪测定松节油密度，分析测定结果的影响因素，依据中华人民共和国国家计量技术规范JJG1059.1－2012，对测定结果的不确定度进行评定和表述。其扩展不确定度U＝7×10－5 g／cm3，置信概率为95％，满足美国材料与试验协会标准ASTM D4052－2011和我国行业标准SN／T 2383－2009要求。
Heydorn, Kaj; Anglov, Thomas
2002-01-01
Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...
无
2000-01-01
A long-term experiment of minimal and zero tillages was carried out on the sandy loam soil from 1985～1996. The results showed that the yields of minimal tillaged rice and wheat were similar to those by conventional tillage. Zero-tillaged wheat yield increased by 5.3% on average, while the zero-tillaged rice yield reduced by 2. 2％. The yields under long-term minimal and zero tillages showed no obvious temporal trend. After five years of the experiment, the soil organic matter contents were in steady state under different tillages, but its distributions in soil layers were different markedly and the richness in upper layer was observed under minimal and zero tillages, with the richness coefficients of 1. 1140 and 1. 1608, on 7-year average ,respectively. The bulk densities among different tillages were insignificantly different in soil layers of 0～7cm and 14～21cm. In the soil layer of 7～14cm,the bulk densities under conventional, minimal and zero tillages were 1.348,1.412 and 1. 410 g/cm3 respectively, minimal and zero tillages resulted in obvious increases in the bulk density.
Wicher, Grzegorz; Larsson, Mårten; Svenningsen, Åsa Fex
2006-01-01
Lipoprotein receptor-related protein-2 (LRP2)/megalin is a member of the low density lipoprotein receptor (LDLR) family, and is essential in absorptive epithelia for endocytosis of lipoproteins, low molecular weight proteins, cholesterol and vitamins, as well as in cellular signaling. Previous st...... that spinal cord oligodendrocytes are phenotypically different from those in the brain, and indicate that megalin translocates signals from the cell membrane to the nucleus of oligodendrocytes during the formation and maintenance of myelin of long spinal cord pathways....
Rose, Emma J
2012-03-01
A common polymorphism within the nitric oxide sythanse-1 (NOS1) gene (rs6490121), initially identified as risk variant for schizophrenia, has been associated with variation in working memory and IQ. Here we investigated how this variation might be mediated at the level of brain structure and function. In healthy individuals (N=157), voxel based morphometry was used to compare grey matter (GM) volume between homozygous and heterozygous carriers of the \\'G\\' allele (i.e. the allele associated with impaired cognition and schizophrenia risk) and homozygous carriers of the non-risk \\'A\\' allele. Functional brain imaging data were also acquired from 48 participants during performance of a spatial working memory (SWM) task, and analysed to determine any effect of NOS1 risk status. An a priori region-of-interest analysis identified a significant reduction in ventromedial prefrontal GM volume in \\'G\\' allele carriers. Risk carriers also exhibited altered patterns of activation in the prefrontal cortex, caudate, and superior parietal lobe, which were characteristic of abnormal increases in activation in frontoparietal working memory networks and a failure to disengage regions of the default mode network. These functional changes suggest a NOS1-mediated processing inefficiency, which may contribute to cognitive dysfunction in schizophrenia. While the mechanisms by which NOS1 may influence brain structure and\\/or function have not yet been well delineated, these data provide further evidence for a role of NOS1 in risk for schizophrenia via an impact upon cognitive function.
Hulshoff Pol, HE; Schnack, HG; Mandl, RC
2006-01-01
best reflect the genetic and environmental risk factors in the brains of patients with schizophrenia remains unresolved. 1.5-T MRI brain scans of 11 monozygotic and 11 same-sex dizygotic twin-pairs discordant for schizophrenia were compared to 11 monozygotic and 11 same-sex dizygotic healthy control...... twin-pairs using voxel-based morphometry. Linear regression analysis was done in each voxel for the average and difference in gray and white matter density separately, in each twin-pair, with group (discordant, healthy) and zygosity (monozygotic, dizygotic) as between subject variables, and age, sex...... and handedness as covariates. The t-maps (critical threshold value mid R:tmid R: > 6.0, P
Potapov, Alexander A; Mikolaychuk, Olga; Mikolaychuk, Nikolay; Ghosh, Mithun; Nandi, Kamal K
2014-01-01
Recently, Harko {et al.} (2014) derived an approximate metric of the galactic halo in the Eddington inspired Born-Infeld (EiBI) gravity. In this metric, we show that there is an upper limit $\\rho_{0}^{\\text{upper}}$ on the central density $\\rho_{0}$ of dark matter such that stable circular orbits are possible only when the constraint $\\rho_{0}\\leq \\rho_{0}^{\\text{upper}}$ is satisfied in each galactic sample. To quantify different $\\rho_{0}^{\\text{upper}}$ for different samples, we follow the novel approach of Edery & Paranjape (1998), where we use as input the geometric halo boundary from Weyl gravity $R_{\\text{WR}}$ and equate it with the dark matter radius $R_{\\text{DM}}$ from EiBI gravity for the same halo boundary. This input then shows that the known fitted values of $\\rho_{0}$ obey the constraint $\\rho_{0}\\leq \\rho_{0}^{\\text{upper}}\\propto $($R_{\\text{WR}}$)$^{-2}$. Using the mass-to-light ratios giving $\\alpha $, we shall also evaluate $\\rho_{0}^{\\text{lower}}$ $\\propto $ $(\\alpha -1)M_{\\text{lum...
Choo, IL Han [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Chosun University, Department of Neuropsychiatry, School of Medicine, Gwangju (Korea, Republic of); Carter, Stephen F. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Manchester University, Wolfson Imaging Center, Manchester (United Kingdom); Schoell, Michael L. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Gothenburg University, Med Tech West, Department of Neuroscience and Rehabilitation, Gothenburg (Sweden); Nordberg, Agneta [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Huddinge (Sweden)
2014-11-15
The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD. Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with {sup 11}C-Pittsburgh compound B ({sup 11}C-PIB), {sup 18}F-Fluorodeoxyglucose ({sup 18}F-FDG), and {sup 11}C-deuterium-L-deprenyl ({sup 11}C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker. A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers. High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The
Butsky, Iryna; Macciò, Andrea V.; Dutton, Aaron A.; Wang, Liang; Obreja, Aura; Stinson, Greg S.; Penzo, Camilla; Kang, Xi; Keller, Ben W.; Wadsley, James
2016-10-01
We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects) cosmological simulations to study the effects of galaxy formation on key properties of dark matter (DM) haloes. NIHAO consists of ≈90 high-resolution smoothed particle hydrodynamics simulations that include (metal-line) cooling, star formation, and feedback from massive stars and supernovae, and cover a wide stellar and halo mass range: 106 ≲ M*/M⊙ ≲ 1011(109.5 ≲ Mhalo/M⊙ ≲ 1012.5). When compared to DM-only simulations, the NIHAO haloes have similar shapes at the virial radius, Rvir, but are substantially rounder inside ≈0.1Rvir. In NIHAO simulations, c/a increases with halo mass and integrated star formation efficiency, reaching ˜0.8 at the Milky Way mass (compared to 0.5 in DM-only), providing a plausible solution to the long-standing conflict between observations and DM-only simulations. The radial profile of the phase-space Q parameter (ρ/σ3) is best fit with a single power law in DM-only simulations, but shows a flattening within ≈0.1Rvir for NIHAO for total masses M > 1011 M⊙. Finally, the global velocity distribution of DM is similar in both DM-only and NIHAO simulations, but in the solar neighbourhood, NIHAO galaxies deviate substantially from Maxwellian. The distribution is more symmetric, roughly Gaussian, with a peak that shifts to higher velocities for Milky Way mass haloes. We provide the distribution parameters which can be used for predictions for direct DM detection experiments. Our results underline the ability of the galaxy formation processes to modify the properties of DM haloes.
Avakyan, R.M.; Sarkisyan, A.V.
1987-07-01
The properties of degenerate stellar matter in the region of nuclear densities are considered. The threshold of the transition of the electron-nucleus phase to the state of continuous nuclear matter is found.
Wanted! Nuclear Data for Dark Matter Astrophysics
Gondolo, P.
2014-06-01
Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.
Nguyen, Daniel Xuyen
This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...... the high rate of exit seen in the first years of exporting. Finally, when faced with multiple countries in which to export, some firms will choose to sequentially export in order to slowly learn more about its chances for success in untested markets....
Integrating Out Astrophysical Uncertainties
Fox, Patrick J; Weiner, Neal
2010-01-01
Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\\em integral} quantities, such as $g(v_{min})=\\int_{v_{min}} dv\\, f(v)/v $ and $\\int_{v_{thresh}} dv\\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\\, \\rm electrons/keV}$. For DAMA t...
Lokas, Ewa L; Mayer, Lucio
2012-01-01
In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) in the vicinity of the Milky Way (MW) whose origin is still a puzzle. Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10^9 M_sun dark matter (DM) halos. We explore a wide variety of inner density slopes \\rho \\propto r^{-\\alpha} for the dwarf DM halos, ranging from core-like (\\alpha = 0.2) to cuspy (\\alpha = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via the tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z~1, and with intermediate values for the halo inner density slopes (\\rho ...
Orbital State Uncertainty Realism
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten
Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R
2014-12-01
In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.
Uncertainty propagation within the UNEDF models
Haverinen, T
2016-01-01
The parameters of the nuclear energy density have to be adjusted to experimental data. As a result they carry certain uncertainty which then propagates to calculated values of observables. In the present work we quantify the statistical uncertainties on binding energies for three UNEDF Skyrme energy density functionals by taking advantage of the knowledge of the model parameter uncertainties. We find that the uncertainty of UNEDF models increases rapidly when going towards proton or neutron rich nuclei. We also investigate the impact of each model parameter on the total error budget.
Bovy, Jo
2013-01-01
We present and apply rigorous dynamical modeling with which we infer unprecedented constraints on the stellar and dark matter mass distribution within our Milky Way (MW), based on large sets of phase-space data on individual stars. Specifically, we model the dynamics of 16,269 G-type dwarfs from SEGUE, which sample 5 < R/kpc < 12 and 0.3 < |Z|/kpc < 3. We independently fit a parameterized MW potential and a three-integral, action-based distribution function (DF) to the phase-space data of 43 separate abundance-selected sub-populations (MAPs), accounting for the complex selection effects affecting the data. We robustly measure the total surface density within 1.1 kpc of the mid-plane to about 5% over the range 4.5< R/kpc < 9. Using metal-poor MAPs with small radial scale lengths as dynamical tracers probes 4.5 < R/kpc < 7, while MAPs with longer radial scale lengths sample 7 < R/kpc < 9. We measure the mass-weighted Galactic disk scale length to be R_d = 2.15+/-0.14 kpc, in agreem...
Wambach, Jochen
2013-01-01
In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.
Predicting the neutralino relic density in the MSSM more precisely
Harz, Julia; Klasen, Michael; Kovařík, Karol; Steppeler, Patrick
2016-01-01
The dark matter relic density being a powerful observable to constrain models of new physics, the recent experimental progress calls for more precise theoretical predictions. On the particle physics side, improvements are to be made in the calculation of the (co)annihilation cross-section of the dark matter particle. We present the project DM@NLO which aims at calculating the neutralino (co)annihilation cross-section in the MSSM including radiative corrections in QCD. In the present document, we briefly review selected results for different (co)annihilation processes. We then discuss the estimation of the associated theory uncertainty obtained by varying the renormalization scale. Finally, perspectives are discussed.
Pappadopulo, Duccio; Trevisan, Gabriele
2016-01-01
A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the Cannibal Dark Matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of Cannibal Dark Matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.
D Tomasi
Full Text Available Data-driven functional connectivity density (FCD mapping is being increasingly utilized to assess brain connectomics at rest in the healthy brain and its disruption in neuropsychiatric diseases with the underlying assumption that the spatiotemporal hub distribution is stationary. However, recent studies show that functional connectivity is highly dynamic. Here we study the temporal variability of the local FCD (lFCD at high spatiotemporal resolution (2-mm isotropic; 0.72s using a sliding-window approach and 'resting-state' datasets from 40 healthy subjects collected under the Human Connectome Project. Prominent functional connectivity hubs in visual and posterior parietal cortices had pronounced temporal changes in local FCD. These dynamic patterns in the strength of the lFCD hubs occurred in cortical gray matter with high sensitivity (up to 85% and specificity (> 85% and showed high reproducibility (up to 72% across sessions and high test-retest reliability (ICC(3,1 > 0.5. The temporal changes in lFCD predominantly occurred in medial occipitoparietal regions and were proportional to the strength of the connectivity hubs. The temporal variability of the lFCD was associated with the amplitude of the low frequency fluctuations (ALFF. Pure randomness did not account for the probability distribution of lFCD. Shannon entropy increased in proportion to the strength of the lFCD hubs suggesting high average flow of information per unit of time in the lFCD hubs, particularly in medial occipitoparietal regions. Thus, the higher dynamic range of the lFCD hubs is consistent with their role in the complex orchestration of interacting brain networks.
micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model
Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A.
2007-12-01
micrOMEGAs2.0.7 is a code which calculates the relic density of a stable massive particle in an arbitrary model. The underlying assumption is that there is a conservation law like R-parity in supersymmetry which guarantees the stability of the lightest odd particle. The new physics model must be incorporated in the notation of CalcHEP, a package for the automatic generation of squared matrix elements. Once this is done, all annihilation and coannihilation channels are included automatically in any model. Cross-sections at v=0, relevant for indirect detection of dark matter, are also computed automatically. The package includes three sample models: the minimal supersymmetric standard model (MSSM), the MSSM with complex phases and the NMSSM. Extension to other models, including non supersymmetric models, is described. Program summaryTitle of program:micrOMEGAs2.0.7 Catalogue identifier:ADQR_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQR_v2_1.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:216 529 No. of bytes in distributed program, including test data, etc.:1 848 816 Distribution format:tar.gz Programming language used:C and Fortran Computer:PC, Alpha, Mac, Sun Operating system:UNIX (Linux, OSF1, SunOS, Darwin, Cygwin) RAM:17 MB depending on the number of processes required Classification:1.9, 11.6 Catalogue identifier of previous version:ADQR_v2_0 Journal version of previous version:Comput. Phys. Comm. 176 (2007) 367 Does the new version supersede the previous version?:Yes Nature of problem:Calculation of the relic density of the lightest stable particle in a generic new model of particle physics. Solution method:In numerically solving the evolution equation for the density of dark matter, relativistic formulae for the thermal average are used. All tree
Ilieva, Stoyanka
2008-07-01
In the current experiment, the differential cross sections for proton elastic scattering on the isotopes {sup 7,9,10,11,12,14}Be and {sup 8}B were measured. As results from the experiment, the absolute differential cross sections d{sigma}/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p-{sup 12}Be, p-{sup 14}Be and p-{sup 8}B scattering at low t (t{<=}0.05(GeV/c){sup 2}) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11{+-}0.04{+-}0.13 fm. In the case of the {sup 12}Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82{+-}0.03{+-}0.12 fm was determined. An interesting result is that the free {sup 12}Be nucleus behaves differently from the core of {sup 14}Be and is much more extended than it. Preliminary experimental results for the isotope {sup 8}B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60{+-}0.02{+-}0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)
30d头低位卧床对人脑灰质密度的影响%Effects of 30 d Head-down Bed Rest on Density of Human Brain Grey Matter
顾正章; 金真; 曾亚伟; 朱磊; 李科; 张磊; 范勇
2012-01-01
Objective To investigate the effect of head-down bed rest( HDBR) on density of human brain grey matter . Methods Fourteen healthy male volunteers underwent - 6° 30 d HDBR simulated microgravity. High-resolution brain anatomical imaging data were collected with a 3.0 T superconducting MR imaging system before and after HDBR. With voxel-based morphometry (VBM) module of analysis software package SPM8, the pre- and post-HDBR image data of density of whole brain grey matter were calculated and compared. Results After HDBR, the density of grey matter was decreased significantly in the bilateral thalamus, bilateral occipital lobe and right inferior parietal lobule ( P < 0. 005 ). Conclusion HDBR simulated microgravity may cause density changes in brain grey matter of normal adults.%目的 探讨头低位卧床(head-down bed rest,HDBR)对人脑灰质密度的影响.方法 14名男性健康志愿者,进行为期30 d的-6°头低位模拟微重力卧床实验.使用3.0T超导MR成像系统采集卧床前后的高分辨率全脑解剖成像数据,用SPM8软件进行基于体素的形态学分析(VBM),比较志愿者卧床前后的脑灰质密度变化.结果 卧床后志愿者双侧丘脑、双侧枕叶、右侧顶下小叶的灰质密度减少(P＜0.005).结论 模拟微重力环境可致正常成年人脑灰质密度发生改变.
Neutron star radii and crusts: Uncertainties and unified equations of state
Fortin, M.; Providência, C.; Raduta, Ad. R.; Gulminelli, F.; Zdunik, J. L.; Haensel, P.; Bejger, M.
2016-09-01
The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large as ˜30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically consistent matchings between the core and the crust are formulated and their consequences examined. A large set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of state including a transition to hyperonic matter at high density are presented. All these equations of state have in common the property of describing a 2 M⊙ star and of being causal within stable neutron stars. Spans of ˜3 and ˜4 km are obtained for the radius of, respectively, 1.0 M⊙ and 2.0 M⊙ stars. Applying a set of nine further constraints from experiment and ab initio calculations the uncertainty is reduced to ˜1 and 2 km, respectively. These residual uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained is shown to be the symmetry energy slope L . Indeed, this parameter exhibits a linear correlation with the stellar radius, which is particularly clear for small mass stars around 1.0 M⊙ . The other equation-of-state parameters do not show clear correlations with the radius, within the present uncertainties. Potential constraints on L , the neutron star radius, and the equation of
Benedetta Toselli
2017-08-01
Full Text Available IntroductionDiffusion-weighted magnetic resonance imaging (DW-MRI allows noninvasive investigation of brain structure in vivo. Diffusion tensor imaging (DTI is a frequently used application of DW-MRI that assumes a single main diffusion direction per voxel, and is therefore not well suited for reconstructing crossing fiber tracts. Among the solutions developed to overcome this problem, constrained spherical deconvolution with probabilistic tractography (CSD-PT has provided superior quality results in clinical settings on adult subjects; however, it requires particular acquisition parameters and long sequences, which may limit clinical usage in the pediatric age group. The aim of this work was to compare the results of DTI with those of track density imaging (TDI maps and CSD-PT on data from neonates and children, acquired with low angular resolution and low b-value diffusion sequences commonly used in pediatric clinical MRI examinations.Materials and methodsWe analyzed DW-MRI studies of 50 children (eight neonates aged 3–28 days, 20 infants aged 1–8 months, and 22 children aged 2–17 years acquired on a 1.5 T Philips scanner using 34 gradient directions and a b-value of 1,000 s/mm2. Other sequence parameters included 60 axial slices; acquisition matrix, 128 × 128; average scan time, 5:34 min; voxel size, 1.75 mm × 1.75 mm × 2 mm; one b = 0 image. For each subject, we computed principal eigenvector (EV maps and directionally encoded color TDI maps (DEC-TDI maps from whole-brain tractograms obtained with CSD-PT; the cerebellar-thalamic, corticopontocerebellar, and corticospinal tracts were reconstructed using both CSD-PT and DTI. Results were compared by two neuroradiologists using a 5-point qualitative score.ResultsThe DEC-TDI maps obtained presented higher anatomical detail than EV maps, as assessed by visual inspection. In all subjects, white matter (WM tracts were successfully reconstructed using both
Verification of uncertainty budgets
Heydorn, Kaj; Madsen, B.S.
2005-01-01
The quality of analytical results is expressed by their uncertainty, as it is estimated on the basis of an uncertainty budget; little effort is, however, often spent on ascertaining the quality of the uncertainty budget. The uncertainty budget is based on circumstantial or historical data, and th...
Many-body forces, isospin asymmetry and dense hyperonic matter
Gomes, R O; Schramm, S; Vascconcellos, C A Z
2015-01-01
The equation of state (EoS) of asymmetric nuclear matter at high densities is a key topic for the description of matter inside neutron stars. The determination of the properties of asymmetric nuclear matter, such as the symmetry energy ($a_{sym}$) and the slope of the symmetry energy ($L_0$) at saturation density, has been exaustively studied in order to better constrain the nuclear matter EoS. However, differently from symmetric matter properties that are reasonably constrained, the symmetry energy and its slope still large uncertainties in their experimental values. Regarding this subject, some studies point towards small values of the slope of the symmetry energy, while others suggest rather higher values. Such a lack of agreement raised a certain debate in the scientific community. In this paper, we aim to analyse the role of these properties on the behavior of asymmetric hyperonic matter. Using the formalism presented in Ref. (R.O. Gomes et al 2014}, which considers many-body forces contributions in the ...
Combustion of nuclear matter into strange matter
Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))
1994-11-15
We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.
Uncertainties in Site Amplification Estimation
Cramer, C. H.; Bonilla, F.; Hartzell, S.
2004-12-01
Typically geophysical profiles (layer thickness, velocity, density, Q) and dynamic soil properties (modulus and damping versus strain curves) are used with appropriate input ground motions in a soil response computer code to estimate site amplification. Uncertainties in observations can be used to generate a distribution of possible site amplifications. The biggest sources of uncertainty in site amplifications estimates are the uncertainties in (1) input ground motions, (2) shear-wave velocities (Vs), (3) dynamic soil properties, (4) soil response code used, and (5) dynamic pore pressure effects. A study of site amplification was conducted for the 1 km thick Mississippi embayment sediments beneath Memphis, Tennessee (see USGS OFR 04-1294 on the web). In this study, the first three sources of uncertainty resulted in a combined coefficient of variation of 10 to 60 percent. The choice of soil response computer program can lead to uncertainties in median estimates of +/- 50 percent. Dynamic pore pressure effects due to the passing of seismic waves in saturated soft sediments are normally not considered in site-amplification studies and can contribute further large uncertainties in site amplification estimates. The effects may range from dilatancy and high-frequency amplification (such as observed at some sites during the 1993 Kushiro-Oki, Japan and 2001 Nisqually, Washington earthquakes) or general soil failure and deamplification of ground motions (such as observed at Treasure Island during the 1989 Loma Prieta, California earthquake). Examples of two case studies using geotechnical data for downhole arrays in Kushiro, Japan and the Wildlife Refuge, California using one dynamic code, NOAH, will be presented as examples of modeling uncertainties associated with these effects. Additionally, an example of inversion for estimates of in-situ dilatancy-related geotechnical modeling parameters will be presented for the Kushiro, Japan site.
Uncertainty Quantification in Numerical Aerodynamics
Litvinenko, Alexander
2017-05-16
We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.
Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada.
James, Scott C; Doherty, John E; Eddebbarh, Al-Aziz
2009-01-01
The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the United States' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncertainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This article applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. Copyright © 2009 Authors(s). Journal Compilation © 2009 National Ground Water Association.
Antideuterons from supersymmetric dark matter
Donato, F; Maurin, D
2007-01-01
We calculate the antideuteron flux expected from dark matter annihilation in the galactic halo. The propagation is treated in a full 2-D propagation model consistent with the results obtained from the propagation of B/C and other galactic species. We discuss the potentials of this indirect dark matter detection means, with special emphasis on the possible sources of uncertainties affecting future measurements
Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao
2016-11-18
We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.
Some uncertainties of neutrino oscillation effect in the NO$\
Kolupaeva, Lyudmila D; Petrova, Olga N; Shandrov, Igor M
2016-01-01
Uncertainties related to the effect of neutrino coherent forward scattering in Earth's matter (MSW mechanism) and with the cross sections of quasi-elastic neutrino scattering on nuclear targets of the NO$\
A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty
Chavez, Gregory M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC FREDERICKSBURG; Ross, Timothy J [UNM
2010-10-07
Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.
Unified Description of Dark Energy and Dark Matter
Petry, Walter
2008-01-01
Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Harz, Julia; Klasen, Michael; Kovařík, Karol; Steppeler, Patrick
2015-01-01
The latest Planck data allow one to determine the dark matter relic density with previously unparalleled precision. In order to achieve a comparable precision on the theory side, we have calculated the full $\\mathcal{O}(\\alpha_s)$ corrections to the most relevant annihilation and coannihilation processes for relic density calculations within the Minimal Supersymmetric Standard Model (MSSM). The interplay of these processes is discussed. The impact of the radiative corrections on the resulting relic density is found to be larger than the experimental uncertainty of the Planck data.
Nanoparticles: Uncertainty Risk Analysis
Grieger, Khara Deanne; Hansen, Steffen Foss; Baun, Anders
2012-01-01
Scientific uncertainty plays a major role in assessing the potential environmental risks of nanoparticles. Moreover, there is uncertainty within fundamental data and information regarding the potential environmental and health risks of nanoparticles, hampering risk assessments based on standard a...
Investments in technology subject to uncertainty. Analysis and policy
Pedersen, Jørgen Lindgaard
1997-01-01
Investments in technology are today of such a magnitude that it matters. In the paper there are three important questions. First on the question in which sense technological uncertainty can be said to be a problem. Second on strategies for diminishing technological uncertainties. Three on policy...
Investments in technology subject to uncertainty. Analysis and policy
Pedersen, Jørgen Lindgaard
1997-01-01
Investments in technology are today of such a magnitude that it matters. In the paper there are three important questions. First on the question in which sense technological uncertainty can be said to be a problem. Second on strategies for diminishing technological uncertainties. Three on policy...
The dark matter annihilation boost from low-temperature reheating
Erickcek, Adrienne L.
2015-11-01
The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.
Andres, T.H
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Enabling Forbidden Dark Matter
Cline, James; Liu, Hongwan; Slatyer, Tracy; Xue, Wei
2017-01-01
The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, $3 \\to 2$ annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the $3\\to 2$ process is allowed; we call this scenario "Not-Forbidden Dark Matter". We illustrate this mechanism for a vector portal dark matter model, showing that fo...
Lacroix, Denis; Boulet, Antoine; Grasso, Marcella; Yang, C.-J.
2017-05-01
We further progress along the line of Ref. [D. Lacroix, Phys. Rev. A 94, 043614 (2016), 10.1103/PhysRevA.94.043614] where a functional for Fermi systems with anomalously large s -wave scattering length as was proposed that has no free parameters. The functional is designed to correctly reproduce the unitary limit in Fermi gases together with the leading-order contributions in the s - and p -wave channels at low density. The functional is shown to be predictive up to densities ˜0.01 fm-3 that is much higher densities compared to the Lee-Yang functional, valid for ρ bare interaction are strongly renormalized by medium effects. As a consequence, some of the scales at play around saturation are dominated by the unitary gas properties and not directly by low-energy constants. For instance, we show that the scale in the s -wave channel around saturation is proportional to the so-called Bertsch parameter ξ0 and becomes independent of as. We also point out that these scales are of the same order of magnitude than those empirically obtained in the Skyrme energy density functional. We finally propose a slight modification of the functional such that it becomes accurate up to the saturation density ρ ≃0.16 fm-3.
New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes
Lopes, José
2016-01-01
We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as Ice- Cube and Super-Kamiokande, on the Dark Matter-nucleon scattering cross-section, for a general model of Dark Matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the Dark Matter abundance is numerically solved satisfying the Dark Matter density measured from the Cosmic Microwave Background (CMB). We show that for lower cross-sections and higher masses, the Dark Matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from Dark Matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating a maximum of 20 % depending on the annihilation channel.
New Limits on Thermally Annihilating Dark Matter from Neutrino Telescopes
Lopes, J.; Lopes, I.
2016-08-01
We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as IceCube and Super-Kamiokande, on the dark matter-nucleon scattering cross-section, for a general model of dark matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the dark matter abundance is numerically solved, satisfying the dark matter density measured from the cosmic microwave background. We show that for lower cross-sections and higher masses, the dark matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section that are one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from dark matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating by a maximum of 20% depending on the annihilation channel.
Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud
Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi
2014-01-01
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.
Trautmann, Wolfgang; Russotto, Paolo
2016-01-01
The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...
Einasto, Jaan
2013-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...
Properties of nuclear matter from macroscopic-microscopic mass formulas
Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun
2015-12-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Serpico, Pasquale D
2010-01-01
A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particle. By varying within their respective errors astrophysical parameters such as the escape velocity and the velo...
Heisenberg's uncertainty principle
Busch, Paul; Heinonen, Teiko; Lahti, Pekka
2007-01-01
Heisenberg's uncertainty principle is usually taken to express a limitation of operational possibilities imposed by quantum mechanics. Here we demonstrate that the full content of this principle also includes its positive role as a condition ensuring that mutually exclusive experimental options can be reconciled if an appropriate trade-off is accepted. The uncertainty principle is shown to appear in three manifestations, in the form of uncertainty relations: for the widths of the position and...
Uncertainty in artificial intelligence
Kanal, LN
1986-01-01
How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
[Ethics, empiricism and uncertainty].
Porz, R; Zimmermann, H; Exadaktylos, A K
2011-01-01
Accidents can lead to difficult boundary situations. Such situations often take place in the emergency units. The medical team thus often and inevitably faces professional uncertainty in their decision-making. It is essential to communicate these uncertainties within the medical team, instead of downplaying or overriding existential hurdles in decision-making. Acknowledging uncertainties might lead to alert and prudent decisions. Thus uncertainty can have ethical value in treatment or withdrawal of treatment. It does not need to be covered in evidence-based arguments, especially as some singular situations of individual tragedies cannot be grasped in terms of evidence-based medicine. © Georg Thieme Verlag KG Stuttgart · New York.
Relating confidence to measured information uncertainty in qualitative reasoning
Chavez, Gregory M [Los Alamos National Laboratory; Zerkle, David K [Los Alamos National Laboratory; Key, Brian P [Los Alamos National Laboratory; Shevitz, Daniel W [Los Alamos National Laboratory
2010-10-07
Qualitative reasoning makes use of qualitative assessments provided by subject matter experts to model factors such as security risk. Confidence in a result is important and useful when comparing competing results. Quantifying the confidence in an evidential reasoning result must be consistent and based on the available information. A novel method is proposed to relate confidence to the available information uncertainty in the result using fuzzy sets. Information uncertainty can be quantified through measures of non-specificity and conflict. Fuzzy values for confidence are established from information uncertainty values that lie between the measured minimum and maximum information uncertainty values.
Quantised inertia from relativity and the uncertainty principle
McCulloch, M E
2016-01-01
It is shown here that if we assume that what is conserved in nature is not simply mass-energy, but rather mass-energy plus the energy uncertainty of the uncertainty principle, and if we also assume that position uncertainty is reduced by the formation of relativistic horizons, then the resulting increase of energy uncertainty is close to that needed for a new model for inertial mass (MiHsC, quantised inertia) which has been shown to predict galaxy rotation without dark matter and cosmic acceleration without dark energy. The same principle can also be used to model the inverse square law of gravity, and predicts the mass of the electron.
Uncertainty Relation and Inseparability Criterion
Goswami, Ashutosh K.; Panigrahi, Prasanta K.
2016-11-01
We investigate the Peres-Horodecki positive partial transpose criterion in the context of conserved quantities and derive a condition of inseparability for a composite bipartite system depending only on the dimensions of its subsystems, which leads to a bi-linear entanglement witness for the two qubit system. A separability inequality using generalized Schrodinger-Robertson uncertainty relation taking suitable operators, has been derived, which proves to be stronger than the bi-linear entanglement witness operator. In the case of mixed density matrices, it identically distinguishes the separable and non separable Werner states.
Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin
2017-06-01
This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.
Momeni, D
2009-01-01
The main goal of this paper is deriving Density of states $g(\\epsilon)$ (degeneracy function) per volume for an EOS $p=-\\rho$. Using a local quantum statistics that acquaintance from quantum field theory in curved spacetime, we write a simple expression for grand canonical thermodynamic potential density for a given Bose field which is coupled non minimally to gravity in a curved spacetime with no boundary (or equivalently with equilibrium at non zero temperature $ T=1/\\beta$). This assumption implies a static metric, and our analysis may not be also applied to an expanding FRW universe in which case all the thermodynamical properties of system such as temperature and chemical potential are time dependent functions and can be regard as quantities for an disequilibrium system. We concluded that thermodynamical quantities such as pressure and energy density are simple functions of Temperature, fugacity, curvature and mass of Bosons. Also we found that the corresponding entropy is negative.As we note that this a...
Van Nooyen, R.R.P.; Hrachowitz, M.; Kolechkina, A.G.
2014-01-01
Even without uncertainty about the model structure or parameters, the output of a hydrological model run still contains several sources of uncertainty. These are: measurement errors affecting the input, the transition from continuous time and space to discrete time and space, which causes loss of in
Capel, H.W.; Cramer, J.S.; Estevez-Uscanga, O.
1995-01-01
'Uncertainty and chance' is a subject with a broad span, in that there is no academic discipline or walk of life that is not beset by uncertainty and chance. In this book a range of approaches is represented by authors from varied disciplines: natural sciences, mathematics, social sciences and medic
Guide for Uncertainty Communication
Wardekker, J.A.|info:eu-repo/dai/nl/306644398; Kloprogge, P.|info:eu-repo/dai/nl/306644312; Petersen, A.C.; Janssen, P.H.M.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489
2013-01-01
Dealing with uncertainty, in terms of analysis and communication, is an important and distinct topic for PBL Netherlands Environmental Assessment Agency. Without paying adequate attention to the role and implications of uncertainty, research and assessment results may be of limited value and could
Computing with Epistemic Uncertainty
2015-01-01
modified the input uncertainties in any way. And by avoiding the need for simulation, various assumptions and selection of specific sampling...strategies that may affect results are also avoided . According with the Principle of Maximum Uncertainty , epistemic intervals represent the highest input...
Liu Baoding [Tsinghua Univ., Beijing (China). Uncertainty Theory Lab.
2007-07-01
Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, and countable subadditivity axioms. The goal of uncertainty theory is to study the behavior of uncertain phenomena such as fuzziness and randomness. The main topics include probability theory, credibility theory, and chance theory. For this new edition the entire text has been totally rewritten. More importantly, the chapters on chance theory and uncertainty theory are completely new. This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, and management science will find this work a stimulating and useful reference. (orig.)
Economic uncertainty and econophysics
Schinckus, Christophe
2009-10-01
The objective of this paper is to provide a methodological link between econophysics and economics. I will study a key notion of both fields: uncertainty and the ways of thinking about it developed by the two disciplines. After having presented the main economic theories of uncertainty (provided by Knight, Keynes and Hayek), I show how this notion is paradoxically excluded from the economic field. In economics, uncertainty is totally reduced by an a priori Gaussian framework-in contrast to econophysics, which does not use a priori models because it works directly on data. Uncertainty is then not shaped by a specific model, and is partially and temporally reduced as models improve. This way of thinking about uncertainty has echoes in the economic literature. By presenting econophysics as a Knightian method, and a complementary approach to a Hayekian framework, this paper shows that econophysics can be methodologically justified from an economic point of view.
Physical Uncertainty Bounds (PUB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Measurement uncertainty and probability
Willink, Robin
2013-01-01
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
Sciacchitano, Andrea; Wieneke, Bernhard
2016-08-01
This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires the knowledge of the spatial correlation between the error of the x and y particle image displacement, which depends upon the measurement spatial resolution. The uncertainty of statistical quantities is often dominated by the random uncertainty due to the finite sample size and decreases with the square root of the effective number of independent samples. Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation formulae. Furthermore, three experimental assessments are carried out. In the first experiment, a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the vorticity is compared with the actual vorticity error root-mean-square, with differences between the two quantities within 5-10% for different interrogation window sizes and overlap factors. A turbulent jet flow is investigated in the second experimental assessment. The reference velocity, which is used to compute the reference value of the instantaneous flow properties of interest, is obtained with an auxiliary PIV system, which features a higher dynamic range than the measurement system. Finally, the uncertainty quantification of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison between estimated uncertainty and actual error demonstrates the accuracy of the proposed uncertainty propagation methodology.
Marine reserves: size and age do matter.
Claudet, Joachim; Osenberg, Craig W; Benedetti-Cecchi, Lisandro; Domenici, Paolo; García-Charton, José-Antonio; Pérez-Ruzafa, Angel; Badalamenti, Fabio; Bayle-Sempere, Just; Brito, Alberto; Bulleri, Fabio; Culioli, Jean-Michel; Dimech, Mark; Falcón, Jesús M; Guala, Ivan; Milazzo, Marco; Sánchez-Meca, Julio; Somerfield, Paul J; Stobart, Ben; Vandeperre, Frédéric; Valle, Carlos; Planes, Serge
2008-05-01
Marine reserves are widely used throughout the world to prevent overfishing and conserve biodiversity, but uncertainties remain about their optimal design. The effects of marine reserves are heterogeneous. Despite theoretical findings, empirical studies have previously found no effect of size on the effectiveness of marine reserves in protecting commercial fish stocks. Using 58 datasets from 19 European marine reserves, we show that reserve size and age do matter: Increasing the size of the no-take zone increases the density of commercial fishes within the reserve compared with outside; whereas the size of the buffer zone has the opposite effect. Moreover, positive effects of marine reserve on commercial fish species and species richness are linked to the time elapsed since the establishment of the protection scheme. The reserve size-dependency of the response to protection has strong implications for the spatial management of coastal areas because marine reserves are used for spatial zoning.
Energy Density in Quark-Gluon Plasma
马忠彪; 苗洪; 高崇寿
2003-01-01
We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,
2012-01-01
What can we hope for from studies of information related to energy/matter (as it appears for us in space/time)? Information is a concept known for its ambiguity in both common, everyday use and in its specific technical applications throughout different fields of research and technology. However, most people are unaware that matter/energy today is also a concept surrounded by a disquieting uncertainty. What for Democritus were building blocks of the whole universe appear today to constitute o...
Dorso, C O; Nichols, J I; López, J A
2012-01-01
We study the behavior of cold nuclear matter near saturation density (\\rho 0) and very low temperature using classical molecular dynamics. We used three different (classical) nuclear interaction models that yield `medium' or `stiff' compressibilities. For high densities and for every model the ground state is a classical crystalline solid, but each one with a different structure. At subsaturation densities, we found that for every model the transition from uniform (crystal) to non-uniform matter occurs at \\rho ~ 0.12 fm^(-3) = 0.75 \\rho 0. Surprisingly, at the non-uniform phase, the three models produce `pasta-like' structures as those allegedly present in neutron star matter but without the long-range Coulomb interaction and with different length scales.
Direct versus indirect detection of supersymmetric dark matter
NONE
2003-07-01
This document gathers the slides that were presented during the workshop 'direct versus indirect detection of supersymmetric dark matter'(about 30 contributions). This workshop intended to bring together people from the particle theory community, astrophysicists and cosmologists, as well as experimentalists involved in the detection of dark matter. The aim is to generate a discussion about current and future strategies for detection of SUSY dark matter (with focus, but not exclusively, on neutralinos). Complementarities between accelerator, direct and indirect searches as well as a comparison between the uncertainties in direct and indirect searches of dark matter, are supposed to be discussed. Among the issues which will be addressed are: -) the crucial questions related to the structure of galaxies (local dark matter density, clumping, anomalous velocity distributions, etc.) ; -) the possibilities offered by the present and future experimental facilities for direct and indirect (photon, neutrino) searches; -) the potential for the discovery of SUSY at LHC and beyond; and -) the parameterization of the SUSY breaking models beyond the minimal versions.
Interacting Quark Matter Equation of State for Compact Stars
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
INTERACTING QUARK MATTER EQUATION OF STATE FOR COMPACT STARS
Fraga, Eduardo S. [Institute for Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Kurkela, Aleksi [Theory Division, PH-TH, Case C01600, CERN, CH-1211 Geneva 23 (Switzerland); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)
2014-02-01
Lattice quantum chromodynamics (QCD) studies of the thermodynamics of hot quark-gluon plasma demonstrate the importance of accounting for the interactions of quarks and gluons if one wants to investigate the phase structure of strongly interacting matter. Motivated by this observation and using state-of-the-art results from perturbative QCD, we construct a simple, effective equation of state (EOS) for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an EOS that is equally straightforward to use. We also demonstrate that, at moderate densities, our EOS can be made to smoothly connect to hadronic EOSs, with the two exhibiting very similar behavior near the matching region. The resulting hybrid stars are seen to have masses similar to those predicted by the purely nucleonic EOSs.
The last refuge of mixed wino-Higgsino dark matter
Beneke, Martin; Hryczuk, Andrzej; Recksiegel, Stefan; Ruiz-Femenia, Pedro
2016-01-01
We delineate the allowed parameter and mass range for a wino-like dark matter particle containing some Higgsino admixture in the MSSM by analysing the constraints from diffuse gamma-rays from the dwarf spheroidal galaxies, galactic cosmic rays, direct detection and cosmic microwave background anisotropies. A complete calculation of the Sommerfeld effect for the mixed-neutralino case is performed. We find that the combination of direct and indirect searches poses significant restrictions on the thermally produced wino-Higgsino dark matter with correct relic density. For $\\mu>0$ nearly the entire parameter space considered is excluded, while for $\\mu<0$ a substantial region is still allowed, provided conservative assumptions on astrophysical uncertainties are adopted.
Modal decomposition of a propagating matter wave via electron ptychography
Cao, S.; Kok, P.; Li, P.; Maiden, A. M.; Rodenburg, J. M.
2016-12-01
We employ ptychography, a phase-retrieval imaging technique, to show experimentally that a partially coherent high-energy matter (electron) wave emanating from an extended source can be decomposed into a set of mutually independent modes of minimal rank. Partial coherence significantly determines the optical transfer properties of an electron microscope and so there has been much work on this subject. However, previous studies have employed forms of interferometry to determine spatial coherence between discrete points in the wave field. Here we use the density matrix to derive a formal quantum mechanical description of electron ptychography and use it to measure a full description of the spatial coherence of a propagating matter wave field, at least within the fundamental uncertainties of the measurements we can obtain.
Baudis, Laura
2015-01-01
One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultr...
Incompressibility of strange matter
Sinha, M N; Dey, J; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Bagchi, Manjari; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha
2002-01-01
Strange stars calculated from a realistic equation of state (EOS) show compact objects in the mass radius curve, when they are solved for gravitational fields via TOV equation. Many of the observed stars seem to fit in with this kind of compactness irrespective of whether they are X-ray pulsars, bursters or soft $\\gamma$ repeaters or radio pulsars. Calculated incompressibility of this strange matter shows continuity with that of nuclear matter. This is important in the cosmic separation of phase scenario. We compare our calculations of incompressibility with that of a nuclear matter EOS. This EOS has a continuous transition to ud-matter at about five times normal density. From a look at the consequent velocity of sound it is found that the transition to ud-matter seems necessary.
Bringing isolated dark matter out of isolation: Late-time reheating and indirect detection
Erickcek, Adrienne L.; Sinha, Kuver; Watson, Scott
2016-09-01
In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In nonthermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to big bang nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the early matter-dominated era (EMDE) grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter (DM) thermally and kinetically decouples during the EMDE. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate may result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated binos, which lie under the neutrino floor, can account for the dark matter relic density and decouple from the standard model early enough to preserve the enhanced small-scale inhomogeneity generated during the EMDE. If early forming microhalos survive as subhalos within larger microhalos, the resulting boost to the annihilation rate for bino dark matter near the pseudoscalar resonance exceeds the upper limit established by Fermi-LAT's observations of dwarf spheroidal galaxies. These DM candidates motivate the N -body simulations required to eliminate uncertainties in the microhalos' internal structure by exemplifying how an EMDE can enable Fermi-LAT to probe isolated dark matter.
Optimal Universal Uncertainty Relations
Li, Tao; Xiao, Yunlong; Ma, Teng; Fei, Shao-Ming; Jing, Naihuan; Li-Jost, Xianqing; Wang, Zhi-Xi
2016-01-01
We study universal uncertainty relations and present a method called joint probability distribution diagram to improve the majorization bounds constructed independently in [Phys. Rev. Lett. 111, 230401 (2013)] and [J. Phys. A. 46, 272002 (2013)]. The results give rise to state independent uncertainty relations satisfied by any nonnegative Schur-concave functions. On the other hand, a remarkable recent result of entropic uncertainty relation is the direct-sum majorization relation. In this paper, we illustrate our bounds by showing how they provide a complement to that in [Phys. Rev. A. 89, 052115 (2014)]. PMID:27775010
Denisov, O. B.; Orlov, N. Yu. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2011-09-15
The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.
Hogenkamp, P S
2014-09-01
Sensory properties guide the amount that people eat. In particular, food texture plays an important role in a food's 'expected satiation', which in turn affects the food-related decision making process. One hypothesis is that incongruent pairing of a textural cue with a post-ingestive outcome compromises this process, leading to poor energy compensation. Several studies examined the effect of both energy density and sensory characteristics (i.e. increased creaminess and thickness) on expectations, subjective appetite and food intake. To add to this literature, a re-analysis of data assessed whether the effect of sensory-nutrient pairings on energy intake compensation persisted after repeated exposure to a food. In this cross-over design, 27 participants consumed two preloads with 'congruent' (low-energy/liquid; high-energy/semi-solid) and two preloads with 'incongruent' (low-energy/semi-solid; high-energy/liquid) texture-nutrient combinations for nine subsequent meals, during which ad libitum intake was measured. Intake at first exposure did not differ between the low-energy (280±150kcal) and high-energy preloads (292±183kcal) in the incongruent conditions. By contrast, it was greater after the low-energy (332±203kcal) than after the high-energy (236±132kcal) preload in the congruent conditions (energy∗incongruent/congruent, p=0.04). Post-exposure, this pattern changed: intake depended on the energy density of the preloads in all conditions, and was greater after low-energy preloads (day∗energy∗incongruent/congruent-interaction for breakfast: p=0.02). Thus, manipulating the sensory properties of a food influenced energy compensation and meal size, but only at initial exposure. Repeated exposure 'corrected' the initial lack of compensation observed in conditions with incongruent sensory-nutrient pairings.
Einasto, J.
2011-01-01
I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Properties of dark matter particles determine the structure of the cosmic web.
Uncertainty, rationality, and agency
Hoek, Wiebe van der
2006-01-01
Goes across 'classical' borderlines of disciplinesUnifies logic, game theory, and epistemics and studies them in an agent-settingCombines classical and novel approaches to uncertainty, rationality, and agency
Introduction to uncertainty quantification
Sullivan, T J
2015-01-01
Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation, and numerous application areas in science and engineering. This text provides a framework in which the main objectives of the field of uncertainty quantification are defined, and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favourite problems to understand their strengths and weaknesses, also making the text suitable as a self-study. This text is designed as an introduction to uncertainty quantification for senior undergraduate and graduate students with a mathematical or statistical back...
Menger, Fredric M
2010-09-01
It might come as a disappointment to some chemists, but just as there are uncertainties in physics and mathematics, there are some chemistry questions we may never know the answer to either, suggests Fredric M. Menger.
Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard
2017-04-01
Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, 1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction important for the OM stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of the OC associated with the aggregate size fractions 53 µm were positively correlated with basal respiration and the microbial biomass C. This suggests, in contrast to the topsoil, the easily decomposable OM to be distributed more homogeneously among fractions. Only the OC content of the relevant stabilization mechanisms. The results point toward similar OM stabilization mechanisms in the analysed forest top- and subsoils but
Lemaire, Maurice
2014-01-01
Science is a quest for certainty, but lack of certainty is the driving force behind all of its endeavors. This book, specifically, examines the uncertainty of technological and industrial science. Uncertainty and Mechanics studies the concepts of mechanical design in an uncertain setting and explains engineering techniques for inventing cost-effective products. Though it references practical applications, this is a book about ideas and potential advances in mechanical science.
Generalized uncertainty principles
Machluf, Ronny
2008-01-01
The phenomenon in the essence of classical uncertainty principles is well known since the thirties of the last century. We introduce a new phenomenon which is in the essence of a new notion that we introduce: "Generalized Uncertainty Principles". We show the relation between classical uncertainty principles and generalized uncertainty principles. We generalized "Landau-Pollak-Slepian" uncertainty principle. Our generalization relates the following two quantities and two scaling parameters: 1) The weighted time spreading $\\int_{-\\infty}^\\infty |f(x)|^2w_1(x)dx$, ($w_1(x)$ is a non-negative function). 2) The weighted frequency spreading $\\int_{-\\infty}^\\infty |\\hat{f}(\\omega)|^2w_2(\\omega)d\\omega$. 3) The time weight scale $a$, ${w_1}_a(x)=w_1(xa^{-1})$ and 4) The frequency weight scale $b$, ${w_2}_b(\\omega)=w_2(\\omega b^{-1})$. "Generalized Uncertainty Principle" is an inequality that summarizes the constraints on the relations between the two spreading quantities and two scaling parameters. For any two reason...
Rydberg matter: properties and decay
Manykin, Edward A.; Ojovan, Michael I.; Poluektov, Pavel P.
2006-03-01
Rydberg matter is a condensed excited state made of highly excited atoms. State of art of research in the field of Rydberg matter is briefly reviewed. Special attention is focused on the contribution of Russian and Swedish scientists' groups to the analysis of this problem. Most attention is concentrated on physical principles of pseudopotential method and density functional theory used to describe the Rydberg matter. The description of Rydberg matter as an excited state becomes viable after the formal replacement of excited atoms by ground state pseudoatoms. This procedure has been used to find parameters of Rydberg matter made of highly excited cesium atoms. Theoretical estimations conform to experimental data available.
Rota, S; Bel, J; Guzzo, L; Peacock, J A; Wilson, M J; Pezzotta, A; de la Torre, S; Garilli, B; Bolzonella, M; Scodeggio, M; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; Davidson, I; Franzetti, P; Fritz, A; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Mascagni, D; Małek, K; Marulli, F; Percival, W J; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Arnouts, S; Branchini, E; Coupon, J; De Lucia, G; Ilbert, O; Moscardini, L; Moutard, T
2016-01-01
We use the final catalogue of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to measure the power spectrum of the galaxy distribution at high redshift, presenting results that extend beyond $z=1$ for the first time. We apply an FFT technique to four independent sub-volumes comprising a total of $51,728$ galaxies at $0.6
Madan, L. M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
A combination of the variational method using special momentum conserving canonical transformations and the method of resummation of the infinite series of dominating terms in the low density limit is used to study a strongly interacting N particle system. Under the hypothesis that the excitation energy E{sub k} is convex and everywhere positive after the special canonical transformation minimising the average value of the energy has been performed, we have shown that the t-matrix obtained by the summation of the ascending ladders is free from all singularities. Some particular examples are studied in detail. (author) [French] Une combinaison de la methode variationnelle utilisant des transformations canoniques speciales conservant l'impulsion, et de la methode de resommation infinie des termes dominants a basse densite est utilisee pour etudier l'etat fondamental d'un systeme a N particules en interaction forte. Sous reserve de l'hypotnese que l'energie d'excitation E{sub k} est convexe et partout positive, nous avons demontre la regularite de la matrice t obtenue en resommant des echelles montantes une fois effectuee la transformation canonique speciale qui minimise la valeur moyenne de l'energie. Quelques exemples particuliers sont etudies en detail. (auteur)
Spin, localization and uncertainty of relativistic fermions
Céleri, Lucas C; Terno, Daniel R
2016-01-01
We describe relations between several relativistic spin observables and derive a Lorentz-invariant characteristic of a reduced spin density matrix. A relativistic position operator that satisfies all the properties of its non-relativistic analogue does not exist. Instead we propose two causality-preserving positive operator-valued measures (POVM) that are based on projections onto one-particle and antiparticle spaces, and on the normalized energy density. They predict identical expectation values for position. The variances differ by less than a quarter of the squared de Broglie wavelength and coincide in the non-relativistic limit. Since the resulting statistical moment operators are not canonical conjugates of momentum, the Heisenberg uncertainty relations need not hold. Indeed, the energy density POVM leads to a lower uncertainty. We reformulate the standard equations of the spin dynamics by explicitly considering the charge-independent acceleration, allowing a consistent treatment of backreaction and incl...
Functional renormalization group approach to neutron matter
Matthias Drews
2014-11-01
Full Text Available The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the functional renormalization group. The equation of state for pure neutron matter is studied and compared to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration transition for pure neutron matter is shifted to high densities, much beyond three times the density of normal nuclear matter.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
汤文进; 张晓军
2012-01-01
合成尿铅测定结果的不确定度及分析影响不确定度的因素.结果:(1)尿样中铅含量C=(118.8±8.2 )ng· mL-1；(2)最主要影响因素为标准工作曲线,其对不确定度的贡献达80.5％.结论:标准工作曲线对不确定度的贡献随着尿铅浓度的增大而减少.%The uncertainty of lead in urine was determined and influence factors were analyzed. The results: (l)The content of lead in urine C=(118.8±8.2)ng·mL-1;(2)The key influence factor was standard work curve, reached 80.5%. Conclusion: The effect of standard work curve reduced with lead in urine increased.
Inspiration of Heisenberg Uncertainty Principle to College Education
梁讯
2008-01-01
No matter how accurately one tried to measure the classical quantities of position and momentum, there would always be an uncertainty in the measurement.The Heisenberg Principle of Uncertainty is one of the most significant changes in our comprehension of the universe, it inspired people once again to think the unthinkable, and challenge the very foundations of subjects in both research and educational fields.
Angelo, Joseph A
2011-01-01
Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S
Axion dark matter, solitons, and the cusp-core problem
Marsh, David J E
2015-01-01
Self-gravitating bosonic fields can support stable and localised field configurations. For real fields, these solutions oscillate in time and are known as oscillatons. The density profile is static, and is soliton. Such solitons should be ubiquitous in models of axion dark matter, with the soliton characteristic mass and size depending on some inverse power of the axion mass. Stable configurations of non-relativistic axions are studied numerically using the Schr\\"{o}dinger-Poisson system. This method, and the resulting soliton density profiles, are reviewed. Using a scaling symmetry and the uncertainty principle, the core size of the soliton can be related to the central density and axion mass, $m_a$, in a universal way. Solitons have a constant central density due to pressure-support, unlike the cuspy profile of cold dark matter (CDM). One consequence of this fact is that solitons composed of ultra-light axions (ULAs) may resolve the `cusp-core' problem of CDM. In DM halos, thermodynamics will lead to a CDM-...
Indirect Searches of Dark Matter in Spacc
CHANG Jin; FAN Yizhong
2011-01-01
Dark matter （DM） is a form of matter necessary to account for gravitational effects observed in very large scale structures such as anomalies in the rotation of galaxies and the gravitational lensing of light by galaxy clusters that cannot be accounted for by the quantity of observed matter （Bertone et al. 2005）. In the standard cosmology model, dark matter, dark energy and normal matter constitute about 23%, 72% and 5% of the energy density of the universe,
Dark Matter Triggers of Supernovae
Graham, Peter W; Varela, Jaime
2015-01-01
The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to $1.25 M_{\\odot}$ rules out primordial black holes with masses $\\sim 10^{19}$ gm - $10^{20}$ gm as a dominant constituent of the local dark matter density. Black holes with masses as large as $10^{24}$ gm will be excluded if recent observations by the NuStar collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range $10^{20}$ gm - $10^{22}$ gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism p...
Network planning under uncertainties
Ho, Kwok Shing; Cheung, Kwok Wai
2008-11-01
One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a
Market uncertainty; Markedsusikkerhet
Doorman, Gerard; Holtan, Jon Anders; Mo, Birger; Groenli, Helle; Haaland, Magnar; Grinden, Bjoern
1997-04-10
In Norway, the project ``Market uncertainty`` has been in progress for over two years and resulted in increased skill in the use of the Grid System Operation Model. This report classifies some of the factors which lead to uncertainties in the electric power market. It has been examined whether these factors should be, or can be, modelled in the available simulation models. Some of the factors have been further considered and methods of modelling the associated uncertainties have been examined. It is concluded that (1) There is a need for automatic simulation of several scenarios in the model, and these scenarios should incorporate probability parameters, (2) At first it is most important that one can handle uncertainties in fuel prices and demand, (3) Market uncertainty which is due to irrational behaviour should be dealt with in a separate model. The difference between real and simulated prices should be analysed and modelled with a time series model, (4) Risk should be included in the Vansimtap model by way of feedback from simulations, (5) The marginal values of stored water as calculated by means of the various methods in use should be compared systematically. 9 refs., 16 figs., 5 tabs.
Interpreting uncertainty terms.
Holtgraves, Thomas
2014-08-01
Uncertainty terms (e.g., some, possible, good, etc.) are words that do not have a fixed referent and hence are relatively ambiguous. A model is proposed that specifies how, from the hearer's perspective, recognition of facework as a potential motive for the use of an uncertainty term results in a calibration of the intended meaning of that term. Four experiments are reported that examine the impact of face threat, and the variables that affect it (e.g., power), on the manner in which a variety of uncertainty terms (probability terms, quantifiers, frequency terms, etc.) are interpreted. Overall, the results demonstrate that increased face threat in a situation will result in a more negative interpretation of an utterance containing an uncertainty term. That the interpretation of so many different types of uncertainty terms is affected in the same way suggests the operation of a fundamental principle of language use, one with important implications for the communication of risk, subjective experience, and so on.
Asymmetric condensed dark matter
Aguirre, Anthony; Diez-Tejedor, Alberto
2016-04-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.
Balázs, Csaba
2015-01-01
In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but add...
Pion decay constants in dense skyrmion matter
Lee H.-J.
2010-10-01
Full Text Available According to the QCD, the hadronic matter can have various phases with matter density and temperature. In general, when there is phase transition in a matter, it is known that a symmetry in the matter changes. In case of the hadronic matter, the chiral symmetry in the matter is expected to be restored when the matter density (or temperature increases. The actual order parameter with respect to the chiral symmetry in the hadronic matter is known as the quark condensate from the QCD, but the pion decay constant, corresponding to the radius of the chiral circle, plays the role of the order parameter in an eﬀective ﬁeld theoretical approach to the QCD. In this paper, by using the skyrmion model which is an eﬀective theory to the QCD, we construct the skyrmion matter as a model of the hadronic matter (nuclear matter and calculate the pion decay constant in the matter. Because of presence of the matter, the pion decay constant is split into the two components, the temporal component and the spatial component. We discuss the phase transition in the skyrmion matter and behavior of the two components of the decay constant for massless pion with density of the skyrmion matter.
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
Hasse Jørgensen, Stina
2011-01-01
About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....
... Emergency Room? What Happens in the Operating Room? Memory Matters KidsHealth > For Kids > Memory Matters A A ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...
Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo
2016-04-01
Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The
Measurement uncertainty relations
Busch, Paul, E-mail: paul.busch@york.ac.uk [Department of Mathematics, University of York, York (United Kingdom); Lahti, Pekka, E-mail: pekka.lahti@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Werner, Reinhard F., E-mail: reinhard.werner@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität, Hannover (Germany)
2014-04-15
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
Sustainability and uncertainty
Jensen, Karsten Klint
2007-01-01
and infers prescriptions from this requirement. These two approaches may conflict, and in this conflict the top-down approach has the upper hand, ethically speaking. However, the implicit goal in the top-down approach of justice between generations needs to be refined in several dimensions. But even given...... a clarified ethical goal, disagreements can arise. At present we do not know what substitutions will be possible in the future. This uncertainty clearly affects the prescriptions that follow from the measure of sustainability. Consequently, decisions about how to make future agriculture sustainable...... are decisions under uncertainty. There might be different judgments on likelihoods; but even given some set of probabilities, there might be disagreement on the right level of precaution in face of the uncertainty....
SAGD optimization under uncertainty
Gossuin, J.; Naccache, P. [Schlumberger SIS, Abingdon (United Kingdom); Bailley, W.; Couet, B. [Schlumberger-Doll Research, Cambridge, MA, (United States)
2011-07-01
In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but this is a costly method and ways to make it more efficient are needed. Multiple methods have been developed to optimize the SAGD process but none of them explicitly considered uncertainty. This paper presents an optimization method in the presence of reservoir uncertainty. This process was tested on an SAGD model where three equi-probable geological models are possible. Preparatory steps were first performed to identify key variables and the optimization model was then proposed. The method was shown to be successful in handling a significant number of uncertainties, optimizing the SAGD process and preventing premature steam channels that can choke production. The optimization method presented herein was successfully applied to an SAGD process and was shown to provide better strategies than sensitivity analysis while handling more complex problems.
Rees, Martin J
2003-01-01
This short review was prepared as an introduction to the Royal Society's 'Dark Matter' conference. It addresses the embarrassing fact that 95% of the universe is unaccounted for. Favoured dark matter candidates are axions or weakly-interacting particles that have survived from the very early universe, but more exotic options cannot be excluded. Experimental searches are being made for the 'dark' particles but we have indirect clues to their nature too. Comparisons of data (from, eg, gravitational lensing) with numerical simulations of galaxy formation can constrain (eg) the particle velocities and collision cross sections. The mean cosmic density of dark matter (plus baryons) is now pinned down to be only about 30% of the critical density However, other recent evidence -- microwave background anisotropies, complemented by data on distant supernovae -- reveals that our universe actually is 'flat', and that its dominant ingredient (about 70% of the total mass-energy) is something quite unexpected -- 'dark energ...
Nuclear matter and electron scattering
Sick, I. [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)
1998-06-01
We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)
Isabel Cristina Ruiz
2005-04-01
Full Text Available This paper re-examines the effects of inflation and exchange rate uncertainty on real economic activity. The existent literatura has treated both issues as separate subject matters. It has emphasized either the issue of inflation uncertainty or exchange rate uncertainty on economic growth or on different measures of economic activity. This paper attempts dealing with both issues by analyzing the magnitudes and direction of the effect of both: inflation and exchange rate uncertainty on real economic activity. By introducing dummy variables, we control for monetary policy change (the change to inflation targeting and flexible exchange rate. By using a generalized autoregressive conditional variance (GARCH model of inflation and exchange rates, the conditional variances of the model’s forecast errors were extracted as measures of uncertainty. The results suggest that higher levels of inflation Granger cause more uncertainty and viceversa for the Colombian economy. Also, only inflation uncertainty matters for output by exerting a negative influence
Sensitivity and uncertainty analysis
Cacuci, Dan G; Navon, Ionel Michael
2005-01-01
As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable scientific tools. Sensitivity and Uncertainty Analysis. Volume I: Theory focused on the mathematical underpinnings of two important methods for such analyses: the Adjoint Sensitivity Analysis Procedure and the Global Adjoint Sensitivity Analysis Procedure. This volume concentrates on the practical aspects of performing these analyses for large-scale systems. The applications addressed include two-phase flow problems, a radiative c
Uncertainty in artificial intelligence
Levitt, TS; Lemmer, JF; Shachter, RD
1990-01-01
Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i
Commonplaces and social uncertainty
Lassen, Inger
2008-01-01
an example of risk discourse in which the use of commonplaces seems to be a central feature (Myers 2004: 81). My analyses support earlier findings that commonplaces serve important interactional purposes (Barton 1999) and that they are used for mitigating disagreement, for closing topics and for facilitating...... risk discourse (Myers 2005; 2007). In additional, however, I argue that commonplaces are used to mitigate feelings of insecurity caused by uncertainty and to negotiate new codes of moral conduct. Keywords: uncertainty, commonplaces, risk discourse, focus groups, appraisal...
Bahcall, Neta A
2015-10-06
Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.
Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D
2016-01-22
We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.
LIDian-qing; ZHANGSheng-kun
2004-01-01
The classical probability theory cannot effectively quantify the parameter uncertainty in probability of detection.Furthermore,the conventional data analytic method and expert judgment method fail to handle the problem of model uncertainty updating with the information from nondestructive inspection.To overcome these disadvantages,a Bayesian approach was proposed to quantify the parameter uncertainty in probability of detection.Furthermore,the formulae of the multiplication factors to measure the statistical uncertainties in the probability of detection following the Weibull distribution were derived.A Bayesian updating method was applied to compute the posterior probabilities of model weights and the posterior probability density functions of distribution parameters of probability of detection.A total probability model method was proposed to analyze the problem of multi-layered model uncertainty updating.This method was then applied to the problem of multilayered corrosion model uncertainty updating for ship structures.The results indicate that the proposed method is very effective in analyzing the problem of multi-layered model uncertainty updating.
Lectures on Dark Matter Physics
Lisanti, Mariangela
2016-01-01
Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures, first given at the TASI 2015 summer school, provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive P...
Dark matter and cosmological nucleosynthesis
Schramm, D. N.
1986-01-01
Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.
Coulson-Thomas, Colin
2015-01-01
Examines risk management and contemporary issues concerning risk governance from a board perspective, including risk tolerance, innovation, insurance, balancing risks and other factors, risk and strategies of diversification or focus, increasing flexibility to cope with uncertainty, periodic planning versus intelligent steering, and limiting downside risks and adverse consequences.
Uncertainties in repository modeling
Wilson, J.R.
1996-12-31
The distant future is ver difficult to predict. Unfortunately, our regulators are being enchouraged to extend ther regulatory period form the standard 10,000 years to 1 million years. Such overconfidence is not justified due to uncertainties in dating, calibration, and modeling.
Vehicle Routing under Uncertainty
Máhr, T.
2011-01-01
In this thesis, the main focus is on the study of a real-world transportation problem with uncertainties, and on the comparison of a centralized and a distributed solution approach in the context of this problem. We formalize the real-world problem, and provide a general framework to extend it with
Greasley, David; Madsen, Jakob B.
2006-01-01
A severe collapse of fixed capital formation distinguished the onset of the Great Depression from other investment downturns between the world wars. Using a model estimated for the years 1890-2000, we show that the expected profitability of capital measured by Tobin's q, and the uncertainty surro...... of the depression: rather, its slump helped to propel the wider collapse...
Cettolin, E.; Riedl, A.M.
2013-01-01
An important element for the public support of policies is their perceived justice. At the same time most policy choices have uncertain outcomes. We report the results of a first experiment investigating just allocations of resources when some recipients are exposed to uncertainty. Although, under c
范梦璇
2015-01-01
<正>Employ change-related uncertainty is a condition that under current continually changing business environment,the organizations also have to change,the change include strategic direction,structure and staffing levels to help company to keep competitive(Armenakis&Bedeian,1999);However;these
Uncertainty and validation. Effect of user interpretation on uncertainty estimates
Kirchner, G. [Univ. of Bremen (Germany); Peterson, R. [AECL, Chalk River, ON (Canada)] [and others
1996-11-01
variation between the best estimate predictions of the group. The assumptions of the users result in more uncertainty in the predictions (taking into account the 95% confidence intervals) than is shown by the confidence interval on the predictions of one user. Mistakes, being examples of incorrect user assumptions, cannot be ignored and must be accepted as contributing to the variability seen in the spread of predictions. The user's confidence in his/her understanding of a scenario description and/or confidence in working with a code does not necessarily mean that the predictions will be more accurate. Choice of parameter values contributed most to user-induced uncertainty followed by scenario interpretation. The contribution due to code implementation was low, but may have been limited due to the decision of the majority of the group not to submit predictions using the most complex of the three codes. Most modelers had difficulty adapting the models for certain expected output. Parameter values for wet and dry deposition, transfer from forage to milk and concentration ratios were mostly taken from the extensive database of Chernobyl fallout radionuclides, no matter what the scenario. Examples provided in the code manuals may influence code users considerably when preparing their own input files. A major problem concerns pasture concentrations given in fresh or dry weight: parameter values in codes have to be based on one or the other and the request for predictions in the scenario description may or may not be the same unit. This is a surprisingly common source of error. Most of the predictions showed order of magnitude discrepancies when best estimates are compared with the observations, although the participants had a highly professional background in radioecology and a good understanding of the importance of the processes modelled. When uncertainties are considered, however, mostly there was overlap between predictions and observations. A failure to reproduce the
Dynamical constraints on the dark matter distribution in the Milky Way
Pato, Miguel; Bertone, Gianfranco
2015-01-01
An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. For a representative baryonic model, we find a local dark matter density 0.420+0.021-0.018 (2 sigma) +- 0.025 GeV/cm^3 (0.420+0.019-0.021 (2 sigma) +- 0.026 GeV/cm^3) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. The main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve meas...
Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy
Tavakoli, Maryam; Evoli, Carmelo [II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Cholis, Ilias [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Ullio, Piero, E-mail: maryam.tavakoli@desy.de, E-mail: cholis@fnal.gov, E-mail: carmelo.evoli@desy.de, E-mail: ullio@sissa.it [SISSA, Via Bonomea 265, 34136 Trieste (Italy)
2014-01-01
Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.
Representation and calculation of economic uncertainties
Schjær-Jacobsen, Hans
2002-01-01
Management and decision making when certain information is available may be a matter of rationally choosing the optimal alternative by calculation of the utility function. When only uncertain information is available (which is most often the case) decision-making calls for more complex methods...... of representation and calculation and the basis for choosing the optimal alternative may become obscured by uncertainties of the utility function. In practice, several sources of uncertainties of the required information impede optimal decision making in the classical sense. In order to be able to better handle...... to uncertain economic numbers are discussed. When solving economic models for decision-making purposes calculation of uncertain functions will have to be carried out in addition to the basic arithmetical operations. This is a challenging numerical problem since improper methods of calculation may introduce...
Dark Matter Velocity Spectroscopy.
Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan
2016-01-22
Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.