WorldWideScience

Sample records for matrix spike recoveries

  1. Spiked natural matrix materials as quality assessment samples

    International Nuclear Information System (INIS)

    Feiner, M.S.; Sanderson, C.G.

    1988-01-01

    The Environmental Measurements Laboratory has conducted the Quality Assessment Program since 1976 to evaluate the quality of the environmental radioactivity data, which is reported to the Department of Energy by as many as 42 commercial contractors involved in nuclear work. In this program, matrix materials of known radionuclide concentrations are distributed routinely to the contractors and the reported results are compared. The five matrices used are: soil, vegetation, animal tissue, water and filter paper. Environmental soil, vegetation and animal tissue are used, but the water and filter paper samples are prepared by spiking with known amounts of standard solutions traceable to the National Bureau of Standards. A summary of results is given to illustrate the successful operation of the program. Because of the difficulty and high cost of collecting large samples of natural matrix material and to increase the versatility of the program, an attempt was recently made to prepare the soil, vegetation and animal tissue samples with spiked solutions. A description of the preparation of these reference samples and the results of analyses are presented along with a discussion of the pitfalls and advantages of this approach. 19 refs.; 6 tabs

  2. Petz recovery versus matrix reconstruction

    Science.gov (United States)

    Holzäpfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin B.

    2018-04-01

    The reconstruction of the state of a multipartite quantum mechanical system represents a fundamental task in quantum information science. At its most basic, it concerns a state of a bipartite quantum system whose subsystems are subjected to local operations. We compare two different methods for obtaining the original state from the state resulting from the action of these operations. The first method involves quantum operations called Petz recovery maps, acting locally on the two subsystems. The second method is called matrix (or state) reconstruction and involves local, linear maps that are not necessarily completely positive. Moreover, we compare the quantities on which the maps employed in the two methods depend. We show that any state that admits Petz recovery also admits state reconstruction. However, the latter is successful for a strictly larger set of states. We also compare these methods in the context of a finite spin chain. Here, the state of a finite spin chain is reconstructed from the reduced states of a few neighbouring spins. In this setting, state reconstruction is the same as the matrix product operator reconstruction proposed by Baumgratz et al. [Phys. Rev. Lett. 111, 020401 (2013)]. Finally, we generalize both these methods so that they employ long-range measurements instead of relying solely on short-range correlations embodied in such local reduced states. Long-range measurements enable the reconstruction of states which cannot be reconstructed from measurements of local few-body observables alone and hereby we improve existing methods for quantum state tomography of quantum many-body systems.

  3. Spiked environmental matrix for use as a reference material for gamma-ray spectrometry: Production and homogeneity test

    International Nuclear Information System (INIS)

    Sobiech-Matura, K.; Máté, B.; Altzitzoglou, T.

    2016-01-01

    The application of a spiking method for reference material production and its utilisation for a food matrix is presented. The raw rice powder was tested by means of γ-ray spectrometry and spiked with a "1"3"7Cs solution. The spiked material was mixed and tested for homogeneity. The future use of the rice powder reference material after the entire characterisation cycle will be for γ-ray spectrometry method validation. - Highlights: • Spiking blank substance with a traceable radioactive solution • Spiked reference material for γ-ray emitting radionuclides in food matrix • Results of the homogeneity tests are presented

  4. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  5. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  6. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    Directory of Open Access Journals (Sweden)

    Arno Onken

    2016-11-01

    Full Text Available Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations, in their temporal dimension (temporal neural response variations, or in their combination (temporally coordinated neural population firing. Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together, temporal firing patterns (temporal activation of these groups of neurons and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial. We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine

  7. Novel matrix for REEs recovery from waste disposal

    International Nuclear Information System (INIS)

    Hareendran, K.; Singha, Mousumi; Roy, S.B.; Pal, Sangita

    2014-01-01

    Sorption of lanthanides (98%-99%) onto a novel matrix (polyacrylamide-carboxylate hydroxamate-PAMCHO) not only remove REE's before effluent disposal but also reduces the chance of contamination of potable water, nuclear plant generated shut down or gadolinium containing effluent during controlled fission reaction, in pharmaceutical diagnosis (MRI) and many other useful process effluents. By using such sorbent, 88% of the lanthanides can be recovered using HCl solution less than pH 1 from the laden matrix and can be concentrated more than 5 times. However, sorption into the interlayer's and diffusion of the REE's during leaching depends on the cross-linked structure of the gel matrix and tortuous path of the porous micro-channel (using scanning electron microscope-SEM study). The sequestration of matrix with REE's has been well established by using instrument FT-IR and gadolinium (cation-lanthanide) exchange method. To understand interaction of REE with sorbent, matrix have been prepared with cross-linking amount variation, such as 85:15, 90:10, 95:05 and 98:02 (matrix: cross-linker). A detailed sorption study of cross-linked matrix with gadolinium in feed solution (184 ppm), filtrate, leached and laden sorbent establishes mass balance (using ICP-AES for quantitative determination). This optimized sorbent (PAMCHO) indicates recovery of valuable REEs with elution factor of more than 0.9 when HCl solution of pH1.5 was used. (author)

  8. Application of unfolding transformation in the random matrix theory to analyze in vivo neuronal spike firing during awake and anesthetized conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2018-03-01

    Full Text Available General anesthetics decrease the frequency and density of spike firing. This effect makes it difficult to detect spike regularity. To overcome this problem, we developed a method utilizing the unfolding transformation which analyzes the energy level statistics in the random matrix theory. We regarded the energy axis as time axis of neuron spike and analyzed the time series of cortical neural firing in vivo. Unfolding transformation detected regularities of neural firing while changes in firing densities were associated with pentobarbital. We found that unfolding transformation enables us to compare firing regularity between awake and anesthetic conditions on a universal scale. Keywords: Unfolding transformation, Spike-timing, Regularity

  9. Comparison of Listeria monocytogenes recoveries from spiked mung bean sprouts by the enrichment methods of three regulatory agencies.

    Science.gov (United States)

    Cauchon, Kaitlin E; Hitchins, Anthony D; Smiley, R Derike

    2017-09-01

    Three selective enrichment methods, the United States Food and Drug Administration's (FDA method), the United States Department of Agriculture Food Safety Inspection Service's (USDA method), and the EN ISO 11290-1 standard method, were assessed for their suitability for recovery of Listeria monocytogenes from spiked mung bean sprouts. Three parameters were evaluated; the enrichment L. monocytogenes population from singly-spiked sprouts, the enrichment L. monocytogenes population from doubly-spiked (L. monocytogenes and Listeria innocua) sprouts, and the population differential resulting from the enrichment of doubly-spiked sprouts. Considerable L. monocytogenes inter-strain variation was observed. The mean enrichment L. monocytogenes populations for singly-spiked sprouts were 6.1 ± 1.2, 4.9 ± 1.2, and 6.9 ± 2.3 log CFU/mL for the FDA, USDA, and EN ISO 11290-1 methods, respectively. The mean L. monocytogenes populations for doubly-spiked sprouts were 4.7 ± 1.1, 5.5 ± 1.3, and 4.6 ± 1.4 log CFU/mL for the FDA, USDA, and ISO 11290-1 enrichment methods, respectively. The corresponding mean population differentials were 2.8 ± 1.1, 3.3 ± 1.3, and 3.6 ± 1.4 Δlog CFU/mL for the same three enrichment methods, respectively. The presence of L. innocua and resident microorganisms on the sprouts negatively impacted final levels of L. monocytogenes with all three enrichment methods. Published by Elsevier Ltd.

  10. Recovery of Dynamics and Function in Spiking Neural Networks with Closed-Loop Control.

    Science.gov (United States)

    Vlachos, Ioannis; Deniz, Taşkin; Aertsen, Ad; Kumar, Arvind

    2016-02-01

    There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.

  11. Preparation of mixed matrix adsorber membranes for protein recovery

    NARCIS (Netherlands)

    Avramescu, M.E.; Girones nogue, Miriam; Borneman, Zandrie; Wessling, Matthias

    2003-01-01

    This paper presents a generic technology allowing the incorporation of functional entities into a porous substrate. Various ion exchange particles were incorporated into an ethylene vinyl alcohol (EVAL) copolymer porous matrix by an immersion phase separation process and a heterogeneous matrix,

  12. Recovery of the matrix operators in the similarity and congruency transformations: Applications in polarimetry

    International Nuclear Information System (INIS)

    November, L.J.

    1993-01-01

    Formulas are presented for the recovery of the matrix operators in arbitrary-order similarity and congruency transformations. Two independent input and output matrix pairs exactly determine the similarity-transformation matrix operator, while three independent Hermitian-matrix pairs are required for the congruency-transformation operator. The congruency transformation is the natural form for the quantum observables of a multiple-element wave function, e.g., for polarized-light transfer: the recovery of the Jones matrix for a nondepolarizing device is demonstrated, given any three linearly independent partially polarized input Stokes states. The recovery formula gives a good solution even with large added noise in the test matrices. Combined with numerical least-squares methods, the formula can give an optimized solution for measures of observation error. A more general operator, which includes the effect of isotropic depolarization, is defined, and its recovery is demonstrated also. The recovery formulas have a three-dimensional geometric interpretation in the second-order case, e.g., in the Poincare sphere. It is pointed out that the geometric property is a purely mathematical property of quantum observables that arises without referring to spatial characteristics for the underlying wave function. 36 refs., 9 figs

  13. Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix

    International Nuclear Information System (INIS)

    Misra, S.K.; Gandhi, P.M.; Bhardwaj, Y.K.

    2013-01-01

    The amidoximated grafted polypropylene polymer matrix was prepared by post irradiation grafting of acrylonitrile (AN) onto thermally bonded non-woven matrix of poly(propylene) sheet using electron beams. This precursor polymer was reacted with hydroxylamine to convert AN to poly(acrylamidoxime) (AO) groups, and conditioned by treating them with 2.5 % KOH at 80 deg C for 1 h. The polymer matrix was having the degree of AN grafting ∼106 wt% and its subsequent conversion to AO groups ∼70 %. The water uptake capacity of AO polymer matrix were found to be 100 ± 5 % (w/w). Quantitative recovery of uranium from alkaline waste (ammonium diuranate supernatant) solution was achieved by this polymer matrix. The other radionuclides present in the waste solution were not extracted by the polymer matrix. For all other radionuclides, the uptake was found to be <6 %. (author)

  14. Optimisation of decontamination method and influence of culture media on the recovery of Mycobacterium avium subspecies paratuberculosis from spiked water sediments.

    Science.gov (United States)

    Aboagye, G; Rowe, M T

    2018-07-01

    The recovery of Mycobacterium avium subspecies paratuberculosis (Map) from the environment can be a laborious process - owing to Map being fastidious, its low number, and also high numbers of other microbial populations in such settings. Protocols i.e. filtration, decontamination and modified elution were devised to recover Map from spiked water sediments. Three culture media: Herrold's Egg Yolk Media (HEYM), Middlebrook 7H10 (M-7H10) and Bactec 12B were then employed to grow the organism following its elution. In the sterile sediment samples the recovery of Map was significant between the time of exposure for each of HEYM and M-7H10, and insignificant between both media (P < 0.05). However, in the non-sterile sediment samples, the HEYM grew other background microflora including moulds at all the times of exposure whilst 4 h followed by M-7H10 culture yielded Map colonies without any background microflora. Using sterile samples only for the Bactec 12B, the recovery of Map decreased as time of exposure increased. Based on these findings, M-7H10 should be considered for the recovery of Map from the natural environment including water sediments where the recovery of diverse microbial species remains a challenge. Map is a robust pathogen that abides in the environment. In water treatment operations, Map associates with floccules and other particulate matter including sediments. It is also a fastidious organism, and its detection and recovery from the water environment is a laborious process and can be misleading within the abundance of other mycobacterial species owing to their close resemblance in phylogenetic traits. In the absence of a reliable recovery method, Map continues to pose public health risks through biofilm in household water tanks, hence the need for the development of a reliable recovery protocol to monitor the presence of Map in water systems in order to curtail its public health risks. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    Science.gov (United States)

    Lessoff, S.C.; Konikow, Leonard F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  16. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  17. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  19. 3D shape recovery from image focus using gray level co-occurrence matrix

    Science.gov (United States)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  20. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers

    International Nuclear Information System (INIS)

    Yamada, Masahiro; Kato, Eiji; Sakurai, Kaoru; Yamamoto, Akiko

    2016-01-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  1. Investigation of the Results of Combined Reclamation on the Particular Stages of Grain Matrix Recovery

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2016-12-01

    Full Text Available In this article, there were presented the results of research on combined mechanical and thermal regeneration of waste moulding sand with furfuryl resin originated from one of national foundries manufacturing aluminium alloys castings. Attempts of mechanical reclamation were led on the REGMAS reclaimer enabling to realize preliminary and primary reclamation with use of two modes of mechanical interactions on waste moulding sand. In the first attempt the reclaimer worked without any additional regenerating elements, and as the second solution, the reclaimer operated with additional crushing and abrasive elements to increase the result of primary reclamation. Thermal reclamation was led in the prototypic thermal reclaimer, enabling to fully control the process of grain matrix recovery. As a result of completed investigations the small efficiency of mechanical reclamation was determined. However, use of combined regeneration allowed for obtaining grain matrix of high purity. Thermal regeneration was conducted in prototypic thermal reclaimer. Evaluation of reclaim (reclaimed material quality was carried out in the way of iginition losses and grain-size analysis, surface morphology and also by executing of strength testing of moulding sand prepared on obtained grain matrix for the particular reclamation operations.

  2. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Svoboda, J.

    1985-01-01

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  3. The role of Matrix Gla Protein in ossification and recovery of the avian growth plate

    Directory of Open Access Journals (Sweden)

    Harel eDan

    2012-07-01

    Full Text Available ECM mineralization is an essential physiologic process in bone, teeth, and hypertrophic cartilage. Matrix Gla Protein (MGP, an inhibitor of mineralization, is expressed by chondrocytes and vascular smooth muscle cells to inhibit calcification of those soft tissues.Tibial Dyschondroplasia (TD, a skeletal abnormality apparent as a plug of non-vascularized, non-mineralized, white opaque cartilage in the tibial growth plate of avian species can serve as a good model for studying process and genes involved in matrix mineralization and calcification. In this work, we studied the involvement of MGP in the development of TD, as well as in the processes of spontaneous and induced recovery from this syndrome. First, we found that during normal bone development, MGP is expressed in specific time and locations, starting from wide spread expression in the yet un-ossified diaphysis during embryonic development, to specific expression in hypertrophic chondrocytes adjacent to the chondro-osseous junction and the secondary ossification center just prior to calcification. In addition, we show that MGP is not expressed in the impaired TD lesion, however when the lesion begins to heal, it strongly express MGP prior to its calcification. Moreover, we show that when calcification is inhibited, a gap is formed between the expression zones of MGP and BMP2 and that this gap is closed during the healing process. To conclude, we suggest that MGP, directly or through interaction with BMP2, plays a role as ossification regulator, rather then simple inhibitor that acts prior to ossification.

  4. Stealthy false data injection attacks using matrix recovery and independent component analysis in smart grid

    Science.gov (United States)

    JiWei, Tian; BuHong, Wang; FuTe, Shang; Shuaiqi, Liu

    2017-05-01

    Exact state estimation is vital important to maintain common operations of smart grids. Existing researches demonstrate that state estimation output could be compromised by malicious attacks. However, to construct the attack vectors, a usual presumption in most works is that the attacker has perfect information regarding the topology and so on even such information is difficult to acquire in practice. Recent research shows that Independent Component Analysis (ICA) can be used for inferring topology information which can be used to originate undetectable attacks and even to alter the price of electricity for the profits of attackers. However, we found that the above ICA-based blind attack tactics is merely feasible in the environment with Gaussian noises. If there are outliers (device malfunction and communication errors), the Bad Data Detector will easily detect the attack. Hence, we propose a robust ICA based blind attack strategy that one can use matrix recovery to circumvent the outlier problem and construct stealthy attack vectors. The proposed attack strategies are tested with IEEE representative 14-bus system. Simulations verify the feasibility of the proposed method.

  5. Trehalose significantly enhances the recovery of serum and serum exosomal miRNA from a paper-based matrix

    OpenAIRE

    Neo, Shu Hui; Chung, Ka Yan; Quek, Jia Min; Too, Heng-Phon

    2017-01-01

    The preservation of nucleic acids from clinical samples is critical to facilitate accurate molecular diagnosis. The use of a paper matrix, Flinders Technology Associates (FTA) Elute cards, to archive DNA and viral RNA is well-documented. However, the feasibility of FTA Elute cards for archiving serum and serum exosomal microRNAs (miRNAs) remains unclear. Here, we performed a comprehensive evaluation of FTA Elute cards for miRNA storage and recovery in different pre-analytical conditions. The ...

  6. Effects of Mesenchymal Stem Cell Treatment on the Expression of Matrix Metalloproteinases and Angiogenesis during Ischemic Stroke Recovery.

    Directory of Open Access Journals (Sweden)

    Hyo Suk Nam

    Full Text Available The efficacy of mesenchymal stem cell (MSC transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we also investigated the expression of matrix metalloproteinases (MMPs, which play a role in vascular and tissue remodeling.Human bone marrow-derived MSCs (2 × 10(6, passage 5 were administrated intravenously after permanent middle cerebral artery occlusion (MCAO was induced in male Sprague-Dawley rats. First, we determined the time point of MSC transplantation that led to maximal neurological recovery at 1 h, 1 day, and 3 days after MCAO. Next, we measured activity of MMP-2 and MMP-9, neurological recovery, infarction volume, and vascular density after transplanting MSCs at the time that led to maximal neurological recovery.Among the MSC-transplanted rats, those of the MSC 1-hour group showed maximal recovery in the rotarod test (P = 0.023 and the Longa score (P = 0.018. MMP-2 activity at 1 day after MCAO in the MSC 1-hour group was significantly higher than that in the control group (P = 0.002, but MMP-9 activity was not distinct. The MSC 1-hour group also showed smaller infarction volume and higher vascular density than did the control group.In a permanent model of rodent MCAO, very early transplantation of human MSCs (1 h after MCAO produced greater neurological recovery and decreased infraction volume. The elevation of MMP-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke.

  7. Recovery of the Dirac system from the rectangular Weyl matrix function

    International Nuclear Information System (INIS)

    Fritzsche, B; Kirstein, B; Roitberg, I Ya; Sakhnovich, A L

    2012-01-01

    Weyl theory for Dirac systems with rectangular matrix potentials is non-classical. The corresponding Weyl functions are rectangular matrix functions. Furthermore, they are non-expansive in the upper semi-plane. Inverse problems are studied for such Weyl functions, and some results are new even for the square Weyl functions. High-energy asymptotics of Weyl functions and Borg–Marchenko-type uniqueness results are derived too. (paper)

  8. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network.

    Science.gov (United States)

    Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab

    2014-08-25

    We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.

  9. Trehalose significantly enhances the recovery of serum and serum exosomal miRNA from a paper-based matrix.

    Science.gov (United States)

    Neo, Shu Hui; Chung, Ka Yan; Quek, Jia Min; Too, Heng-Phon

    2017-11-30

    The preservation of nucleic acids from clinical samples is critical to facilitate accurate molecular diagnosis. The use of a paper matrix, Flinders Technology Associates (FTA) Elute cards, to archive DNA and viral RNA is well-documented. However, the feasibility of FTA Elute cards for archiving serum and serum exosomal microRNAs (miRNAs) remains unclear. Here, we performed a comprehensive evaluation of FTA Elute cards for miRNA storage and recovery in different pre-analytical conditions. The recovery of serum miRNA dry-spotted on FTA Elute cards by direct elution with water at high temperature was poor. However, serum miRNAs dry-spotted on the cards were isolated with about 40% yield when using QIAzol lysis reagent and recovery was improved remarkably (>80%) upon extraction from cards pre-treated with trehalose. miRNAs stored on the cards remained stable at room temperature and can be kept for prolonged periods. Furthermore, miRNAs could be similarly recovered from serum exosomes dry-spotted on the cards. Importantly, when using sera from gastric cancer (GC) patients, the miRNAs were efficiently recovered from trehalose pre-treated cards without affecting their representation. Collectively, we have demonstrated the potential of FTA Elute cards to archive serum and serum exosomal miRNAs, making it useful for biomarker discovery and diagnostics.

  10. Deep Spiking Networks

    NARCIS (Netherlands)

    O'Connor, P.; Welling, M.

    2016-01-01

    We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a "spike") when this potential crosses a threshold and the neuron is reset. Neurons only

  11. A Generalized Robust Minimization Framework for Low-Rank Matrix Recovery

    Directory of Open Access Journals (Sweden)

    Wen-Ze Shao

    2014-01-01

    Full Text Available This paper considers the problem of recovering low-rank matrices which are heavily corrupted by outliers or large errors. To improve the robustness of existing recovery methods, the problem is solved by formulating it as a generalized nonsmooth nonconvex minimization functional via exploiting the Schatten p-norm (0 < p ≤1 and Lq(0 < q ≤1 seminorm. Two numerical algorithms are provided based on the augmented Lagrange multiplier (ALM and accelerated proximal gradient (APG methods as well as efficient root-finder strategies. Experimental results demonstrate that the proposed generalized approach is more inclusive and effective compared with state-of-the-art methods, either convex or nonconvex.

  12. Decoding spikes in a spiking neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2004-06-04

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.

  13. Decoding spikes in a spiking neuronal network

    International Nuclear Information System (INIS)

    Feng Jianfeng; Ding, Mingzhou

    2004-01-01

    We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs

  14. Automatic EEG spike detection.

    Science.gov (United States)

    Harner, Richard

    2009-10-01

    Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.

  15. Recovery evaluation of organophosphorus pesticides from bee pollen by matrix solid-phase dispersion extraction using sorbents based on silica and titania

    International Nuclear Information System (INIS)

    Torres-Perea, C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Medina-Peralta, S; Moguel-Ordóñez, Y B

    2013-01-01

    This work focused on the evaluation of the recovery of organophosphorus pesticides from bee pollen after matrix solid phase-dispersion extraction (MSPD). Materials based on silica, titania and titania modified with polivylnylimidazole or polyestirene were used as adsorbents for the extraction of pesticides. Small amounts of fortified pollen (0.1 g, at 1 micro-g/g of pesticides), adsorbent (0.4 g) and solvent elution (1 mL de acetonitrile – ACN) were used in the extractions. For recovery evaluation, pollen extracts were analyzed by gas chromatography coupled with mass spectrometry.

  16. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  17. A Simple Deep Learning Method for Neuronal Spike Sorting

    Science.gov (United States)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  18. Spiking neural network for recognizing spatiotemporal sequences of spikes

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2004-01-01

    Sensory neurons in many brain areas spike with precise timing to stimuli with temporal structures, and encode temporally complex stimuli into spatiotemporal spikes. How the downstream neurons read out such neural code is an important unsolved problem. In this paper, we describe a decoding scheme using a spiking recurrent neural network. The network consists of excitatory neurons that form a synfire chain, and two globally inhibitory interneurons of different types that provide delayed feedforward and fast feedback inhibition, respectively. The network signals recognition of a specific spatiotemporal sequence when the last excitatory neuron down the synfire chain spikes, which happens if and only if that sequence was present in the input spike stream. The recognition scheme is invariant to variations in the intervals between input spikes within some range. The computation of the network can be mapped into that of a finite state machine. Our network provides a simple way to decode spatiotemporal spikes with diverse types of neurons

  19. Recovery of heat treated Bacillus cereus spores is affected by matrix composition and factors with putative functions in damage repair

    NARCIS (Netherlands)

    Warda, A.K.; Tempelaars, M.H.; Abee, T.; Nierop Groot, M.N.

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry.

  20. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  1. Bayesian Inference for Structured Spike and Slab Priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Winther, Ole; Hansen, Lars Kai

    2014-01-01

    Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial...

  2. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  3. Study design and percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine, 2004-06

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.

    2008-01-01

    recoveries from the quenched reagent spiked samples that were analyzed at two different times (day 0 and day 7 or 14) can be used to determine the stability of the quenched samples held for an amount of time representative of the normal amount of time between sample collection and analysis. The comparison between the quenched reagent spiked samples and the LRSs can be used to determine if quenching samples adversely affects the analytical performance under controlled conditions. The field study began in 2004 and is continuing today (February 2008) to characterize the effect of quenching on field-matrix spike recoveries and to better understand the potential oxidation and transformation of 277 AOCs. Three types of samples were collected from 11 NAWQA Study Units across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water spiked samples, and (3) nonquenched finished-water spiked samples. Percent recoveries of AOCs in quenched and nonquenched finished-water spiked samples collected during 2004-06 are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 6 surface-water and 7 ground-water quenched finished-water spiked samples paired with nonquenched finished-water spiked samples were analyzed. Analytical results for the field study are presented in two ways: (1) by surface-water supplies or ground-water supplies, and (2) by use (or source) group category for surface-water and ground-water supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water spiked samples also are presented.

  4. Spiked sample standards; their uses and disadvantages in analytical quality control

    International Nuclear Information System (INIS)

    Bowen, V.T.; Volchok, H.L

    1980-01-01

    The advantages and disadvantages of spiked standards are discussed and contrasted with those of natural matrix standards. The preparation of the former class of standards and the evidence supporting recommendation of caution in their use are considered. (author)

  5. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

    Science.gov (United States)

    Thorpe, Chavaunne T; Godinho, Marta S C; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2015-12-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Mapping spikes to sensations

    Directory of Open Access Journals (Sweden)

    Maik Christopher Stüttgen

    2011-11-01

    Full Text Available Single-unit recordings conducted during perceptual decision-making tasks have yielded tremendous insights into the neural coding of sensory stimuli. In such experiments, detection or discrimination behavior (the psychometric data is observed in parallel with spike trains in sensory neurons (the neurometric data. Frequently, candidate neural codes for information read-out are pitted against each other by transforming the neurometric data in some way and asking which code’s performance most closely approximates the psychometric performance. The code that matches the psychometric performance best is retained as a viable candidate and the others are rejected. In following this strategy, psychometric data is often considered to provide an unbiased measure of perceptual sensitivity. It is rarely acknowledged that psychometric data result from a complex interplay of sensory and non-sensory processes and that neglect of these processes may result in misestimating psychophysical sensitivity. This again may lead to erroneous conclusions regarding the adequacy of neural candidate codes. In this review, we first discuss requirements on the neural data for a subsequent neurometric-psychometric comparison. We then focus on different psychophysical tasks for the assessment of detection and discrimination performance and the cognitive processes that may underlie their execution. We discuss further factors that may compromise psychometric performance and how they can be detected or avoided. We believe that these considerations point to shortcomings in our understanding of the processes underlying perceptual decisions, and therefore offer potential for future research.

  7. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  8. Wavelet analysis of epileptic spikes

    Science.gov (United States)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  9. Wavelet analysis of epileptic spikes

    CERN Document Server

    Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-01-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  10. Routes to Chaos Induced by a Discontinuous Resetting Process in a Hybrid Spiking Neuron Model.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya

    2018-01-10

    Several hybrid spiking neuron models combining continuous spike generation mechanisms and discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, for example, can reproduce many spiking patterns. This model clearly possesses various types of bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process. In this study, we focus further on the relation between chaotic behaviour and the state-dependent jump, approaching the subject by comparing spiking neuron model versions with and without the resetting process. We first adopt a continuous two-dimensional spiking neuron model in which the orbit in the spiking state does not exhibit divergent behaviour. We then insert the resetting process into the model. An evaluation using the Lyapunov exponent with a saltation matrix and a characteristic multiplier of the Poincar'e map reveals that two types of chaotic behaviour (i.e. bursting chaotic spikes and near-period-two chaotic spikes) are induced by the resetting process. In addition, we confirm that this chaotic bursting state is generated from the periodic spiking state because of the slow- and fast-scale dynamics that arise when jumping to the hyperpolarization and depolarization regions, respectively.

  11. High-dimensional statistical inference: From vector to matrix

    Science.gov (United States)

    Zhang, Anru

    estimator is easy to implement via convex programming and performs well numerically. The techniques and main results developed in the chapter also have implications to other related statistical problems. An application to estimation of spiked covariance matrices from one-dimensional random projections is considered. The results demonstrate that it is still possible to accurately estimate the covariance matrix of a high-dimensional distribution based only on one-dimensional projections. For the third part of the thesis, we consider another setting of low-rank matrix completion. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  12. Self-control with spiking and non-spiking neural networks playing games.

    Science.gov (United States)

    Christodoulou, Chris; Banfield, Gaye; Cleanthous, Aristodemos

    2010-01-01

    payoffs for the dilemma cases in the IPD payoff matrix are differentially biased (increased or decreased), it is shown that increasing the precommitment effect (through increasing the differential bias) increases the probability of cooperating with oneself in the future, irrespective of whether the implementation is with spiking or non-spiking neural networks. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Body fluid matrix evaluation on a Roche cobas 8000 system.

    Science.gov (United States)

    Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R

    2015-09-01

    Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Training spiking neural networks to associate spatio-temporal input-output spike patterns

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2013-01-01

    In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the prop...

  15. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  16. Learning Universal Computations with Spikes

    Science.gov (United States)

    Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin

    2016-01-01

    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381

  17. Analysis and solution of current spike occurred in dynamic compensation of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Wang, Kan

    2017-01-01

    Highlights: • The current spike problem is observed in the dynamic compensation process of SPNDs. • The current spike is caused by unphysical current change due to range switching. • Modification on the compensation algorithm is introduced to deal with current spike. - Abstract: Dynamic compensation methods are required to improve the response speed of the Self-Powered Neutron Detectors (SPNDs) and make it possible to apply the SPNDs for core monitoring and surveillance. During the experimental test of the compensation method based on linear matrix inequality (LMI), spikes are observed in the compensated SPND current. After analyzing the measurement data, the cause is fixed on the unphysical change of the uncompensated SPND current due to range switching. Then some modifications on the dynamic compensation algorithms are proposed to solve the current spike problem.

  18. Automatic spike sorting using tuning information.

    Science.gov (United States)

    Ventura, Valérie

    2009-09-01

    Current spike sorting methods focus on clustering neurons' characteristic spike waveforms. The resulting spike-sorted data are typically used to estimate how covariates of interest modulate the firing rates of neurons. However, when these covariates do modulate the firing rates, they provide information about spikes' identities, which thus far have been ignored for the purpose of spike sorting. This letter describes a novel approach to spike sorting, which incorporates both waveform information and tuning information obtained from the modulation of firing rates. Because it efficiently uses all the available information, this spike sorter yields lower spike misclassification rates than traditional automatic spike sorters. This theoretical result is verified empirically on several examples. The proposed method does not require additional assumptions; only its implementation is different. It essentially consists of performing spike sorting and tuning estimation simultaneously rather than sequentially, as is currently done. We used an expectation-maximization maximum likelihood algorithm to implement the new spike sorter. We present the general form of this algorithm and provide a detailed implementable version under the assumptions that neurons are independent and spike according to Poisson processes. Finally, we uncover a systematic flaw of spike sorting based on waveform information only.

  19. Calculations for Adjusting Endogenous Biomarker Levels During Analytical Recovery Assessments for Ligand-Binding Assay Bioanalytical Method Validation.

    Science.gov (United States)

    Marcelletti, John F; Evans, Cindy L; Saxena, Manju; Lopez, Adriana E

    2015-07-01

    It is often necessary to adjust for detectable endogenous biomarker levels in spiked validation samples (VS) and in selectivity determinations during bioanalytical method validation for ligand-binding assays (LBA) with a matrix like normal human serum (NHS). Described herein are case studies of biomarker analyses using multiplex LBA which highlight the challenges associated with such adjustments when calculating percent analytical recovery (%AR). The LBA test methods were the Meso Scale Discovery V-PLEX® proinflammatory and cytokine panels with NHS as test matrix. The NHS matrix blank exhibited varied endogenous content of the 20 individual cytokines before spiking, ranging from undetectable to readily quantifiable. Addition and subtraction methods for adjusting endogenous cytokine levels in %AR calculations are both used in the bioanalytical field. The two methods were compared in %AR calculations following spiking and analysis of VS for cytokines having detectable endogenous levels in NHS. Calculations for %AR obtained by subtracting quantifiable endogenous biomarker concentrations from the respective total analytical VS values yielded reproducible and credible conclusions. The addition method, in contrast, yielded %AR conclusions that were frequently unreliable and discordant with values obtained with the subtraction adjustment method. It is shown that subtraction of assay signal attributable to matrix is a feasible alternative when endogenous biomarkers levels are below the limit of quantitation, but above the limit of detection. These analyses confirm that the subtraction method is preferable over that using addition to adjust for detectable endogenous biomarker levels when calculating %AR for biomarker LBA.

  20. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  1. Neuronal coding and spiking randomness

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; Rospars, J. P.

    2007-01-01

    Roč. 26, č. 10 (2007), s. 2693-2988 ISSN 0953-816X R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401; GA AV ČR(CZ) KJB100110701 Grant - others:ECO-NET(FR) 112644PF Institutional research plan: CEZ:AV0Z50110509 Keywords : spike train * variability * neurovědy Subject RIV: FH - Neurology Impact factor: 3.673, year: 2007

  2. iSpike: a spiking neural interface for the iCub robot

    International Nuclear Information System (INIS)

    Gamez, D; Fidjeland, A K; Lazdins, E

    2012-01-01

    This paper presents iSpike: a C++ library that interfaces between spiking neural network simulators and the iCub humanoid robot. It uses a biologically inspired approach to convert the robot’s sensory information into spikes that are passed to the neural network simulator, and it decodes output spikes from the network into motor signals that are sent to control the robot. Applications of iSpike range from embodied models of the brain to the development of intelligent robots using biologically inspired spiking neural networks. iSpike is an open source library that is available for free download under the terms of the GPL. (paper)

  3. Matrix effects on organic pollutants analysis in marine sediment

    Science.gov (United States)

    Azis, M. Y.; Asia, L.; Piram, A.; Buchari, B.; Doumenq, P.; Setiyanto, H.

    2018-05-01

    Interference from the matrix sample can influence of the accurate analytical method. Accelerated Solvent Extraction and their purification methods were tried to separate the organic micropollutants respectively in marine sediment. Those matrix were as organic pollutants evaluation in marine environment. Polychlorinated Biphenyls (PCBs) and Organochlorine pesticides (OCPs) are two examples organic pollutant in environment which are carcinogenic and mutagenic. Marine sediments are important matrices of information regarding the human activities in coastal areas as well as the fate and behavior of organic pollutants, which are persistent in long-term. This research purpose to evaluate the matrice effect and the recovery from marine sediment spiking with several standar solution and deuterium of molecular target from organic pollutants in not polluted sample of sediment. Matrice samples was tested from indicate in unpolluted location. The methods were evaluated with standard calibration curve (linearity LOQ). Recovery (YE) relative, Matrice Effect (ME) relative correction with deuteriated standar were evaluated the interference the matrix. Interference effect for OCPs compounds were higher than PCBs in marine sediment.

  4. Information transmission with spiking Bayesian neurons

    International Nuclear Information System (INIS)

    Lochmann, Timm; Deneve, Sophie

    2008-01-01

    Spike trains of cortical neurons resulting from repeatedpresentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output variability. In particular, does this variability imply spike generation to be intrinsically stochastic? We consider a model neuron that estimates optimally the current state of a time-varying binary variable (e.g. presence of a stimulus) by integrating incoming spikes. The unit signals its current estimate to other units with spikes whenever the estimate increased by a fixed amount. As shown previously, this computation results in integrate and fire dynamics with Poisson-like output spike trains. This output variability is entirely due to the stochastic input rather than noisy spike generation. As a result such a deterministic neuron can transmit most of the information about the time varying stimulus. This contrasts with a standard model of sensory neurons, the linear-nonlinear Poisson (LNP) model which assumes that most variability in output spike trains is due to stochastic spike generation. Although it yields the same firing statistics, we found that such noisy firing results in the loss of most information. Finally, we use this framework to compare potential effects of top-down attention versus bottom-up saliency on information transfer with spiking neurons

  5. Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick, easy, cheap, effective, rugged and safe extraction followed by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Salvia, Marie-Virginie; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2013-11-08

    Numerous chemical products are dispersed in our environment. Many of them are recognized as harmful to humans and the ecosystem. Among these harmful substances are antibiotics and steroid hormones. Currently, very few data are available on the presence and fate of these substances in the environment, in particular for solid matrices, mainly due to a lack of analytical methodologies. Indeed, soil is a very complex matrix, and the nature and composition of the soil has a significant impact on the extraction efficiency and the sensitivity of the method. For this reason a statistical approach was performed to study the influence of soil parameters (clay, silt, sand and organic carbon percentages and cation exchange capacity (CEC)) on recoveries and matrix effects of various pharmaceuticals and steroids. Thus, an analysis of covariance (ANCOVA) was performed when several substances were analyzed simultaneously, whereas a Pearson correlation was used to study the compounds individually. To the best of our knowledge, this study is the first time such an experiment was performed. The results showed that clay and organic carbon percentages as well as the CEC have an impact on the recoveries of most of the target substances, the variables being anti-correlated. This result suggests that the compounds are trapped in soils with high levels of clay and organic carbon and a high CEC. For the matrix effects, it was shown that the organic carbon content has a significant effect on steroid hormones and penicillin G matrix effects (positive correlation). Finally, interaction effects (first order) were evaluated. This latter point corresponds to the crossed effects that occur between explanatory variables (soil parameters). Indeed, the value taken by an explanatory variable can have an influence on the effect that another explanatory variable has on a dependent variable. For instance, it was shown that some parameters (silt, sand) have an impact on the effect that clay content has on

  6. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  7. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  8. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, John; Baker, Joel; Handler, Monica

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard......) can be obtained on Pt stable isotope ratios with either double-spike. Elemental doping tests reveal that double-spike corrected Pt stable isotope ratios are insensitive to the presence of relatively high (up to 10%) levels of matrix elements, although the Pt-Pt double-spike is affected by an isobaric...... = 7.308%) results in a redefined Pt atomic weight of 195.08395 ± 0.00068. Using our technique we have measured small, reproducible and statistically significant offsets in Pt stable isotope ratios between different Pt element standards and the IRMM-010 standard, which potentially indicates...

  9. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    Science.gov (United States)

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  11. The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex

    DEFF Research Database (Denmark)

    Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.

    2016-01-01

    and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states......Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from...... visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary...

  12. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Identification and quantification of metallothionein isoforms and superoxide dismutase in spiked liver extracts using HPLC-ESI-MS offline coupling and HPLC-ICP-MS online coupling.

    Science.gov (United States)

    Nischwitz, V; Michalke, B; Kettrup, A

    2003-01-01

    A two-dimensional chromatographic method for the characterization of metallothionein isoforms (MT) and superoxide dismutase (SOD) in spiked liver extracts was developed for the optimization of extraction procedures from liver samples. Element-specific detection (ICP-MS) and molecule-specific detection (ESI-MS) were applied for maximum species information. A special focus was laid on the quantitative data evaluation (species stoichiometry, calibration with and without matrix, recovery), which is neglected in most MT/SOD publications with hyphenated techniques. Linearity, precision (residual standard deviation of calibration curves <10%), and detection limits (<0.6 mg L(-1) for MT isoforms and 13 mg L(-1) for SOD) prove the suitability of the method for quantification. An alternative quantification is proposed for the extension towards other lesser or even unknown trace element species, especially the native porcine MT and SOD.

  14. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  15. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Science.gov (United States)

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-01-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation. PMID:24189331

  16. Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat

    NARCIS (Netherlands)

    Grombe, R.; Allmaier, G.; Charoud-Got, J.; Dudkiewicz, A.; Emteborg, H.; Hofmann, T.; Huusfeldt-Larsen, E.; Lehner, A.; Llinas, M.; Loeschner, K.; Molhave, K.; Peters, R.J.B.; Seghers, J.; Solans, C.; Kammer, van den F.; Wagner, S.; Weigel, S.; Linsinger, T.P.J.

    2015-01-01

    The feasibility of producing colloidal silver nanoparticle reference materials and silver nanoparticle spiked reference matrix materials was investigated. Two concentrations of PVP-coated silver nanoparticle dispersions were evaluated and used to spike chicken meat, with the aim of producing a set

  17. Bayesian population decoding of spiking neurons.

    Science.gov (United States)

    Gerwinn, Sebastian; Macke, Jakob; Bethge, Matthias

    2009-01-01

    The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a 'spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  18. Bayesian population decoding of spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2009-10-01

    Full Text Available The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a `spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

  19. Statistical properties of superimposed stationary spike trains.

    Science.gov (United States)

    Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan

    2012-06-01

    The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.

  20. Linking investment spikes and productivity growth

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2013-01-01

    We investigate the relationship between productivity growth and investment spikes using Census Bureau’s plant-level dataset for the U.S. food manufacturing industry. There are differences in productivity growth and investment spike patterns across different sub-industries and food manufacturing

  1. Mimickers of generalized spike and wave discharges.

    Science.gov (United States)

    Azzam, Raed; Bhatt, Amar B

    2014-06-01

    Overinterpretation of benign EEG variants is a common problem that can lead to the misdiagnosis of epilepsy. We review four normal patterns that mimic generalized spike and wave discharges: phantom spike-and-wave, hyperventilation hypersynchrony, hypnagogic/ hypnopompic hypersynchrony, and mitten patterns.

  2. Stochastic Variational Learning in Recurrent Spiking Networks

    Directory of Open Access Journals (Sweden)

    Danilo eJimenez Rezende

    2014-04-01

    Full Text Available The ability to learn and perform statistical inference with biologically plausible recurrent network of spiking neurons is an important step towards understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators conveying information about ``novelty on a statistically rigorous ground.Simulations show that our model is able to learn bothstationary and non-stationary patterns of spike trains.We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  3. Spiking neural P systems with multiple channels.

    Science.gov (United States)

    Peng, Hong; Yang, Jinyu; Wang, Jun; Wang, Tao; Sun, Zhang; Song, Xiaoxiao; Luo, Xiaohui; Huang, Xiangnian

    2017-11-01

    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computing systems inspired from the neurophysiological behavior of biological spiking neurons. In this paper, we investigate a new variant of SNP systems in which each neuron has one or more synaptic channels, called spiking neural P systems with multiple channels (SNP-MC systems, in short). The spiking rules with channel label are introduced to handle the firing mechanism of neurons, where the channel labels indicate synaptic channels of transmitting the generated spikes. The computation power of SNP-MC systems is investigated. Specifically, we prove that SNP-MC systems are Turing universal as both number generating and number accepting devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stochastic variational learning in recurrent spiking networks.

    Science.gov (United States)

    Jimenez Rezende, Danilo; Gerstner, Wulfram

    2014-01-01

    The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent spiking networks with hidden neurons, combining principles from variational learning and reinforcement learning. Our network defines a generative model over spike train histories and the derived learning rule has the form of a local Spike Timing Dependent Plasticity rule modulated by global factors (neuromodulators) conveying information about "novelty" on a statistically rigorous ground. Simulations show that our model is able to learn both stationary and non-stationary patterns of spike trains. We also propose one experiment that could potentially be performed with animals in order to test the dynamics of the predicted novelty signal.

  5. Application of cross-correlated delay shift rule in spiking neural networks for interictal spike detection.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Cabrerizo, Mercedes; Adjouadi, Malek

    2016-08-01

    This study proposes a Cross-Correlated Delay Shift (CCDS) supervised learning rule to train neurons with associated spatiotemporal patterns to classify spike patterns. The objective of this study was to evaluate the feasibility of using the CCDS rule to automate the detection of interictal spikes in electroencephalogram (EEG) data on patients with epilepsy. Encoding is the initial yet essential step for spiking neurons to process EEG patterns. A new encoding method is utilized to convert the EEG signal into spike patterns. The simulation results show that the proposed algorithm identified 69 spikes out of 82 spikes, or 84% detection rate, which is quite high considering the subtleties of interictal spikes and the tediousness of monitoring long EEG records. This CCDS rule is also benchmarked by ReSuMe on the same task.

  6. Decoding spatiotemporal spike sequences via the finite state automata dynamics of spiking neural networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z

    2008-01-01

    Temporally complex stimuli are encoded into spatiotemporal spike sequences of neurons in many sensory areas. Here, we describe how downstream neurons with dendritic bistable plateau potentials can be connected to decode such spike sequences. Driven by feedforward inputs from the sensory neurons and controlled by feedforward inhibition and lateral excitation, the neurons transit between UP and DOWN states of the membrane potentials. The neurons spike only in the UP states. A decoding neuron spikes at the end of an input to signal the recognition of specific spike sequences. The transition dynamics is equivalent to that of a finite state automaton. A connection rule for the networks guarantees that any finite state automaton can be mapped into the transition dynamics, demonstrating the equivalence in computational power between the networks and finite state automata. The decoding mechanism is capable of recognizing an arbitrary number of spatiotemporal spike sequences, and is insensitive to the variations of the spike timings in the sequences

  7. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    Science.gov (United States)

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  8. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    Science.gov (United States)

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  10. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan

    2015-06-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.

  11. Spike Bursts from an Excitable Optical System

    Science.gov (United States)

    Rios Leite, Jose R.; Rosero, Edison J.; Barbosa, Wendson A. S.; Tredicce, Jorge R.

    Diode Lasers with double optical feedback are shown to present power drop spikes with statistical distribution controllable by the ratio of the two feedback times. The average time between spikes and the variance within long time series are studied. The system is shown to be excitable and present bursting of spikes created with specific feedback time ratios and strength. A rate equation model, extending the Lang-Kobayashi single feedback for semiconductor lasers proves to match the experimental observations. Potential applications to construct network to mimic neural systems having controlled bursting properties in each unit will be discussed. Brazilian Agency CNPQ.

  12. The Second Spiking Threshold: Dynamics of Laminar Network Spiking in the Visual Cortex

    Science.gov (United States)

    Forsberg, Lars E.; Bonde, Lars H.; Harvey, Michael A.; Roland, Per E.

    2016-01-01

    Most neurons have a threshold separating the silent non-spiking state and the state of producing temporal sequences of spikes. But neurons in vivo also have a second threshold, found recently in granular layer neurons of the primary visual cortex, separating spontaneous ongoing spiking from visually evoked spiking driven by sharp transients. Here we examine whether this second threshold exists outside the granular layer and examine details of transitions between spiking states in ferrets exposed to moving objects. We found the second threshold, separating spiking states evoked by stationary and moving visual stimuli from the spontaneous ongoing spiking state, in all layers and zones of areas 17 and 18 indicating that the second threshold is a property of the network. Spontaneous and evoked spiking, thus can easily be distinguished. In addition, the trajectories of spontaneous ongoing states were slow, frequently changing direction. In single trials, sharp as well as smooth and slow transients transform the trajectories to be outward directed, fast and crossing the threshold to become evoked. Although the speeds of the evolution of the evoked states differ, the same domain of the state space is explored indicating uniformity of the evoked states. All evoked states return to the spontaneous evoked spiking state as in a typical mono-stable dynamical system. In single trials, neither the original spiking rates, nor the temporal evolution in state space could distinguish simple visual scenes. PMID:27582693

  13. Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry

    Science.gov (United States)

    Vega, Carolina; Spence, Corina; Zhang, Chengsen; Bills, Brandon J.; Manicke, Nicholas E.

    2016-04-01

    Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent.

  14. Spike persistence and normalization in benign epilepsy with centrotemporal spikes - Implications for management.

    Science.gov (United States)

    Kim, Hunmin; Kim, Soo Yeon; Lim, Byung Chan; Hwang, Hee; Chae, Jong-Hee; Choi, Jieun; Kim, Ki Joong; Dlugos, Dennis J

    2018-05-10

    This study was performed 1) to determine the timing of spike normalization in patients with benign epilepsy with centrotemporal spikes (BECTS); 2) to identify relationships between age of seizure onset, age of spike normalization, years of spike persistence and treatment; and 3) to assess final outcomes between groups of patients with or without spikes at the time of medication tapering. Retrospective analysis of BECTS patients confirmed by clinical data, including age of onset, seizure semiology and serial electroencephalography (EEG) from diagnosis to remission. Age at spike normalization, years of spike persistence, and time of treatment onset to spike normalization were assessed. Final seizure and EEG outcome were compared between the groups with or without spikes at the time of AED tapering. One hundred and thirty-four patients were included. Mean age at seizure onset was 7.52 ± 2.11 years. Mean age at spike normalization was 11.89 ± 2.11 (range: 6.3-16.8) years. Mean time of treatment onset to spike normalization was 4.11 ± 2.13 (range: 0.24-10.08) years. Younger age of seizure onset was correlated with longer duration of spike persistence (r = -0.41, p < 0.001). In treated patients, spikes persisted for 4.1 ± 1.95 years, compared with 2.9 ± 1.97 years in untreated patients. No patients had recurrent seizures after AED was discontinued, regardless of the presence/absence of spikes at time of AED tapering. Years of spike persistence was longer in early onset BECTS patients. Treatment with AEDs did not shorten years of spike persistence. Persistence of spikes at time of treatment withdrawal was not associated with seizure recurrence. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Memristors Empower Spiking Neurons With Stochasticity

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning

  16. Fitting neuron models to spike trains

    Directory of Open Access Journals (Sweden)

    Cyrille eRossant

    2011-02-01

    Full Text Available Computational modeling is increasingly used to understand the function of neural circuitsin systems neuroscience.These studies require models of individual neurons with realisticinput-output properties.Recently, it was found that spiking models can accurately predict theprecisely timed spike trains produced by cortical neurons in response tosomatically injected currents,if properly fitted. This requires fitting techniques that are efficientand flexible enough to easily test different candidate models.We present a generic solution, based on the Brian simulator(a neural network simulator in Python, which allowsthe user to define and fit arbitrary neuron models to electrophysiological recordings.It relies on vectorization and parallel computing techniques toachieve efficiency.We demonstrate its use on neural recordings in the barrel cortex andin the auditory brainstem, and confirm that simple adaptive spiking modelscan accurately predict the response of cortical neurons. Finally, we show how a complexmulticompartmental model can be reduced to a simple effective spiking model.

  17. Frequency of Rolandic Spikes in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-10-01

    Full Text Available The frequency of rolandic spikes in nonepileptic children with attention deficit hyperactivity disorder (ADHD was compared with a control group of normal school-aged children in a study at the University of Frankfurt, Germany.

  18. THE POLITICAL CRITIQUE OF SPIKE Lee's Bamboozled

    African Journals Online (AJOL)

    Admin

    CONTEMPORARY AMERICAN MEDIA: THE POLITICAL. CRITIQUE OF SPIKE ... KEYWORDS: Blackface Minstrelsy, Racist Stereotypes and American Media. INTRODUCTION ..... of a difference that is itself a process of disavowal.” In this ...

  19. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    Science.gov (United States)

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  20. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  1. Anticipating Activity in Social Media Spikes

    OpenAIRE

    Higham, Desmond J.; Grindrod, Peter; Mantzaris, Alexander V.; Otley, Amanda; Laflin, Peter

    2014-01-01

    We propose a novel mathematical model for the activity of microbloggers during an external, event-driven spike. The model leads to a testable prediction of who would become most active if a spike were to take place. This type of information is of great interest to commercial organisations, governments and charities, as it identifies key players who can be targeted with information in real time when the network is most receptive. The model takes account of the fact that dynamic interactions ev...

  2. Building functional networks of spiking model neurons.

    Science.gov (United States)

    Abbott, L F; DePasquale, Brian; Memmesheimer, Raoul-Martin

    2016-03-01

    Most of the networks used by computer scientists and many of those studied by modelers in neuroscience represent unit activities as continuous variables. Neurons, however, communicate primarily through discontinuous spiking. We review methods for transferring our ability to construct interesting networks that perform relevant tasks from the artificial continuous domain to more realistic spiking network models. These methods raise a number of issues that warrant further theoretical and experimental study.

  3. Training Deep Spiking Neural Networks Using Backpropagation.

    Science.gov (United States)

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  4. Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization

    DEFF Research Database (Denmark)

    Eklund, Aron Charles; Friis, Pia; Wernersson, Rasmus

    2010-01-01

    BLASTN accuracy by modifying the substitution matrix and gap penalties. We generated gene expression microarray data for samples in which 1 or 10% of the target mass was an exogenous spike of known sequence. We found that the 10% spike induced 2-fold intensity changes in 3% of the probes, two......-third of which were decreases in intensity likely caused by bulk-hybridization. These changes were correlated with similarity between the spike and probe sequences. Interestingly, even very weak similarities tended to induce a change in probe intensity with the 10% spike. Using this data, we optimized the BLASTN...... substitution matrix to more accurately identify probes susceptible to non-specific hybridization with the spike. Relative to the default substitution matrix, the optimized matrix features a decreased score for A–T base pairs relative to G–C base pairs, resulting in a 5–15% increase in area under the ROC curve...

  5. Matrix solid-phase dispersion extraction of organophosphorus pesticide using SiO2-poly(N-vinylimidazole)

    International Nuclear Information System (INIS)

    Gutiérrez-Solís, M C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Ávila-Ortega, A; Medina-Peralta, S

    2013-01-01

    A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO 2 -PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 2 4 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO 2 or SiO 2 -PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO 2 -PVI in spiked tomato with 0.2 and 0.8μg/g.

  6. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  7. Non-orthogonally transitive G2 spike solution

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2015-01-01

    We generalize the orthogonally transitive (OT) G 2 spike solution to the non-OT G 2 case. This is achieved by applying Geroch’s transformation on a Kasner seed. The new solution contains two more parameters than the OT G 2 spike solution. Unlike the OT G 2 spike solution, the new solution always resolves its spike. (fast track communication)

  8. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS.

    Science.gov (United States)

    Creech, J B; Baker, J A; Handler, M R; Bizzarro, M

    2014-01-10

    We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a 196 Pt- 198 Pt double-spike to correct for instrumental mass bias. Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily dissolved in acid in preparation for anion-exchange chemistry. Pt was recovered from anion-exchange resin in concentrated HNO 3 acid after elution of matrix elements, including the other platinum group elements (PGE), in dilute HCl and HNO 3 acids. The separation method has been calibrated using a precious metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one sample from the Cretaceous-Paleogene boundary layer. Pt concentrations in these samples range from ca. 5 ng g -1 to 4 μg g -1 . This analytical method has been shown to have an external reproducibility on δ 198 Pt (permil difference in the 198 Pt/ 194 Pt ratio from the IRMM-010 standard) of ±0.040 (2 sd) on Pt solution standards (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2 sd). Pt stable isotope data for the full set of reference materials have a range of δ 198 Pt values with offsets of up to 0.4‰ from the IRMM-010 standard, which are readily resolved with this technique. These

  9. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  10. Hg stable isotope analysis by the double-spike method.

    Science.gov (United States)

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  11. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    Science.gov (United States)

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  12. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.

    Science.gov (United States)

    Werner, Thilo; Vianello, Elisa; Bichler, Olivier; Garbin, Daniele; Cattaert, Daniel; Yvert, Blaise; De Salvo, Barbara; Perniola, Luca

    2016-01-01

    In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  13. Spike rate and spike timing contributions to coding taste quality information in rat periphery

    Directory of Open Access Journals (Sweden)

    Vernon eLawhern

    2011-05-01

    Full Text Available There is emerging evidence that individual sensory neurons in the rodent brain rely on temporal features of the discharge pattern to code differences in taste quality information. In contrast, in-vestigations of individual sensory neurons in the periphery have focused on analysis of spike rate and mostly disregarded spike timing as a taste quality coding mechanism. The purpose of this work was to determine the contribution of spike timing to taste quality coding by rat geniculate ganglion neurons using computational methods that have been applied successfully in other sys-tems. We recorded the discharge patterns of narrowly-tuned and broadly-tuned neurons in the rat geniculate ganglion to representatives of the five basic taste qualities. We used mutual in-formation to determine significant responses and the van Rossum metric to characterize their temporal features. While our findings show that spike timing contributes a significant part of the message, spike rate contributes the largest portion of the message relayed by afferent neurons from rat fungiform taste buds to the brain. Thus, spike rate and spike timing together are more effective than spike rate alone in coding stimulus quality information to a single basic taste in the periphery for both narrowly-tuned specialist and broadly-tuned generalist neurons.

  14. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  15. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances.

    Science.gov (United States)

    Zhang, Junjie; Wei, Yanli; Li, Huizhen; Zeng, Eddy Y; You, Jing

    2017-08-01

    Extensive use of neonicotinoid insecticides has raised great concerns about their ecological risk. A reliable method to measure trace neonicotinoids in complicated aquatic environment is a premise for assessing their aquatic risk. To effectively remove matrix interfering substances from field water samples before instrumental analysis with HPLC/MS/MS, a multi-sorbent solid phase extraction method was developed using Box-Behnken design. The optimized method employed 200mg HLB/GCB (w/w, 8/2) as the sorbents and 6mL of 20% acetone in acetonitrile as the elution solution. The method was applied for measuring neonicotinoids in water at a wide range of concentrations (0.03-100μg/L) containing various amounts of matrix components. The recoveries of acetamiprid, imidacloprid, thiacloprid and thiamethoxam from the spiked samples ranged from 76.3% to 107% while clothianidin and dinotefuran had relatively lower recoveries. The recoveries of neonicotinoids in water with various amounts of matrix interfering substances were comparable and the matrix removal rates were approximately 50%. The method was sensitive with method detection limits in the range of 1.8-6.8ng/L for all target neonicotinoids. Finally, the developed method was validated by measurement of trace neonicotinoids in natural water. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Spike timing rigidity is maintained in bursting neurons under pentobarbital-induced anesthetic conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2016-11-01

    Full Text Available Pentobarbital potentiates γ-aminobutyric acid (GABA-mediated inhibitory synaptic transmission by prolonging the open time of GABAA receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo. To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT, which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (> 5 Hz and bursting were classified as HFB neurons (n = 10, and those with low spontaneous firing frequency (< 10 Hz and without bursting were classified as non-HFB neurons (n = 48. Pentobarbital injection (30 mg/kg reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval. Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABAA receptor-mediated regulation of cortical activities. Whole-cell patch

  17. Spike Code Flow in Cultured Neuronal Networks.

    Science.gov (United States)

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  18. Spike Code Flow in Cultured Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Shinichi Tamura

    2016-01-01

    Full Text Available We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of “1101” and “1011,” which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the “maximum cross-correlations” among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  19. Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    International Nuclear Information System (INIS)

    Yoshioka, Masahiko

    2002-01-01

    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast α function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with α function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision

  20. The electric potential of tripolar spikes

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, L. [Theoretical Plasma Physics, IPCF-CNR, Via Moruzzi 1, I-56124 Pisa (Italy)

    2010-02-22

    We present an analytical formula for the waveform of the electric potential associated with a tripolar spike in a plasma. This formula is based on the construction and on the subsequent solution of a differential equation for the waveform. We work out this equation as a direct consequence of the morphological and functional properties of the observed waveform, without making any reference to the velocity distributions of the electrons and of the ions which sustain the spike. In the approximation of small potential amplitudes, we solve this equation by quadrature. In particular, in the second order approximation, the solution of this equation is given in terms of elementary functions. This analytical solution is able to reproduce the potential waveforms associated with electron holes, ion holes, monotonic and nonmonotonic double layers and tripolar spikes, in excellent agreement with observations.

  1. The electric potential of tripolar spikes

    International Nuclear Information System (INIS)

    Nocera, L.

    2010-01-01

    We present an analytical formula for the waveform of the electric potential associated with a tripolar spike in a plasma. This formula is based on the construction and on the subsequent solution of a differential equation for the waveform. We work out this equation as a direct consequence of the morphological and functional properties of the observed waveform, without making any reference to the velocity distributions of the electrons and of the ions which sustain the spike. In the approximation of small potential amplitudes, we solve this equation by quadrature. In particular, in the second order approximation, the solution of this equation is given in terms of elementary functions. This analytical solution is able to reproduce the potential waveforms associated with electron holes, ion holes, monotonic and nonmonotonic double layers and tripolar spikes, in excellent agreement with observations.

  2. Trace element ink spiking for signature authentication

    International Nuclear Information System (INIS)

    Hatzistavros, V.S.; Kallithrakas-Kontos, N.G.

    2008-01-01

    Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated. (author)

  3. A Novel and Simple Spike Sorting Implementation.

    Science.gov (United States)

    Petrantonakis, Panagiotis C; Poirazi, Panayiota

    2017-04-01

    Monitoring the activity of multiple, individual neurons that fire spikes in the vicinity of an electrode, namely perform a Spike Sorting (SS) procedure, comprises one of the most important tools for contemporary neuroscience in order to reverse-engineer the brain. As recording electrodes' technology rabidly evolves by integrating thousands of electrodes in a confined spatial setting, the algorithms that are used to monitor individual neurons from recorded signals have to become even more reliable and computationally efficient. In this work, we propose a novel framework of the SS approach in which a single-step processing of the raw (unfiltered) extracellular signal is sufficient for both the detection and sorting of the activity of individual neurons. Despite its simplicity, the proposed approach exhibits comparable performance with state-of-the-art approaches, especially for spike detection in noisy signals, and paves the way for a new family of SS algorithms with the potential for multi-recording, fast, on-chip implementations.

  4. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  5. Spike timing precision of neuronal circuits.

    Science.gov (United States)

    Kilinc, Deniz; Demir, Alper

    2018-04-17

    Spike timing is believed to be a key factor in sensory information encoding and computations performed by the neurons and neuronal circuits. However, the considerable noise and variability, arising from the inherently stochastic mechanisms that exist in the neurons and the synapses, degrade spike timing precision. Computational modeling can help decipher the mechanisms utilized by the neuronal circuits in order to regulate timing precision. In this paper, we utilize semi-analytical techniques, which were adapted from previously developed methods for electronic circuits, for the stochastic characterization of neuronal circuits. These techniques, which are orders of magnitude faster than traditional Monte Carlo type simulations, can be used to directly compute the spike timing jitter variance, power spectral densities, correlation functions, and other stochastic characterizations of neuronal circuit operation. We consider three distinct neuronal circuit motifs: Feedback inhibition, synaptic integration, and synaptic coupling. First, we show that both the spike timing precision and the energy efficiency of a spiking neuron are improved with feedback inhibition. We unveil the underlying mechanism through which this is achieved. Then, we demonstrate that a neuron can improve on the timing precision of its synaptic inputs, coming from multiple sources, via synaptic integration: The phase of the output spikes of the integrator neuron has the same variance as that of the sample average of the phases of its inputs. Finally, we reveal that weak synaptic coupling among neurons, in a fully connected network, enables them to behave like a single neuron with a larger membrane area, resulting in an improvement in the timing precision through cooperation.

  6. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  7. Temporal Correlations and Neural Spike Train Entropy

    International Nuclear Information System (INIS)

    Schultz, Simon R.; Panzeri, Stefano

    2001-01-01

    Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a 'brute force' approach

  8. Implementing Signature Neural Networks with Spiking Neurons.

    Science.gov (United States)

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  9. Improved SpikeProp for Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Falah Y. H. Ahmed

    2013-01-01

    Full Text Available A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO and angle driven dependency learning rate. These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

  10. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  11. Physics of volleyball: Spiking with a purpose

    Science.gov (United States)

    Behroozi, F.

    1998-05-01

    A few weeks ago our volleyball coach telephoned me with a problem: How high should a player jump to "spike" a "set" ball so it would clear the net and land at a known distance on the other side of the net?

  12. An Unsupervised Online Spike-Sorting Framework.

    Science.gov (United States)

    Knieling, Simeon; Sridharan, Kousik S; Belardinelli, Paolo; Naros, Georgios; Weiss, Daniel; Mormann, Florian; Gharabaghi, Alireza

    2016-08-01

    Extracellular neuronal microelectrode recordings can include action potentials from multiple neurons. To separate spikes from different neurons, they can be sorted according to their shape, a procedure referred to as spike-sorting. Several algorithms have been reported to solve this task. However, when clustering outcomes are unsatisfactory, most of them are difficult to adjust to achieve the desired results. We present an online spike-sorting framework that uses feature normalization and weighting to maximize the distinctiveness between different spike shapes. Furthermore, multiple criteria are applied to either facilitate or prevent cluster fusion, thereby enabling experimenters to fine-tune the sorting process. We compare our method to established unsupervised offline (Wave_Clus (WC)) and online (OSort (OS)) algorithms by examining their performance in sorting various test datasets using two different scoring systems (AMI and the Adamos metric). Furthermore, we evaluate sorting capabilities on intra-operative recordings using established quality metrics. Compared to WC and OS, our algorithm achieved comparable or higher scores on average and produced more convincing sorting results for intra-operative datasets. Thus, the presented framework is suitable for both online and offline analysis and could substantially improve the quality of microelectrode-based data evaluation for research and clinical application.

  13. Spike-timing theory of working memory.

    Directory of Open Access Journals (Sweden)

    Botond Szatmáry

    Full Text Available Working memory (WM is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds.

  14. Spiking Neural P Systems with Communication on Request.

    Science.gov (United States)

    Pan, Linqiang; Păun, Gheorghe; Zhang, Gexiang; Neri, Ferrante

    2017-12-01

    Spiking Neural [Formula: see text] Systems are Neural System models characterized by the fact that each neuron mimics a biological cell and the communication between neurons is based on spikes. In the Spiking Neural [Formula: see text] systems investigated so far, the application of evolution rules depends on the contents of a neuron (checked by means of a regular expression). In these [Formula: see text] systems, a specified number of spikes are consumed and a specified number of spikes are produced, and then sent to each of the neurons linked by a synapse to the evolving neuron. [Formula: see text]In the present work, a novel communication strategy among neurons of Spiking Neural [Formula: see text] Systems is proposed. In the resulting models, called Spiking Neural [Formula: see text] Systems with Communication on Request, the spikes are requested from neighboring neurons, depending on the contents of the neuron (still checked by means of a regular expression). Unlike the traditional Spiking Neural [Formula: see text] systems, no spikes are consumed or created: the spikes are only moved along synapses and replicated (when two or more neurons request the contents of the same neuron). [Formula: see text]The Spiking Neural [Formula: see text] Systems with Communication on Request are proved to be computationally universal, that is, equivalent with Turing machines as long as two types of spikes are used. Following this work, further research questions are listed to be open problems.

  15. Impact of spike train autostructure on probability distribution of joint spike events.

    Science.gov (United States)

    Pipa, Gordon; Grün, Sonja; van Vreeswijk, Carl

    2013-05-01

    The discussion whether temporally coordinated spiking activity really exists and whether it is relevant has been heated over the past few years. To investigate this issue, several approaches have been taken to determine whether synchronized events occur significantly above chance, that is, whether they occur more often than expected if the neurons fire independently. Most investigations ignore or destroy the autostructure of the spiking activity of individual cells or assume Poissonian spiking as a model. Such methods that ignore the autostructure can significantly bias the coincidence statistics. Here, we study the influence of the autostructure on the probability distribution of coincident spiking events between tuples of mutually independent non-Poisson renewal processes. In particular, we consider two types of renewal processes that were suggested as appropriate models of experimental spike trains: a gamma and a log-normal process. For a gamma process, we characterize the shape of the distribution analytically with the Fano factor (FFc). In addition, we perform Monte Carlo estimations to derive the full shape of the distribution and the probability for false positives if a different process type is assumed as was actually present. We also determine how manipulations of such spike trains, here dithering, used for the generation of surrogate data change the distribution of coincident events and influence the significance estimation. We find, first, that the width of the coincidence count distribution and its FFc depend critically and in a nontrivial way on the detailed properties of the structure of the spike trains as characterized by the coefficient of variation CV. Second, the dependence of the FFc on the CV is complex and mostly nonmonotonic. Third, spike dithering, even if as small as a fraction of the interspike interval, can falsify the inference on coordinated firing.

  16. Detection of bursts in neuronal spike trains by the mean inter-spike interval method

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Yong Deng; Weihua Luo; Zhen Wang; Shaoqun Zeng

    2009-01-01

    Bursts are electrical spikes firing with a high frequency, which are the most important property in synaptic plasticity and information processing in the central nervous system. However, bursts are difficult to identify because bursting activities or patterns vary with phys-iological conditions or external stimuli. In this paper, a simple method automatically to detect bursts in spike trains is described. This method auto-adaptively sets a parameter (mean inter-spike interval) according to intrinsic properties of the detected burst spike trains, without any arbitrary choices or any operator judgrnent. When the mean value of several successive inter-spike intervals is not larger than the parameter, a burst is identified. By this method, bursts can be automatically extracted from different bursting patterns of cultured neurons on multi-electrode arrays, as accurately as by visual inspection. Furthermore, significant changes of burst variables caused by electrical stimulus have been found in spontaneous activity of neuronal network. These suggest that the mean inter-spike interval method is robust for detecting changes in burst patterns and characteristics induced by environmental alterations.

  17. Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy.

    Science.gov (United States)

    Miyano, Naoki; Inoue, Yuuki; Teramura, Yuji; Fujii, Keisuke; Tsumori, Fujio; Iwata, Hiroo; Kotera, Hidetoshi

    2008-07-01

    In the diffusional phase transformation of two-phase alloys, the new phase precipitates form the matrix phase at specific temperatures, followed by the formation of a mixed microstructure comprising the precipitate and the matrix. It has been found that by specific chemical-etching treatment, the precipitate in Fe-25Cr-6Ni alloy projects substantially and clusters at the surface. The configuration of the precipitate has an extremely high aspect ratio: it is several microns in width and several tens of microns in length (known as micron-spiked). This study targets the development of a gene transfer device with a micro-spike produced based on the self-organization phenomenon of the Fe-25Cr-6Ni alloy. With this spike-projected device, we tried to efficiently transfer plasmid DNA into adherent cells by electric pulse-triggered gene transfer using a plasmid-loaded electrode (electroporation-based reverse transfection). The spiked structure was applied to a substrate of the device to allow efficient gene transfer into adherent cells, although the general substrate was flat and had a smooth surface. The results suggest that this unique spike-projected device has potential applications in gene transfer devices for the analysis of the human genome in the post-genome period.

  18. Grain price spikes and beggar-thy-neighbor policy responses

    DEFF Research Database (Denmark)

    Jensen, Hans Grinsted; Anderson, Kym

    2017-01-01

    When prices spike in international grain markets, national governments often reduce the extent to which that spike affects their domestic food markets. Those actions exacerbate the price spike and international welfare transfer associated with that terms of trade change. Several recent analyses...

  19. Barbed micro-spikes for micro-scale biopsy

    Science.gov (United States)

    Byun, Sangwon; Lim, Jung-Min; Paik, Seung-Joon; Lee, Ahra; Koo, Kyo-in; Park, Sunkil; Park, Jaehong; Choi, Byoung-Doo; Seo, Jong Mo; Kim, Kyung-ah; Chung, Hum; Song, Si Young; Jeon, Doyoung; Cho, Dongil

    2005-06-01

    Single-crystal silicon planar micro-spikes with protruding barbs are developed for micro-scale biopsy and the feasibility of using the micro-spike as a micro-scale biopsy tool is evaluated for the first time. The fabrication process utilizes a deep silicon etch to define the micro-spike outline, resulting in protruding barbs of various shapes. Shanks of the fabricated micro-spikes are 3 mm long, 100 µm thick and 250 µm wide. Barbs protruding from micro-spike shanks facilitate the biopsy procedure by tearing off and retaining samples from target tissues. Micro-spikes with barbs successfully extracted tissue samples from the small intestines of the anesthetized pig, whereas micro-spikes without barbs failed to obtain a biopsy sample. Parylene coating can be applied to improve the biocompatibility of the micro-spike without deteriorating the biopsy function of the micro-spike. In addition, to show that the biopsy with the micro-spike can be applied to tissue analysis, samples obtained by micro-spikes were examined using immunofluorescent staining. Nuclei and F-actin of cells which are extracted by the micro-spike from a transwell were clearly visualized by immunofluorescent staining.

  20. The Mutation Frequency in Different Spike Categories in Barley

    DEFF Research Database (Denmark)

    Frydenberg, O.; Doll, Hans; Sandfær, J.

    1964-01-01

    After gamma irradiation of barley seeds, a comparison has been made between the chlorophyll-mutant frequencies in X1 spikes that had multicellular bud meristems in the seeds at the time of treatment (denoted as pre-formed spikes) and X1 spikes having no recognizable meristems at the time...

  1. Error-backpropagation in temporally encoded networks of spiking neurons

    NARCIS (Netherlands)

    S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)

    2000-01-01

    textabstractFor a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, emph{SpikeProp, akin to traditional error-backpropagation and show how to overcome the discontinuities introduced by thresholding. With this algorithm,

  2. Hardware implementation of stochastic spiking neural networks.

    Science.gov (United States)

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  3. Evolving spiking networks with variable resistive memories.

    Science.gov (United States)

    Howard, Gerard; Bull, Larry; de Lacy Costello, Ben; Gale, Ella; Adamatzky, Andrew

    2014-01-01

    Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types.

  4. Visualizing spikes in source-space

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Duez, Lene; Scherg, Michael

    2016-01-01

    OBJECTIVE: Reviewing magnetoencephalography (MEG) recordings is time-consuming: signals from the 306 MEG-sensors are typically reviewed divided into six arrays of 51 sensors each, thus browsing each recording six times in order to evaluate all signals. A novel method of reconstructing the MEG...... signals in source-space was developed using a source-montage of 29 brain-regions and two spatial components to remove magnetocardiographic (MKG) artefacts. Our objective was to evaluate the accuracy of reviewing MEG in source-space. METHODS: In 60 consecutive patients with epilepsy, we prospectively...... evaluated the accuracy of reviewing the MEG signals in source-space as compared to the classical method of reviewing them in sensor-space. RESULTS: All 46 spike-clusters identified in sensor-space were also identified in source-space. Two additional spike-clusters were identified in source-space. As 29...

  5. Spiked instantons from intersecting D-branes

    Directory of Open Access Journals (Sweden)

    Nikita Nekrasov

    2017-01-01

    Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.

  6. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  7. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  8. A Fully Automated Approach to Spike Sorting.

    Science.gov (United States)

    Chung, Jason E; Magland, Jeremy F; Barnett, Alex H; Tolosa, Vanessa M; Tooker, Angela C; Lee, Kye Y; Shah, Kedar G; Felix, Sarah H; Frank, Loren M; Greengard, Leslie F

    2017-09-13

    Understanding the detailed dynamics of neuronal networks will require the simultaneous measurement of spike trains from hundreds of neurons (or more). Currently, approaches to extracting spike times and labels from raw data are time consuming, lack standardization, and involve manual intervention, making it difficult to maintain data provenance and assess the quality of scientific results. Here, we describe an automated clustering approach and associated software package that addresses these problems and provides novel cluster quality metrics. We show that our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual techniques with desktop central processing unit (CPU) runtimes faster than acquisition time for up to hundreds of electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of electrode geometries and across multiple brain regions. This algorithm has the potential to enable reproducible and automated spike sorting of larger scale recordings than is currently possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The transfer function of neuron spike.

    Science.gov (United States)

    Palmieri, Igor; Monteiro, Luiz H A; Miranda, Maria D

    2015-08-01

    The mathematical modeling of neuronal signals is a relevant problem in neuroscience. The complexity of the neuron behavior, however, makes this problem a particularly difficult task. Here, we propose a discrete-time linear time-invariant (LTI) model with a rational function in order to represent the neuronal spike detected by an electrode located in the surroundings of the nerve cell. The model is presented as a cascade association of two subsystems: one that generates an action potential from an input stimulus, and one that represents the medium between the cell and the electrode. The suggested approach employs system identification and signal processing concepts, and is dissociated from any considerations about the biophysical processes of the neuronal cell, providing a low-complexity alternative to model the neuronal spike. The model is validated by using in vivo experimental readings of intracellular and extracellular signals. A computational simulation of the model is presented in order to assess its proximity to the neuronal signal and to observe the variability of the estimated parameters. The implications of the results are discussed in the context of spike sorting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Basalt FRP Spike Repairing of Wood Beams

    Directory of Open Access Journals (Sweden)

    Luca Righetti

    2015-08-01

    Full Text Available This article describes aspects within an experimental program aimed at improving the structural performance of cracked solid fir-wood beams repaired with Basalt Fiber Reinforced Polymer (BFRP spikes. Fir wood is characterized by its low density, low compression strength, and high level of defects, and it is likely to distort when dried and tends to fail under tension due to the presence of cracks, knots, or grain deviation. The proposed repair technique consists of the insertion of BFRP spikes into timber beams to restore the continuity of cracked sections. The experimental efforts deal with the evaluation of the bending strength and deformation properties of 24 timber beams. An artificially simulated cracking was produced by cutting the wood beams in half or notching. The obtained results for the repaired beams were compared with those of solid undamaged and damaged beams, and increases of beam capacity, bending strength and of modulus of elasticity, and analysis of failure modes was discussed. For notched beams, the application of the BFRP spikes was able to restore the original bending capacity of undamaged beams, while only a small part of the original capacity was recovered for beams that were cut in half.

  11. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available A new learning rule (Precise-Spike-Driven (PSD Synaptic Plasticity is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  12. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Science.gov (United States)

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  13. Nicotine-Mediated ADP to Spike Transition: Double Spiking in Septal Neurons.

    Science.gov (United States)

    Kodirov, Sodikdjon A; Wehrmeister, Michael; Colom, Luis

    2016-04-01

    The majority of neurons in lateral septum (LS) are electrically silent at resting membrane potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting bursting activity upon longer applications. We have observed simultaneous changes in frequencies and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, termed as double spiking. A transition from a single AP to double spikes increased the amplitude of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller compared to the first one, and this correlation persisted in regard to their duration (half-width). A similar bursting activity in the presence of nicotine, to our knowledge, has not been reported previously in the septal structure in general and in LS in particular.

  14. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  15. Spikes and matter inhomogeneities in massless scalar field models

    International Nuclear Information System (INIS)

    Coley, A A; Lim, W C

    2016-01-01

    We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch’s transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes. (paper)

  16. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  17. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  18. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    Science.gov (United States)

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  19. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference.

    Science.gov (United States)

    Liu, Xing; Tang, Zongwen; Duan, Zhenhua; He, Zhenyun; Shu, Mei; Wang, Xianxian; Gee, Shirley J; Hammock, Bruce D; Xu, Yang

    2017-03-01

    A sensitive indirect competitive nanobody-based enzyme linked immunosorbent assay (Nb-ELISA) for ochratoxin A (OTA) with high resistance to cereal matrix interference was developed. Nanobodies against OTA (Nb15, Nb28, Nb32, Nb36) were expressed in E. coli cells and their thermal stabilities were compared with that of an OTA-specific monoclonal antibody 6H8. All nanobodies could still retain their antigen-binding activity after exposure to temperature 95°C for 5min or to 90°C for 75min. Nb28 that exhibited the highest sensitivity in ELISA was selected for further research. An indirect competitive ELISA based on Nb28 was developed for OTA, with an IC 50 of 0.64ng/mL and a linear range (IC 20 -IC 80 ) of 0.27-1.47ng/mL. Cereal samples were analyzed following a 2.5 fold dilution of sample extracts, showing the good resistance to matrix interference of the Nb-ELSIA. The recovery of spiked cereal samples (rice, oats, barley) ranged from 80% to 105% and the Nb-ELISA results of OTA content in naturally contamined samples were in good agreement with those determined by a commercial ELISA kit. The results indicated the reliablity of nanobody as a promising immunoassay reagent for detection of mycotoxins in food matrix and its potential in biosensor development. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

    2006-01-01

    Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic...... remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially...... polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown...

  1. Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons.

    Science.gov (United States)

    Grewe, Jan; Kruscha, Alexandra; Lindner, Benjamin; Benda, Jan

    2017-03-07

    Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.

  2. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  3. Solving constraint satisfaction problems with networks of spiking neurons

    Directory of Open Access Journals (Sweden)

    Zeno eJonke

    2016-03-01

    Full Text Available Network of neurons in the brain apply – unlike processors in our current generation ofcomputer hardware – an event-based processing strategy, where short pulses (spikes areemitted sparsely by neurons to signal the occurrence of an event at a particular point intime. Such spike-based computations promise to be substantially more power-efficient thantraditional clocked processing schemes. However it turned out to be surprisingly difficult todesign networks of spiking neurons that can solve difficult computational problems on the levelof single spikes (rather than rates of spikes. We present here a new method for designingnetworks of spiking neurons via an energy function. Furthermore we show how the energyfunction of a network of stochastically firing neurons can be shaped in a quite transparentmanner by composing the networks of simple stereotypical network motifs. We show that thisdesign approach enables networks of spiking neurons to produce approximate solutions todifficult (NP-hard constraint satisfaction problems from the domains of planning/optimizationand verification/logical inference. The resulting networks employ noise as a computationalresource. Nevertheless the timing of spikes (rather than just spike rates plays an essential rolein their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines and Gibbs sampling.

  4. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  5. Consensus-Based Sorting of Neuronal Spike Waveforms.

    Science.gov (United States)

    Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles

    2016-01-01

    Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.

  6. Separating DDTs in edible animal fats using matrix solid-phase dispersion extraction with activated carbon filter, Toyobo-KF.

    Science.gov (United States)

    Furusawa, Naoto

    2006-09-01

    A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.

  7. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    Science.gov (United States)

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil.

    Science.gov (United States)

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M

    2012-10-01

    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.

  9. Optimized Projection Matrix for Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Jianping Xu

    2010-01-01

    Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  10. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with 30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Eliminating thermal violin spikes from LIGO noise

    Energy Technology Data Exchange (ETDEWEB)

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  12. Eliminating thermal violin spikes from LIGO noise

    International Nuclear Information System (INIS)

    Santamore, D. H.; Levin, Yuri

    2001-01-01

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than ∼2 x 10 -13 cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors

  13. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  14. Communication through resonance in spiking neuronal networks.

    Science.gov (United States)

    Hahn, Gerald; Bujan, Alejandro F; Frégnac, Yves; Aertsen, Ad; Kumar, Arvind

    2014-08-01

    The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.

  15. Spike Pattern Recognition for Automatic Collimation Alignment

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC makes use of a collimation system to protect its sensitive equipment by intercepting potentially dangerous beam halo particles. The appropriate collimator settings to protect the machine against beam losses relies on a very precise alignment of all the collimators with respect to the beam. The beam center at each collimator is then found by touching the beam halo using an alignment procedure. Until now, in order to determine whether a collimator is aligned with the beam or not, a user is required to follow the collimator’s BLM loss data and detect spikes. A machine learning (ML) model was trained in order to automatically recognize spikes when a collimator is aligned. The model was loosely integrated with the alignment implementation to determine the classification performance and reliability, without effecting the alignment process itself. The model was tested on a number of collimators during this MD and the machine learning was able to output the classifications in real-time.

  16. A spiking neuron circuit based on a carbon nanotube transistor

    International Nuclear Information System (INIS)

    Chen, C-L; Kim, K; Truong, Q; Shen, A; Li, Z; Chen, Y

    2012-01-01

    A spiking neuron circuit based on a carbon nanotube (CNT) transistor is presented in this paper. The spiking neuron circuit has a crossbar architecture in which the transistor gates are connected to its row electrodes and the transistor sources are connected to its column electrodes. An electrochemical cell is incorporated in the gate of the transistor by sandwiching a hydrogen-doped poly(ethylene glycol)methyl ether (PEG) electrolyte between the CNT channel and the top gate electrode. An input spike applied to the gate triggers a dynamic drift of the hydrogen ions in the PEG electrolyte, resulting in a post-synaptic current (PSC) through the CNT channel. Spikes input into the rows trigger PSCs through multiple CNT transistors, and PSCs cumulate in the columns and integrate into a ‘soma’ circuit to trigger output spikes based on an integrate-and-fire mechanism. The spiking neuron circuit can potentially emulate biological neuron networks and their intelligent functions. (paper)

  17. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...

  18. An Overview of Bayesian Methods for Neural Spike Train Analysis

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2013-01-01

    Full Text Available Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of Bayesian methods and their representative applications in neural spike train analysis, at both single neuron and population levels. On the theoretical side, we focus on various approximate Bayesian inference techniques as applied to latent state and parameter estimation. On the application side, the topics include spike sorting, tuning curve estimation, neural encoding and decoding, deconvolution of spike trains from calcium imaging signals, and inference of neuronal functional connectivity and synchrony. Some research challenges and opportunities for neural spike train analysis are discussed.

  19. A new supervised learning algorithm for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Zeng, Xiaoqin; Zhong, Shuiming

    2013-06-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by the precise firing times of spikes. If only running time is considered, the supervised learning for a spiking neuron is equivalent to distinguishing the times of desired output spikes and the other time during the running process of the neuron through adjusting synaptic weights, which can be regarded as a classification problem. Based on this idea, this letter proposes a new supervised learning method for spiking neurons with temporal encoding; it first transforms the supervised learning into a classification problem and then solves the problem by using the perceptron learning rule. The experiment results show that the proposed method has higher learning accuracy and efficiency over the existing learning methods, so it is more powerful for solving complex and real-time problems.

  20. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  1. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  2. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  3. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A

    2015-01-01

    Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  4. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    Directory of Open Access Journals (Sweden)

    Daniel ede Santos-Sierra

    2015-11-01

    Full Text Available Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions cite{Pyragas}, where the slave neuron is able to anticipate in time the behaviour of the master one. In this paper we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI, one of the main features of the neural response associated to the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  5. Multimodal imaging of spike propagation: a technical case report.

    Science.gov (United States)

    Tanaka, N; Grant, P E; Suzuki, N; Madsen, J R; Bergin, A M; Hämäläinen, M S; Stufflebeam, S M

    2012-06-01

    We report an 11-year-old boy with intractable epilepsy, who had cortical dysplasia in the right superior frontal gyrus. Spatiotemporal source analysis of MEG and EEG spikes demonstrated a similar time course of spike propagation from the superior to inferior frontal gyri, as observed on intracranial EEG. The tractography reconstructed from DTI showed a fiber connection between these areas. Our multimodal approach demonstrates spike propagation and a white matter tract guiding the propagation.

  6. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS

    DEFF Research Database (Denmark)

    Creech, John Benjamin; Baker, J. A.; Handler, M. R.

    2014-01-01

    . Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily...... metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one...

  7. Generalized activity equations for spiking neural network dynamics

    Directory of Open Access Journals (Sweden)

    Michael A Buice

    2013-11-01

    Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.

  8. In-reactor creep of zirconium alloys by thermal spikes

    International Nuclear Information System (INIS)

    Ibrahim, E.F.

    1975-01-01

    The size and duration of thermal spikes from fast neutrons have been calculated for zirconium alloys, showing that spikes up to 1.8 nm radius may exist for 2 x 10 -11 s at greater than melting point, at 570K ambient temperature. Creep rates have been calculated assuming that the elastic strain from the applied stress relaxes in the volume of the spikes (by preferential loop alignment or modification of an existing dislocation network). The calculated rates are consistent with strain rates observed in long term tests-in-reactor, if spike lifetimes are 2 to 2.5 x 10 -11 s. (Auth.)

  9. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.

    Science.gov (United States)

    Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang

    2016-01-01

    Network of neurons in the brain apply-unlike processors in our current generation of computer hardware-an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling.

  10. Surfing a spike wave down the ventral stream.

    Science.gov (United States)

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  11. Reconstruction of sparse connectivity in neural networks from spike train covariances

    International Nuclear Information System (INIS)

    Pernice, Volker; Rotter, Stefan

    2013-01-01

    The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of recurrent connections on covariances can be characterized directly in linear models, where connectivity in the network is described by a matrix of linear coupling kernels. However, as indirect connections also give rise to covariances, the inverse problem of inferring network structure from covariances can generally not be solved unambiguously. Here we study to what degree this ambiguity can be resolved if the sparseness of neural networks is taken into account. To reconstruct a sparse network, we determine the minimal set of linear couplings consistent with the measured covariances by minimizing the L 1 norm of the coupling matrix under appropriate constraints. Contrary to intuition, after stochastic optimization of the coupling matrix, the resulting estimate of the underlying network is directed, despite the fact that a symmetric matrix of count covariances is used for inference. The performance of the new method is best if connections are neither exceedingly sparse, nor too dense, and it is easily applicable for networks of a few hundred nodes. Full coupling kernels can be obtained from the matrix of full covariance functions. We apply our method to networks of leaky integrate-and-fire neurons in an asynchronous–irregular state, where spike train covariances are well described by a linear model. (paper)

  12. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    Science.gov (United States)

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Wide QRS tachycardia preceded by pacemaker spikes].

    Science.gov (United States)

    Romero, M; Aranda, A; Gómez, F J; Jurado, A

    2014-04-01

    The differential diagnosis and therapeutic management of wide QRS tachycardia preceded by pacemaker spike is presented. The pacemaker-mediated tachycardia, tachycardia fibrillo-flutter in patients with pacemakers, and runaway pacemakers, have a similar surface electrocardiogram, but respond to different therapeutic measures. The tachycardia response to the application of a magnet over the pacemaker could help in the differential diagnosis, and in some cases will be therapeutic, as in the case of a tachycardia-mediated pacemaker. Although these conditions are diagnosed and treated in hospitals with catheterization laboratories using the application programmer over the pacemaker, patients presenting in primary care clinic and emergency forced us to make a diagnosis and treat the haemodynamically unstable patient prior to referral. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  14. A propane price spike nails users

    International Nuclear Information System (INIS)

    Milke, M.

    1997-01-01

    The increase in price for propane was discussed. In 1993, propane cost about 5 cents per litre; by December 1996, the price has risen to 27 cents wholesale, while retail prices for auto propane reached 40 cents per litre. As a result, farmers and fleet operators are considering switching to an alternative energy supply. The five factors which may have played a role in the propane price spike were described. These included a cold winter which lowered inventories, a Pemex gas plant in Mexico which had been damaged by fire, forcing Mexico to import natural gas and natural gas liquids from the USA, the failure of propane distributors to restock during the summer months in the hope of lower prices, and increased cost of competing fuels in the face of increased demand. It was noted that these factors are transitory, which could mean better prices this summer

  15. Spike sorting for polytrodes: a divide and conquer approach

    Directory of Open Access Journals (Sweden)

    Nicholas V. Swindale

    2014-02-01

    Full Text Available In order to determine patterns of neural activity, spike signals recorded by extracellular electrodes have to be clustered (sorted with the aim of ensuring that each cluster represents all the spikes generated by an individual neuron. Many methods for spike sorting have been proposed but few are easily applicable to recordings from polytrodes which may have 16 or more recording sites. As with tetrodes, these are spaced sufficiently closely that signals from single neurons will usually be recorded on several adjacent sites. Although this offers a better chance of distinguishing neurons with similarly shaped spikes, sorting is difficult in such cases because of the high dimensionality of the space in which the signals must be classified. This report details a method for spike sorting based on a divide and conquer approach. Clusters are initially formed by assigning each event to the channel on which it is largest. Each channel-based cluster is then sub-divided into as many distinct clusters as possible. These are then recombined on the basis of pairwise tests into a final set of clusters. Pairwise tests are also performed to establish how distinct each cluster is from the others. A modified gradient ascent clustering (GAC algorithm is used to do the clustering. The method can sort spikes with minimal user input in times comparable to real time for recordings lasting up to 45 minutes. Our results illustrate some of the difficulties inherent in spike sorting, including changes in spike shape over time. We show that some physiologically distinct units may have very similar spike shapes. We show that RMS measures of spike shape similarity are not sensitive enough to discriminate clusters that can otherwise be separated by principal components analysis. Hence spike sorting based on least-squares matching to templates may be unreliable. Our methods should be applicable to tetrodes and scaleable to larger multi-electrode arrays (MEAs.

  16. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  17. ZnO core spike particles and nano-networks and their wide range of applications

    Science.gov (United States)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  18. Clustering predicts memory performance in networks of spiking and non-spiking neurons

    Directory of Open Access Journals (Sweden)

    Weiliang eChen

    2011-03-01

    Full Text Available The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so that results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks. We also show that the clustering of the network, measured by Clustering Coefficient, has a strong linear correlation to the performance of associative memory. This result is important since a purely static measure of network connectivity appears to determine an important dynamic property of the network.

  19. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  20. Cognitive performance and aphasia recovery.

    Science.gov (United States)

    Fonseca, José; Raposo, Ana; Martins, Isabel Pavão

    2018-03-01

    Objectives This study assessed cognitive performance of subjects with aphasia during the acute stage of stroke and evaluated how such performance relates to recovery at 3 months. Materials & methods Patients with aphasia following a left hemisphere stroke were evaluated during the first (baseline) and the fourth-month post onset. Assessment comprised non-verbal tests of attention/processing speed (Symbol Search, Cancelation Task), executive functioning (Matrix Reasoning, Tower of Hanoi, Clock Drawing, Motor Initiative), semantic (Camel and Cactus Test), episodic and immediate memory (Memory for Faces Test, 5 Objects Memory Test, and Spatial Span. Recovery was measured by the Token Test score at 3 months. The impact of baseline performance on recovery was evaluated by logistic regression adjusting for age, education, severity of aphasia and the Alberta Stroke Program Early CT (ASPECT) score. Results Thirty-nine subjects (with a mean of 66.5 ± 10.6 years of age, 17 men) were included. Average baseline cognitive performance was within normal range in all tests except in memory tests (semantic, episodic and immediate memory) for which scores were ≤-1.5sd. Subjects with poor aphasia recovery (N = 27) were older and had fewer years of formal education but had identical ASPECT score compared to those with favorable recovery. Considering each test individually, the score obtained on the Matrix Reasoning test was the only one to predict aphasia recovery (Exp(B)=24.085 p = 0.038). Conclusions The Matrix Reasoning Test may contribute to predict aphasia recovery. Cognitive performance is a measure of network disruption but may also indicate the availability of recovery strategies.

  1. Spikes and memory in (Nord Pool) electricity price spot prices

    DEFF Research Database (Denmark)

    Proietti, Tomasso; Haldrup, Niels; Knapik, Oskar

    Electricity spot prices are subject to transitory sharp movements commonly referred to as spikes. The paper aims at assessing their effects on model based inferences and predictions, with reference to the Nord Pool power exchange. We identify a spike as a price value which deviates substantially...

  2. The Nature of Power Spikes: a regime-switch approach

    NARCIS (Netherlands)

    C.M. de Jong (Cyriel)

    2005-01-01

    textabstractDue to its non-storable nature, electricity is a commodity with probably the most volatile spot prices, exemplified by occasional spikes. Appropriate pricing, portfolio, and risk management models have to incorporate these characteristics, and the spikes in particular. We investigate the

  3. No WIMP mini-spikes in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Wanders, M.; Bertone, G.; Volonteri, M.; Weniger, C.

    2015-01-01

    The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center

  4. Spiking and bursting patterns of fractional-order Izhikevich model

    Science.gov (United States)

    Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha

    2018-03-01

    Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.

  5. Spectral components of cytosolic [Ca2+] spiking in neurons

    DEFF Research Database (Denmark)

    Kardos, J; Szilágyi, N; Juhász, G

    1998-01-01

    . Delayed complex responses of large [Ca2+]c spiking observed in cells from a different set of cultures were synthesized by a set of frequencies within the range 0.018-0.117 Hz. Differential frequency patterns are suggested as characteristics of the [Ca2+]c spiking responses of neurons under different...

  6. Accelerated spike resampling for accurate multiple testing controls.

    Science.gov (United States)

    Harrison, Matthew T

    2013-02-01

    Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using permutation tests and for testing pairwise synchrony and precise lagged-correlation between many simultaneously recorded spike trains using interval jitter.

  7. Causal Inference and Explaining Away in a Spiking Network

    Science.gov (United States)

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  8. Cytoplasmic tail of coronavirus spike protein has intracellular

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/042/02/0231-0244. Keywords. Coronavirus spike protein trafficking; cytoplasmic tail signal; endoplasmic reticulum–Golgi intermediate complex; lysosome. Abstract. Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is ...

  9. Pressurized water reactor iodine spiking behavior under power transient conditions

    International Nuclear Information System (INIS)

    Ho, J.C.

    1992-01-01

    The most accepted theory explaining the cause of pressurized water reactor iodine spiking is steam formation and condensation in damaged fuel rods. The phase transformation of the primary coolant from water to steam and back again is believed to cause the iodine spiking phenomenon. But due to the complex nature of the phenomenon, a comprehensive model of the behavior has not yet been successfully developed. This paper presents a new model based on an empirical approach, which gives a first-order estimation of the peak iodine spiking magnitude. Based on the proposed iodine spiking model, it is apparent that it is feasible to derive a correlation using the plant operating data base to monitor and control the peak iodine spiking magnitude

  10. Recent progress in multi-electrode spike sorting methods.

    Science.gov (United States)

    Lefebvre, Baptiste; Yger, Pierre; Marre, Olivier

    2016-11-01

    In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Unsupervised spike sorting based on discriminative subspace learning.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  12. A supervised learning rule for classification of spatiotemporal spike patterns.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  13. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    Science.gov (United States)

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as

  14. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  16. Asynchronous Rate Chaos in Spiking Neuronal Circuits.

    Directory of Open Access Journals (Sweden)

    Omri Harish

    2015-07-01

    Full Text Available The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.

  17. Memory recall and spike-frequency adaptation

    Science.gov (United States)

    Roach, James P.; Sander, Leonard M.; Zochowski, Michal R.

    2016-05-01

    The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.

  18. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  19. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    Science.gov (United States)

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  20. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  1. Automated spike preparation system for Isotope Dilution Mass Spectrometry (IDMS)

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Clark, J.P.

    1990-01-01

    Isotope Dilution Mass Spectrometry (IDMS) is a method frequently employed to measure dissolved, irradiated nuclear materials. A known quantity of a unique isotope of the element to be measured (referred to as the ''spike'') is added to the solution containing the analyte. The resulting solution is chemically purified then analyzed by mass spectrometry. By measuring the magnitude of the response for each isotope and the response for the ''unique spike'' then relating this to the known quantity of the ''spike'', the quantity of the nuclear material can be determined. An automated spike preparation system was developed at the Savannah River Site (SRS) to dispense spikes for use in IDMS analytical methods. Prior to this development, technicians weighed each individual spike manually to achieve the accuracy required. This procedure was time-consuming and subjected the master stock solution to evaporation. The new system employs a high precision SMI Model 300 Unipump dispenser interfaced with an electronic balance and a portable Epson HX-20 notebook computer to automate spike preparation

  2. Predictive coding of dynamical variables in balanced spiking networks.

    Science.gov (United States)

    Boerlin, Martin; Machens, Christian K; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.

  3. A method for decoding the neurophysiological spike-response transform.

    Science.gov (United States)

    Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir

    2009-11-15

    Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.

  4. Geomagnetic spikes on the core-mantle boundary

    Science.gov (United States)

    Davies, C. J.; Constable, C.

    2017-12-01

    Extreme variations of Earth's magnetic field occurred in the Levantine region around 1000 BC, where the field intensity rose and fell by a factor of 2-3 over a short time and confined spatial region. There is presently no coherent link between this intensity spike and the generating processes in Earth's liquid core. Here we test the attribution of a surface spike to a flux patch visible on the core-mantle boundary (CMB), calculating geometric and energetic bounds on resulting surface geomagnetic features. We show that the Levantine intensity high must span at least 60 degrees in longitude. Models providing the best trade-off between matching surface spike intensity, minimizing L1 and L2 misfit to the available data and satisfying core energy constraints produce CMB spikes 8-22 degrees wide with peak values of O(100) mT. We propose that the Levantine spike grew in place before migrating northward and westward, contributing to the growth of the axial dipole field seen in Holocene field models. Estimates of Ohmic dissipation suggest that diffusive processes, which are often neglected, likely govern the ultimate decay of geomagnetic spikes. Using these results, we search for the presence of spike-like features in geodynamo simulations.

  5. Boobs, Boxing, and Bombs: Problematizing the Entertainment of Spike TV

    OpenAIRE

    Walton, Gerald; Potvin, L.

    2009-01-01

    Spike is the only television network in North America “for men.” Its motto, “Get more action,” is suggestive of pursuits of various forms of violence. We conceptualize Spike not as trivial entertainment, but rather as a form of pop culture that erodes the gains of feminists who have challenged the prevalence of normalized hegemonic masculinity (HM). Our paper highlights themes of Spike content, and connects those themes to the literature on HM. Moreover, we validate the identities and lives ...

  6. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  7. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  8. Integrated workflows for spiking neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Ján eAntolík

    2013-12-01

    Full Text Available The increasing availability of computational resources is enabling more detailed, realistic modelling in computational neuroscience, resulting in a shift towards more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeller's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modellers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity.To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualisation into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organised configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualisation stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modelling studies by relieving the user from manual handling of the flow of metadata between the individual

  9. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  10. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  11. Real-time computing platform for spiking neurons (RT-spike).

    Science.gov (United States)

    Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael

    2006-07-01

    A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.

  12. Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity.

    Science.gov (United States)

    D'Souza, Prashanth; Liu, Shih-Chii; Hahnloser, Richard H R

    2010-03-09

    It is widely believed that sensory and motor processing in the brain is based on simple computational primitives rooted in cellular and synaptic physiology. However, many gaps remain in our understanding of the connections between neural computations and biophysical properties of neurons. Here, we show that synaptic spike-time-dependent plasticity (STDP) combined with spike-frequency adaptation (SFA) in a single neuron together approximate the well-known perceptron learning rule. Our calculations and integrate-and-fire simulations reveal that delayed inputs to a neuron endowed with STDP and SFA precisely instruct neural responses to earlier arriving inputs. We demonstrate this mechanism on a developmental example of auditory map formation guided by visual inputs, as observed in the external nucleus of the inferior colliculus (ICX) of barn owls. The interplay of SFA and STDP in model ICX neurons precisely transfers the tuning curve from the visual modality onto the auditory modality, demonstrating a useful computation for multimodal and sensory-guided processing.

  13. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  14. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...

  15. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan; Naous, Rawan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2015-01-01

    . Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards

  16. A novel unsupervised spike sorting algorithm for intracranial EEG.

    Science.gov (United States)

    Yadav, R; Shah, A K; Loeb, J A; Swamy, M N S; Agarwal, R

    2011-01-01

    This paper presents a novel, unsupervised spike classification algorithm for intracranial EEG. The method combines template matching and principal component analysis (PCA) for building a dynamic patient-specific codebook without a priori knowledge of the spike waveforms. The problem of misclassification due to overlapping classes is resolved by identifying similar classes in the codebook using hierarchical clustering. Cluster quality is visually assessed by projecting inter- and intra-clusters onto a 3D plot. Intracranial EEG from 5 patients was utilized to optimize the algorithm. The resulting codebook retains 82.1% of the detected spikes in non-overlapping and disjoint clusters. Initial results suggest a definite role of this method for both rapid review and quantitation of interictal spikes that could enhance both clinical treatment and research studies on epileptic patients.

  17. Emergent dynamics of spiking neurons with fluctuating threshold

    Science.gov (United States)

    Bhattacharjee, Anindita; Das, M. K.

    2017-05-01

    Role of fluctuating threshold on neuronal dynamics is investigated. The threshold function is assumed to follow a normal probability distribution. Standard deviation of inter-spike interval of the response is computed as an indicator of irregularity in spike emission. It has been observed that, the irregularity in spiking is more if the threshold variation is more. A significant change in modal characteristics of Inter Spike Intervals (ISI) is seen to occur as a function of fluctuation parameter. Investigation is further carried out for coupled system of neurons. Cooperative dynamics of coupled neurons are discussed in view of synchronization. Total and partial synchronization regimes are depicted with the help of contour plots of synchrony measure under various conditions. Results of this investigation may provide a basis for exploring the complexities of neural communication and brain functioning.

  18. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  19. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  20. A novel automated spike sorting algorithm with adaptable feature extraction.

    Science.gov (United States)

    Bestel, Robert; Daus, Andreas W; Thielemann, Christiane

    2012-10-15

    To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  2. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  3. SPIKY: a graphical user interface for monitoring spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa

    2015-05-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.

  4. Nonlinear evolution of single spike in Richtmyer-Meshkov instability

    International Nuclear Information System (INIS)

    Fukuda, Y.; Nishihara, K.; Wouchuk, J.G.

    2000-01-01

    Nonlinear evolution of single spike structure and vortex in the Richtmyer-Meshkov instability is investigated with the use of a two-dimensional hydrodynamic code. It is shown that singularity appears in the vorticity left by transmitted and reflected shocks at a corrugated interface. This singularity results in opposite sign of vorticity along the interface that causes double spiral structure of the spike. (authors)

  5. Development and evaluation of thin-layer chromatography-digital image-based analysis for the quantitation of the botanical pesticide azadirachtin in agricultural matrixes and commercial formulations: comparison with ELISA.

    Science.gov (United States)

    Tanuja, Penmatsa; Venugopal, Namburi; Sashidhar, Rao Beedu

    2007-01-01

    A simple thin-layer chromatography-digital image-based analytical method has been developed for the quantitation of the botanical pesticide, azadirachtin. The method was validated by analyzing azadirachtin in the spiked food matrixes and processed commercial pesticide formulations, using acidified vanillin reagent as a postchromatographic derivatizing agent. The separated azadirachtin was clearly identified as a green spot. The Rf value was found to be 0.55, which was similar to that of a reference standard. A standard calibration plot was established using a reference standard, based on the linear regression analysis [r2 = 0.996; y = 371.43 + (634.82)x]. The sensitivity of the method was found to be 0.875 microg azadirachtin. Spiking studies conducted at the 1 ppm (microg/g) level in various agricultural matrixes, such as brinjal, tomato, coffee, and cotton seeds, revealed the recoveries of azadirachtin in the range of 67-92%. Azadirachtin content of commercial neem formulations analyzed by the method was in the range of 190-1825 ppm (microg/mL). Further, the present method was compared with an immunoanalytical method enzyme-linked immonosorbent assay developed earlier in our laboratory. Statistical comparison of the 2 methods, using Fischer's F-test, indicated no significant difference in variance, suggesting that both methods are comparable.

  6. Coincidence Detection Using Spiking Neurons with Application to Face Recognition

    Directory of Open Access Journals (Sweden)

    Fadhlan Kamaruzaman

    2015-01-01

    Full Text Available We elucidate the practical implementation of Spiking Neural Network (SNN as local ensembles of classifiers. Synaptic time constant τs is used as learning parameter in representing the variations learned from a set of training data at classifier level. This classifier uses coincidence detection (CD strategy trained in supervised manner using a novel supervised learning method called τs Prediction which adjusts the precise timing of output spikes towards the desired spike timing through iterative adaptation of τs. This paper also discusses the approximation of spike timing in Spike Response Model (SRM for the purpose of coincidence detection. This process significantly speeds up the whole process of learning and classification. Performance evaluations with face datasets such as AR, FERET, JAFFE, and CK+ datasets show that the proposed method delivers better face classification performance than the network trained with Supervised Synaptic-Time Dependent Plasticity (STDP. We also found that the proposed method delivers better classification accuracy than k nearest neighbor, ensembles of kNN, and Support Vector Machines. Evaluation on several types of spike codings also reveals that latency coding delivers the best result for face classification as well as for classification of other multivariate datasets.

  7. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike.

    Directory of Open Access Journals (Sweden)

    Thomas A Bowden

    Full Text Available The genus Orthobunyavirus within the family Bunyaviridae constitutes an expanding group of emerging viruses, which threaten human and animal health. Despite the medical importance, little is known about orthobunyavirus structure, a prerequisite for understanding virus assembly and entry. Here, using electron cryo-tomography, we report the ultrastructure of Bunyamwera virus, the prototypic member of this genus. Whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nm from the viral membrane and becomes disordered upon introduction to an acidic environment. Using sub-tomogram averaging, we derived a three-dimensional model of the trimeric pre-fusion glycoprotein spike to 3-nm resolution. The glycoprotein spike consists mainly of the putative class-II fusion glycoprotein and exhibits a unique tripod-like arrangement. Protein-protein contacts between neighbouring spikes occur at membrane-proximal regions and intra-spike contacts at membrane-distal regions. This trimeric assembly deviates from previously observed fusion glycoprotein arrangements, suggesting a greater than anticipated repertoire of viral fusion glycoprotein oligomerization. Our study provides evidence of a pH-dependent conformational change that occurs during orthobunyaviral entry into host cells and a blueprint for the structure of this group of emerging pathogens.

  8. The Omega-Infinity Limit of Single Spikes

    CERN Document Server

    Axenides, Minos; Linardopoulos, Georgios

    A new infinite-size limit of strings in RxS2 is presented. The limit is obtained from single spike strings by letting their angular velocity omega become infinite. We derive the energy-momenta relation of omega-infinity single spikes as their linear velocity v-->1 and their angular momentum J-->1. Generally, the v-->1, J-->1 limit of single spikes is singular and has to be excluded from the spectrum and be studied separately. We discover that the dispersion relation of omega-infinity single spikes contains logarithms in the limit J-->1. This result is somewhat surprising, since the logarithmic behavior in the string spectra is typically associated with their motion in non-compact spaces such as AdS. Omega-infinity single spikes seem to completely cover the surface of the 2-sphere they occupy, so that they may essentially be viewed as some sort of "brany strings". A proof of the sphere-filling property of omega-infinity single spikes is given in the appendix.

  9. Comparison of Classifier Architectures for Online Neural Spike Sorting.

    Science.gov (United States)

    Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood

    2017-04-01

    High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.

  10. Automatic fitting of spiking neuron models to electrophysiological recordings

    Directory of Open Access Journals (Sweden)

    Cyrille Rossant

    2010-03-01

    Full Text Available Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains that can run in parallel on graphics processing units (GPUs. The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models.

  11. Absolute Ca Isotopic Measurement Using an Improved Double Spike Technique

    Directory of Open Access Journals (Sweden)

    Jason Jiun-San Shen

    2009-01-01

    Full Text Available A new vector analytical method has been developed in order to obtain the true isotopic composition of the 42Ca-48Ca double spike. This is achieved by using two different sample-spike mixtures combined with the double spike and natural Ca data. Be cause the natural sample (two mixtures and the spike should all lie on a single mixing line, we are able to con strain the true isotopic composition of our double spike using this new approach. Once the isotopic composition of the Ca double spike is established, we are able to obtain the true Ca isotopic composition of the NIST Ca standard SRM915a, 40Ca/44Ca = 46.537 ± 2 (2sm, n = 55, 42Ca/44Ca = 0.31031 ± 1, 43Ca/44Ca = 0.06474 ± 1, and 48Ca/44Ca = 0.08956 ± 1. De spite an off set of 1.3% in 40Ca/44Ca between our result and the previously re ported value (Russell et al. 1978, our data indicate an off set of 1.89__in 40Ca/44Ca between SRM915a and seawater, entirely consistent with the published results.

  12. Stress-Induced Impairment of a Working Memory Task: Role of Spiking Rate and Spiking History Predicted Discharge

    Science.gov (United States)

    Devilbiss, David M.; Jenison, Rick L.; Berridge, Craig W.

    2012-01-01

    Stress, pervasive in society, contributes to over half of all work place accidents a year and over time can contribute to a variety of psychiatric disorders including depression, schizophrenia, and post-traumatic stress disorder. Stress impairs higher cognitive processes, dependent on the prefrontal cortex (PFC) and that involve maintenance and integration of information over extended periods, including working memory and attention. Substantial evidence has demonstrated a relationship between patterns of PFC neuron spiking activity (action-potential discharge) and components of delayed-response tasks used to probe PFC-dependent cognitive function in rats and monkeys. During delay periods of these tasks, persistent spiking activity is posited to be essential for the maintenance of information for working memory and attention. However, the degree to which stress-induced impairment in PFC-dependent cognition involves changes in task-related spiking rates or the ability for PFC neurons to retain information over time remains unknown. In the current study, spiking activity was recorded from the medial PFC of rats performing a delayed-response task of working memory during acute noise stress (93 db). Spike history-predicted discharge (SHPD) for PFC neurons was quantified as a measure of the degree to which ongoing neuronal discharge can be predicted by past spiking activity and reflects the degree to which past information is retained by these neurons over time. We found that PFC neuron discharge is predicted by their past spiking patterns for nearly one second. Acute stress impaired SHPD, selectively during delay intervals of the task, and simultaneously impaired task performance. Despite the reduction in delay-related SHPD, stress increased delay-related spiking rates. These findings suggest that neural codes utilizing SHPD within PFC networks likely reflects an additional important neurophysiological mechanism for maintenance of past information over time. Stress

  13. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Directory of Open Access Journals (Sweden)

    Zedong Bi

    2016-08-01

    Full Text Available Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded, by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy.

  14. Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer RBF networks

    NARCIS (Netherlands)

    S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)

    2000-01-01

    textabstractWe demonstrate that spiking neural networks encoding information in spike times are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on

  15. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  16. Joint Probability-Based Neuronal Spike Train Classification

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2009-01-01

    Full Text Available Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-based methods (EDBMs have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs. The activity of individual SARs was recorded in anaesthetized, paralysed adult male rabbits, which were artificially-ventilated at constant rate and one of three different volumes. Two-thirds of the responses to the 600 stimuli presented at each volume were used to construct three response models (one for each stimulus volume consisting of a series of time bins, each with spike probabilities. The remaining one-third of the responses where used as test responses to be classified into one of the three model responses. This was done by computing the joint probability of observing the same series of events (spikes or no spikes, dictated by the test response in a given model and determining which probability of the three was highest. The JPBM generally produced better classification accuracy than the EDBM, and both performed well above chance. Both methods were similarly affected by variations in discretization parameters, response epoch duration, and two different response alignment strategies. Increasing bin widths increased classification accuracy, which also improved with increased observation time, but primarily during periods of increasing lung inflation. Thus, the JPBM is a simple and effective method performing spike train classification.

  17. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

  18. Dual roles for spike signaling in cortical neural populations

    Directory of Open Access Journals (Sweden)

    Dana eBallard

    2011-06-01

    Full Text Available A prominent feature of signaling in cortical neurons is that of randomness in the action potential. The output of a typical pyramidal cell can be well fit with a Poisson model, and variations in the Poisson rate repeatedly have been shown to be correlated with stimuli. However while the rate provides a very useful characterization of neural spike data, it may not be the most fundamental description of the signaling code. Recent data showing γ frequency range multi-cell action potential correlations, together with spike timing dependent plasticity, are spurring a re-examination of the classical model, since precise timing codes imply that the generation of spikes is essentially deterministic. Could the observed Poisson randomness and timing determinism reflect two separate modes of communication, or do they somehow derive from a single process? We investigate in a timing-based model whether the apparent incompatibility between these probabilistic and deterministic observations may be resolved by examining how spikes could be used in the underlying neural circuits. The crucial component of this model draws on dual roles for spike signaling. In learning receptive fields from ensembles of inputs, spikes need to behave probabilistically, whereas for fast signaling of individual stimuli, the spikes need to behave deterministically. Our simulations show that this combination is possible if deterministic signals using γ latency coding are probabilistically routed through different members of a cortical cell population at different times. This model exhibits standard features characteristic of Poisson models such as orientation tuning post-stimulus histograms and exponential interval histograms. In addition it makes testable predictions that follow from the γ latency coding.

  19. Spectrofluorimetric determination of aliskiren in tablets and spiked human plasma through derivatization with dansyl chloride.

    Science.gov (United States)

    Aydoğmuş, Zeynep; Sarı, Ferhat; Ulu, Sevgi Tatar

    2012-03-01

    A simple and sensitive method has been developed and validated for the determination of aliskiren (ALS) in its dosage forms and spiked plasma. The method was based on the reaction of the drug with dansyl chloride in the presence of bicarbonate solution of pH 10.5 to give a highly fluorescent derivative which was measured at 501 nm with excitition at 378 nm in dichloromethane. Different experimental parameters affecting the development of the method and stability were carefully studied and optimized. The calibration curves were linear over the concentration ranges of 100-700 and 50-150 ng/mL for standard solution and plasma, respectively. The limits of detection were 27.52 ng/mL in standard solution, 4.91 ng/mL in plasma. The developed method was successfully applied to the analysis the drug in the commercial tablets and spiked plasma samples. The mean recovery of ALS from tablets and plasma was 100.10 and 97.81%, respectively. A proposal of the reaction pathway was presented.

  20. A metric space approach to the information capacity of spike trains

    OpenAIRE

    HOUGHTON, CONOR JAMES; GILLESPIE, JAMES

    2010-01-01

    PUBLISHED Classical information theory can be either discrete or continuous, corresponding to discrete or continuous random variables. However, although spike times in a spike train are described by continuous variables, the information content is usually calculated using discrete information theory. This is because the number of spikes, and hence, the number of variables, varies from spike train to spike train, making the continuous theory difficult to apply.It is possible to avoid ...

  1. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS

    Science.gov (United States)

    Schultz, M.M.; Furlong, E.T.

    2008-01-01

    Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.

  2. Noise-enhanced coding in phasic neuron spike trains.

    Science.gov (United States)

    Ly, Cheng; Doiron, Brent

    2017-01-01

    The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.

  3. Spike morphology in blast-wave-driven instability experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.

    2010-01-01

    The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

  4. Financial time series prediction using spiking neural networks.

    Science.gov (United States)

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  5. Multiplexed Spike Coding and Adaptation in the Thalamus

    Directory of Open Access Journals (Sweden)

    Rebecca A. Mease

    2017-05-01

    Full Text Available High-frequency “burst” clusters of spikes are a generic output pattern of many neurons. While bursting is a ubiquitous computational feature of different nervous systems across animal species, the encoding of synaptic inputs by bursts is not well understood. We find that bursting neurons in the rodent thalamus employ “multiplexing” to differentially encode low- and high-frequency stimulus features associated with either T-type calcium “low-threshold” or fast sodium spiking events, respectively, and these events adapt differently. Thus, thalamic bursts encode disparate information in three channels: (1 burst size, (2 burst onset time, and (3 precise spike timing within bursts. Strikingly, this latter “intraburst” encoding channel shows millisecond-level feature selectivity and adapts across statistical contexts to maintain stable information encoded per spike. Consequently, calcium events both encode low-frequency stimuli and, in parallel, gate a transient window for high-frequency, adaptive stimulus encoding by sodium spike timing, allowing bursts to efficiently convey fine-scale temporal information.

  6. Scaling of spiking and humping in keyhole welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S; Chuang, K C [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); DebRoy, T [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ku, J S, E-mail: pswei@mail.nsysu.edu.tw, E-mail: cielo.zhuang@gmail.com, E-mail: rtd1@psu.edu, E-mail: jsku@mail.nsysu.edu.tw [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2011-06-22

    Spiking, rippling and humping seriously reduce the strength of welds. The effects of beam focusing, volatile alloying element concentration and welding velocity on spiking, coarse rippling and humping in keyhole mode electron-beam welding are examined through scale analysis. Although these defects have been studied in the past, the mechanisms for their formation are not fully understood. This work relates the average amplitudes of spikes to fusion zone depth for the welding of Al 6061, SS 304 and carbon steel, and Al 5083. The scale analysis introduces welding and melting efficiencies and an appropriate power distribution to account for the focusing effects, and the energy which is reflected and escapes through the keyhole opening to the surroundings. The frequency of humping and spiking can also be predicted from the scale analysis. The analysis also reveals the interrelation between coarse rippling and humping. The data and the mechanistic findings reported in this study are useful for understanding and preventing spiking and humping during keyhole mode electron and laser beam welding.

  7. Neural Spike Train Synchronisation Indices: Definitions, Interpretations and Applications.

    Science.gov (United States)

    Halliday, D M; Rosenberg, J R

    2017-04-24

    A comparison of previously defined spike train syncrhonization indices is undertaken within a stochastic point process framework. The second order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% { 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1 - 250 spikes/sec). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multi electrode array data is briefly discussed.

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  9. Mean-field analysis of orientation selectivity in inhibition-dominated networks of spiking neurons.

    Science.gov (United States)

    Sadeh, Sadra; Cardanobile, Stefano; Rotter, Stefan

    2014-01-01

    Mechanisms underlying the emergence of orientation selectivity in the primary visual cortex are highly debated. Here we study the contribution of inhibition-dominated random recurrent networks to orientation selectivity, and more generally to sensory processing. By simulating and analyzing large-scale networks of spiking neurons, we investigate tuning amplification and contrast invariance of orientation selectivity in these networks. In particular, we show how selective attenuation of the common mode and amplification of the modulation component take place in these networks. Selective attenuation of the baseline, which is governed by the exceptional eigenvalue of the connectivity matrix, removes the unspecific, redundant signal component and ensures the invariance of selectivity across different contrasts. Selective amplification of modulation, which is governed by the operating regime of the network and depends on the strength of coupling, amplifies the informative signal component and thus increases the signal-to-noise ratio. Here, we perform a mean-field analysis which accounts for this process.

  10. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates

    DEFF Research Database (Denmark)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-01-01

    for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline...... for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types...... are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess...

  11. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  12. Comparison of spike-sorting algorithms for future hardware implementation.

    Science.gov (United States)

    Gibson, Sarah; Judy, Jack W; Markovic, Dejan

    2008-01-01

    Applications such as brain-machine interfaces require hardware spike sorting in order to (1) obtain single-unit activity and (2) perform data reduction for wireless transmission of data. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection and feature extraction algorithms for spike sorting are described briefly and evaluated in terms of accuracy versus computational complexity. The nonlinear energy operator method is chosen as the optimal spike detection algorithm, being most robust over noise and relatively simple. The discrete derivatives method [1] is chosen as the optimal feature extraction method, maintaining high accuracy across SNRs with a complexity orders of magnitude less than that of traditional methods such as PCA.

  13. Grain price spikes and beggar-thy-neighbor policy responses

    DEFF Research Database (Denmark)

    Jensen, Hans Grinsted; Anderson, Kym

    When prices spike in international grain markets, national governments often reduce the extent to which that spike affects their domestic food markets. Those actions exacerbate the price spike and international welfare transfer associated with that terms of trade change. Several recent analyses...... have assessed the extent to which those policies contributed to the 2006-08 international price rise, but only by focusing on one commodity or using a back-of-the envelope (BOTE) method. This paper provides a more-comprehensive analysis using a global economy-wide model that is able to take account...... of the interactions between markets for farm products that are closely related in production and/or consumption, and able to estimate the impacts of those insulating policies on grain prices and on the grain trade and economic welfare of the world’s various countries. Our results support the conclusion from earlier...

  14. Character recognition from trajectory by recurrent spiking neural networks.

    Science.gov (United States)

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  15. Evaluation of the uranium double spike technique for environmental monitoring

    International Nuclear Information System (INIS)

    Hemberger, P.H.; Rokop, D.J.; Efurd, D.W.; Roensch, F.R.; Smith, D.H.; Turner, M.L.; Barshick, C.M.; Bayne, C.K.

    1998-01-01

    Use of a uranium double spike in analysis of environmental samples showed that a 235 U enrichment of 1% ( 235 U/ 238 U = 0.00732) can be distinguished from natural ( 235 U/ 238 U = 0.00725). Experiments performed jointly at Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) used a carefully calibrated double spike of 233 U and 236 U to obtain much better precision than is possible using conventional analytical techniques. A variety of different sampling media (vegetation and swipes) showed that, provided sufficient care is exercised in choice of sample type, relative standard deviations of less than ± 0.5% can be routinely obtained. This ability, unavailable without use of the double spike, has enormous potential significance in the detection of undeclared nuclear facilities

  16. A Hybrid Setarx Model for Spikes in Tight Electricity Markets

    Directory of Open Access Journals (Sweden)

    Carlo Lucheroni

    2012-01-01

    Full Text Available The paper discusses a simple looking but highly nonlinear regime-switching, self-excited threshold model for hourly electricity prices in continuous and discrete time. The regime structure of the model is linked to organizational features of the market. In continuous time, the model can include spikes without using jumps, by defining stochastic orbits. In passing from continuous time to discrete time, the stochastic orbits survive discretization and can be identified again as spikes. A calibration technique suitable for the discrete version of this model, which does not need deseasonalization or spike filtering, is developed, tested and applied to market data. The discussion of the properties of the model uses phase-space analysis, an approach uncommon in econometrics. (original abstract

  17. Inherently stochastic spiking neurons for probabilistic neural computation

    KAUST Repository

    Al-Shedivat, Maruan

    2015-04-01

    Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.

  18. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  19. Spike and burst coding in thalamocortical relay cells.

    Directory of Open Access Journals (Sweden)

    Fleur Zeldenrust

    2018-02-01

    Full Text Available Mammalian thalamocortical relay (TCR neurons switch their firing activity between a tonic spiking and a bursting regime. In a combined experimental and computational study, we investigated the features in the input signal that single spikes and bursts in the output spike train represent and how this code is influenced by the membrane voltage state of the neuron. Identical frozen Gaussian noise current traces were injected into TCR neurons in rat brain slices as well as in a validated three-compartment TCR model cell. The resulting membrane voltage traces and spike trains were analyzed by calculating the coherence and impedance. Reverse correlation techniques gave the Event-Triggered Average (ETA and the Event-Triggered Covariance (ETC. This demonstrated that the feature selectivity started relatively long before the events (up to 300 ms and showed a clear distinction between spikes (selective for fluctuations and bursts (selective for integration. The model cell was fine-tuned to mimic the frozen noise initiated spike and burst responses to within experimental accuracy, especially for the mixed mode regimes. The information content carried by the various types of events in the signal as well as by the whole signal was calculated. Bursts phase-lock to and transfer information at lower frequencies than single spikes. On depolarization the neuron transits smoothly from the predominantly bursting regime to a spiking regime, in which it is more sensitive to high-frequency fluctuations. The model was then used to elucidate properties that could not be assessed experimentally, in particular the role of two important subthreshold voltage-dependent currents: the low threshold activated calcium current (IT and the cyclic nucleotide modulated h current (Ih. The ETAs of those currents and their underlying activation/inactivation states not only explained the state dependence of the firing regime but also the long-lasting concerted dynamic action of the two

  20. Local Variation of Hashtag Spike Trains and Popularity in Twitter

    Science.gov (United States)

    Sanlı, Ceyda; Lambiotte, Renaud

    2015-01-01

    We draw a parallel between hashtag time series and neuron spike trains. In each case, the process presents complex dynamic patterns including temporal correlations, burstiness, and all other types of nonstationarity. We propose the adoption of the so-called local variation in order to uncover salient dynamical properties, while properly detrending for the time-dependent features of a signal. The methodology is tested on both real and randomized hashtag spike trains, and identifies that popular hashtags present regular and so less bursty behavior, suggesting its potential use for predicting online popularity in social media. PMID:26161650

  1. Sleep deprivation and spike-wave discharges in epileptic rats

    OpenAIRE

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial increase in the number of spike-wave discharges was found during the first 4 hours of the deprivation period, whereas in the following deprivation hours epileptic activity returned to baseline values. I...

  2. Spike propagation in driven chain networks with dominant global inhibition

    International Nuclear Information System (INIS)

    Chang Wonil; Jin, Dezhe Z.

    2009-01-01

    Spike propagation in chain networks is usually studied in the synfire regime, in which successive groups of neurons are synaptically activated sequentially through the unidirectional excitatory connections. Here we study the dynamics of chain networks with dominant global feedback inhibition that prevents the synfire activity. Neural activity is driven by suprathreshold external inputs. We analytically and numerically demonstrate that spike propagation along the chain is a unique dynamical attractor in a wide parameter regime. The strong inhibition permits a robust winner-take-all propagation in the case of multiple chains competing via the inhibition.

  3. Spiking neuron devices consisting of single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Single-flux-quantum (SFQ) circuits can be used for making spiking neuron devices, which are useful elements for constructing intelligent, brain-like computers. The device we propose is based on the leaky integrate-and-fire neuron (IFN) model and uses a SFQ pulse as an action signal or a spike of neurons. The operation of the neuron device is confirmed by computer simulator. It can operate with a short delay of 100 ps or less and is the highest-speed neuron device ever reported

  4. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River

    Science.gov (United States)

    Friedman, Jonathan M.

    2018-01-01

    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  5. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  6. A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.

    Science.gov (United States)

    Pillow, Jonathan W; Shlens, Jonathon; Chichilnisky, E J; Simoncelli, Eero P

    2013-01-01

    We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction of the spikes from a recording, they generally fail to identify synchronous or near-synchronous spikes: cases in which multiple spikes overlap. Here we investigate the geometry of failures in traditional sorting algorithms, and document the prevalence of such errors in multi-electrode recordings from primate retina. We then develop a method for multi-neuron spike sorting using a model that explicitly accounts for the superposition of spike waveforms. We model the recorded voltage traces as a linear combination of spike waveforms plus a stochastic background component of correlated Gaussian noise. Combining this measurement model with a Bernoulli prior over binary spike trains yields a posterior distribution for spikes given the recorded data. We introduce a greedy algorithm to maximize this posterior that we call "binary pursuit". The algorithm allows modest variability in spike waveforms and recovers spike times with higher precision than the voltage sampling rate. This method substantially corrects cross-correlation artifacts that arise with conventional methods, and substantially outperforms clustering methods on both real and simulated data. Finally, we develop diagnostic tools that can be used to assess errors in spike sorting in the absence of ground truth.

  7. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  8. Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: milk, serum, urine.

    Science.gov (United States)

    Merola, Giovanni; Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi

    2015-03-15

    The anti-penicillin G was conjugated to avidin-peroxidase and biotin to obtain immunogen and competitor which were then used to develop a competitive immunosensor assay for the detection of penicillin G and other β-lactam antibiotics, with Kaff values of the order of 10(8) M(-1). The new immunosensor appears to afford a number of advantages in terms of sensitivity, possibility of "in situ" analysis, but especially of simplicity and lower costs, compared with other existing devices, or different chemical instrumental methods reported in the literature and used for the analysis of β-lactam compounds. Satisfactory results were found in the analysis of real matrixes and good recoveries were obtained by applying the standard addition method to spiked milk, urine, serum and drug samples. The new device uses an amperometric electrode for hydrogen peroxide as transducer, the BSA-penicillin G immobilized on polymeric membrane overlapping the amperometric transducer and the peroxidase enzyme as marker. It proved to be highly sensitive, inexpensive and easily reproducible; LOD was of the order of 10(-11)M. Lastly, the new immunosensor displayed low selectivity versus the entire class of β-lactam antibiotics and higher selectivity toward other classes of non-β-lactam antibiotics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Citizenship and recovery: two intertwined concepts for civic-recovery.

    Science.gov (United States)

    Pelletier, Jean-François; Corbière, Marc; Lecomte, Tania; Briand, Catherine; Corrigan, Patrick; Davidson, Larry; Rowe, Michael

    2015-03-04

    Validation of the psychometric properties of a new measure of citizenship was required for a research project in the province of Quebec, Canada. This study was meant to study the interplay between recovery- and citizenship-oriented supportive employment. As recovery and citizenship were expected to be two related concepts, convergent validity between the Citizenship Measure (CM) and the Recovery Assessment Scale (RAS) was tested. Study objectives were to: 1) conduct exploratory factor analyses on the CM and confirmatory factor analysis on the RAS tools (construct validity), 2) calculate Cronbach's alphas for each dimension emerging from objective 1 (reliability), and 3) calculate correlations between all dimensions from both tools (convergent validity). Data were collected from 174 individuals with serious mental illness, working in social firms. Serious mental illnesses include major depression, schizophrenia, bipolar disorder, obsessive compulsive disorder, panic disorder, post traumatic stress disorder and borderline personality disorder. Five factors emerged from the exploratory factor analysis of the CM, with good reliability. Confirmatory factor analyses showed that the short and the long versions of the RAS present satisfactory results. Finally, the correlation matrix indicated that all dimensions from both tools are significantly correlated, thus confirming their convergent validity. This study confirms the validity and reliability of two tools, CM and RAS. These tools can be used in combination to assess citizenship and recovery, both of which may be combined in the new concept of civic-recovery.

  10. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    Science.gov (United States)

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  11. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    Directory of Open Access Journals (Sweden)

    Wilten eNicola

    2016-02-01

    Full Text Available A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF. The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks

  12. Google Searches for "Cheap Cigarettes" Spike at Tax Increases: Evidence from an Algorithm to Detect Spikes in Time Series Data.

    Science.gov (United States)

    Caputi, Theodore L

    2018-05-03

    Online cigarette dealers have lower prices than brick-and-mortar retailers and advertise tax-free status.1-8 Previous studies show smokers search out these online alternatives at the time of a cigarette tax increase.9,10 However, these studies rely upon researchers' decision to consider a specific date and preclude the possibility that researchers focus on the wrong date. The purpose of this study is to introduce an unbiased methodology to the field of observing search patterns and to use this methodology to determine whether smokers search Google for "cheap cigarettes" at cigarette tax increases and, if so, whether the increased level of searches persists. Publicly available data from Google Trends is used to observe standardized search volumes for the term, "cheap cigarettes". Seasonal Hybrid Extreme Studentized Deviate and E-Divisive with Means tests were performed to observe spikes and mean level shifts in search volume. Of the twelve cigarette tax increases studied, ten showed spikes in searches for "cheap cigarettes" within two weeks of the tax increase. However, the mean level shifts did not occur for any cigarette tax increase. Searches for "cheap cigarettes" spike around the time of a cigarette tax increase, but the mean level of searches does not shift in response to a tax increase. The SHESD and EDM tests are unbiased methodologies that can be used to identify spikes and mean level shifts in time series data without an a priori date to be studied. SHESD and EDM affirm spikes in interest are related to tax increases. • Applies improved statistical techniques (SHESD and EDM) to Google search data related to cigarettes, reducing bias and increasing power • Contributes to the body of evidence that state and federal tax increases are associated with spikes in searches for cheap cigarettes and may be good dates for increased online health messaging related to tobacco.

  13. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    Directory of Open Access Journals (Sweden)

    Pietro Quaglio

    2017-05-01

    Full Text Available Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs. STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons. In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST. We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE analysis.

  14. A memristive spiking neuron with firing rate coding

    Directory of Open Access Journals (Sweden)

    Marina eIgnatov

    2015-10-01

    Full Text Available Perception, decisions, and sensations are all encoded into trains of action potentials in the brain. The relation between stimulus strength and all-or-nothing spiking of neurons is widely believed to be the basis of this coding. This initiated the development of spiking neuron models; one of today's most powerful conceptual tool for the analysis and emulation of neural dynamics. The success of electronic circuit models and their physical realization within silicon field-effect transistor circuits lead to elegant technical approaches. Recently, the spectrum of electronic devices for neural computing has been extended by memristive devices, mainly used to emulate static synaptic functionality. Their capabilities for emulations of neural activity were recently demonstrated using a memristive neuristor circuit, while a memristive neuron circuit has so far been elusive. Here, a spiking neuron model is experimentally realized in a compact circuit comprising memristive and memcapacitive devices based on the strongly correlated electron material vanadium dioxide (VO2 and on the chemical electromigration cell Ag/TiO2-x/Al. The circuit can emulate dynamical spiking patterns in response to an external stimulus including adaptation, which is at the heart of firing rate coding as first observed by E.D. Adrian in 1926.

  15. Cochlear spike synchronization and neuron coincidence detection model

    Science.gov (United States)

    Bader, Rolf

    2018-02-01

    Coincidence detection of a spike pattern fed from the cochlea into a single neuron is investigated using a physical Finite-Difference model of the cochlea and a physiologically motivated neuron model. Previous studies have shown experimental evidence of increased spike synchronization in the nucleus cochlearis and the trapezoid body [Joris et al., J. Neurophysiol. 71(3), 1022-1036 and 1037-1051 (1994)] and models show tone partial phase synchronization at the transition from mechanical waves on the basilar membrane into spike patterns [Ch. F. Babbs, J. Biophys. 2011, 435135]. Still the traveling speed of waves on the basilar membrane cause a frequency-dependent time delay of simultaneously incoming sound wavefronts up to 10 ms. The present model shows nearly perfect synchronization of multiple spike inputs as neuron outputs with interspike intervals (ISI) at the periodicity of the incoming sound for frequencies from about 30 to 300 Hz for two different amounts of afferent nerve fiber neuron inputs. Coincidence detection serves here as a fusion of multiple inputs into one single event enhancing pitch periodicity detection for low frequencies, impulse detection, or increased sound or speech intelligibility due to dereverberation.

  16. Proficiency test on incurred and spiked pesticide residues in cereals

    DEFF Research Database (Denmark)

    Poulsen, Mette Erecius; Christensen, Hanne Bjerre; Herrmann, Susan Strange

    2009-01-01

    A proficiency test on incurred and spiked pesticide residues in wheat was organised in 2008. The test material was grown in 2007 and treated in the field with 14 pesticides formulations containing the active substances, alpha-cypermethrin, bifentrin, carbendazim, chlormequat, chlorpyrifos...

  17. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  18. Spike sorting based upon machine learning algorithms (SOMA).

    Science.gov (United States)

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  19. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  20. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  1. Effect of Rolandic Spikes on ADHD Impulsive Behavior

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-01-01

    Full Text Available The association of Rolandic spikes with the neuropsychological profile of children with attention deficit hyperactivity disorder (ADHD was studied in a total of 48 patients at JW Goethe-University, Frankfurt/Main; and Central Institute of Mental Health, Mannheim, Germany.

  2. Sleep deprivation and spike-wave discharges in epileptic rats

    NARCIS (Netherlands)

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial

  3. Deep Learning with Dynamic Spiking Neurons and Fixed Feedback Weights.

    Science.gov (United States)

    Samadi, Arash; Lillicrap, Timothy P; Tweed, Douglas B

    2017-03-01

    Recent work in computer science has shown the power of deep learning driven by the backpropagation algorithm in networks of artificial neurons. But real neurons in the brain are different from most of these artificial ones in at least three crucial ways: they emit spikes rather than graded outputs, their inputs and outputs are related dynamically rather than by piecewise-smooth functions, and they have no known way to coordinate arrays of synapses in separate forward and feedback pathways so that they change simultaneously and identically, as they do in backpropagation. Given these differences, it is unlikely that current deep learning algorithms can operate in the brain, but we that show these problems can be solved by two simple devices: learning rules can approximate dynamic input-output relations with piecewise-smooth functions, and a variation on the feedback alignment algorithm can train deep networks without having to coordinate forward and feedback synapses. Our results also show that deep spiking networks learn much better if each neuron computes an intracellular teaching signal that reflects that cell's nonlinearity. With this mechanism, networks of spiking neurons show useful learning in synapses at least nine layers upstream from the output cells and perform well compared to other spiking networks in the literature on the MNIST digit recognition task.

  4. Spike Neural Models Part II: Abstract Neural Models

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2018-02-01

    Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.

  5. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  6. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  7. Dynamics of directional coupling underlying spike-wave discharges

    NARCIS (Netherlands)

    Sysoeva, M.V.; Luttjohann, A.K.; Luijtelaar, E.L.J.M. van; Sysoev, I.V.

    2016-01-01

    Purpose: Spike and wave discharges (SWDs), generated within cortico-thalamo-cortical networks, are the electroencephalographic biomarker of absence epilepsy. The current work aims to identify mechanisms of SWD initiation, maintenance and termination by the analyses of dynamics and directionality of

  8. Breathing, spiking and chaos in a laser with injected signal

    Energy Technology Data Exchange (ETDEWEB)

    Lugiato, L A; Narducci, L M

    1983-06-01

    The behavior of a laser driven by an injected cw field detuned from the operating laser frequency is considered. The analysis covers the entire range of incident power levels from zero to the injection locking threshold. In this domain, the output intensity exhibits regular and chaotic oscillations, a period doubling cascade in reverse order, envelope breathing and spiking.

  9. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  10. Event-driven contrastive divergence for spiking neuromorphic systems.

    Science.gov (United States)

    Neftci, Emre; Das, Srinjoy; Pedroni, Bruno; Kreutz-Delgado, Kenneth; Cauwenberghs, Gert

    2013-01-01

    Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been demonstrated to perform efficiently in a variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However, the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD) are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F) neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The recurrent activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates in an online, asynchronous fashion. We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  11. Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Directory of Open Access Journals (Sweden)

    Saket Kumar Choudhary

    2016-06-01

    Full Text Available Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF neuron in distributed delay framework (DDF is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD. Stationary state probability distribution of membrane potential (SPDV for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1.

  12. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  13. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein

    NARCIS (Netherlands)

    Godeke, G J; de Haan, Cornelis A M; Rossen, J W; Vennema, H; Rottier, P J

    The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and

  14. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  15. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  16. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  17. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. On the Universality and Non-Universality of Spiking Neural P Systems With Rules on Synapses.

    Science.gov (United States)

    Song, Tao; Xu, Jinbang; Pan, Linqiang

    2015-12-01

    Spiking neural P systems with rules on synapses are a new variant of spiking neural P systems. In the systems, the neuron contains only spikes, while the spiking/forgetting rules are moved on the synapses. It was obtained that such system with 30 neurons (using extended spiking rules) or with 39 neurons (using standard spiking rules) is Turing universal. In this work, this number is improved to 6. Specifically, we construct a Turing universal spiking neural P system with rules on synapses having 6 neurons, which can generate any set of Turing computable natural numbers. As well, it is obtained that spiking neural P system with rules on synapses having less than two neurons are not Turing universal: i) such systems having one neuron can characterize the family of finite sets of natural numbers; ii) the family of sets of numbers generated by the systems having two neurons is included in the family of semi-linear sets of natural numbers.

  19. Diallel analysis to study the genetic makeup of spike and yield ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Five wheat genotypes were crossed in complete diallel fashion for gene ... by pursuing pedigree method while heterosis can be exploited for spike length, grain weight per spike and grain yield per plant.

  20. Measures of spike train synchrony for data with multiple time scales

    NARCIS (Netherlands)

    Satuvuori, Eero; Mulansky, Mario; Bozanic, Nebojsa; Malvestio, Irene; Zeldenrust, Fleur; Lenk, Kerstin; Kreuz, Thomas

    2017-01-01

    Background Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by

  1. Fast and Efficient Asynchronous Neural Computation with Adapting Spiking Neural Networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); S.M. Bohte (Sander)

    2016-01-01

    textabstractBiological neurons communicate with a sparing exchange of pulses - spikes. It is an open question how real spiking neurons produce the kind of powerful neural computation that is possible with deep artificial neural networks, using only so very few spikes to communicate. Building on

  2. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  3. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  4. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  5. Reflex reading epilepsy: effect of linguistic characteristics on spike frequency.

    Science.gov (United States)

    Safi, Dima; Lassonde, Maryse; Nguyen, Dang Khoa; Denault, Carole; Macoir, Joël; Rouleau, Isabelle; Béland, Renée

    2011-04-01

    Reading epilepsy is a rare reflex epilepsy in which seizures are provoked by reading. Several cases have been described in the literature, but the pathophysiological processes vary widely and remain unclear. We describe a 42-year-old male patient with reading epilepsy evaluated using clinical assessments and continuous video/EEG recordings. We administered verbal, nonverbal, and reading tasks to determine factors precipitating seizures. Linguistic characteristics of the words were manipulated. Results indicated that reading-induced seizures were significantly more numerous than those observed during verbal and nonverbal tasks. In reading tasks, spike frequency significantly increased with involvement of the phonological reading route. Spikes were recorded predominantly in left parasagittal regions. Future cerebral imaging studies will enable us to visualize the spatial localization and temporal course of reading-induced seizures and brain activity involved in reading. A better understanding of reading epilepsy is crucial for reading rehabilitation in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Negotiating Multicollinearity with Spike-and-Slab Priors.

    Science.gov (United States)

    Ročková, Veronika; George, Edward I

    2014-08-01

    In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.

  7. Adrenalectomy eliminates the extinction spike in autoshaping with rats.

    Science.gov (United States)

    Thomas, B L; Papini, M R

    2001-03-01

    Experiment 1, using rats, investigated the effect of adrenalectomy (ADX) on the invigoration of lever-contact performance that occurs in the autoshaping situation after a shift from acquisition to extinction (called the extinction spike). Groups of rats with ADX or sham operations were trained under spaced and massed conditions [average intertrial intervals (ITI) of either 15 or 90 s] for 10 sessions and then shifted to extinction. ADX did not affect acquisition training but it eliminated the extinction spike. Plasma corticosterone levels during acquisition were shown in Experiment 2 to be similar in rats trained under spaced or massed conditions. Adrenal participation in the emotional arousal induced by conditions of surprising nonreward (e.g., extinction) is discussed.

  8. Method for spiking soil samples with organic compounds

    DEFF Research Database (Denmark)

    Brinch, Ulla C; Ekelund, Flemming; Jacobsen, Carsten S

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either...... higher than in control soil, probably due mainly to release of predation from indigenous protozoa. In order to minimize solvent effects on indigenous soil microorganisms when spiking native soil samples with compounds having a low water solubility, we propose a common protocol in which the contaminant...... tagged with luxAB::Tn5. For both solvents, application to the whole sample resulted in severe side effects on both indigenous protozoa and bacteria. Application of dichloromethane to the whole soil volume immediately reduced the number of protozoa to below the detection limit. In one of the soils...

  9. Voltage spike detection in high field superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  10. Voltage spike detection in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.

    2004-01-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are ∼15mV in magnitude and lasts for ∼30(micro)sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb3Sn magnets at currents up to ∼20KA will also be shown

  11. Past, present and future of spike sorting techniques.

    Science.gov (United States)

    Rey, Hernan Gonzalo; Pedreira, Carlos; Quian Quiroga, Rodrigo

    2015-10-01

    Spike sorting is a crucial step to extract information from extracellular recordings. With new recording opportunities provided by the development of new electrodes that allow monitoring hundreds of neurons simultaneously, the scenario for the new generation of algorithms is both exciting and challenging. However, this will require a new approach to the problem and the development of a common reference framework to quickly assess the performance of new algorithms. In this work, we review the basic concepts of spike sorting, including the requirements for different applications, together with the problems faced by presently available algorithms. We conclude by proposing a roadmap stressing the crucial points to be addressed to support the neuroscientific research of the near future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Note on the coefficient of variations of neuronal spike trains.

    Science.gov (United States)

    Lengler, Johannes; Steger, Angelika

    2017-08-01

    It is known that many neurons in the brain show spike trains with a coefficient of variation (CV) of the interspike times of approximately 1, thus resembling the properties of Poisson spike trains. Computational studies have been able to reproduce this phenomenon. However, the underlying models were too complex to be examined analytically. In this paper, we offer a simple model that shows the same effect but is accessible to an analytic treatment. The model is a random walk model with a reflecting barrier; we give explicit formulas for the CV in the regime of excess inhibition. We also analyze the effect of probabilistic synapses in our model and show that it resembles previous findings that were obtained by simulation.

  13. Analysis of voltage spikes in superconducting Nb3Sn magnets

    International Nuclear Information System (INIS)

    Rahimzadeh-Kalaleh, S.; Ambrosio, G.; Chlachidze, G.; Donnelly, C.

    2008-01-01

    Fermi National Accelerator Laboratory has been developing a new generation of superconducting accelerator magnets based on Niobium Tin (Nb 3 Sn). The performance of these magnets is influenced by thermo-magnetic instabilities, known as flux jumps, which can lead to premature trips of the quench detection system due to large voltage transients or quenches at low current. In an effort to better characterize and understand these instabilities, a system for capturing fast voltage transients was developed and used in recent tests of R and D model magnets. A new automated voltage spike analysis program was developed for the analysis of large amount of voltage-spike data. We report results from the analysis of large statistics data samples for short model magnets that were constructed using MJR and RRP strands having different sub-element size and structure. We then assess the implications for quench protection of Nb 3 Sn magnets

  14. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  15. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  16. The Ripple Pond: Enabling Spiking Networks to See

    Directory of Open Access Journals (Sweden)

    Saeed eAfshar

    2013-11-01

    Full Text Available We present the biologically inspired Ripple Pond Network (RPN, a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilising the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable temporal patterns and the use of asynchronous frames for information binding.

  17. The ripple pond: enabling spiking networks to see.

    Science.gov (United States)

    Afshar, Saeed; Cohen, Gregory K; Wang, Runchun M; Van Schaik, André; Tapson, Jonathan; Lehmann, Torsten; Hamilton, Tara J

    2013-01-01

    We present the biologically inspired Ripple Pond Network (RPN), a simply connected spiking neural network which performs a transformation converting two dimensional images to one dimensional temporal patterns (TP) suitable for recognition by temporal coding learning and memory networks. The RPN has been developed as a hardware solution linking previously implemented neuromorphic vision and memory structures such as frameless vision sensors and neuromorphic temporal coding spiking neural networks. Working together such systems are potentially capable of delivering end-to-end high-speed, low-power and low-resolution recognition for mobile and autonomous applications where slow, highly sophisticated and power hungry signal processing solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial properties of physically embedded neural networks and propagating waves of activity therein for information processing, using dimensional collapse of imagery information into amenable TP and the use of asynchronous frames for information binding.

  18. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  19. A Theory of Material Spike Formation in Flow Separation

    Science.gov (United States)

    Serra, Mattia; Haller, George

    2017-11-01

    We develop a frame-invariant theory of material spike formation during flow separation over a no-slip boundary in two-dimensional flows with arbitrary time dependence. This theory identifies both fixed and moving separation, is effective also over short-time intervals, and admits a rigorous instantaneous limit. Our theory is based on topological properties of material lines, combining objectively stretching- and rotation-based kinematic quantities. The separation profile identified here serves as the theoretical backbone for the material spike from its birth to its fully developed shape, and remains hidden to existing approaches. Finally, our theory can be used to rigorously explain the perception of off-wall separation in unsteady flows, and more importantly, provide the conditions under which such a perception is justified. We illustrate our results in several examples including steady, time-periodic and unsteady analytic velocity fields with flat and curved boundaries, and an experimental dataset.

  20. Planning Annuaulised hours when spike in demand exists

    Directory of Open Access Journals (Sweden)

    MR Sureshkumar

    2012-04-01

    Full Text Available Manpower planning using annualised hours is an effective tool where seasonal demand for staff in industry exists. In annualised hours (AH workers are contracted to work for a certain number of hours per year. The workers are associated with relative efficiency for different types of tasks. This paper proposes a Mixed Integer linear Programming (MILP model to solve an annualised working hours planning problem when spike in demand exists. The holiday weeks for the workers are considered as partially individualised. If a worker has been assigned with more than one type of working week in a week, this will be compensated with one or more holiday week. The performance of the model is demonstrated with an example. It can be seen that this type of modelling helps to meet the spikes in demand with less capacity shortage compared with one working week in a week.

  1. Asymptotics of empirical eigenstructure for high dimensional spiked covariance.

    Science.gov (United States)

    Wang, Weichen; Fan, Jianqing

    2017-06-01

    We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.

  2. Supervised learning with decision margins in pools of spiking neurons.

    Science.gov (United States)

    Le Mouel, Charlotte; Harris, Kenneth D; Yger, Pierre

    2014-10-01

    Learning to categorise sensory inputs by generalising from a few examples whose category is precisely known is a crucial step for the brain to produce appropriate behavioural responses. At the neuronal level, this may be performed by adaptation of synaptic weights under the influence of a training signal, in order to group spiking patterns impinging on the neuron. Here we describe a framework that allows spiking neurons to perform such "supervised learning", using principles similar to the Support Vector Machine, a well-established and robust classifier. Using a hinge-loss error function, we show that requesting a margin similar to that of the SVM improves performance on linearly non-separable problems. Moreover, we show that using pools of neurons to discriminate categories can also increase the performance by sharing the load among neurons.

  3. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  4. Analysis of a rhenium-osmium solid-solution spike by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Richardson, J.M.; Dickin, A.P.; McNutt, R.H.; McAndrew, J.I.; Beneteau, S.B.

    1989-01-01

    The rhenium-osmium decay scheme ( 187 Re → 187 Os) offers a unique opportunity to investigate the genesis of, and directly date, ultramafic rock, sulphide and platinum ore deposits. Inductively coupled plasma mass spectrometry (ICP-MS) is a viable method for Os isotopic analysis as it provides the high temperatures necessary to ionise Os. The sample can be introduced into the ICP mass spectrometer either by conventional nebulisation or by distillation using an Os ''generator''. Generator-mode analysis is superior to nebulisation because (i) the total number of counts is two orders of magnitude higher for a given sample size and (ii) Os oxidises readily to volatile OsO 4 , which has a boiling-point lower than most Re compounds, so that Os can be efficiently separated from 187 Re. The importance of Os loss during sample preparation was minimised by combining the sample powder with a powdered Re-Os isotopic spike prior to any chemical treatment. The spike is in a nickel sulphide matrix and was made by a thioacetamide co-precipitation of Os, Re and Ni followed by a fire assay. The 190 Os/ 192 Os ratio in this preparation is 51.5 ± 0.9, the 187 Os 188 Os ratio is 0.063 ± 0.006 and the 185 Re/ 187 Re ratio is 17.04 - + 0.41. These values are within the error limits quoted by the Oak Ridge National Laboratory and Techsnabexport, the suppliers of the metallic spikes. Parameters that significantly influence the Os analyses include the oxidising agent and the run temperature. The oxidising agent H 5 IO 6 is preferred to H 2 O 2 or HNO 3 as it has the highest electrode potential, provides a prolonged, consistent reaction and is more stable when stored. Chilling the sample and the H 5 IO 6 , initially retards uncontrolled OsO 4 emission. Heat applied later in the run releases OsO 4 and helps maintain a high count rate. Thus, OsO 4 can be generated in a steady, controllable and reproducible manner. (author)

  5. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Directory of Open Access Journals (Sweden)

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  6. Discriminating Sea Spikes in Incoherent Radar Measurements of Sea Clutter

    Science.gov (United States)

    2008-03-01

    het detecteren echter niet te verwachten dat bet gebruik van sea spikes te onderzoeken. Een van deze modellen zal leiden tot een Auteur (s) dergelijk...report I TNO-DV 2008 A067 6/33 Abbreviations CFAR Constant False-Alarm Rate CST Composite Surface Theory FFT Fast Fourier Transform PDF Probability Density...described by the composite surface theory (CST). This theory describes the sea surface as small Bragg-resonant capillary waves riding on top of

  7. Simulating large-scale spiking neuronal networks with NEST

    OpenAIRE

    Schücker, Jannis; Eppler, Jochen Martin

    2014-01-01

    The Neural Simulation Tool NEST [1, www.nest-simulator.org] is the simulator for spiking neural networkmodels of the HBP that focuses on the dynamics, size and structure of neural systems rather than on theexact morphology of individual neurons. Its simulation kernel is written in C++ and it runs on computinghardware ranging from simple laptops to clusters and supercomputers with thousands of processor cores.The development of NEST is coordinated by the NEST Initiative [www.nest-initiative.or...

  8. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  9. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...

  10. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    Science.gov (United States)

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  12. Emergent properties of interacting populations of spiking neurons

    Directory of Open Access Journals (Sweden)

    Stefano eCardanobile

    2011-12-01

    Full Text Available Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system.Here, we discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks on the population level is faithfully reflected by a set of non-linear rate equations, describing all interactions on this level. These equations, in turn, are similar in structure to the Lotka-Volterra equations, well known by their use in modeling predator-prey relationships in population biology, but abundant applications to economic theory have also been described.We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of neural populations.

  13. Emergent properties of interacting populations of spiking neurons.

    Science.gov (United States)

    Cardanobile, Stefano; Rotter, Stefan

    2011-01-01

    Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations.

  14. Efficient computation in networks of spiking neurons: simulations and theory

    International Nuclear Information System (INIS)

    Natschlaeger, T.

    1999-01-01

    One of the most prominent features of biological neural systems is that individual neurons communicate via short electrical pulses, the so called action potentials or spikes. In this thesis we investigate possible mechanisms which can in principle explain how complex computations in spiking neural networks (SNN) can be performed very fast, i.e. within a few 10 milliseconds. Some of these models are based on the assumption that relevant information is encoded by the timing of individual spikes (temporal coding). We will also discuss a model which is based on a population code and still is able to perform fast complex computations. In their natural environment biological neural systems have to process signals with a rich temporal structure. Hence it is an interesting question how neural systems process time series. In this context we explore possible links between biophysical characteristics of single neurons (refractory behavior, connectivity, time course of postsynaptic potentials) and synapses (unreliability, dynamics) on the one hand and possible computations on times series on the other hand. Furthermore we describe a general model of computation that exploits dynamic synapses. This model provides a general framework for understanding how neural systems process time-varying signals. (author)

  15. Spike: Artificial intelligence scheduling for Hubble space telescope

    Science.gov (United States)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  16. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  17. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  18. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  19. Enhanced polychronisation in a spiking network with metaplasticity

    Directory of Open Access Journals (Sweden)

    Mira eGuise

    2015-02-01

    Full Text Available Computational models of metaplasticity have usually focused on the modeling of single synapses (Shouval et al., 2002. In this paper we study the effect of metaplasticity on network behavior. Our guiding assumption is that the primary purpose of metaplasticity is to regulate synaptic plasticity, by increasing it when input is low and decreasing it when input is high. For our experiments we adopt a model of metaplasticity that demonstrably has this effect for a single synapse; our primary interest is in how metaplasticity thus defined affects network-level phenomena. We focus on a network-level phenomenon called polychronicity, that has a potential role in representation and memory. A network with polychronicity has the ability to produce non-synchronous but precisely timed sequences of neural firing events that can arise from strongly connected groups of neurons called polychronous neural groups (Izhikevich et al., 2004; Izhikevich, 2006a. Polychronous groups (PNGs develop readily when spiking networks are exposed to repeated spatio-temporal stimuli under the influence of spike-timing-dependent plasticity (STDP, but are sensitive to changes in synaptic weight distribution. We use a technique we have recently developed called Response Fingerprinting to show that PNGs formed in the presence of metaplasticity are significantly larger than those with no metaplasticity. A potential mechanism for this enhancement is proposed that links an inherent property of integrator type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter in their inputs.

  20. Linking structure and activity in nonlinear spiking networks.

    Science.gov (United States)

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  1. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  2. The Use Of Spikes Protocol In Cancer: An Integrative Review

    Directory of Open Access Journals (Sweden)

    Fernando Henrique de Sousa

    2017-03-01

    Full Text Available This is an integrative review which aimed to evaluate the use of the SPIKES protocol in Oncology. We selected articles published in Medline and CINAHL databases between 2005-2015, in English, with the descriptors defined by the Medical Subject Headings (MeSH:cancer, neoplasms, plus the uncontrolled descriptor: protocol spikes.  Six articles met the inclusion criteria and were analyzed in full, three thematic categories were established: aspects inherent to the health care professional; Aspects related to the patient and aspects related to the protocol. The main effects of the steps of SPIKES protocol can provide the strengthening of ties between health professionals and patients, and ensure the maintenance and quality of this relationship.  The results indicate an important limiting factor for effective doctor-patient relationship, the little training provided to medical professionals communication of bad news, verified by the difficulty reported in this moment through interviews in the analyzed studies.

  3. Economic impact on the Florida economy of energy price spikes

    International Nuclear Information System (INIS)

    Mory, J.F.

    1992-01-01

    A substantial disturbance in oil supplies is likely to generate a large price upsurge and a downturn in the level of economic activity. Each of these two effects diminishes demand by a certain amount. The specific price surge required to reduce demand to the lower level of supply can be calculated with an oil demand function and with empirical estimations of the association between price spikes and declines in economic activity. The first section presents an energy demand model for Florida, which provides the price and income elasticities needed. The second section includes theoretical explanations and empirical estimations of the relationship between price spikes and recessions. Based on historical evidence, it seems that Florida's and the nation's economic systems are very sensitive to oil price surges. As price spikes appear damaging to the economy, it could be expected that reductions in the price of oil are beneficial to the system. That is likely to be the case in the long run, but no empirical evidence of favorable short-term effects of oil price decreases was found. Several possible explanations and theoretical reasons are offered to explain this lack of association. The final section presents estimates of the effect of oil disruptions upon specific industries in Florida and the nation

  4. Spike latency and response properties of an excitable micropillar laser

    Science.gov (United States)

    Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Erneux, T.; Barbay, S.

    2016-10-01

    We present experimental measurements concerning the response of an excitable micropillar laser with saturable absorber to incoherent as well as coherent perturbations. The excitable response is similar to the behavior of spiking neurons but with much faster time scales. It is accompanied by a subnanosecond nonlinear delay that is measured for different bias pump values. This mechanism provides a natural scheme for encoding the strength of an ultrafast stimulus in the response delay of excitable spikes (temporal coding). Moreover, we demonstrate coherent and incoherent perturbations techniques applied to the micropillar with perturbation thresholds in the range of a few femtojoules. Responses to coherent perturbations assess the cascadability of the system. We discuss the physical origin of the responses to single and double perturbations with the help of numerical simulations of the Yamada model and, in particular, unveil possibilities to control the relative refractory period that we recently evidenced in this system. Experimental measurements are compared to both numerical simulations of the Yamada model and analytic expressions obtained in the framework of singular perturbation techniques. This system is thus a good candidate to perform photonic spike processing tasks in the framework of novel neuroinspired computing systems.

  5. Correlations decrease with propagation of spiking activity in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Gayathri Nattar Ranganathan

    2011-05-01

    Full Text Available Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex.

  6. Fast convergence of spike sequences to periodic patterns in recurrent networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2002-01-01

    The dynamical attractors are thought to underlie many biological functions of recurrent neural networks. Here we show that stable periodic spike sequences with precise timings are the attractors of the spiking dynamics of recurrent neural networks with global inhibition. Almost all spike sequences converge within a finite number of transient spikes to these attractors. The convergence is fast, especially when the global inhibition is strong. These results support the possibility that precise spatiotemporal sequences of spikes are useful for information encoding and processing in biological neural networks

  7. Transient reduction in theta power caused by interictal spikes in human temporal lobe epilepsy.

    Science.gov (United States)

    Manling Ge; Jundan Guo; Yangyang Xing; Zhiguo Feng; Weide Lu; Xinxin Ma; Yuehua Geng; Xin Zhang

    2017-07-01

    The inhibitory impacts of spikes on LFP theta rhythms(4-8Hz) are investigated around sporadic spikes(SSs) based on intracerebral EEG of 4 REM sleep patients with temporal lobe epilepsy(TLE) under the pre-surgical monitoring. Sequential interictal spikes in both genesis area and extended propagation pathway are collected, that, SSs genesis only in anterior hippocampus(aH)(possible propagation pathway in Entorhinal cortex(EC)), only in EC(possible propagation pathway in aH), and in both aH and EC synchronously. Instantaneous theta power was estimated by using Gabor wavelet transform, and theta power level was estimated by averaged over time and frequency before SSs(350ms pre-spike) and after SSs(350ms post-spike). The inhibitory effect around spikes was evaluated by the ratio of theta power level difference between pre-spike and post-spike to pre-spike theta power level. The findings were that theta power level was reduced across SSs, and the effects were more sever in the case of SSs in both aH and EC synchronously than either SSs only in EC or SSs only in aH. It is concluded that interictal spikes impair LFP theta rhythms transiently and directly. The work suggests that the reduction of theta power after the interictal spike might be an evaluation indicator of damage of epilepsy to human cognitive rhythms.

  8. Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks.

    Science.gov (United States)

    Gong, Yubing; Xu, Bo; Wu, Ya'nan

    2013-09-01

    In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.

  9. Contamination spike simulation and measurement in a clean metal vapor laser

    International Nuclear Information System (INIS)

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  10. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  11. Potential for uranium recovery at Nolans

    International Nuclear Information System (INIS)

    Soldenhoff, K.; Ho, E.

    2007-01-01

    The concentration of uranium in Nolans is higher than is typical of phosphate rock deposits worldwide. This requires appropriate management of the radioactivity during ore processing, but also provides an opportunity for recovery of uranium as a by-product. The recovery must be integrated into the rare earth process, which is the primary focus of the project. Furthermore, the separation of rare earths from the phosphate matrix and the recovery of phosphoric acid or other fertiliser products is also an important consideration. This paper discusses the various process options that are being considered for the development of a process for Nolans that integrates the recovery of phosphate values and uranium as by-products or rare earth processing

  12. Salient Object Detection via Structured Matrix Decomposition.

    Science.gov (United States)

    Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J

    2016-05-04

    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

  13. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  14. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  15. Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    Full Text Available Burkholderia pseudomallei, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of B. pseudomallei infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of B. pseudomallei DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of B. pseudomallei DNA extracted by each kit was performed using the B. pseudomallei specific type III secretion real-time PCR (TTS1 assay. Crossing threshold (C T values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10(4 colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen.

  16. Systematic Regional Variations in Purkinje Cell Spiking Patterns

    Science.gov (United States)

    Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.

    2014-01-01

    In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311

  17. From spiking neuron models to linear-nonlinear models.

    Science.gov (United States)

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  18. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  20. Systematic regional variations in Purkinje cell spiking patterns.

    Directory of Open Access Journals (Sweden)

    Jianqiang Xiao

    Full Text Available In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+ and negative (Z- bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.

  1. An online supervised learning method based on gradient descent for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Independent component analysis separates spikes of different origin in the EEG.

    Science.gov (United States)

    Urrestarazu, Elena; Iriarte, Jorge; Artieda, Julio; Alegre, Manuel; Valencia, Miguel; Viteri, César

    2006-02-01

    Independent component analysis (ICA) is a novel system that finds independent sources in recorded signals. Its usefulness in separating epileptiform activity of different origin has not been determined. The goal of this study was to demonstrate that ICA is useful for separating different spikes using samples of EEG of patients with focal epilepsy. Digital EEG samples from four patients with focal epilepsy were included. The patients had temporal (n = 2), centrotemporal (n = 1) or frontal spikes (n = 1). Twenty-six samples with two (or more) spikes from two different patients were created. The selection of the two spikes for each mixed EEG was performed randomly, trying to have all the different combinations and rejecting the mixture of two spikes from the same patient. Two different examiners studied the EEGs using ICA with JADE paradigm in Matlab platform, trying to separate and to identify the spikes. They agreed in the correct separation of the spikes in 24 of the 26 samples, classifying the spikes as frontal, temporal or centrotemporal, left or right sided. The demonstration of the possibility of detecting different artificially mixed spikes confirms that ICA may be useful in separating spikes or other elements in real EEGs.

  3. A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion.

    Science.gov (United States)

    Balaji Ramachandran, Supriya; Gillis, Kevin D

    2018-01-01

    Electrochemical microelectrodes located immediately adjacent to the cell surface can detect spikes of amperometric current during exocytosis as the transmitter released from a single vesicle is oxidized on the electrode surface. Automated techniques to detect spikes are needed in order to quantify the spike rate as a measure of the rate of exocytosis. We have developed a Matched Filter (MF) detection algorithm that scans the data set with a library of prototype spike templates while performing a least-squares fit to determine the amplitude and standard error. The ratio of the fit amplitude to the standard error constitutes a criterion score that is assigned for each time point and for each template. A spike is detected when the criterion score exceeds a threshold and the highest-scoring template and the time of peak score is identified. The search for the next spike commences only after the score falls below a second, lower threshold to reduce false positives. The approach was extended to detect spikes with double-exponential decays with the sum of two templates. Receiver Operating Characteristic plots (ROCs) demonstrate that the algorithm detects >95% of manually identified spikes with a false-positive rate of ∼2%. ROCs demonstrate that the MF algorithm performs better than algorithms that detect spikes based on a derivative-threshold approach. The MF approach performs well and leads into approaches to identify spike parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stimulus Sensitivity of a Spiking Neural Network Model

    Science.gov (United States)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  5. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    DEFF Research Database (Denmark)

    Tully, Philip J; Lindén, Henrik; Hennig, Matthias H

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed...... in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods...

  6. Impact of substance P on the correlation of spike train evoked by electro acupuncture

    International Nuclear Information System (INIS)

    Jin, Chen; Zhang, Xuan; Wang, Jiang; Guo, Yi; Zhao, Xue; Guo, Yong-Ming

    2016-01-01

    Highlights: • We analyze spike trains induced by EA before and after inhibiting SP in PC6 area. • Inhibiting SP leads to an increase of spiking rate of median nerve. • SP may modulate membrane potential to affect the spiking rate. • SP has an influence on long-range correlation of spike train evoked by EA. • SP play an important role in EA-induced neural spiking and encoding. - Abstract: Substance P (SP) participates in the neural signal transmission evoked by electro-acupuncture (EA). This paper investigates the impact of SP on the correlation of spike train in the median nerve evoked by EA at 'Neiguan' acupoint (PC6). It shows that the spiking rate and interspike interval (ISI) distribution change obviously after inhibiting SP. This variation of spiking activity indicates that SP affects the temporal structure of spike train through modulating the action potential on median nerve filaments. Furtherly, the correlation coefficient and scaling exponent are considered to measure the correlation of spike train. Scaled Windowed Variance (SWV) method is applied to calculate scaling exponent which quantifies the long-range correlation of the neural electrical signals. It is found that the correlation coefficients of ISI increase after inhibiting SP released. In addition, the scaling exponents of neuronal spike train have significant differences between before and after inhibiting SP. These findings demonstrate that SP has an influence on the long-range correlation of spike train. Our results indicate that SP may play an important role in EA-induced neural spiking and encoding.

  7. Quantitative Mass spectrometric Analysis of Ropivacaine and Bupivacaine in Authentic, Pharmaceutical and Spiked Human Plasma without Chromatographic Separation

    Directory of Open Access Journals (Sweden)

    Nahla N. Salama

    2009-01-01

    Full Text Available The present study employs time of flight mass spectrometry for quantitative analysis of the local anesthetic drugs ropivacaine and bupivacaine in authentic, pharmaceutical and spiked human plasma as well as in the presence of their impurities 2,6-dimethylaniline and alkaline degradation product. The method is based on time of flight electron spray ionization mass spectrometry technique without preliminary chromatographic separation and makes use of bupivacaine as internal standard for ropivacaine, which is used as internal standard for bupivacaine. A linear relationship between drug concentrations and the peak intensity ratio of ions of the analyzed substances is established. The method is linear from 23.8 to 2380.0 ng mL-1 for both drugs. The correlation coefficient was ≥0.996 in authentic and spiked human plasma. The average percentage recoveries in the ranges of 95.39%–102.75% was obtained. The method is accurate (% RE < 5% and reproducible with intra- and inter-assay precision (RSD% < 8.0%. The quantification limit is 23.8 ng mL-1 for both drugs. The method is not only highly sensitive and selective, but also simple and effective for determination or identification of both drugs in authentic and biological fluids. The method can be applied in purity testing, quality control and stability monitoring for the studied drugs.

  8. Quantitative Mass Spectrometric Analysis of Ropivacaine and Bupivacaine in Authentic, Pharmaceutical and Spiked Human Plasma without Chromatographic Separation

    Directory of Open Access Journals (Sweden)

    Nahla N. Salama

    2009-01-01

    Full Text Available The present study employs time of flight mass spectrometry for quantitative analysis of the local anesthetic drugs ropivacaine and bupivacaine in authentic, pharmaceutical and spiked human plasma as well as in the presence of their impurities 2,6-dimethylaniline and alkaline degradation product. The method is based on time of flight electron spray ionization mass spectrometry technique without preliminary chromatographic separation and makes use of bupivacaine as internal standard for ropivacaine, which is used as internal standard for bupivacaine. A linear relationship between drug concentrations and the peak intensity ratio of ions of the analyzed substances is established. The method is linear from 23.8 to 2380.0 ng mL −1 for both drugs. The correlation coefficient was ≥0.996 in authentic and spiked human plasma. The average percentage recoveries in the ranges of 95.39%-102.75% was obtained. The method is accurate (% RE <; 5% and reproducible with intra- and inter-assay precision (RSD% <; 8.0%. The quantification limit is 23.8 ng mL −1 for both drugs. The method is not only highly sensitive and selective, but also simple and effective for determination or identification of both drugs in authentic and biological fluids. The method can be applied in purity testing, quality control and stability monitoring for the studied drugs.

  9. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  10. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  11. Recovery from schizophrenia and the recovery model.

    Science.gov (United States)

    Warner, Richard

    2009-07-01

    The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.

  12. A structural model for electricity prices with spikes: measurement of spike risk and optimal policies for hydropower plant operation

    International Nuclear Information System (INIS)

    Kanamura, Takashi

    2007-01-01

    This paper proposes a new model for electricity prices based on demand and supply, which we call a structural model. We show that the structural model can generate price spikes that fits the observed data better than those generated by other preceding models such as the jump diffusion model and the Box-Cox transformation model. We apply the structural model to obtain the optimal operation policy for a pumped-storage hydropower generator, and show that the structural model can provide more realistic optimal policies than the jump diffusion model. (author)

  13. A structural model for electricity prices with spikes: measurement of spike risk and optimal policies for hydropower plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Kanamura, Takashi [Hitotsubashi University, Tokyo (Japan). Graduate School of International Corporate Strategy; Ohashi, Azuhiko [J-Power, Tokyo (Japan)

    2007-09-15

    This paper proposes a new model for electricity prices based on demand and supply, which we call a structural model. We show that the structural model can generate price spikes that fits the observed data better than those generated by other preceding models such as the jump diffusion model and the Box-Cox transformation model. We apply the structural model to obtain the optimal operation policy for a pumped-storage hydropower generator, and show that the structural model can provide more realistic optimal policies than the jump diffusion model. (author)

  14. Motif statistics and spike correlations in neuronal networks

    International Nuclear Information System (INIS)

    Hu, Yu; Shea-Brown, Eric; Trousdale, James; Josić, Krešimir

    2013-01-01

    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state. (paper)

  15. Dynamics of Monoterpene Formation in Spike Lavender Plants

    Directory of Open Access Journals (Sweden)

    Isabel Mendoza-Poudereux

    2017-12-01

    Full Text Available The metabolic cross-talk between the mevalonate (MVA and the methylerythritol phosphate (MEP pathways was analyzed in spike lavender (Lavandula latifolia Med on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR, the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

  16. Performance evaluation of PCA-based spike sorting algorithms.

    Science.gov (United States)

    Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George

    2008-09-01

    Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.

  17. Physical implementation of pair-based spike timing dependent plasticity

    International Nuclear Information System (INIS)

    Azghadi, M.R.; Al-Sarawi, S.; Iannella, N.; Abbott, D.

    2011-01-01

    Full text: Objective Spike-timing-dependent plasticity (STOP) is one of several plasticity rules which leads to learning and memory in the brain. STOP induces synaptic weight changes based on the timing of the pre- and post-synaptic neurons. A neural network which can mimic the adaptive capability of biological brains in the temporal domain, requires the weight of single connections to be altered by spike timing. To physically realise this network into silicon, a large number of interconnected STOP circuits on the same substrate is required. This imposes two significant limitations in terms of power and area. To cover these limitations, very large scale integrated circuit (VLSI) technology provides attractive features in terms of low power and small area requirements. An example is demonstrated by (lndiveli et al. 2006). The objective of this paper is to present a new implementation of the STOP circuit which demonstrates better power and area in comparison to previous implementations. Methods The proposed circuit uses complementary metal oxide semiconductor (CMOS) technology as depicted in Fig. I. The synaptic weight can be stored on a capacitor and charging/discharging current can lead to potentiation and depression. HSpice simulation results demonstrate that the average power, peak power, and area of the proposed circuit have been reduced by 6, 8 and 15%, respectively, in comparison with Indiveri's implementation. These improvements naturally lead to packing more STOP circuits onto the same substrate, when compared to previous proposals. Hence, this new implementation is quite interesting for real-world large neural networks.

  18. Macroscopic phase-resetting curves for spiking neural networks

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  19. Inverse stochastic resonance in networks of spiking neurons.

    Science.gov (United States)

    Uzuntarla, Muhammet; Barreto, Ernest; Torres, Joaquin J

    2017-07-01

    Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron's intrinsic dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems.

  20. Evolving Spiking Neural Networks for Recognition of Aged Voices.

    Science.gov (United States)

    Silva, Marco; Vellasco, Marley M B R; Cataldo, Edson

    2017-01-01

    The aging of the voice, known as presbyphonia, is a natural process that can cause great change in vocal quality of the individual. This is a relevant problem to those people who use their voices professionally, and its early identification can help determine a suitable treatment to avoid its progress or even to eliminate the problem. This work focuses on the development of a new model for the identification of aging voices (independently of their chronological age), using as input attributes parameters extracted from the voice and glottal signals. The proposed model, named Quantum binary-real evolving Spiking Neural Network (QbrSNN), is based on spiking neural networks (SNNs), with an unsupervised training algorithm, and a Quantum-Inspired Evolutionary Algorithm that automatically determines the most relevant attributes and the optimal parameters that configure the SNN. The QbrSNN model was evaluated in a database composed of 120 records, containing samples from three groups of speakers. The results obtained indicate that the proposed model provides better accuracy than other approaches, with fewer input attributes. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Macroscopic phase-resetting curves for spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  2. Training Spiking Neural Models Using Artificial Bee Colony

    Science.gov (United States)

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  3. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  4. Chaos and reliability in balanced spiking networks with temporal drive.

    Science.gov (United States)

    Lajoie, Guillaume; Lin, Kevin K; Shea-Brown, Eric

    2013-05-01

    Biological information processing is often carried out by complex networks of interconnected dynamical units. A basic question about such networks is that of reliability: If the same signal is presented many times with the network in different initial states, will the system entrain to the signal in a repeatable way? Reliability is of particular interest in neuroscience, where large, complex networks of excitatory and inhibitory cells are ubiquitous. These networks are known to autonomously produce strongly chaotic dynamics-an obvious threat to reliability. Here, we show that such chaos persists in the presence of weak and strong stimuli, but that even in the presence of chaos, intermittent periods of highly reliable spiking often coexist with unreliable activity. We elucidate the local dynamical mechanisms involved in this intermittent reliability, and investigate the relationship between this phenomenon and certain time-dependent attractors arising from the dynamics. A conclusion is that chaotic dynamics do not have to be an obstacle to precise spike responses, a fact with implications for signal coding in large networks.

  5. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  6. Fuel switching? Demand destruction? Gas market responses to price spikes

    International Nuclear Information System (INIS)

    Lippe, D.

    2004-01-01

    This presentation defined fuel switching and addressed the issue regarding which consumers have the capability to switch fuels. In response to short term price aberrations, consumers with fuel switching capabilities reduce their use of one fuel and increase consumption of an alternative fuel. For example, natural gas consumption by some consumers declines in response to price spikes relative to prices of alternative fuels. This presentation also addressed the issue of differentiating between fuel switching and demand destruction. It also demonstrated how to compare gas prices versus alternative fuel prices and how to determine when consumers will likely switch fuels. Price spikes have implications for long term trends in natural gas demand, supply/demand balances and prices. The power generating sector represents a particular class of gas consumers that reduce operating rates of gas fired plants and increase operating rates of other plants. Some gas consumers even shut down plants until gas prices declines and relative economies improve. Some practical considerations for fuel switching include storage tank capacity, domestic refinery production, winter heating season, and decline in working gas storage. tabs., figs

  7. Misuse of Checklist Assessments in Endangered Species Recovery Efforts

    Directory of Open Access Journals (Sweden)

    Thomas P. Good

    2003-12-01

    Full Text Available Natural resource agencies worldwide must develop species recovery plans that specify threats, propose targets required for recovery, and evaluate the extent to which habitat alteration and restoration may influence species decline and recovery. To evaluate the impacts of proposed habitat alterations on species of conservation concern, standardized protocols may be adopted even when supporting data are scarce. For example, a habitat matrix was developed by the National Marine Fisheries Service (NMFS to guide consultations under the Endangered Species Act for actions that may affect the functioning of the freshwater habitat used by several federally listed salmonid species. The habitat matrix has also been advocated as a tool for recovery planning by agencies apart from the NMFS, who could use it to define the habitat conditions assumed to be necessary for salmonid population viability and hence recovery. This use of the habitat matrix in a recovery context has not been evaluated, and, despite its widespread use as a regulatory tool, the empirical relationships between many of the habitat matrix variables and salmonid populations remain unexplored. By amassing data on habitat assessments and trends in fish abundance, we empirically evaluate the relationship between habitat matrix scores and salmonid population metrics. We found that abundance trends for populations of three species of threatened and endangered salmonids (chinook, coho, and steelhead were unrelated to these habitat matrix assessments. This study reveals the danger of assuming quantitative relationships between habitat and organism and cautions against co-opting protocols from the regulatory realm for recovery planning for endangered species.

  8. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.

    Science.gov (United States)

    Kazantsev, V B; Asatryan, S Yu

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  9. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    Science.gov (United States)

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  10. On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship.

    Science.gov (United States)

    Koyama, Shinsuke

    2015-07-01

    We propose a statistical method for modeling the non-Poisson variability of spike trains observed in a wide range of brain regions. Central to our approach is the assumption that the variance and the mean of interspike intervals are related by a power function characterized by two parameters: the scale factor and exponent. It is shown that this single assumption allows the variability of spike trains to have an arbitrary scale and various dependencies on the firing rate in the spike count statistics, as well as in the interval statistics, depending on the two parameters of the power function. We also propose a statistical model for spike trains that exhibits the variance-to-mean power relationship. Based on this, a maximum likelihood method is developed for inferring the parameters from rate-modulated spike trains. The proposed method is illustrated on simulated and experimental spike trains.

  11. The Mechanisms of Repetitive Spike Generation in an Axonless Retinal Interneuron

    Directory of Open Access Journals (Sweden)

    Mark S. Cembrowski

    2012-02-01

    Full Text Available Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (5 ms. Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern.

  12. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  13. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...

  14. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  15. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  16. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  17. Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes

    OpenAIRE

    Justin R. Brown; Bader J. Alsarraf; Mike Waller; Patricia Eisenman; Charlie A. Hicks-Little

    2014-01-01

    The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV) have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is i...

  18. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].

    Science.gov (United States)

    Zhang, Y; Liu, A; Yu, K

    1999-06-01

    A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.

  19. SPAN: spike pattern association neuron for learning spatio-temporal sequences

    OpenAIRE

    Mohemmed, A; Schliebs, S; Matsuda, S; Kasabov, N

    2012-01-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN — a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the prec...

  20. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma

    Science.gov (United States)

    Kassambara, Alboukadel; Hose, Dirk; Moreaux, Jérôme; Walker, Brian A.; Protopopov, Alexei; Reme, Thierry; Pellestor, Franck; Pantesco, Véronique; Jauch, Anna; Morgan, Gareth; Goldschmidt, Hartmut; Klein, Bernard

    2012-01-01

    Background Genetic abnormalities are common in patients with multiple myeloma, and may deregulate gene products involved in tumor survival, proliferation, metabolism and drug resistance. In particular, translocations may result in a high expression of targeted genes (termed spike expression) in tumor cells. We identified spike genes in multiple myeloma cells of patients with newly-diagnosed myeloma and investigated their prognostic value. Design and Methods Genes with a spike expression in multiple myeloma cells were picked up using box plot probe set signal distribution and two selection filters. Results In a cohort of 206 newly diagnosed patients with multiple myeloma, 2587 genes/expressed sequence tags with a spike expression were identified. Some spike genes were associated with some transcription factors such as MAF or MMSET and with known recurrent translocations as expected. Spike genes were not associated with increased DNA copy number and for a majority of them, involved unknown mechanisms. Of spiked genes, 36.7% clustered significantly in 149 out of 862 documented chromosome (sub)bands, of which 53 had prognostic value (35 bad, 18 good). Their prognostic value was summarized with a spike band score that delineated 23.8% of patients with a poor median overall survival (27.4 months versus not reached, Pband score was independent of other gene expression profiling-based risk scores, t(4;14), or del17p in an independent validation cohort of 345 patients. Conclusions We present a new approach to identify spike genes and their relationship to patients’ survival. PMID:22102711

  1. Heart Attack Recovery FAQs

    Science.gov (United States)

    ... recommendations to make a full recovery. View an animation of a heart attack . Heart Attack Recovery Questions ... Support Network Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  2. Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Water Recovery Project (WRP) is advancing environmental control and life support systems water recovery technologies to support human exploration beyond low...

  3. EPA Recovery Mapper

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA Recovery Mapper is an Internet interactive mapping application that allows users to discover information about every American Recovery and Reinvestment Act...

  4. Multichannel interictal spike activity detection using time-frequency entropy measure.

    Science.gov (United States)

    Thanaraj, Palani; Parvathavarthini, B

    2017-06-01

    Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.

  5. Origin of frontal lobe spikes in the early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome).

    Science.gov (United States)

    Leal, Alberto J R; Ferreira, José C; Dias, Ana I; Calado, Eulália

    2008-09-01

    Early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome [PS]) is a common and easily recognizable epilepsy. Interictal EEG spike activity is often multifocal but most frequently localized in the occipital lobes. The origin and clinical significance of the extra-occipital spikes remain poorly understood. Three patients with the PS and interictal EEG spikes with frontal lobe topography were studied using high-resolution EEG. Independent component analysis (ICA) was used to decompose the spikes in components with distinct temporal dynamics. The components were mapped in the scalp with a spline-laplacian algorithm. The change in scalp potential topography from spike onset to peak, suggests the contribution of several intracranial generators, with different kinetics of activation and significant overlap. ICA was able to separate the major contributors to frontal spikes and consistently revealed an early activating group of components over the occipital areas in all the patients. The local origin of these early potentials was established by the spline-laplacian montage. Frontal spikes in PS are consistently associated with early and unilateral occipital lobe activation, suggesting a postero-anterior spike propagation. Frontal spikes in the PS represent a secondary activation triggered by occipital interictal discharges and do not represent an independent focus.

  6. Voltage-spike analysis for a free-running parallel inverter

    Science.gov (United States)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    Unwanted and sometimes damaging high-amplitude voltage spikes occur during each half cycle in many transistor saturable-core inverters at the moment when the core saturates and the transistors switch. The analysis shows that spikes are an intrinsic characteristic of certain types of inverters even with negligible leakage inductance and purely resistive load. The small but unavoidable after-saturation inductance of the saturable-core transformer plays an essential role in creating these undesired thigh-voltage spikes. State-plane analysis provides insight into the complex interaction between core and transistors, and shows the circuit parameters upon which the magnitude of these spikes depends.

  7. Multineuron spike train analysis with R-convolution linear combination kernel.

    Science.gov (United States)

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Recovery from mental illness

    DEFF Research Database (Denmark)

    Petersen, Kirsten Schultz; Friis, Vivi Soegaard; Haxholm, Birthe Lodahl

    2015-01-01

    Mental health services strive to implement a recovery-oriented approach to rehabilitation. Little is known about service users' perception of the recovery approach. The aim is to explore the service user's perspectives on facilitators and barriers associated with recovery. Twelve residents living...

  9. Improving sample recovery

    International Nuclear Information System (INIS)

    Blanchard, R.J.

    1995-09-01

    This Engineering Task Plan (ETP) describes the tasks, i.e., tests, studies, external support and modifications planned to increase the recovery of the recovery of the waste tank contents using combinations of improved techniques, equipment, knowledge, experience and testing to better the recovery rates presently being experienced

  10. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  11. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  12. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  13. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  14. Grain price spikes and beggar-thy-neighbor policy responses

    DEFF Research Database (Denmark)

    Boysen, Ole; Jensen, Hans Grinsted

    on the agenda of various international policy fora, including the annual meetings of G20 countries in recent years. For that reason, recent studies have attempted to quantify the extent to which such policy actions contributed to the rise in food prices. A study by Jensen & Anderson (2014) uses the global AGE...... model GTAP and the corresponding database to quantify the global policy actions contributions to the raise in food prices by modeling the changes in distortions to agricultural incentives in the period 2006 to 2008. We link the results from this global model into a national AGE model, highlighting how...... global "Beggar-thy-Neighbor Policy Responses" impacted on poor households in Uganda. More specifically we examine the following research questions: What were the Ugandan economy-wide and poverty impacts of the price spikes? What was the impact of other countries "Beggar-thy-Neighbor Policy Responses...

  15. Shock initiation of explosives: Temperature spikes and growth spurts

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-08-01

    When energetic materials are subjected to high-velocity impacts, the first steps in the shock-to-detonation transition are the creation, ignition, and growth of hot spots. We used 1-3.2 km s-1 laser-launched flyer plates to impact powdered octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, a powerful explosive, and monitored hundreds of emission bursts with an apparatus that determined temperature and emissivity at all times. The time-dependent volume fraction of hot spots was determined by measuring the time-dependent emissivity. After the shock, most hot spots extinguished, but the survivors smoldered for hundreds of nanoseconds until their temperatures spiked, causing a hot spot growth spurt. Depending on the impact duration, the growth spurts could be as fast as 300 ns and as slow as 13 μs.

  16. Brian: a simulator for spiking neural networks in Python

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2008-11-01

    Full Text Available Brian is a new simulator for spiking neural networks, written in Python (http://brian.di.ens.fr. It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  17. Importance of vesicle release stochasticity in neuro-spike communication.

    Science.gov (United States)

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  18. A self-resetting spiking phase-change neuron

    Science.gov (United States)

    Cobley, R. A.; Hayat, H.; Wright, C. D.

    2018-05-01

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  19. A 244Pu spike reference material CBNM IRM-042A

    International Nuclear Information System (INIS)

    Verbruggen, A.; Gallet, M.; Hendrickx, F.; Bievre, P. de

    1991-01-01

    An highly enriched 244 Pu isotopic reference material (CBNM IRM-042a) has been prepared and certified for 244 Pu isotope concentration. The certified value of (2.257 7 ± 0.004 4).10 18 atoms 242 Pu.kg -1 of solution has been established by isotope dilution mass spectrometry. The plutonium isotopic composition has been determined by thermal ionization mass spectrometry and calibration of these measurements by means of synthetic 242 Pu/ 239 Pu mixtures. The isotopic reference material is supplied in a sealed glass ampoule containing approximately 10 g of a 5M nitric acid solution at an approximate concentration of 1 μg Pu per g solution. This isotopic reference material is part of a systematic CBNM programme to supply spike isotopic reference materials of various isotopes at different concentrations

  20. Quantum square-well with logarithmic central spike

    Science.gov (United States)

    Znojil, Miloslav; Semorádová, Iveta

    2018-01-01

    Singular repulsive barrier V (x) = -gln(|x|) inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction ℒeff(x) = -gln[ψ∗(x)ψ(x)] in nonlinear Schrödinger equation. In the linearized case, Rayleigh-Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small g or after an amendment of the unperturbed Hamiltonian. At any spike strength g, the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables x = expy which interchanges the roles of the asymptotic and central boundary conditions.

  1. Brian: a simulator for spiking neural networks in python.

    Science.gov (United States)

    Goodman, Dan; Brette, Romain

    2008-01-01

    "Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  2. Spiking neural networks on high performance computer clusters

    Science.gov (United States)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  3. Spike Protein Fusion Peptide and Feline Coronavirus Virulence

    Science.gov (United States)

    Chang, Hui-Wen; Egberink, Herman F.; Halpin, Rebecca; Spiro, David J.

    2012-01-01

    Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically. PMID:22709821

  4. Variational and perturbative schemes for a spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Estevez, G.A.; Guardiola, R.

    1989-01-01

    A variational analysis of the spiked harmonic-oscillator Hamiltonian operator -d 2 /dx 2 + x 2 + l(l+1)/x 2 + λ |x| -α , where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schroedinger equation for the linear harmonic-oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provides accurate approximations for the ground-state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large-coupling pertubative-expansion is carried out and the contributions up to fourth order to the ground-state energy are explicitly evaluated. Numerical results are compared for the special case α=5/2. (author) [pt

  5. A self-resetting spiking phase-change neuron.

    Science.gov (United States)

    Cobley, R A; Hayat, H; Wright, C D

    2018-05-11

    Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.

  6. Double spike with isotope pattern deconvolution for mercury speciation

    International Nuclear Information System (INIS)

    Castillo, A.; Rodriguez-Gonzalez, P.; Centineo, G.; Roig-Navarro, A.F.; Garcia Alonso, J.I.

    2009-01-01

    Full text: A double-spiking approach, based on an isotope pattern deconvolution numerical methodology, has been developed and applied for the accurate and simultaneous determination of inorganic mercury (IHg) and methylmercury (MeHg). Isotopically enriched mercury species ( 199 IHg and 201 MeHg) are added before sample preparation to quantify the extent of methylation and demethylation processes. Focused microwave digestion was evaluated to perform the quantitative extraction of such compounds from solid matrices of environmental interest. Satisfactory results were obtained in different certificated reference materials (dogfish liver DOLT-4 and tuna fish CRM-464) both by using GC-ICPMS and GC-MS, demonstrating the suitability of the proposed analytical method. (author)

  7. EFFECTS OF DIFFERENT GROWING CONDITIONS ON THE MORPHOLOGICAL FEATURES OF THE SPIKE OF HEXAPLOID TRITICALE

    Directory of Open Access Journals (Sweden)

    K. U. Kurkiev

    2016-01-01

    Full Text Available Aim. The aim is to study the effect of different environmental conditions on the morphological traits of the spike of hexaploid triticale varieties.Methods. We analyzed 507 samples of triticale of various eco-geographical origins, in different years of study and at different seeding times. To investigate the influence of environmental conditions on the phenotypic expression of the studied traits we held a comparative analysis of the spike of two years and, in addition, of spring triticale during winter and spring crops. Analysis on the features was carried out on the main spikes. We studied the following morphological characteristics of the spike: length, number of spikelets and density.Results and discussion. The study of differences in individual variety samples showed that more than 60% triticale samples had significant differences in the length of the spike, depending on the weather conditions of the year – with the winter crops number of spikelets per spike was significantly higher than with the spring crops. A comparative analysis of the impact of the weather conditions of the year on triticale showed that significant differences in the density of the spike were observed in less than 30%.Conclusion. Study of the influence of conditions of the year and sowing dates on the main features of the spike of triticale showed that the density of the spike is the least affected by the external environment. The length of the spikes and the number of spikelets per spike differed significantly when growing in a various conditions.

  8. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function

    Science.gov (United States)

    Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.

    2015-01-01

    Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258

  9. Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron

    Science.gov (United States)

    Maisel, Brenton; Lindenberg, Katja

    2017-02-01

    While it is widely accepted that information is encoded in neurons via action potentials or spikes, it is far less understood what specific features of spiking contain encoded information. Experimental evidence has suggested that the timing of the first spike may be an energy-efficient coding mechanism that contains more neural information than subsequent spikes. Therefore, the biophysical features of neurons that underlie response latency are of considerable interest. Here we examine the effects of channel noise on the first spike latency of a Hodgkin-Huxley neuron receiving random input from many other neurons. Because the principal feature of a Hodgkin-Huxley neuron is the stochastic opening and closing of channels, the fluctuations in the number of open channels lead to fluctuations in the membrane voltage and modify the timing of the first spike. Our results show that when a neuron has a larger number of channels, (i) the occurrence of the first spike is delayed and (ii) the variation in the first spike timing is greater. We also show that the mean, median, and interquartile range of first spike latency can be accurately predicted from a simple linear regression by knowing only the number of channels in the neuron and the rate at which presynaptic neurons fire, but the standard deviation (i.e., neuronal jitter) cannot be predicted using only this information. We then compare our results to another commonly used stochastic Hodgkin-Huxley model and show that the more commonly used model overstates the first spike latency but can predict the standard deviation of first spike latencies accurately. We end by suggesting a more suitable definition for the neuronal jitter based upon our simulations and comparison of the two models.

  10. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  11. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  12. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Directory of Open Access Journals (Sweden)

    Claudia Casellato

    Full Text Available The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning, a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  13. Adaptive robotic control driven by a versatile spiking cerebellar network.

    Science.gov (United States)

    Casellato, Claudia; Antonietti, Alberto; Garrido, Jesus A; Carrillo, Richard R; Luque, Niceto R; Ros, Eduardo; Pedrocchi, Alessandra; D'Angelo, Egidio

    2014-01-01

    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.

  14. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  15. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  16. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  17. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO 2 -based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%.

  18. Spike-timing dependent plasticity and the cognitive map.

    Science.gov (United States)

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-01-01

    Since the discovery of place cells - single pyramidal neurons that encode spatial location - it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post-synaptic firing according to a spike-timing dependent plasticity (STDP) rule. Furthermore, electrophysiology studies have identified persistent "theta-coded" temporal correlations in place cell activity in vivo, characterized by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post-synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilizes this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  19. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  20. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  2. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Directory of Open Access Journals (Sweden)

    Fernando Perez-Peña

    2013-11-01

    Full Text Available In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM. All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6 and power requirements (3.4 W to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6. It also evidences the suitable use of AER as a communication protocol between processing and actuation.

  3. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Science.gov (United States)

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-01-01

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation. PMID:24264330

  4. Single-trial estimation of stimulus and spike-history effects on time-varying ensemble spiking activity of multiple neurons: a simulation study

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki

    2013-01-01

    Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity

  5. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  6. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip.

    Science.gov (United States)

    Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-08-01

    Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z  0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Learning of spiking networks with different forms of long-term synaptic plasticity

    International Nuclear Information System (INIS)

    Vlasov, D.S.; Sboev, A.G.; Serenko, A.V.; Rybka, R.B.; Moloshnikov, I.A.

    2016-01-01

    The possibility of modeling the learning process based on different forms of spike timing-dependent plasticity (STDP) has been studied. It has been shown that the learnability depends on the choice of the spike pairing scheme in the STDP rule and the type of the input signal used during learning [ru

  8. Characterizing neural activities evoked by manual acupuncture through spiking irregularity measures

    International Nuclear Information System (INIS)

    Xue Ming; Wang Jiang; Deng Bin; Wei Xi-Le; Yu Hai-Tao; Chen Ying-Yuan

    2013-01-01

    The neural system characterizes information in external stimulations by different spiking patterns. In order to examine how neural spiking patterns are related to acupuncture manipulations, experiments are designed in such a way that different types of manual acupuncture (MA) manipulations are taken at the ‘Zusanli’ point of experimental rats, and the induced electrical signals in the spinal dorsal root ganglion are detected and recorded. The interspike interval (ISI) statistical histogram is fitted by the gamma distribution, which has two parameters: one is the time-dependent firing rate and the other is a shape parameter characterizing the spiking irregularities. The shape parameter is the measure of spiking irregularities and can be used to identify the type of MA manipulations. The coefficient of variation is mostly used to measure the spike time irregularity, but it overestimates the irregularity in the case of pronounced firing rate changes. However, experiments show that each acupuncture manipulation will lead to changes in the firing rate. So we combine four relatively rate-independent measures to study the irregularity of spike trains evoked by different types of MA manipulations. Results suggest that the MA manipulations possess unique spiking statistics and characteristics and can be distinguished according to the spiking irregularity measures. These studies have offered new insights into the coding processes and information transfer of acupuncture. (interdisciplinary physics and related areas of science and technology)

  9. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Laureline Logiaco

    2015-08-01

    Full Text Available The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  10. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  11. Detecting dependencies between spike trains of pairs of neurons through copulas

    DEFF Research Database (Denmark)

    Sacerdote, Laura; Tamborrino, Massimiliano; Zucca, Cristina

    2011-01-01

    The dynamics of a neuron are influenced by the connections with the network where it lies. Recorded spike trains exhibit patterns due to the interactions between neurons. However, the structure of the network is not known. A challenging task is to investigate it from the analysis of simultaneously...... the two neurons. Furthermore, the method recognizes the presence of delays in the spike propagation....

  12. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    Science.gov (United States)

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  13. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro

    DEFF Research Database (Denmark)

    Hounsgaard, J; Kiehn, O

    1993-01-01

    The ability of dendrites in turtle motoneurones to support calcium spikes and calcium plateaux was investigated using differential polarization by applied electric fields. 2. Electric fields were generated by passing current through transverse slices of the turtle spinal cord between two plate......+ spikes and Ca2+ plateaux are present in dendrites of spinal motoneurones of the turtle....

  14. A Visual Guide to Sorting Electrophysiological Recordings Using 'SpikeSorter'.

    Science.gov (United States)

    Swindale, Nicholas V; Mitelut, Catalin; Murphy, Timothy H; Spacek, Martin A

    2017-02-10

    Few stand-alone software applications are available for sorting spikes from recordings made with multi-electrode arrays. Ideally, an application should be user friendly with a graphical user interface, able to read data files in a variety of formats, and provide users with a flexible set of tools giving them the ability to detect and sort extracellular voltage waveforms from different units with some degree of reliability. Previously published spike sorting methods are now available in a software program, SpikeSorter, intended to provide electrophysiologists with a complete set of tools for sorting, starting from raw recorded data file and ending with the export of sorted spikes times. Procedures are automated to the extent this is currently possible. The article explains and illustrates the use of the program. A representative data file is opened, extracellular traces are filtered, events are detected and then clustered. A number of problems that commonly occur during sorting are illustrated, including the artefactual over-splitting of units due to the tendency of some units to fire spikes in pairs where the second spike is significantly smaller than the first, and over-splitting caused by slow variation in spike height over time encountered in some units. The accuracy of SpikeSorter's performance has been tested with surrogate ground truth data and found to be comparable to that of other algorithms in current development.

  15. Development of on-off spiking in superior paraolivary nucleus neurons of the mouse

    Science.gov (United States)

    Felix, Richard A.; Vonderschen, Katrin; Berrebi, Albert S.

    2013-01-01

    The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues. PMID:23515791

  16. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Grønlykke, L; Knudsen, M L; Høgenhaven, H

    2008-01-01

    To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE).......To assess the value of remifentanil in intraoperative evaluation of spike activity in patients undergoing surgery for mesial temporal lobe epilepsy (MTLE)....

  17. A unified approach to linking experimental, statistical and computational analysis of spike train data.

    Directory of Open Access Journals (Sweden)

    Liang Meng

    Full Text Available A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data, but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach--linking statistical, computational, and experimental neuroscience--provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.

  18. Fast Na+ spike generation in dendrites of guinea-pig substantia nigra pars compacta neurons

    DEFF Research Database (Denmark)

    Nedergaard, S; Hounsgaard, Jørn Dybkjær

    1996-01-01

    were not inhibited in the presence of glutamate receptor antagonists or during Ca2+ channel blockade. Blockers of gap junctional conductance (sodium propionate, octanol and halothane) did not affect the field-induced spikes. The spike generation was highly sensitive to changes in membrane conductance...

  19. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  20. New explicit spike solutions-non-local component of the generalized Mixmaster attractor

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2008-01-01

    By applying a standard solution-generating transformation to an arbitrary vacuum Bianchi type II solution, one generates a new solution with spikes commonly observed in numerical simulations. It is conjectured that the spike solutions are part of the generalized Mixmaster attractor

  1. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  2. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Groot, R. de; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Spaan, W.J.M.

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIVP) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mkice. When kittens were immunized with the

  3. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex.

    Science.gov (United States)

    Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo

    2015-08-01

    The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

  4. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery

    DEFF Research Database (Denmark)

    Gronlykke, L.; Knudsen, M.L.; Hogenhaven, H.

    2008-01-01

    . Electrocorticography (ECoG) recordings were performed on the intraventricular hippocampus and from the anterior inferior temporal and lateral neocortex before and after a 300 microg intravenous bolus of remifentanil. Spike activity was quantified as spike-count per minute. RESULTS: A significant increase (P

  5. Why is There a Spike in the Job Finding Rate at Benefit Exhaustion?

    NARCIS (Netherlands)

    Boone, J.; van Ours, J.C.

    2009-01-01

    Putting a limit on the duration of unemployment benefits tends to introduce a \\spike" in the job finding rate shortly before benefits are exhausted. Current theories explain this spike from workers' behavior. We present a theoretical model in which also the nature of the job matters. End-of-benefit

  6. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  7. Pharmacodynamics of remifentanil. Induced intracranial spike activity in mesial temporal lobe epilepsy

    DEFF Research Database (Denmark)

    Kjær, Troels Wesenberg; Hogenhaven, Hans; Lee, Andrea P

    2017-01-01

    that remifentanil potentiates spike activity is in agreement with previous findings from smaller studies. Furthermore, we were able to describe the pharmacodynamics of the remifentanil effect on spike activity. Peri-operative provocation with remifentanil may play a future role in guiding neurosurgical intervention...

  8. Relationship between focal penicillin spikes and cortical spindles in the cerveau isolé cat.

    Science.gov (United States)

    McLachlan, R S; Kaibara, M; Girvin, J P

    1983-01-01

    Using the unanesthetized, cerveau isolé preparation in the cat, the association between artificially induced penicillin (PCN) spikes and spontaneously occurring electrocorticographic (ECoG) spindles was investigated. Spikes were elicited by surface application of small pledgets of PCN. After the application of PCN, there was a decrease in spindle amplitude but no change in frequency, duration, or spindle wave frequency in the area of the focus. Examination of the times of occurrence of the spikes and spindles disclosed that in the majority of cases, within a few minutes of the initiation of the foci, there was very high simultaneity, usually 100% between the occurrences of these two events. Examination of the times of occurrence of the spikes within the ECoG spindles failed to disclose any compelling evidence which would favor either the hypothesis that spikes "trigger" spindles or the hypothesis that spindles predispose to focal spikes. Thus, whether spikes trigger spindles, or spikes simply occur in a nonspecific manner during the occurrence of the spindle, or whether it is a combination of both these explanations, must remain an open question on the basis of the data available.

  9. Approach for domestic preparation of standard material (LSD spike) for isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Ishikawa, Fumitaka; Sumi, Mika; Chiba, Masahiko; Suzuki, Toru; Abe, Tomoyuki; Kuno, Yusuke

    2008-01-01

    The accountancy analysis of the nuclear fuel material at Plutonium Fuel Development Center of JAEA is performed by isotope dilution mass spectrometry (IDMS; Isotope Dilution Mass Spectrometry). IDMS requires the standard material called LSD spike (Large Size Dried spike) which is indispensable for the accountancy in the facilities where the nuclear fuel materials are handled. Although the LSD spike and Pu source material have been supplied from foreign countries, the transportation for such materials has been getting more difficult recently. This difficulty may affect the operation of nuclear facilities in the future. Therefore, research and development of the domestic LSD spike and base material has been performed at JAEA. Certification for such standard nuclear materials including spikes produced in Japan is being studied. This report presents the current status and the future plan for the technological development. (author)

  10. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-01-01

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193

  11. Capturing spike variability in noisy Izhikevich neurons using point process generalized linear models

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Kramer, Mark A.; Eden, Uri T.

    2018-01-01

    current. We then fit these spike train datawith a statistical model (a generalized linear model, GLM, with multiplicative influences of past spiking). For different levels of noise, we show how the GLM captures both the deterministic features of the Izhikevich neuron and the variability driven...... by the noise. We conclude that the GLM captures essential features of the simulated spike trains, but for near-deterministic spike trains, goodness-of-fit analyses reveal that the model does not fit very well in a statistical sense; the essential random part of the GLM is not captured....... are separately applied; understanding the relationships between these modeling approaches remains an area of active research. In this letter, we examine this relationship using simulation. To do so, we first generate spike train data from a well-known dynamical model, the Izhikevich neuron, with a noisy input...

  12. APPLICATION OF FENTON’S REAGENT ON REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONs (PAHs IN SPIKED SOIL

    Directory of Open Access Journals (Sweden)

    Nursiah La Nafie

    2010-06-01

    Full Text Available Problem associated with Polycyclic Aromatic Hydrocarbons (PAHs contaminated site in environmental media have received increasing attention. To resolve such problems, innovative in situ methods are urgently required. This work investigated the feasibility of using Fenton's Reagent to remediate PAHs in spiked soil. PAHs were spiked into soil to simulate contaminated soil. Fenton's Reagent (H2O2 + Fe2+ and surfactant were very efficient in destruction of PAHs including naphthalene, anthracene, fluoranthene, pyrene, and benzo(apyrene from spiked soil. It was indicated by the fact that more than 96% of PAHs were degraded in the solution and the spiked soil.   Keywords: Environmental, Fenton's Reagent, Polycyclic Aromatic Hydrocarbons, and Spiked soil.

  13. Voltage spikes in Nb3Sn and NbTi strands

    International Nuclear Information System (INIS)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2005-01-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb 3 Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current

  14. Voltage spikes in Nb3Sn and NbTi strands

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, B.; Ambrosio, G.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Orris, D.; Tartaglia, M.; Tompkins, J.C.; Turrioni, D.; Yamada, R.; Zlobin,; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab several NbTi and Nb{sub 3}Sn strands were tested with particular emphasis on the study of voltage spikes and their relationship to superconductor instabilities. The voltage spikes were detected under various experimental conditions using voltage-current (V-I) and voltage-field (V-H) methods. Two types of spikes, designated ''magnetization'' and ''transport current'' spikes, have been identified. Their origin is most likely related to magnetization flux jump and transport current redistribution, respectively. Many of the signals observed appear to be a combination of these two types of spikes; the combination of these two instability mechanisms should play a dominant role in determining the minimum quench current.

  15. Robust spike sorting of retinal ganglion cells tuned to spot stimuli.

    Science.gov (United States)

    Ghahari, Alireza; Badea, Tudor C

    2016-08-01

    We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.

  16. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm.

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-08-13

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  17. Impacts of clustering on noise-induced spiking regularity in the excitatory neuronal networks of subnetworks.

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2015-01-01

    In this paper, we investigate how clustering factors influent spiking regularity of the neuronal network of subnetworks. In order to do so, we fix the averaged coupling probability and the averaged coupling strength, and take the cluster number M, the ratio of intra-connection probability and inter-connection probability R, the ratio of intra-coupling strength and inter-coupling strength S as controlled parameters. With the obtained simulation results, we find that spiking regularity of the neuronal networks has little variations with changing of R and S when M is fixed. However, cluster number M could reduce the spiking regularity to low level when the uniform neuronal network's spiking regularity is at high level. Combined the obtained results, we can see that clustering factors have little influences on the spiking regularity when the entire energy is fixed, which could be controlled by the averaged coupling strength and the averaged connection probability.

  18. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    Science.gov (United States)

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  19. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  20. iRaster: a novel information visualization tool to explore spatiotemporal patterns in multiple spike trains.

    Science.gov (United States)

    Somerville, J; Stuart, L; Sernagor, E; Borisyuk, R

    2010-12-15

    Over the last few years, simultaneous recordings of multiple spike trains have become widely used by neuroscientists. Therefore, it is important to develop new tools for analysing multiple spike trains in order to gain new insight into the function of neural systems. This paper describes how techniques from the field of visual analytics can be used to reveal specific patterns of neural activity. An interactive raster plot called iRaster has been developed. This software incorporates a selection of statistical procedures for visualization and flexible manipulations with multiple spike trains. For example, there are several procedures for the re-ordering of spike trains which can be used to unmask activity propagation, spiking synchronization, and many other important features of multiple spike train activity. Additionally, iRaster includes a rate representation of neural activity, a combined representation of rate and spikes, spike train removal and time interval removal. Furthermore, it provides multiple coordinated views, time and spike train zooming windows, a fisheye lens distortion, and dissemination facilities. iRaster is a user friendly, interactive, flexible tool which supports a broad range of visual representations. This tool has been successfully used to analyse both synthetic and experimentally recorded datasets. In this paper, the main features of iRaster are described and its performance and effectiveness are demonstrated using various types of data including experimental multi-electrode array recordings from the ganglion cell layer in mouse retina. iRaster is part of an ongoing research project called VISA (Visualization of Inter-Spike Associations) at the Visualization Lab in the University of Plymouth. The overall aim of the VISA project is to provide neuroscientists with the ability to freely explore and analyse their data. The software is freely available from the Visualization Lab website (see www.plymouth.ac.uk/infovis). Copyright © 2010