WorldWideScience

Sample records for matrix metalloproteinase release

  1. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines.

    Science.gov (United States)

    Heinz, Andrea; Jung, Michael C; Duca, Laurent; Sippl, Wolfgang; Taddese, Samuel; Ihling, Christian; Rusciani, Anthony; Jahreis, Günther; Weiss, Anthony S; Neubert, Reinhard H H; Schmelzer, Christian E H

    2010-04-01

    To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site specificities of the enzymes using complementary MS techniques and molecular modeling. Furthermore, the ability of the three proteases to release bioactive peptides was studied. Tropoelastin was readily degraded by all three MMPs. Eighty-nine cleavage sites in tropoelastin were identified for MMP-12, whereas MMP-7 and MMP-9 were found to cleave at only 58 and 63 sites, respectively. Cleavages occurred predominantly in the N-terminal and C-terminal regions of tropoelastin. With respect to the cleavage site specificities, the study revealed that all three MMPs similarly tolerate hydrophobic and/or aliphatic amino acids, including Pro, Gly, Ile, and Val, at P(1)'. MMP-7 shows a strong preference for Leu at P(1)', which is also well accepted by MMP-9 and MMP-12. Of all three MMPs, MMP-12 best tolerates bulky charged and aromatic amino acids at P(1)'. All three MMPs showed a clear preference for Pro at P(3) that could be structurally explained by molecular modeling. Analysis of the generated peptides revealed that all three MMPs show a similar ability to release bioactive sequences, with MMP-12 producing the highest number of these peptides. Furthermore, the generated peptides YTTGKLPYGYGPGG, YGARPGVGVGGIP, and PGFGAVPGA, containing GxxPG motifs that have not yet been proven to be bioactive, were identified as new matrikines upon biological activity testing.

  2. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Science.gov (United States)

    Pamenter, Matthew E; Ryu, Julie; Hua, Serena T; Perkins, Guy A; Mendiola, Vincent L; Gu, Xiang Q; Ellisman, Mark H; Haddad, Gabriel G

    2012-01-01

    During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus

  3. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  4. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl

    BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto......-antibodies against IgE/IgE-receptor could induce TNFα and MMP-9 release from donor PBMCs, and if release levels could be used to assess severity and activity of chronic spontaneous urticaria (CSU). METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood from healthy donors and basophils...... observed to induce highly significant MMP-9 and TNFα release from donor PBMCs when compared to sera from healthy controls (pUrticaria assessment score (UAS) did not appear to correlate with release levels for histamine, TNFa or MMP-9 in either group but in the ASST+ group, the ASST score appeared...

  5. Myocardial structure and matrix metalloproteinases.

    Science.gov (United States)

    Aggeli, C; Pietri, P; Felekos, I; Rautopoulos, L; Toutouzas, K; Tsiamis, E; Stefanadis, C

    2012-01-01

    Metalloproteinases (MMPs) are enzymes which enhance proteolysis of extracellular matrix proteins. The pathophysiologic and prognostic role of MMPs has been demonstrated in numerous studies. The present review covers a wide a range of topics with regards to MMPs structural and functional properties, as well as their role in myocardial remodeling in several cardiovascular diseases. Moreover, the clinical and therapeutic implications from their assessment are highlighted.

  6. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  7. Increased release and activity of matrix metalloproteinase-9 in patients with mandibuloacral dysplasia type A, a rare premature ageing syndrome.

    Science.gov (United States)

    Lombardi, F; Fasciglione, G F; D'Apice, M R; Vielle, A; D'Adamo, M; Sbraccia, P; Marini, S; Borgiani, P; Coletta, M; Novelli, G

    2008-10-01

    Mandibuloacral dysplasia type A (MADA; OMIM 248370), a rare disorder caused by mutation in the LMNA gene, is characterized by post-natal growth retardation, craniofacial and skeletal anomalies (mandibular and clavicular hypoplasia, acroosteolysis, delayed closure of cranial sutures, low bone mass and joint contractures), cutaneous changes and partial lipodystrophy. Little is known about the molecular mechanisms by which LMNA mutations produce bone alterations. An altered bone extracellular matrix (ECM) remodelling could play a pivotal role in this disorder and influence part of the typical bone phenotype observed in patients. Therefore, we have focused our investigation on matrix metalloproteinases (MMPs), which are degradative enzymes involved in ECM degradation and ECM remodelling, thus likely contributing to the altered bone mineral density and bone metabolism values seen in five MADA patients. We evaluated the serum levels of several MMPs involved in bone development, remodelling and homeostasis, such as MMP-9, -2, -3, -8 and -13, and found that only the 82 kDa active enzyme forms of MMP-9 are significantly higher in MADA sera compared with healthy controls (n = 16). The serum level of MMP-3 was instead lower in all patients. No significant differences were observed between controls and MADA patients for the serum levels of MMP-2, -8 and -13 and of tissue inhibitor of metalloproteinase 2, a natural inhibitor of MMP-9. Similarly, normal serum levels of tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-6 and IL-1beta were detected. These data suggest a possible involvement of MMP-9 in MADA disease, underlying the potential use in diagnosis and therapy.

  8. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells.

    Science.gov (United States)

    Candela, Maria Elena; Geraci, Fabiana; Turturici, Giuseppina; Taverna, Simona; Albanese, Ida; Sconzo, Gabriella

    2010-07-01

    Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. (c) 2010 Wiley-Liss, Inc.

  9. Imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 may contribute to hemorrhage in cerebellar arteriovenous malformations

    Institute of Scientific and Technical Information of China (English)

    Fei Di; Tongyan Chen; Hongli Li; Jizong Zhao; Shuo Wang; Yuanli Zhao; Dong Zhang

    2012-01-01

    In this study,we determined the expression levels of matrix metalloproteinase-2 and -9 and matrix metalloproteinase tissue inhibitor-1 and -2 in brain tissues and blood plasma of patients undergoing surgery for cerebellar arteriovenous malformations or primary epilepsy (control group).Immunohistochemistry and enzyme-linked immunosorbent assay revealed that the expression of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with cerebellar arteriovenous malformations than in patients with primary epilepsy.The ratio of matrix metalloproteinase-9 to matrix metalloproteinase tissue inhibitor-1 was significantly higher in patients with hemorrhagic cerebellar arteriovenous malformations compared with those with non-hemorrhagic malformations.Matrix metalloproteinase-2 and matrix metalloproteinase tissue inhibitor-2 levels were not significantly changed.These findings indicate that an imbalance of matrix metalloproteinase-9 and matrix metalloproteinase tissue inhibitor-1,resulting in a relative overabundance of matrix metalloproteinase-9,might be the underlying mechanism of hemorrhage of cerebellar arteriovenous malformations.

  10. A caged substrate peptide for matrix metalloproteinases.

    Science.gov (United States)

    Decaneto, Elena; Abbruzzetti, Stefania; Heise, Inge; Lubitz, Wolfgang; Viappiani, Cristiano; Knipp, Markus

    2015-02-01

    Based on the widely applied fluorogenic peptide FS-6 (Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; Mca = methoxycoumarin-4-acetyl; Dpa = N-3-(2,4-dinitrophenyl)l-α,β-diaminopropionyl) a caged substrate peptide Ac-Lys-Pro-Leu-Gly-Lys*-Lys-Ala-Arg-NH2 (*, position of the cage group) for matrix metalloproteinases was synthesized and characterized. The synthesis implies the modification of a carbamidated lysine side-chain amine with a photocleavable 2-nitrobenzyl group. Mass spectrometry upon UV irradiation demonstrated the complete photolytic cleavage of the protecting group. Time-resolved laser-flash photolysis at 355 nm in combination with transient absorption spectroscopy determined the biphasic decomposition with τa = 171 ± 3 ms (79%) and τb = 2.9 ± 0.2 ms (21%) at pH 6.0 of the photo induced release of the 2-nitrobenzyl group. The recombinantly expressed catalytic domain of human membrane type I matrix metalloproteinase (MT1-MMP or MMP-14) was used to determine the hydrolysis efficiency of the caged peptide before and after photolysis. It turned out that the cage group sufficiently shields the peptide from peptidase activity, which can be thus controlled by UV light.

  11. The influence of nicotine on granulocytic differentiation – Inhibition of the oxidative burst and bacterial killing and increased matrix metalloproteinase-9 release

    Directory of Open Access Journals (Sweden)

    Renaud Diane E

    2008-04-01

    Full Text Available Abstract Background Neutrophils leave the bone marrow as terminally differentiated cells, yet little is known of the influence of nicotine or other tobacco smoke components on neutrophil differentiation. Therefore, promyelocytic HL-60 cells were differentiated into neutrophils using dimethylsulfoxide in the presence and absence of nicotine (3-(1-methyl-2-pyrrolidinyl pyridine. Differentiation was evaluated over 5 days by monitoring terminal differentiation markers (CD11b expression and formazan deposition; cell viability, growth phase, kinetics, and apoptosis; assessing cellular morphology and ultrastructure; and conformational changes to major cellular components. Key neutrophil effector functions (oxidative burst, bacterial killing, matrix metalloproteinase release were also examined. Results Nicotine increased the percentage of cells in late differentiation phases (metamyelocytes, banded neutrophils and segmented neutrophils compared to DMSO alone (p p p p in vivo (p Conclusion These findings may partially explain the known increase in susceptibility to bacterial infection and neutrophil-associated destructive inflammatory diseases in individuals chronically exposed to nicotine.

  12. Correlations between papillary thyroid cancer and peripheral blood levels of matrix metalloproteinase-2, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-fei; HU San-yuan; MA Lei; MIAO Lei; MAO Wei-zheng

    2013-01-01

    Background The relationship between the presence of metalloproteinases and thyroid cancer remains unknown,and many controversies still exist in this field.The objective of this study was to investigate the correlations between papillary thyroid cancer and peripheral blood levels of matrix metalloproteinase-2,matrix metalloproteinase-9,tissue inhibitor of metalloproteinase-1,and tissue inhibitor of metalloproteinase-2.Methods The correlations were studied by detecting the levels of matrix metalloproteinase-2,matrix metalloproteinase-9,tissue inhibitor of metalloproteinase-1,and tissue inhibitor of metalloproteinase-2 by enzyme-linked immunosorbant assay and reverse-transcription polymerase chain reaction in the peripheral blood of 30 patients with papillary thyroid carcinoma,27 patients with benign thyroid disease,and 25 healthy volunteers.Results The levels of matrix metalloproteinase-2,matrix metalloproteinase-9,tissue inhibitor of metalloproteinase-1,and tissue inhibitor of metalloproteinase-2 in the peripheral blood of patients with papillary thyroid carcinoma were significantly higher than those in the peripheral blood of patients with benign thyroid disease and healthy volunteers (P <0.05).However,there were no significant differences between patients with benign thyroid disease and healthy volunteers (P >0.05).The accuracy of detection by both enzyme-linked immunosorbant assay and reverse-transcription polymerase chain reaction in the papillary thyroid cancer group was 83.33%.Conclusions The levels of matrix metalloproteinase-2,matrix metalloproteinase-9,tissue inhibitor of metalloproteinase-1,and tissue inhibitor of metalloproteinase-2 in the peripheral blood are helpful in identifying thyroid carcinoma and aid in preoperative assessment.

  13. Matrix Metalloproteinases in patients with Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Rebeca A. Fernández Carriera

    2007-05-01

    Full Text Available Fundament: The proteolitic rupture of the extracellular matrix due to metalloproteinase 2 and 9 is one of the aspects that can influence in the alteration of the permeability of the blood-brain barrier (BBB in multiple sclerosis. Objective: To determine metalloproteinase activity with gelatinous activity in patients suffering from multiple sclerosis. Methods: the cerebrospinal fluid (CSF samples taken from 31 patients suffering from multiple sclerosis and a control group formed by 21 patients without neurological disease. The metalloproteinase 2 and 9 activities in the cerebrospinal fluid were determined by zimográfica technique through polyacrylamide gel electrophoresis. The bands were later analysed by their molecular weight and the relative metalloproteinase 9 activity was calculated. Total protein concentrations, albumin and immunoglobulin G (IgG, the IgG rate and the Q rate were assessed to evaluate the IgG intrathecal and the functional state of the blood-brain barrier. Results: metalloproteinase 2 activity was detected in the cerebrospinal fluid of all patients and control group. Metalloproteinase 9 activity was only found in the 61.3 % of the patients. The presence of relative metalloproteinase 9 activity was neither associated with the clinical variables nor the laboratory ones. An association was found between its presence and the oligoclonal bands in patients with multiple sclerosis. In those patients under immunomodular treatment it was presented with less frequency. Conclusions: There is a possible participation of Metalloproteinase 9 in the immunopathological mechanisms of the multiple sclerosis.

  14. Matrix metalloproteinases in wound repair (review).

    Science.gov (United States)

    Ravanti, L; Kähäri, V M

    2000-10-01

    Wound repair is initiated with the aggregation of platelets, formation of a fibrin clot, and release of growth factors from the activated coagulation pathways, injured cells, platelets, and extracellular matrix (ECM), followed by migration of inflammatory cells to the wound site. Thereafter, keratinocytes migrate over the wound, angiogenesis is initiated, and fibroblasts deposit and remodel the granulation tissue. Cell migration, angiogenesis, degradation of provisional matrix, and remodeling of newly formed granulation tissue, all require controlled degradation of the ECM. Disturbance in the balance between ECM production and degradation leads to formation of chronic ulcers with excessive ECM degradation, or to fibrosis, for example hypertrophic scars or keloids characterized by excessive accumulation of ECM components. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which as a group can degrade essentially all ECM components. So far, 20 members of the human MMP family have been identified. Based on their structure and substrate specificity, they can be divided into subgroups of collagenases, stromelysins, stromelysin-like MMPs, gelatinases, membrane-type MMPs (MT-MMPs), and other MMPs. In this review, the role of MMPs in normal wound repair as well as in chronic ulcers is discussed. In addition, the role of signaling pathways, in particular, mitogen-activated protein kinases (MAPKs) in regulating MMP expression is discussed as possible therapeutical targets for wound healing disorders.

  15. Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries.

    Science.gov (United States)

    Gliesche, Daniel G; Hussner, Janine; Witzigmann, Dominik; Porta, Fabiola; Glatter, Timo; Schmidt, Alexander; Huwyler, Jörg; Meyer Zu Schwabedissen, Henriette E

    2016-07-01

    Cardiovascular diseases are the leading causes of death in industrialized countries. Atherosclerotic coronary arteries are commonly treated with percutaneous transluminal coronary intervention followed by stent deployment. This treatment has significantly improved the clinical outcome. However, triggered vascular smooth muscle cell (SMC) proliferation leads to in-stent restenosis in bare metal stents. In addition, stent thrombosis is a severe side effect of drug eluting stents due to inhibition of endothelialization. The aim of this study was to develop and test a stent surface polymer, where cytotoxic drugs are covalently conjugated to the surface and released by proteases selectively secreted by proliferating smooth muscle cells. Resting and proliferating human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) were screened to identify an enzyme exclusively released by proliferating HCASMC. Expression analyses and enzyme activity assays verified selective and exclusive activity of the matrix metalloproteinase-9 (MMP-9) in proliferating HCASMC. The principle of drug release exclusively triggered by proliferating HCASMC was tested using the biodegradable stent surface polymer poly-l-lactic acid (PLLA) and the MMP-9 cleavable peptide linkers named SRL and AVR. The specific peptide cleavage by MMP-9 was verified by attachment of the model compound fluorescein. Fluorescein release was observed in the presence of MMP-9 secreting HCASMC but not of proliferating HCAEC. Our findings suggest that cytotoxic drug conjugated polymers can be designed to selectively release the attached compound triggered by MMP-9 secreting smooth muscle cells. This novel concept may be beneficial for stent endothelialization thereby reducing the risk of restenosis and thrombosis.

  16. Circulating levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with incisional hernia

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sørensen, Lars T; Jorgensen, Lars N

    2013-01-01

    Incisional hernia formation is a common complication to laparotomy and possibly associated with alterations in connective tissue metabolism. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are closely involved in the metabolism of the extracellular matrix. Our...

  17. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...

  18. Vibrio vulnificus MO6-24/O Lipopolysaccharide Stimulates Superoxide Anion, Thromboxane B2, Matrix Metalloproteinase-9, Cytokine and Chemokine Release by Rat Brain Microglia in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2014-03-01

    Full Text Available Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus lipopolysaccharide (LPS has been reported to result in septic shock, its impact on the central nervous system’s innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O2−, a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O2− was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α, interleukin-1 alpha (IL-1α, IL-6, and transforming growth factor-beta 1 (TGF-β1, chemokines macrophage inflammatory protein (MIP-1α/chemokine (C-C motif ligand 3 (CCL3, MIP-2/chemokine (C-X-C motif ligand 2 (CXCL2, monocyte chemotactic protein-1 (MCP-1/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β/CXCL3, and brain-derived neurotrophic factor (BDNF, were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate-stimulated O2− generation: (1 0.1–1 ng/mL V. vulnificus LPS enhanced O2− generation significantly but with limited inflammatory mediator generation; (2 10–100 ng/mL V. vulnificus LPS maximized O2− generation with concomitant release of thromboxane B2 (TXB2, matrix metalloproteinase-9 (MMP-9, and several cytokines and chemokines; (3 1000–100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O2− production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of

  19. Vibrio vulnificus MO6-24/O lipopolysaccharide stimulates superoxide anion, thromboxane B₂, matrix metalloproteinase-9, cytokine and chemokine release by rat brain microglia in vitro.

    Science.gov (United States)

    Mayer, Alejandro M S; Hall, Mary L; Holland, Michael; De Castro, Cristina; Molinaro, Antonio; Aldulescu, Monica; Frenkel, Jeffrey; Ottenhoff, Lauren; Rowley, David; Powell, Jan

    2014-03-26

    Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system's innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O₂⁻), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O₂⁻ was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O₂⁻ generation: (1) 0.1-1 ng/mL V. vulnificus LPS enhanced O₂⁻ generation significantly but with limited inflammatory mediator generation; (2) 10-100 ng/mL V. vulnificus LPS maximized O₂⁻ generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000-100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O₂⁻ production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of

  20. Matrix metalloproteinases in exercise and obesity

    OpenAIRE

    Jaoude J; Koh Y

    2016-01-01

    Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...

  1. Matrix metalloproteinase production in regenerating axolotl spinal cord.

    Science.gov (United States)

    Chernoff, E A; O'Hara, C M; Bauerle, D; Bowling, M

    2000-01-01

    In urodele amphibian spinal cord regeneration, the ependymal cells lining the central canal remodel the lesion site to favor axonal regrowth. We profiled the production of matrix metalloproteinases by injury-reactive mesenchymal ependymal cells in vivo and in vitro and found that matrix metalloproteinases are involved in this remodeling process in the axolotl (Ambystoma mexicanum). The production of cell-associated matrix metalloproteinases in vivo was shown to be identical to that in our cultured ependymal cell model system. Activated and zymogen forms of matrix metalloproteinases were identified using zymography, chemical inhibitors of matrix metalloproteinases, and cleavage of propeptides by organomercurials. The principal cellular proteinases consisted of matrix metalloproteinase-2 (gelatinase A) and matrix metalloproteinase-1 (type I collagenase), which display characteristic shifts in molecular weight following proenzyme processing by organomercurials. In addition, ependymal cell conditioned medium contained secreted forms of the enzyme undetectable in situ. Matrix metalloproteinase-9 (gelatinase B) as well as matrix metalloproteinase-2 and matrix metalloproteinase-1 were secreted and casein substrate zymography showed the presence of a small amount of a very high molecular weight matrix metalloproteinase-3 (prostromelysin) secreted into the culture medium. Matrix metalloproteinases were still present at 4 weeks post-lesioning when the ependymal cells have just re-epithelialized, but decreased near the completion of regeneration (8 weeks post-lesioning). Zymography showed no detectable matrix metalloproteinases in unlesioned cord but the presence of tissue inhibitor of metalloproteinase-1 in intact cord was seen by Western blotting. This study shows that matrix metalloproteinases are associated with urodele spinal cord regeneration and validates the use of our ependymal cell tissue culture model system to evaluate ependymal cell behavior during spinal cord

  2. Immunohistochemical Studies of the Expression of Matrix Metalloproteinase-2 and Metalloproteinase-9 in Human Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    曾汉青; 肖亚军; 鲁功成; 陈勇

    2003-01-01

    To study the expression of matrix metalloproteinase-2 and -9 in human prostate cancer,matrix metalloproteinase-2 and -9 were immunohistochemically detected in tissues of prostate cancer and benign prostatic hyperplasia (BPH). Our results showed that matrix metalloproteinase-2 and -9 levels in prostate cancer were much higher than those in tissues of BPH, with the cancer invasion being positively correlated with the expression of the metalloproteinases. It is concluded that matrix metalloproteinase-2 and -9 are better molecular markers, which are of help in the diagnosis and prediction of prognosis of prostate cancer.

  3. Matrix metalloproteinases in impaired wound healing

    OpenAIRE

    auf dem Keller, Ulrich; Sabino,Fabio

    2015-01-01

    Fabio Sabino, Ulrich auf dem Keller Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland Abstract: Cutaneous wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to finally re-establish the skin's barrier function upon injury. Proteolytic enzymes and in particular matrix metalloproteinases (MMPs) contribute to all phas...

  4. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    Science.gov (United States)

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  5. Matrix metalloproteinase gene polymorphisms and oral cancer.

    Science.gov (United States)

    Pereira, Andresa C; Dias do Carmo, Elaine; Dias da Silva, Marco A; Blumer Rosa, Luiz E

    2012-12-01

    Since oral squamous cell carcinoma (OSCC) is the most prevalent malignant cancer in the oral cavity, several researches have been performed to study the role of important enzymes in this disease. Among them, the matrix metalloproteinases (MMPs) are highlighted, due to the fact that they are proteinases responsible to degrade many extra-cellular matrix components, making possible the invasion of neoplasic cells. Important tools in cancer prognosis have been utilized aiming to correlate high levels of MMPs and OSCC, such as immunohistochemical, zymographic and mRNA detection methods. However, these techniques are usually applied after cancer detection, characterizing a curative but not a preventive medicine. Trying to make interventions before the development of the disease and making possible the identification of people at high risk and, analysis of modifications in MMP genes has been a chance for modern medicine. Recently, polymorphisms in MMP genes have been related to different neoplasias, including OSCC. Despite investigation is beginning, MMP gene polymorphisms seems to have a promising future in oral cancer research and some of the present results have shown that there are MMP polymorphisms related to an increased risk for developing oral cancer. Key words:Oral cancer, polymorphism, matrix metalloproteinase.

  6. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  7. Complex role of matrix metalloproteinases in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    SANGQINGXIANGAMY

    1998-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.

  8. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate di

  9. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  10. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    Science.gov (United States)

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  11. Matrix Metalloproteinases Expression in Choroidal Neovascular Membranes

    Institute of Scientific and Technical Information of China (English)

    Jun Zeng; Deyong Jiang; Xiangping Liu; Xiaohua Zhu; Luosheng Tang

    2004-01-01

    Purpose: To investigate the expression of matrix metalloproteinases (MMPs) in choroidal neovascular membranes with age-related macular degeneration (AMD).Methods: Seventeen choroidal neovascular membranes surgically removed from AMD patients with pars plana vitrectomy and subretinal membranes peeling were investigated.The expression of MMP-2 and MMP-9 was determined with immunohistochemical technique.Results: Immunohistochemistry staining in choroidal neovascular membranes for MMP2 and MMP-9 was observed in 17 specimens. There was no detective of MMP-2 and MMP-9 in normal retinas.Conclusions: MMP-2 and MMP-9 were found in choroidal neovascular membranes, may degrade the Bruch membrane and be associated with the perforation of new vessels into Bruch membrane, involving a basic pathogenic process of AMD.

  12. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    and resorption. Furthermore, we investigated the role of MMP-12 in bone resorption and osteoclast recruitment by comparing MMP-12 knockout and wild-type mice in specialized culture models known to depend on MMP activity, as well as in the ovariectomy model, and we did not find any indication for a limiting role......Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called....... Northern blots show that highly purified rabbit osteoclasts in culture express MMP-12 at the same level as macrophages, whereas in situ hybridizations performed on rabbit bone do not show any MMP-12 expression in osteoclasts whatever the bone type. In contrast, in situ hybridizations performed on mouse...

  13. Matrix Metalloproteinases-7 and Kidney Fibrosis

    Science.gov (United States)

    Ke, Ben; Fan, Chuqiao; Yang, Liping; Fang, Xiangdong

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease.

  14. Matrix metalloproteinases in exercise and obesity.

    Science.gov (United States)

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  15. The matrix metalloproteinase in larynx cancer

    Directory of Open Access Journals (Sweden)

    Weronika Lucas Grzelczyk

    2016-12-01

    Full Text Available One of the most common carcinoma occurring in the head and neck is laryngeal cancer. Despite the rapid scientific advances in medicine the prognosis for patients with such type of disease is not satisfying. In the last few years matrix metalloproteinases ‑ MMPs and their tissue inhibitors – TIMPs, mostly MMP‑2 and MMP‑9, arouses a great interest, especially in the process of carcinogenesis. It seems that their impact in the formation and development of laryngeal cancer is significant. MMPs a group of zinc‑ and calcium‑ dependent endopeptidases play crucial role extracellular matrix collagen degradation. That are enzymes, that degrade and the basement membrane by facilitating tumor growth, cell migration and tumor invasion. They are implicated in metastasis and angiogenesis potentiate within the tumor. Clear tendency was observed towards the higher MMPs and TIMPs expression in larynx cancer than in the stroma. Recent studies show correlations between increased MMP‑2 gene expression in the tumor tissue and clinical status, histopathological grading and metastases occurrence. The similar MMP2 over expression dependence were found on tumor recurrence and survival. Many authors pointed out, significant higher MMP‑2 expression as a potential marker of tumor invasiveness and worse prognosis in patients with larynx cancer. However, association of MMP 9 gene expression with laryngeal cancer clinicopathological features and survival of patients are ambiguous. Although, numerous researches show that this relationship does exists. Similar correlations could be found in TIMPs, but further studies are necessary because of small amount of literature.

  16. Matrix metalloproteinases in exercise and obesity

    Directory of Open Access Journals (Sweden)

    Jaoude J

    2016-07-01

    Full Text Available Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease. Keywords: cardiovascular disease, gelatinases, collagenases, TIMP

  17. Matrix metalloproteinase inhibition in atherosclerosis and stroke.

    Science.gov (United States)

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A

    2013-09-01

    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  18. Matrix metalloproteinase imbalance in muscle disuse atrophy.

    Science.gov (United States)

    Giannelli, G; De Marzo, A; Marinosci, F; Antonaci, S

    2005-01-01

    Muscle atrophy commonly occurs as a consequence of prolonged muscle inactivity, as observed after cast immobilization, bed rest or space flights. The molecular mechanisms responsible for muscle atrophy are still unknown, but a role has been proposed for altered permeability of the sarcolemma and of the surrounding connective tissue. Matrix metallo-proteinases (MMPs) are a family of enzymes with proteolytic activity toward a number of extracellular matrix (ECM) components; they are inhibited by tissue inhibitors of MMPs (TIMPs). In a rat tail-suspension experimental model, we show that after fourteen days of non-weight bearing there is increased expression of MMP-2 in the atrophic soleus and gastrocnemius and decreased expression of TIMP-2. In the same experimental model the expression of Collagen I and Collagen IV, two main ECM components present in the muscles, was reduced and unevenly distributed in unloaded animals. The difference was more evident in the soleus than in the gastrocnemius muscle. This suggests that muscle disuse induces a proteolytic imbalance, which could be responsible for the breakdown of basal lamina structures such as Collagen I and Collagen IV, and that this leads to an altered permeability with consequent atrophy. In conclusion, an MMP-2/TIMP-2 imbalance could have a role in the mechanism underlying muscle disuse atrophy; more studies are needed to expand our molecular knowledge on this issue and to explore the possibility of targeting the proteolytic imbalance with MMP inhibitors.

  19. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update

    Directory of Open Access Journals (Sweden)

    Shane O’Sullivan

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are known to be upregulated in inflammatory bowel disease (IBD and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition.

  20. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    Science.gov (United States)

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  1. Investigation of Matrix Metalloproteinase -1, 2 and tissue inhibitor of matrix metalloproteinases-1 in Endometriosis

    Institute of Scientific and Technical Information of China (English)

    Rong Liu; Demin Pu; Dan Yang

    2007-01-01

    Objective: To explore the role of matrix metalloproteinase-1,2 (MMP-1, MMP-2) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in endometriosis. Methods: The eutopic and ectopic endometria from 40 subjects suffering from endometriosis and regular.endometria from 40 subjects (excluding endometriosis) were collected and examined by in situ hybridization technology and western blot assay. Results: Both expressions of MMP-1 and -2 were stronger in ectopic endometrium and eutopic endometrium than in normal endometrium. On the contrary, the expression of TIMP-1 in ectopic endometrium and eutopic endometrium was lower. The differences were significant (P < 0.01). Moreover, there was no relationship among the expressions of MMP-1, 2 and TIMP-1 in ectopic endometrium. Conclusion: The expressions of MMP-1, 2 and TIMP-1 lose balance and lack of periodic changes in ectopic endometrium , which explains the biological invasive behavior of endometriosis. It was suggested that regulating the balance between the MMPs and TIMP-1 should be an ideal therapeutic target to endometriosis.

  2. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Salvador Espino Y. Sosa

    2017-07-01

    Full Text Available Preeclampsia is a severe pregnancy complication globally, characterized by poor placentation triggering vascular dysfunction. Matrix metalloproteinases (MMPs exhibit proteolytic activity implicated in the efficiency of trophoblast invasion to the uterine wall, and a dysregulation of these enzymes has been linked to preeclampsia. A decrease in MMP-2 and MMP-9 interferes with the normal remodeling of spiral arteries at early pregnancy stages, leading to the initial pathophysiological changes observed in preeclampsia. Later in pregnancy, an elevation in MMP-2 and MMP-9 induces abnormal release of vasoactive factors conditioning hypertension. Although these two enzymes lead the scene, other MMPs like MMP-1 and MMP-14 seem to have a role in this pathology. This review gathers published recent evidence about the implications of different MMPs in preeclampsia, and the potential use of these enzymes as emergent biomarkers and biological therapeutic targets, focusing on studies involving human subjects.

  3. Biological studies of matrix metalloproteinase sensitive drug delivery systems

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann

    due to severe side effects as a result of drug distribution to healthy tissues. To enhance ecacy of treatment and improve life quality of patients, tumor specific drug delivery strategies, such as liposome encapsulated drugs, which accumulate in tumor tissue, has gained increased attention. Several...... for delivery of drugs to specific tissues or cells utilizing biological knowledge of cancer tissue is getting increased attention. In this thesis a novel matrix metalloproteinase-2 (MMP-2) sensitive poly-ethylene glycol (PEG) coated liposomal drug delivery system for treatment of cancer was developed...... the use of MMP- 2 as a trigger for liposomal activation in tumor tissue. Thus, this new strategy provides a promising system for specific delivery of encapsulated drugs and controlled release in tumor tissues, resulting in enhanced drug bioavailability and decreased systemic side effects. In addition, we...

  4. Matrix metalloproteinase-2 and tissue inhibitor of metallo-proteinase-2 in colorectal carcinoma invasion and metastasis

    OpenAIRE

    Li, Bing-hui; zhao,Peng; Liu, Shi-Zheng; Yu, Yue-Ming; Han, Mei; Wen, Jin-kun

    2005-01-01

    AIM: To explore the relationship between matrix metallopr-oteinase-2 (MMP-2) and tissue inhibitor of metallopr-oteinase-2 (TIMP-2) in the development of colorectal carcinoma and to provide a valuable marker for clinical diagnosis.

  5. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  6. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    Science.gov (United States)

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  7. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    Science.gov (United States)

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  8. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    Science.gov (United States)

    Philips, Neena; Auler, Susan; Hugo, Raul; Gonzalez, Salvador

    2011-01-01

    Matrix metalloproteinases (MMPs) are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars. PMID:21423679

  9. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    Matrix metalloproteinases (MMPs) have been linked to the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix. MMP-3 (stromelysin-1) is upregulated in a wide variety of human tumors. We used the MMTV-PyMT breast cancer model to determine if MMP-3 is involved...

  10. Isolation and characterization of chicken bile matrix metalloproteinase

    Science.gov (United States)

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  11. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette

    2002-01-01

    Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases (MMPs) p...

  12. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette

    2002-01-01

    PURPOSE: Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases...

  13. Matrix metalloproteinases during and outside of migraine attacks without aura

    DEFF Research Database (Denmark)

    Ashina, M.; Tvedskov, J.F.; Thiesen, Kerstin Lipka

    2010-01-01

    Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M & Olesen J. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia 2009. London. ISSN 0333-1024To test the hypothesis that permeability of the blood-brain barrier (BBB) is altered during migraine attack due...... to enhanced activation of matrix metalloproteinases (MMPs), we investigated MMP-3, MMP-9 and tissue inhibitor of metalloproteases (TIMP)-1 in the external jugular vein during and outside of migraine attacks in 21 patients with migraine without aura. In addition, we measured plasma levels of several other...

  14. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia Louise; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven tra......The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  15. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage [v2; ref status: indexed, http://f1000r.es/1ks

    Directory of Open Access Journals (Sweden)

    Abigail L Clutterbuck

    2013-08-01

    Full Text Available Objective: Curcumin (diferuloylmethane is a phytochemical with potent anti-inflammatory and anti-oxidant properties, and has therapeutic potential for the treatment of a range of inflammatory diseases, including osteoarthritis (OA. The aim of this study was to determine whether non-toxic concentrations of curcumin can reduce interleukin-1beta (IL-1β-stimulated inflammation and catabolism in an explant model of cartilage inflammation. Methods: Articular cartilage explants and primary chondrocytes were obtained from equine metacarpophalangeal joints. Curcumin was added to monolayer cultured primary chondrocytes and cartilage explants in concentrations ranging from 3μM-100μM. Prostaglandin E2 (PGE2 and matrix metalloproteinase (MMP-3 release into the secretome of IL-1β-stimulated explants was measured using a competitive ELISA and western blotting respectively. Proteoglycan (PG release in the secretome was measured using the 1,9-dimethylmethylene blue (DMMB assay. Cytotoxicity was assessed with a live/dead assay in monolayer cultures after 24 hours, 48 hours and five days, and in explants after five days. Results: Curcumin induced chondrocyte death in primary cultures (50μM p<0.001 and 100μM p<0.001 after 24 hours. After 48 hours and five days, curcumin (≥25μM significantly increased cell death (p<0.001 both time points. In explants, curcumin toxicity was not observed at concentrations up to and including 25μM after five days. Curcumin (≥3μM significantly reduced IL-1β-stimulated PG (p<0.05 and PGE2 release (p<0.001 from explants, whilst curcumin (≥12μM significantly reduced MMP-3 release (p<0.01. Conclusion: Non-cytotoxic concentrations of curcumin exert anti-catabolic and anti-inflammatory effects in cartilage explants.

  16. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage [v1; ref status: indexed, http://f1000r.es/1cl

    Directory of Open Access Journals (Sweden)

    Abigail L Clutterbuck

    2013-07-01

    Full Text Available Objective: Curcumin (diferuloylmethane is a phytochemical with potent anti-inflammatory and anti-oxidant properties, and has therapeutic potential for the treatment of a range of inflammatory diseases, including osteoarthritis (OA. The aim of this study was to determine whether non-toxic concentrations of curcumin can reduce interleukin-1beta (IL-1β-stimulated inflammation and catabolism in an explant model of cartilage inflammation. Methods: Articular cartilage explants and primary chondrocytes were obtained from equine metacarpophalangeal joints. Curcumin was added to monolayer cultured primary chondrocytes and cartilage explants in concentrations ranging from 3μM-100μM. Prostaglandin E2 (PGE2 and matrix metalloproteinase (MMP-3 release into the secretome of IL-1β-stimulated explants was measured using a competitive ELISA and western blotting respectively. Proteoglycan (PG release in the secretome was measured using the 1,9-dimethylmethylene blue (DMMB assay. Cytotoxicity was assessed with a live/dead assay in monolayer cultures after 24 hours, 48 hours and five days, and in explants after five days. Results: Curcumin induced chondrocyte death in primary cultures (50μM p<0.001 and 100μM p<0.001 after 24 hours. After 48 hours and five days, curcumin (≥25μM significantly increased cell death (p<0.001 both time points. In explants, curcumin toxicity was not observed at concentrations up to and including 25μM after five days. Curcumin (≥3μM significantly reduced IL-1β-stimulated PG (p<0.05 and PGE2 release (p<0.001 from explants, whilst curcumin (≥12μM significantly reduced MMP-3 release (p<0.01. Conclusion: Non-cytotoxic concentrations of curcumin exert anti-catabolic and anti-inflammatory effects in cartilage explants.

  17. Matrix Metalloproteinases & Implication in Periodontitis- A Short Review

    Directory of Open Access Journals (Sweden)

    Hitesh Desarda

    2013-01-01

    Full Text Available Matrix metalloproteinases (MMPs are a group of enzymes which are responsible for the degradation of extracellular matrix during normal tissue turnover and also during inflammatory processes. The expression and activity of MMPs in adult tissues is normally quite low, but increases significantly in various pathological conditions that may lead into unwanted tissue destruction,such as inflammatory diseases, tumour growth and metastasis. The role of MMP-8 in periodontitis is the well-known example of the unwanted tissue destruction related to increased activity of MMPs. Degradation of the extracellular matrix may involve four distinct pathways. A body of evidence suggests that matrix components may be dissolved by extracellular matrix metalloproteinase (MMP-dependent or plasmin (Pln-dependent cleavage reactions and that larger fragment of matrix may be disposed by a phagocytic pathway by way of cleavage by lysosomal proteinases. Mineralized matrices appear to be degraded by a complex process mediated by osteoclasts which relies on degradation by lysosomal proteinases in a narrow pericellular compartment. Matrix metalloproteinases can specifically cleave and degrade collagens and connective tissue matrix at physiologic pH and temperature. The objective of this review article is to understand the complete mechanisms regulating the expression of MMPs and enzymatic activity is of great importance.Source for all the articles is electronic Pub-Med system, published in between 1997-2011 searched by using keywords like Matrix Metalloproteinases, Periodontitis, Extracellular Matrix, Collagen . Future trend should be directed towards the development of easy, reliable and fast diagnostic tools and the effective therapeutic strategies to reduce the levels of MMPs.

  18. Potential matrix metalloproteinase inhibitors from edible marine algae: a review.

    Science.gov (United States)

    Thomas, Noel Vinay; Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-05-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extra-cellular matrix degradation, and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological related diseases. Hence inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings and thus many of them could not make to the final clinical trials. Hence a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible sea-weeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fucoidans from marine algae as potential matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Thomas, Noel Vinay; Kim, Se-Kwon

    2014-01-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extracellular matrix degradation and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological-related diseases. Hence, inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings, and thus many of them could not make to the final clinical trials. Hence, a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown a profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible seaweeds. © 2014 Elsevier Inc. All rights reserved.

  20. Venous aneurysm complicating arteriovenous fistula access and matrix metalloproteinases

    Directory of Open Access Journals (Sweden)

    Serra Raffaele

    2015-01-01

    Full Text Available Introduction: An arteriovenous fistula (AVF for placed for hemodialysis may be burdened by one particular complication-the formation of a venous aneurysm. It has been shown that matrix metalloproteinases (MMPs and neutrophil gelatinase-associated lipocalin (NGAL could represent markers of disease in both venous and arterial vessels.

  1. Synthetic tools to illuminate matrix metalloproteinase and proteasome activities

    NARCIS (Netherlands)

    Geurink, Paulus Petrus

    2010-01-01

    This thesis describes the design, synthesis and application of chemical tools for the activity-based protein profiling of proteases, with the main focus on matrix metalloproteinases (MMPs) and the proteasome. The use of photoaffinity labeling is described and the thesis starts with an extensive

  2. Synthetic tools to illuminate matrix metalloproteinase and proteasome activities

    NARCIS (Netherlands)

    Geurink, Paulus Petrus

    2010-01-01

    This thesis describes the design, synthesis and application of chemical tools for the activity-based protein profiling of proteases, with the main focus on matrix metalloproteinases (MMPs) and the proteasome. The use of photoaffinity labeling is described and the thesis starts with an extensive outl

  3. Chicken bile Matrix metalloproteinase; its characterization and significance

    Science.gov (United States)

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  4. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-04-01

    Full Text Available Xiaoyan Zhang, Xiaofei Wang, Weitong Zhong, Xiaoqing Ren, Xianyi Sha, Xiaoling FangKey Laboratory of Smart Drug Delivery, Ministry of Education and People’s Liberation Army of China, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China Abstract: Since elevated expression of matrix metalloproteinase (MMP-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8 as spacer between α-tocopherol succinate (α-TOS and methoxy-polyethylene glycol molecular weight (MW 2000 Da activated by N-hydroxysuccinimide (mPEG2K-NHS, mPEG2K-GK8-α-TOS (TGK was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS and TGK (n:n =40:60, TGK micelles. mPEG2K-α-TOS (T2K was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50 of TGK and T2K micelles were similar (P>0.05 in MCF-7 cells (MMP-2/9 underexpression, the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 µg/mL, respectively, in HT1080 cells (MMP

  5. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars.

  6. Update of human and mouse matrix metalloproteinase families

    OpenAIRE

    Jackson Brian C; Nebert Daniel W; Vasiliou Vasilis

    2010-01-01

    Abstract Matrix metalloproteinases (MMPs) are a family of zinc proteases that degrade most of the components of the extracellular matrix (ECM). MMPs also have a number of non-traditional roles in processing factors related to cell growth/proliferation, inflammation and more. There are 23 human MMPs and 23 mouse MMPs, most of which share orthology among most vertebrates; other examples have been found in invertebrates and plants. MMPs are named in order of discovery, but also have been grouped...

  7. Matrix Metalloproteinases And Their Role In Oral Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Anna P. joseph

    2012-01-01

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that are capable of degrading extra cellular matrix proteins. The activity of MMPs is seen not only during normal organogenesis and wound healing, but also in pathological conditions like inflammatory diseases and tumor invasion. This review describes the structure, function and regulation of MMPs and also highlights their role in certain oral diseases like oral cancer, periodontitis and dental caries.

  8. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model...

  9. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia

    NARCIS (Netherlands)

    Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; Bont, E.S.J.M. de

    2004-01-01

    In the past decades, a lot of effort has been put in identifying the role of matrix metalloproteinases (MMPs) in cancer. The main role of MMPs in angiogenesis, tumor growth and metastasis is degradation of extracellular matrix (ECM) and release and/or activation of growth factors through their

  10. Assessment of Synthetic Matrix Metalloproteinase Inhibitors by Fluorogenic Substrate Assay.

    Science.gov (United States)

    Lively, Ty J; Bosco, Dale B; Khamis, Zahraa I; Sang, Qing-Xiang Amy

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of metzincin enzymes that act as the principal regulators and remodelers of the extracellular matrix (ECM). While MMPs are involved in many normal biological processes, unregulated MMP activity has been linked to many detrimental diseases, including cancer, neurodegenerative diseases, stroke, and cardiovascular disease. Developed as tools to investigate MMP function and as potential new therapeutics, matrix metalloproteinase inhibitors (MMPIs) have been designed, synthesized, and tested to regulate MMP activity. This chapter focuses on the use of enzyme kinetics to characterize inhibitors of MMPs. MMP activity is measured via fluorescence spectroscopy using a fluorogenic substrate that contains a 7-methoxycoumarin-4-acetic acid N-succinimidyl ester (Mca) fluorophore and a 2,4-dinitrophenyl (Dpa) quencher separated by a scissile bond. MMP inhibitor (MMPI) potency can be determined from the reduction in fluorescent intensity when compared to the absence of the inhibitor. This chapter describes a technique to characterize a variety of MMPs through enzyme inhibition assays.

  11. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action.

  12. Matrix metalloproteinases and their expression in mammary gland

    Institute of Scientific and Technical Information of China (English)

    URIAJOSEA; ZENAWERB

    1998-01-01

    The matrix metalloproteinases (MMPs) are a family of zine-dependent endopeptidases that play a key role in both normal and pathological processes involving tissue remodeling events.The expression of these proteolytic enzymes is highly regulated by a balance between extracellular matrix (ECM) deposition and its degradation,and is controlled by growth factors,cytokines,hormones,as well as interactions with the ECM macromolecules.Furthermore,the activity of the MMPs is regulated by their natural endogenous inhibitors,which are members of the tissue inhibitor of metalloproteinases (TIMP) family.In the normal mammary gland,MMPs are expressed during ductal development,lobulo-alveolar development in pregnancy and involution after lactation.Under pathological conditions,such as tumorigenesis,the dysregulated expression of MMPs play a role in tumor initiation,progression and malignant conversion as well as facilitating invasion and metastasis of malignant cells through degradation of the ECM and basement membranes.

  13. Matrix metalloproteinases (MMPs) and trophoblast invasion

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHAO Tianfu; DUAN Enkui

    2005-01-01

    MMPs and their natural tissue inhibitors TIMPs are crucial in coordinated breakdown and remodeling of the extracellular matrix (ECM) in physiological and pathological situations. Placentation is a key event of pregnancy in which MMPs/TIMPs system plays important roles in regulating the extravillus cytotrophoblast (EVTs) invasion. This paper focuses on expression patterns and regulatory mechanisms of MMPs/TIMPs family members during the process of placentation. Their implications in curing pregnancy-related diseases are also discussed.

  14. Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells.

    Science.gov (United States)

    Li, Xiuling; Tai, Hsin-Hsiung

    2014-08-01

    Matrix metalloproteinases (MMPs) and monocyte chemoattractant protein-1 (MCP-1, CCL2) are known to be upregulated in many tumors. Their roles in tumor invasion and metastasis are being uncovered. How they are related to each other and involved in tumor progression remains to be determined. Earlier it was reported that I-BOP-initiated activation of thromboxane A2 receptor (TP) induced the release of MMP-1, MMP-3, and MMP-9 from lung cancer A549 cells overexpressing TPα (A549-TPα). Herein it was found that MMP-1, but not MMP-3 or MMP-9, induced the expression of MCP-1 in A549 cells. Conditioned medium (CM) from I-BOP activated, MMP-1 siRNA pretreated A549-TPα cells induced greatly attenuated expression of MCP-1 in A549 cells indicating that MMP-1 in the CM contributed significantly to the expression of MCP-1. MMP-1 was shown to activate protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1 to increase the expression of MCP-1 in A549 cells. This conclusion was reached from the following findings: (1) expression of MCP-1 induced by trypsin, a PAR2 agonist, and also PAR2 agonist peptide, was inhibited by a PAR2 antagonist; (2) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was blocked by a PAR2 antagonist but not by other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was attenuated significantly by pretreatment of cells with PAR2-siRNA. These results suggest that PAR2 is a novel MMP-1 target mediating MMP-1-induced signals in A549 lung cancer cells.

  15. Matrix metalloproteinases and their function in myocardium.

    Science.gov (United States)

    Kukacka, Jirí; Průsa, Richard; Kotaska, Karel; Pelouch, Václav

    2005-12-01

    A significant number of myocardial diseases are accompanied by increased synthesis and degradation of the extracellular matrix (ECM) as well as by changed maturation and incorporation of ECM components. Important groups of enzymes responsible for both normal and pathological processes in ECM remodeling are matrix metaloproteinases (MMPs). These enzymes share a relatively conserved structure with a number of identifiable modules linked to their specific functions. The most important function of MMPs is the ability to cleave various ECM components; including such rigid molecules as fibrillar collagen molecules. The amount and activity of MMPs in cardiac tissue are regulated by a range of activating and inhibiting processes. Although MMPs play multifarious roles in many myocardial diseases, here we have focused on their function in ischemic cardiac tissue, dilated cardiomyopathy and hypertrophied cardiac tissue. The inhibition of MMPs by means of synthetic inhibitors seems to be a promising strategy in cardiac disease treatment. Their effects on diseased cardiac tissue have been successfully tested in several experimental studies.

  16. Effect of Guanxinshutong capsule on the expression of matrix metalloproteinases-9 and tissue matrix metalloproteinase inhibitor-1 of atherosclerotic plaque in apoE-/- mice

    Institute of Scientific and Technical Information of China (English)

    霍煜

    2014-01-01

    Objective To approach the possible mechanism of Guanxinshutong capsule on the progression and stability of atherosclerotic plaque through observing the effects of Guanxinshutong capsule on pathologic morphology and expression of tissue matrix metalloproteinase inhibitor-1(TIMP-1),matrix metalloproteinases-9(MMP-9)of atherosclerotic plaque in Apo E-/-mice model with experimental atherosclerosis.Methods The animals were fed

  17. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers.

    Science.gov (United States)

    Rempe, Ralf G; Hartz, Anika Ms; Bauer, Björn

    2016-09-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.

  18. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients.

    Directory of Open Access Journals (Sweden)

    Barbara Mroczko

    2011-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathological features of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectal adenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levels of MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, but concentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels of MMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage. Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivity of TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover, the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthy subjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Our findings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA. However, further investigation is necessary.

  19. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in early focal cerebral infarction following urokinase thrombolysis in rats

    Institute of Scientific and Technical Information of China (English)

    Yuqiang Song; Hongli Zou; Guofeng Wang; Hongxia Yang; Zhaohong Xie; Jianzhong Bi

    2012-01-01

    Activity of matrix metalloproteinase-9 increases following cerebral ischemia/reperfusion, and is associated with cerebral microvascular permeability, blood-brain barrier destruction, inflammatory cell infiltration and brain edema. Matrix metalloproteinase-9 also likely participates in thrombolysis. A rat model of middle cerebral artery infarction was established by injecting autologous blood clots into the internal carotid artery. At 3 hours following model induction, urokinase was injected into the caudal vein. Decreased neurological severity score, reduced infarct volume, and increased expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 were observed in the cerebral cortex 24 hours after urokinase thrombolysis. These results suggest that urokinase can suppress damage in the acute-early stage of cerebral infarction.

  20. Effect of topical fluoroquinolones on the expression of matrix metalloproteinases in the cornea

    OpenAIRE

    O'Brien Terrence P; Song Jae K; Hakim Melinda A; Reviglio Victor E

    2003-01-01

    Abstract Background Matrix metalloproteinases play an important role in extracellular matrix deposition and degradation. Based on previous clinical observations of corneal perforations during topical fluoroquinolone treatment, we decided to evaluate the comparative effects of various fluoroquinolone eye drops on the expression of matrix metalloproteinases (MMPs) in cornea. Methods Eighty female Lewis rats were divided into two experimental groups: intact and wounded corneal epithelium. Unifor...

  1. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  2. Amlodipine inhibits matrix metalloproteinases expression and secretion in mouse macrophage

    Institute of Scientific and Technical Information of China (English)

    Yamin CAO; Shiwen WANG; Haiyun WU

    2005-01-01

    To investigate whether the calcium channel blocker amlodipine could inhibit macrophage matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expression and secretion. Methods Peritoneal macrophages were isolated from BALB/C mice and incubated with low (5μg/L), middle (15μg/L) and high (305μg/L) concentrations of amlodipine, or in the medium alone (controls) for 24 hours, and the expression and secretion of MMP-2 and MM-9 of the cells were analyzed by RT-PCR and gelatin zymography. Results Compared with controls, amlodipine at low concentration had no significant effects on the expression and secretion of either MMP-2 and MMP-9 (P>0.05);at middle concentrationit it could inhibited MMP-2 and MMP-9 expressions completely and significantly reduced the secretion of MMP-9 (P<0.05); but it had no effect on the secretion of MMP-2. At high concentration it also inhibited MMP-2 and MMP-9 expression completely. Conclusion Amlodipine at 15 ìg/L inhibited the expression of MMP-2 and MMP-9 and reduced the secretion of MMP-9, suggesting that amlodipine may stabilize atherosclerotic plaque.

  3. The regulation of matrix metalloproteinases and their inhibitors.

    Science.gov (United States)

    Clark, Ian M; Swingler, Tracey E; Sampieri, Clara L; Edwards, Dylan R

    2008-01-01

    The matrix metalloproteinases (MMP) are a family of 23 enzymes in man. These enzymes were originally described as cleaving extracellular matrix (ECM) substrates with a predominant role in ECM homeostasis, but it is now clear that they have much wider functionality. Control over MMP and/or tissue inhibitor of metalloproteinases (TIMP) activity in vivo occurs at different levels and involves factors such as regulation of gene expression, activation of zymogens and inhibition of active enzymes by specific inhibitors. Whilst these enzymes and inhibitors have clear roles in physiological tissue turnover and homeostasis, if control of their expression or activity is lost, they contribute to a number of pathologies including e.g. cancer, arthritis and cardiovascular disease. The expression of many MMPs and TIMPs is regulated at the level of transcription by a variety of growth factors, cytokines and chemokines, though post-transcriptional pathways may contribute to this regulation in specific cases. The contribution of epigenetic modifications has also been uncovered in recent years. The promoter regions of many of these genes have been, at least partly, characterised including the role of identified single nucleotide polymorphisms. This article aims to review current knowledge across these gene families and use a bioinformatic approach to fill the gaps where no functional data are available.

  4. Regulation of ovarian function by the matrix metalloproteinase system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In most organs of mammals, cyclic remodelling of tissues after morphogenesis is minimal; however, repro-ductive tissues of female animals including endometrium, mammary gland, ovarian follicle and corpus luteum un-dergo growth, maturation and involution at various stages in the reproductive cycle or lifespan of the animal. Recon-struction of the extracellular matrix (ECM) is required for the dynamic tissue reorganization characteristic of these tissues. The ECM consists of proteinaceous and nonpro-teinaceous molecules that provide the tissue-specific, ex-tracellular architecture to which cells attach. Furthermore, interaction of cellular receptors with proteins of the ECM can regulate cellular structure, second messenger genera-tion and gene expression. Maintenance of ECM homeo-stasis depends largely on coordinated action of matrix metalloproteinases (MMPs) and tissue inhibitors of met-alloproteinases (TIMPs)-- an important proteinase sys-tem responsible for degradating and remodelling of ECM[1]. MMPs/TIMPs have been recognized as the cru-cial role players in regulating follicular and luteal function for their extensive involvements in the cyclic changes of dynamic ovarian tissues. In recent years, literature that MMP system has important roles in ovary is accumulating. The focus of this review is on the effects of MMPs and their inhibitors, TIMPs on follicular growth, atresia, ovu-lation, luteal development, and luteolysis. Emphasis has been given to the recent progress in the new field when-ever possible.

  5. Acknowledged Signatures of Matrix Metalloproteinases in Takayasu’s Arteritis

    Directory of Open Access Journals (Sweden)

    Gang Wu

    2014-01-01

    Full Text Available Takayasu’s arteritis (TA was reported as an eye disease in the year 1905 and later was confirmed as a vasculitis. Since then, the etiology of the disease remains unknown; however, characteristic clinical features suggest multiple causative factors. Recent progress in vascular biology and other disciplines enlightens the pathophysiology of TA and demonstrated induction of various nonspecific inflammatory symptoms and destruction of the arterial wall, which leads to aneurysms and rupture of the affected arteries. Matrix metalloproteinases (MMPs as an enzyme family have well-established roles in several vascular pathologies including intima formation, atherosclerosiss and aneurysms. MMPs have been proposed to be one of the molecules with a potential of having dual role in the course of TA, first as an active participant in pathophysiology and secondly as a diagnostic biomarker for TA disease. The desire to improve our understanding of the importance of MMPs and their endogenous inhibitors (TIMPs in TA disease and for the development of therapeutic agents has inspired basic and clinical scientists for over a decade. In the present paper, we summarized the scientific rationale which highlights the signatures of matrix metalloproteinases and their endogenous inhibitors in pathophysiology as well as their being a potential candidate as biomarker for Takayasu’s arteritis.

  6. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  7. Induction of matrix metalloproteinase-9 and -2 activity in mouse blastocyst by fibronectin-integrin interaction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fibronectin, a major extracellular matrix, plays an important role in embryo implantation by mediating embryo adhesion and outgrowth. In this work, mouse blastocysts produced pro-matrix metalloproteinase-9, pro-matrix metalloproteinase-2 and 64 ku matrix metalloproteinase-2 when they were co-cultured with fibronectin. In contrast, mouse blastocysts did not produce these proteinases without fibronectin. Focal adhesion kinase is a fundamental molecule of integrin signaling pathway and its antisense oligodeoxynucleiotide inhibited blastocyst matrix metalloproteinases expression induced by fibronectin. The results indicated that fibronectin triggered matrix metalloproteinase-9 and -2 expression in mouse blastocyst through its integrin receptors and subsequent signaling pathway, which enhanced the synchronization of blastocyst invasiveness and uterine receptivity and ensured the accuracy of events relative to implantation in timing and spatiality.

  8. Targeting of matrix metalloproteinase activation for noninvasive detection of vulnerable atherosclerotic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Dagmar [University of California, School of Medicine, Irvine, CA (United States); School of Medicine, Department of Radiology, Hannover (Germany); Schaefers, Michael; Kopka, Klaus [University of Muenster, Department of Nuclear Medicine, Muenster (Germany); Fujimoto, Shinichiro; Narula, Navneet; Petrov, Artiom; Narula, Jagat [University of California, School of Medicine, Irvine, CA (United States); Levkau, Bodo [University of Duisburg-Essen, Institute of Pathophysiology, Duisburg (Germany); Virmani, Renu; Kolodgie, Frank D. [Cardiovascular Pathology, Gaithersburg, MD (United States); Reutelingsperger, Chris; Hofstra, Leo [Cardiovascular Research Institute, Maastricht (Netherlands)

    2007-06-15

    Inflammation plays an important role in vulnerability of atherosclerotic plaques to rupture and hence acute coronary events. The monocyte-macrophage infiltration in plaques leads to upregulation of cytokines and metalloproteinase enzymes. Matrix metalloproteinases result in matrix dissolution and consequently expansive remodeling of the vessel. They also contribute to attenuation of fibrous cap and hence susceptibility to rupture. Assessment of metalloproteinase expression and activity should provide information about plaque instability. (orig.)

  9. Time-dependent matrix metalloproteinases and tissue inhibitor of metalloproteinases expression change in fusarium solani keratitis.

    Science.gov (United States)

    Li, Qian; Gao, Xin-Rui; Cui, Hong-Ping; Lang, Li-Li; Xie, Xiu-Wen; Chen, Qun

    2016-01-01

    To investigate matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression during the progress of fusarium solani (F.solani) keratitis in a rat model. A rat model of F.solani keratitis was produced using corneal scarification and a hand-made contact lens. MMPs and TIMPs expressiond were explored in this rat model of F.solani keratitis using real-time polymerase chain reaction (PCR) and DIF. GM6001 (400 µmol/mL) was used to treat infected corneas. The keratitis duration, amount and area of corneal neovascularization (CNV) were evaluated. MMP-3 expression was 66.3 times higher in infected corneas compared to normal corneas. MMP-8, -9, and -13 expressions were significantly upregulated in the mid-period of the infection, with infected-to-normal ratios of 4.03, 39.86, and 5.94, respectively. MMP-2 and -7 expressions increased in the late period, with the infected-to-normal ratios of 5.94 and 16.22, respectively. TIMP-1 expression was upregulated in the early period, and it was 43.17 times higher in infected compared to normal corneas, but TIMP-2, -3, and -4 expressions were mildly downregulated or unchanged. The results of DIF were consistent with the result of real-time PCR. GM6001, a MMPs inhibitor, decreased the duration of F.solani infection and the amount and area of CNV. MMPs and TIMPs contributed into the progress of F.solani keratitis.

  10. Matrix metalloproteinases in inflammatory bowel disease : expression, regulation and clinical relevance

    NARCIS (Netherlands)

    Meijer, Martin Jan-Willem

    2009-01-01

    Crohn’s disease (CD) is characterized by chronic, patchy, transmural inflammation of the entire gastrointestinal tract, while ulcerative colitis (UC) is manifested by chronic, continuous, superficial inflammation of the colon. Matrix metalloproteinases (MMPs) constitute a family of matrix degrading

  11. Activity-based enrichment of matrix metalloproteinases using reversible inhibitors as affinity ligands

    NARCIS (Netherlands)

    Freije, J.R.; Bischoff, Rainer

    2003-01-01

    Matrix metalloproteinases (MMPs) are zinc dependent metalloproteases characterized by the ability to cleave extracellular matrix and many other extracellular proteins. MMP activity is tightly regulated but disturbances in this regulation can contribute to various disease processes characterized by a

  12. The Role of Matrix Metalloproteinases in Renal Diseases

    Directory of Open Access Journals (Sweden)

    Funda SAĞLAM

    2011-05-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of zinc dependent proteinases and the main promoters of extracellular matrix degradation. Their role in renal diseases is now being understood better. Several progressive renal diseases are characterized with persistent cell proliferation and abnormal production of extracellular matrix by mesengial cells. Understanding mesengial cell proliferation and the factors regulating extracellular matrix metabolism is therefore becoming more important. MMPs have been shown to be produced and excreted from renal glomerular cells and interstitital fibroblast and tubuloepithelial cells have also been shown to excrete MMPs. MMPs function in expansive cell behaviour, embryonic evolution and tissue fibrosis. Production of MMPs are known to increase in inflammation and restructure processes. Data obtained from both experimental and clinical studies has shown the role of MMPs in proliferative glomerulonephritis, hypertensive nephropathy, diabetic nephropathy, HIV nephropathy, toxic nephropathy, obstructive nephropathy, renal cell carcinoma, chronic allograft nephropathy-related fibrosis and in many other renal diseases. In light of these data, therapy options targeting MMPs have become a current issue. Limited data obtained from recent studies are promising about the clinical use of therapies repressing MMPs in future. The roles of MMPs which increase in inflammation and restructure processes in renal diseases and future therapy options are discussed in this review.

  13. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    Science.gov (United States)

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions.

  14. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  15. Structural Studies of Matrix Metalloproteinase by X-Ray Diffraction.

    Science.gov (United States)

    Decaneto, Elena; Lubitz, Wolfgang; Ogata, Hideaki

    2017-01-01

    Matrix Metalloproteinases (MMPs) are a family of proteolytic enzymes whose endopeptidase activity is dependent on the presence of specific metal ions. MT1-MMP (or MMP-14), which has been implicated in tumor progression and cellular invasion, contains a membrane-spanning region located C-terminal to a hemopexin-like domain and an N-terminal catalytic domain. We recombinantly expressed the catalytic domain of human MT1-MMP in E. coli and purified it from inclusion bodies using a refolding protocol that yielded significant quantities of active protein. Crystals of MT1-MMP were obtained using the vapour diffusion method. Here, we describe the protocols used for crystallization and the data analysis together with the resulting diffraction pattern.

  16. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies......-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity...

  17. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies......-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity...

  18. Matrix metalloproteinase-9 in patients with acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    Regent Lee

    2012-01-01

    To the Editor:I congratulate Wang et al1 in reporting further evidence for the role of matrix metalloproteinase-9 (MMP9)as a biomarker in acute coronary syndrome (ACS).In this study,the Authors examined the levels of MMP9 and C-reactive protein (CRP) in patients with a clinical diagnosis of unstable angina pectoris who subsequently underwent coronary angiography to evaluate the presence of coronary artery disease.Two subgroups of patients were defined according to the presence or absence of significant angiographic coronary artery stenosis.The level of MMP9 was significantly higher in patients with angiographic evidence of significant plaque disease (plaque group) compared with those without significant coronary stenosis (non-plaque group).No significant differences in the levels of CRP were observed between the two groups.

  19. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes.

    Science.gov (United States)

    Chen, Wei-Ping; Xiong, Yan; Shi, Yong-Xiang; Hu, Peng-Fei; Bao, Jia-Peng; Wu, Li-Dong

    2014-03-01

    Astaxanthin is a red carotenoid pigment which exerts multiple biological activities. However, little is known about the effects of astaxanthin on matrix metalloproteinases (MMPs) in OA. The present study investigated the effects of astaxanthin on MMPs in human chondrocytes. Human chondrocytes were pretreated with astaxanthin at 1, 10 or 50μM, then, cells were stimulated with IL-1β (10ng/ml) for 24h. MMP-1, MMP-3 and MMP-13 were observed. We found that astaxanthin reduced the expression of MMP-1, MMP-3 and MMP-13 as well as the phosphorylation of two mitogen-activated protein kinases (MAPK) (p38 and ERK1/2) in IL-1β-stimulated chondrocytes. Astaxanthin also blocked the IκB-α degradation. These results suggest that astaxanthin may be beneficial in the treatment of OA.

  20. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  1. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  2. Plasma matrix metalloproteinase-9 response to downhill running in humans.

    Science.gov (United States)

    Welsh, M C; Allen, D L; Byrnes, W C

    2014-05-01

    Matrix metalloproteinase-9 is a proteolytic enzyme capable of degrading proteins of the muscle extracellular matrix. Systemic levels of MMP-9 or its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), have the potential to serve as blood markers of exercise-induced muscle damage. The purpose of this study was to determine if an eccentrically-dominated task, downhill running (DHR), produces changes in plasma MMP-9 or TIMP-1 and examine the relationship between MMP-9/TIMP-1 levels and indirect indicators of muscle damage. Subjects were sedentary (SED, n=12) or had a history of concentrically-biased training (CON, n=9). MMP-9 and TIMP-1 were measured before (Pre-Ex), immediately after (Post-Ex), and 1-, 2-, 4-, and 7-days post-DHR (-10°), and compared to discomfort ratings, creatine kinase activity and strength loss. At 1-day Post-Ex, discomfort increased (5.6 ± 7.8 to 45.5 ± 19.9 mm; 0-100 mm scale), strength decreased (-6.9 ± 1.6%) and CK increased (162.9 ± 177.2%). MMP-9 was modestly but significantly increased at Post-Ex in both CONC and SED (32.7 ± 33.6%) and at 4-days in SED (66.9 ± 88.1%), Individual responses were variable, however. There were no correlations between MMPs and discomfort ratings, plasma CK or strength. While plasma MMP-9 changes may be detectable in the systemic circulation after DHR, they are small and do not correspond to other markers of damage. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    Science.gov (United States)

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  4. Matrix metalloproteinases in neural development:a phylogenetically diverse perspective

    Institute of Scientific and Technical Information of China (English)

    Christopher D. Small; Bryan D. Crawford

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally charac-terized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of signiifcant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural con-text. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent ex-amples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with speciifc model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology.

  5. The role of matrix metalloproteinases in recurrent tonsillitis.

    Science.gov (United States)

    Acioglu, Engin; Yigit, Ozgür; Alkan, Zeynep; Server, Ela Araz; Uzun, Hafize; Gelisgen, Ramisa

    2010-05-01

    The aim of this study was to investigate the status of matrix metalloproteinases (MMP-2, MMP-7, MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) due to dysregulated turnover of connective tissue matrices in children with recurrent tonsillitis (RT). Forty-four patients with RT were enrolled in the study. All patients with RT were graded according to the hypertrophy degree of the tonsillar tissue from grade I to grade IV. Patients with grade I tonsillar hypertrophy and grade II tonsillar hypertrophy were accepted as group A, patients with grade III tonsillar hypertrophy and grade IV tonsillar hypertrophy were accepted as group B Tonsillectomy was performed via the usual dissection-snare method. Tonsillar specimens of superficial and core region were evaluated for MMP-2, MMP-7, MMP-9 and TIMP-1 analysis. There was no statistical significance according to the MMP-2, MMP-7, MMP-9 and TIMP-1 activity of superficial part and core regions in both groups individually, MMP-9 level of both the superficial and core regions in group B had statistical significant higher results than group A (p=0.026, p=0.06 respectively). MMP-7 level of the superficial part in group B patients also had statistical significant higher results than group A (p=0.025). However, there was no statistical difference found between superficial and core region MMP-2 and TIMP-1 levels of group A and group B. Related to this, balance between MMP-7-9 and TIMP-1 activities tended to slip MMP-7 and MMP-9 sides with increased tonsillar grade. Results from this study suggest that the presence of MMPs in tonsil tissue consolidates the involvement of degraded extracellular matrix proteins in the pathophysiology of chronic tonsillitis. MMPs activity showed diffuse dissemination in the tonsillar tissue and especially MMP-9 and MMP-7 are the main promoters of the extracellular matrix that responded to inflammatory changes in the tonsillar tissue. Further studies are needed concerning the possible

  6. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma

    Science.gov (United States)

    2009-01-01

    Background Ameloblastoma is a frequent odontogenic benign tumor characterized by local invasiveness, high risk of recurrence and occasional metastasis and malignant transformation. Matrix metalloproteinase-2 (MMP-2) promotes tumor invasion and progression by destroying the extracellular matrix (ECM) and basement membrane. For this proteolytic activity, the endogenous inhibitor is reversion-inducing cysteine rich protein with Kazal motifs (RECK). The aim of this study was to characterize the relationship between RECK and MMP-2 expression and the clinical manifestation of ameloblastoma. Methods Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were employed to detect the protein and mRNA expression of RECK and MMP-2 in keratocystic odontogenic tumor (KCOT), ameloblastoma and ameloblastic carcinoma. Results RECK protein expression was significantly reduced in KCOT (87.5%), ameloblastoma (56.5%) and ameloblastic carcinoma (0%) (P ameloblastoma compared with primary ameloblastoma (P ameloblastoma. MMP-2 protein expression was significantly higher in ameloblastoma and ameloblastic carcinoma compared with KCOT (P ameloblastoma than in KCOT (P ameloblastoma than in primary ameloblastoma, and was negative in ameloblastic carcinoma. MMP-2 mRNA expression was significantly higher in ameloblastoma compared with KCOT (P ameloblastoma versus primary ameloblastoma. RECK protein expression was negatively associated with MMP-2 protein expression in ameloblastoma (r = -0.431, P ameloblastoma. RECK may participate in the invasion, recurrence and malignant transformation of ameloblastoma by regulating MMP-2 at the post-transcriptional level. PMID:19995435

  7. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma

    Directory of Open Access Journals (Sweden)

    Xie Hong-Liang

    2009-12-01

    Full Text Available Abstract Background Ameloblastoma is a frequent odontogenic benign tumor characterized by local invasiveness, high risk of recurrence and occasional metastasis and malignant transformation. Matrix metalloproteinase-2 (MMP-2 promotes tumor invasion and progression by destroying the extracellular matrix (ECM and basement membrane. For this proteolytic activity, the endogenous inhibitor is reversion-inducing cysteine rich protein with Kazal motifs (RECK. The aim of this study was to characterize the relationship between RECK and MMP-2 expression and the clinical manifestation of ameloblastoma. Methods Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR were employed to detect the protein and mRNA expression of RECK and MMP-2 in keratocystic odontogenic tumor (KCOT, ameloblastoma and ameloblastic carcinoma. Results RECK protein expression was significantly reduced in KCOT (87.5%, ameloblastoma (56.5% and ameloblastic carcinoma (0% (P Conclusion Low or no RECK expression and increased MMP-2 expression may be associated with negative clinical findings in ameloblastoma. RECK may participate in the invasion, recurrence and malignant transformation of ameloblastoma by regulating MMP-2 at the post-transcriptional level.

  8. Matrix metalloproteinases in the wound microenvironment: therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Krejner A

    2016-03-01

    Full Text Available Alicja Krejner,1 Malgorzata Litwiniuk,1–3 Tomasz Grzela11Laboratory of Cell Molecular Biology, Department of Histology and Embryology, Biostructure Research Center, Medical University of Warsaw, Warsaw, Poland; 2Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; 3Department of Otolaryngology, Medical University of Warsaw, Warsaw, PolandAbstract: Matrix metalloproteinases (MMPs are key effector molecules responsible for extracellular matrix (ECM turnover. They are involved in tissue remodeling and regeneration. Although the main targets for MMPs are ECM components, they are also able to digest a variety of non-ECM molecules including cytokines, their receptors, or carriers. Therefore, the activity of the MMPs remains under tight control. However, when controlling mechanisms are ineffective, MMPs may become highly dangerous molecules, which have a strong destructive effect on affected tissues. Apart from cancer metastasis, aneurysm formation, or airway remodeling in asthma, MMPs have also been identified as main detrimental factors in delayed healing of chronic wounds. In this short review, we describe main representatives of MMPs family, their role in pathophysiology of chronic wounds, as well as current and possible therapeutic strategies for modulation of MMPs’ activity, which may be useful in management of chronic wounds.Keywords: chronic wound, MMPs, MMP inhibitors, wound treatment

  9. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    Science.gov (United States)

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions.

  10. Immunohistochemical expression of matrix metalloproteinase 13 in chronic periodontitis.

    Science.gov (United States)

    Nagasupriya, Alapati; Rao, Donimukkala Bheemalingeswara; Ravikanth, Manyam; Kumar, Nalabolu Govind; Ramachandran, Cinnamanoor Rajmani; Saraswathi, Thillai Rajashekaran

    2014-01-01

    The extracellular matrix is a complex integrated system responsible for the physiologic properties of connective tissue. Collagen is the major extracellular component that is altered in pathologic conditions, mainly periodontitis. The destruction involves proteolytic enzymes, primarily matrix metalloproteinases (MMPs), which play a key role in mediating and regulating the connective tissue destruction in periodontitis. The study group included 40 patients with clinically diagnosed chronic periodontitis. The control group included 20 patients with clinically normal gingiva covering impacted third molars undergoing extraction or in areas where crown-lengthening procedures were performed. MMP-13 expression was demonstrated using immunohistochemistry in all the gingival biopsies, and the data were analyzed statistically. MMP-13 expression was observed more in chronic periodontitis when compared with normal gingiva. MMP-13 expression was expressed by fibroblasts, lymphocytes, macrophages, plasma cells, and basal cells of the sulcular epithelium. Comparative evaluation of all the clinical and histologic parameters with MMP-13 expression showed high statistical significance with Spearman correlation coefficient. Elevated levels of MMP-13 may play a role in the pathogenesis of chronic periodontitis. There is a direct correlation of increased expression of MMP-13 with various clinical and histologic parameters in disease severity.

  11. Microvesicles shed from fibroblasts act as metalloproteinase carriers in a 3-D collagen matrix.

    Science.gov (United States)

    Laghezza Masci, Valentina; Taddei, Anna Rita; Gambellini, Gabriella; Giorgi, Franco; Fausto, Anna Maria

    2016-01-01

    This study shows that fibroblasts migrating into a collagen matrix release numerous microvesicles into the surrounding medium. By spreading in regions of the matrix far distant from cells of origin, microvesicles carry metalloproteinase 9 (MMP-9) to act upon the collagen fibrils. As a result, the collagen matrix is gradually transformed from a laminar to a fibrillar type of architecture. As shown by western blots and gelatin zymography, MMP-9 is secreted as a 92 kDa precursor and activated upon release of 82 kDa product into the culture medium. Activation is more efficient under three-dimensional than in two-dimensional culturing conditions. While MMP-9 labeling is associated with intraluminal vesicles clustered inside the microvesicles, the microvesicle's integrin β1 marker is bound to the outer membrane. The intraluminal vesicles are recruited from the cortical cytoplasm and eventually released following uploading inside the microvesicle. Here, we propose that fusion of the intraluminal vesicles with the outer microvesicle's membrane could work as a mechanism controlling the extent to which MMP-9 is first activated and then released extracellularly.

  12. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    Science.gov (United States)

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  13. Membrane Type-1 Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases-2 RNA Levels Mimic Each Other during Xenopus laevis Metamorphosis

    OpenAIRE

    Walsh, Logan A.; Deanna A Carere; Cooper, Colin A.; Sashko Damjanovski

    2007-01-01

    Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, us...

  14. Matrix metalloproteinases in gastric inflammation and cancer : clinical relevance and prognostic impact

    NARCIS (Netherlands)

    Kubben, Francois Jozef Gerard Marie

    2007-01-01

    The studies in this thesis describe the clinical impact of several matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in H. pylori-induced gastritis and gastric cancer. In patients with H. pylori-induced gastritis, significantly increased mucosal MMP-9 levels were f

  15. Matrix metalloproteinases in gastric inflammation and cancer : clinical relevance and prognostic impact

    NARCIS (Netherlands)

    Kubben, Francois Jozef Gerard Marie

    2007-01-01

    The studies in this thesis describe the clinical impact of several matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in H. pylori-induced gastritis and gastric cancer. In patients with H. pylori-induced gastritis, significantly increased mucosal MMP-9 levels were

  16. Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-2 in human endometrial carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chen Mei; Bo Nai-xiu; Huang Ya-jun; Dai Qi; Gong Li-mei

    2010-01-01

    Objective: To investigate the expression of matrix metalloproteinase-7 (MMP-7) and its tissue inhibitor (TIMP-2) in endometrial carcinoma and analyze their significance in endometrial cancer′s invasion and metastasis. Methods: Endometrial tissues were collected from 64 patients with endometrial carcinoma, 20 patients with endometrial hyperplasia and 20 normal women. The expressions of MMP-7, TIMP-2 in endometrium were measured by immuohistochemistry. Results: Expressions of MMP-7, TIMP-2 in endometrium of patients with endometrial carcinoma were significantly higher than those in normal endometrium (P<0.05). MMP-7 expression increased with surgical-pathological staging, depth of myometrial invasion, histologic grades and lymph node metastasis (P<0.05), while TIMP-2 expression was related to lymph node metastasis (P<0.05). TIMP-2 expression in endometrial cancer was significantly higher than that in hyperplastic endometrium (P<0.05). Expressions of TIMP-2 and MMP-7 in endometrium of patients with endometrial carcinoma were positively correlated (r=0.654, P<0.001). Conclusion: Highly expressed MMP-7 and TIMP-2 in endometrium may be related to development, invasion and metastasis of endometrial cancers.

  17. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    Institute of Scientific and Technical Information of China (English)

    Sugreev; Verma; Kousik; Kesh; Nilanjan; Ganguly; Sayantan; Jana; Snehasikta; Swarnakar

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metallopro-teinase(TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK(reversion including cysteinerich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2,-9 and-14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species(ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  18. Pattern secretion of matrix Metalloproteinases and their biological tissue inhibitors by human glomerular mesangial cells in culture

    Directory of Open Access Journals (Sweden)

    "Hosseini R

    2001-08-01

    Full Text Available The glomerular mesangial cells (GMC play a central role in the synthesis and turnover of the glomerular mesangial matrix. The breakdown of the matrix likely depends on the balance between of a variety of proteinases including matrix metalloproteinases and their biological inhibitors secreted by the GMC, and any disturbance in the balance may result in appearance of various pathological states such as glomerulosclerosis. We therefore studied pattern secretion of matrix metalloproteinases (MMPs, MMP-1, MMP-2, MMP-3, MMP-9 and their biological tissue inhibitor of matrix metalloproteinases (TIMPs, TIMP-1 and TIMP-2 by cultured human GMC. We also measured MMP-1/TIMP-1 complex level in the cell culture supernatants. For this purpose, the GMC were incubated under serum-free conditions with medium (RPMI-1640 alone or in combination with TNF-α (30 ng/ml or phorbol myristate acetate (PMA (50 ng/ml for exactly 24, 48 and 72 hours. The above parameters were assayed by established ELISA techniques. Our results showed that the lowest and largest secretions were related to MMP-9 and MMP-2, respectively. The results indicated that the MMPs and TIMPs secretion were increased by TNF-α (MMP-1, MMP-2, TIMP-1 and TIMP-2 and PMA (MMP-2, TIMP-1 and TIMP-2, significantly (P<0.05. These results suggest that the GMC can synthesis and release various MMPs and their inhibitors (TIMPs that, in part, control turnover of extracellular matrix proteins.

  19. Dynamic alterations of connexin43, matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 during ventricular fibrillation in canine.

    Science.gov (United States)

    Wang, Jing; Li, Jing-sha; Liu, Hong-zhen; Yi, Shao-lei; Su, Guo-ying; Zhang, Yun; Zhong, Jing-quan

    2014-06-01

    The aim of this study is to investigate the dynamic alterations of cardiac connexin 43 (Cx43), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in the setting of different ventricular fibrillation (VF) duration. In this study, thirty-two dogs were randomly divided into sham control group, 8-min VF group, 12-min VF group, and 30-min VF group. Cx43 and phosphorylated Cx43 (p-Cx43) in tissues were detected by western blot and immunofluorescence analysis. MMP-2 and TIMP-2 were detected by western blot and immunohistochemistry analysis. The results showed that Cx43 levels in three VF groups were significantly decreased compared with sham control group. p-Cx43 levels in 12-min and 30-min VF groups were significantly reduced compared with sham control group. The ratio of p-Cx43/Cx43 was also decreased in VF groups. Compared with sham controls, no significant difference was observed between the sham control group and 8-min VF group in MMP-2 level, but MMP-2 level increased in 12-min and 30-min VF groups. The ratios of MMP-2/TIMP-2 were higher in VF groups, and were correlated with the duration of VF. A remarkable correlation was observed between the ratio of p-Cx43/Cx43 and MMP-2/TIMP-2 (r = -0.93, P MMP-2 and TIMP-2 may contribute to the initiation and/or persistence of VF. Maneuvers managed to modulate Cx43 level or normalize the balance of MMP-2/TIMP-2 are promising to ameliorate prognosis of VF.

  20. Variants of the Matrix Metalloproteinase-2 but not the Matrix Metalloproteinase-9 genes significantly influence functional outcome after stroke

    Directory of Open Access Journals (Sweden)

    Sobral João

    2010-03-01

    Full Text Available Abstract Background Multiple lines of evidence suggest that genetic factors contribute to stroke recovery. The matrix metalloproteinases -2 (MMP-2 and -9 (MMP-9 are modulators of extracellular matrix components, with important regulatory functions in the Central Nervous System (CNS. Shortly after stroke, MMP-2 and MMP-9 have mainly damaging effects for brain tissue. However, MMPs also have a beneficial activity in angiogenesis and neurovascular remodelling during the delayed neuroinflammatory response phase, thus possibly contributing to stroke functional recovery. Methods In the present study, the role of MMP-2 and MMP-9 genetic variants in stroke recovery was investigated in 546 stroke patients. Functional outcome was assessed three months after a stroke episode using the modified Rankin Scale (mRS, and patients were classified in two groups: good recovery (mRS ≤ 1 or poor recovery (mRS>1. Haplotype tagging single nucleotide polymorphisms (SNPs in the MMP-2 (N = 21 and MMP-9 (N = 4 genes were genotyped and tested for association with stroke outcome, adjusting for significant non-genetic clinical variables. Results Six SNPs in the MMP-2 gene were significantly associated with stroke outcome (0.0018P P MMP-9 gene. Conclusions The results presented strongly indicate that MMP-2 genetic variants are an important mediator of functional outcome after stroke.

  1. Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Ying-De Wang; Pei-Yun Yan

    2006-01-01

    AIM: To examine the expression of metalloproteinase-1(MMP-1) and tissue inhibitor of metalloproteinase-1(TIMP-1) in the colonic mucosa of patients with ulcerative colitis (UC).METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry were used to study the expression of MMP-1 and TTMP-1 at both mRNA and protein levels in patients with UC and controls. The relationship between MMP-1 mRNA, TIMP-1mRNA, MMP-1 mRNA/TIMP-1 mRNA ratio and the severity of clinical symptoms of the patients with UC were also analyzed.RESULTS: The expression of MMP-1 mRNA and TIMP-1mRNA in the ulcerated and inflamed colonic mucosa was significantly higher than that in the non-inflamed colonic mucosa (P < 0.001), but there was no statistically significant difference in the non-inflamed colcnic mucosa of UC patients and normal controls (P > 0.05). The mRNA expression of MMP-1 and TIMP-1 in ulcerated colonic mucosa of UC patients was increased by 80-fold and 2.2-fold,respectively when compared with the normal controls. In the inflamed colonic mucosa, the increase was 30-fold and 1.6-fold, respectively. Tmmunohistochemical analysis showed that among the ulcerated, inflamed, and non-inflamed colonic mucosae of UC patients and the normal controls, the positive rate of MMP-1 expression was 87%, 87%, 40% and 35% respectively, and the positive rate of TIMP-1 expression was 89%, 89%, 80%and 75%, respectively. Furthermore, the expression of MMP-1 mRNA, TIMP-1 mRNA and the MMP-1 mRNA/TIMP-1 mRNA ratio were correlated with the severity of clinical symptoms (P <0.05).CONCLUSION: Excessive expression of MMP-1 in the diseased colonic mucosa causes excessive hydrolysis of the extracellular matrix (ECM) and ulceration in UC patients. MMP-1 mRNA, TIMP-1 mRNA and MMP-1 mRNA/TIMP-1 mRNA ratio can be used as biomarkers to judge the severity of clinical symptoms in patients with UC.Exogenous TIMP-1 or MMP-1 inhibitor therapy is a novel treatment for patients with UC.

  2. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives.

    Science.gov (United States)

    Zhang, Shan-chuan; Kern, Matthias

    2009-12-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength. Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhesives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability.

  3. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants

    Science.gov (United States)

    Juica, Natalia E.; Rodas, Paula I.; Solar, Paula; Borda, Paula; Vargas, Renato; Muñoz, Cristobal; Paredes, Rodolfo; Christodoulides, Myron; Velasquez, Luis A.

    2017-01-01

    Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection. PMID:28932707

  4. Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants

    Directory of Open Access Journals (Sweden)

    Natalia E. Juica

    2017-09-01

    Full Text Available Background:Neisseria gonorrhoeae (Ngo is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs, which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs, their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues.Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05 was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection.Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection.

  5. Matrix metalloproteinases-2, -9 and tissue inhibitor of metallo-proteinase-1 in lung cancer invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    MING Shu-hong; SUN Tie-ying; XIAO Wei; XU Xiao-mao

    2005-01-01

    @@ Lung cancer is a major cause of death from malignant disease due to its high incidence, malignant behavior and lack of major advancements in treatment strategies. The ability to invade tissues and establish colonies at remote sites is a defining characteristic of malignant neoplasms. Matrix metalloproteinases (MMPs) are zinc proteinases that degrade compounds of extracellular matrix (ECM). These enzymes have been implicated in tumour invasion and metastasis through degrading many extracellular matrix proteins especially MMP-2 and MMP-9, which are regarded as markers of tumour invasion and metastasis.1 The purpose of this study is to examine the role of MMP-9, MMP-2, tissue inhibitor of metalloproteinase-1 (TIMP-1) and MMP-9/TIMP-1 in tumour invasion and metastasis as well as the relationships between the mRNA expression of MMP-9 in white blood cells and MMP-9 levels in the plasma.

  6. Multispectral Optoacoustic Tomography of Matrix Metalloproteinase Activity in Vulnerable Human Carotid Plaques

    NARCIS (Netherlands)

    Razansky, Daniel; Harlaar, Niels J.; Hillebrands, Jan Luuk; Taruttis, Adrian; Herzog, Eva; Zeebregts, Clark J.; van Dam, Gooitzen M.; Ntziachristos, Vasilis

    Elevated expression of cathepsins, integrins and matrix metalloproteinases (MMPs) is typically associated with atherosclerotic plaque instability. While fluorescent tagging of such molecules has been amply demonstrated, no imaging method was so far shown capable of resolving these

  7. Increased expression of matrix metalloproteinases in the murine zymosan-induced multiple organ dysfunction syndrome.

    NARCIS (Netherlands)

    Volman, T.J.H.; Goris, R.J.A.; Lomme, R.M.L.M.; Groot, J. de; Verhofstad, A.A.J.; Hendriks, T.

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated as mediators of tissue damage in several inflammatory diseases. Since the multiple organ dysfunction syndrome (MODS) is thought to result from systemic inflammation, overactivation of MMPs could contribute to the organ damage observed. The

  8. Titanium implants induce expression of matrix metalloproteinases in bone during osseointegration

    National Research Council Canada - National Science Library

    Shubayev, Veronica I; Brånemark, Rickard; Steinauer, Joanne; Myers, Robert R

    2004-01-01

    ...) bond at the titanium-bone interface. In this study, we used a rodent femur model of intramedullary osseointegration to analyze the changes in immunoreactivity of ECM-controlling matrix metalloproteinases (MMPs...

  9. Effect of small interfering RNAs on matrix metalloproteinase 1 expression

    Directory of Open Access Journals (Sweden)

    Gen-Hung Chen

    2014-12-01

    Full Text Available Three small double strand siRNAs (506-MMP1, 859-MMP1 and 891-MMP1, each contains 25–26 nucleotides, with high specific to human MMP1 were designed according to mRNA sequence of human MMP1 (NCBI, NM_002421. To monitor the MMP1 gene expression, the total RNAs of human skin fibroblast (Detroit 551, BCRC 60118 were extracted. One human matrix metalloproteinase 1 (MMP1 partial sequence cDNA, included all the three siRNA target sequences, amplified specifically via RT-PCR and PCR reactions, and three synthesized siRNA target DNAs were cloned individually into pAcGFP1-N3 with green fluorescent protein (GFP. These reporter plasmids were then transfected individually into malignant melanoma (MeWo, BCRC 60540 and the GFP was detected after 48 h. Fluorescence results indicated that the 859 siRNA revealed highest inhibitory ability (almost 90%, and was, accordingly, transfected into MeWo cells. According to the real-time quantitative PCR and western blot, the exhibition ability to silence MMP1 gene expression was 85–89%.

  10. Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome.

    Science.gov (United States)

    Siller, Saul S; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.

  11. Matrix Metalloproteinases and Minocycline: Therapeutic Avenues for Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Saul S. Siller

    2012-01-01

    Full Text Available Fragile X syndrome (FXS is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs, a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.

  12. Increased Matrix Metalloproteinase-9 Activity in Mild Cognitive Impairment

    Science.gov (United States)

    Bruno, Martin A.; Mufson, Elliott J.; Wuu, Joanne; Cuello, A. Claudio

    2010-01-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissue from aged subjects with a clinical diagnosis of AD, mild cognitive impairment (MCI) or no cognitive impairment (NCI). The analysis demonstrated greater MMP-9 activity in both AD and MCI compared to NCI brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in MCI and AD. PMID:19915485

  13. Matrix metalloproteinase gene polymorphisms in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Vanessa L.N. Dalepiane

    2007-01-01

    Full Text Available Matrix metalloproteinases (MMPs play an important role in the pathogenesis of atherosclerosis, the pathology underlying the majority of coronary artery disease (CAD. In this study we tested the hypothesis that polymorphic variation in the MMP genes influences the risk of developing atherosclerosis. We analyzed functional polymorphisms in the promoter of the MMP-1, MMP-3, MMP-9 and MMP-12 genes in 183 Brazilian Caucasian individuals submitted to coronary angiography, of which 67 (37% had normal coronary arteries (control group and 116 (63% had CAD (CAD patient group. The -1607 1G/2G MMP-1, -1171 5A/6A MMP-3, -1562 C/T MMP-9, -82 A/G MMP-12 polymorphisms were analyzed by PCR followed by restriction digestion. No significant differences were observed in allele frequencies between the CAD patients and controls. Haplotype analysis showed no differences between the CAD patients and controls. There was a significant difference in the severity of CAD, as assessed by the number of diseased vessels, in MMP-1 1G/1G homozygous individuals and in those homozygous for the 6A allele of the MMP-3 polymorphism. However, multivariate analysis showed that diabetes mellitus was the only variable independently associated with CAD severity. Our findings indicated that MMP polymorphisms have no significant impact on the risk and severity of CAD.

  14. Increased matrix metalloproteinase 9 activity in mild cognitive impairment.

    Science.gov (United States)

    Bruno, Martin A; Mufson, Elliott J; Wuu, Joanne; Cuello, A Claudio

    2009-12-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissues from aged subjects with a clinical diagnosis of AD, mild cognitive impairment, or no cognitive impairment. The analysis demonstrated greater MMP-9 activity in both AD and mild cognitive impairment compared with no cognitive impairment brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in mild cognitive impairment and AD.

  15. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  16. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  17. Putative targeting of matrix metalloproteinase-8 in atherosclerosis.

    Science.gov (United States)

    Ye, Shu

    2015-03-01

    There is compelling evidence indicating that some members of the matrix metalloproteinase (MMP) family play important roles in the pathogenesis of atherosclerosis and related vascular and cardiac conditions such as atherosclerotic plaque rupture leading to myocardial infarction, heart failure after myocardial infarction, neointima formation following angioplasty, and abdominal aortic aneurysm. Studies have shown that administration of MMP inhibitors can deter some of these conditions in experimental animal models, but few pertinent human clinical trials have been reported to date. Clinical studies of broad-spectrum MMP inhibitors in cancers and arthritis, however, have reported considerable side effects that are likely to be related to the lack of selectivity of these inhibitors. Since different members of the MMP family can have divergent and even opposing functions, it is believed that selective MMP inhibitors that specifically target particular MMPs that are key in the disease pathogenesis will likely have greater efficacy and less adverse effects. In recent years there has been accumulating evidence indicating an important role of MMP8 in atherosclerosis and the associated conditions mentioned above. This article will review findings from studies examining MMP8 in relation to these conditions and discuss rationale of targeting MMP8 as a potential therapeutic strategy.

  18. Relationship between matrix metalloproteinase-9 polymorphism and acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    Linlin Wang; Tiebing Zhu; Yong Li

    2007-01-01

    Objective: To investigate the relationship of matrix metalloproteinase-9 polymorphism to acute coronary syndrome and its affect on the severity of coronary artery disease. Methods: By means of polymerase chain reaction (PCR) and restriction fragment length polymorphism, genotypes of 245 patients with acute coronary syndrome(ACS) and 205 healthy subjects were tested. Genotypes displaying C-1562T functional promoter polymorphism (of the MMP-9 gene) were determined. The relationship between the polymorphism of the MMP-9 gene and ACS and the severity of coronary vessels diseased was analyzed. Results: The frequency of C/T plus T/T genotypes and T allele in patients with ACS was significantly higher than that in healthy subjects (22.1% vs 12.7% and 11.4% vs 6.6% respectively). But they were not associated with the number of coronary arteries diseased. Conclusion:The MMP-9 polymorphism may be susceptible to ACS. But there was not significant difference between the AMI and UAP subgroups.

  19. Biophysical studies of matrix metalloproteinase/triple-helix complexes.

    Science.gov (United States)

    Fields, Gregg B

    2014-01-01

    Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. The structures of MMPs, in solution and solid state and in the presence and absence of triple-helical collagen models, have been assessed by NMR spectroscopy, small-angle X-ray scattering, and X-ray crystallography. Structures observed in solution exhibit flexibility between the MMP catalytic (CAT) and hemopexin-like (HPX) domains, while solid-state structures are relatively compact. Evaluation of the maximum occurrence (MO) of MMP-1 conformations in solution found that, for all the high MO conformations, the CAT and HPX domains are not in tight contact, and the residues of the HPX domain reported to be responsible for the binding to the collagen triple-helix are solvent exposed. A mechanism for collagenolysis has been developed based on analysis of MMP solution structures. Information obtained from solid-state structures has proven valuable for analyzing specific contacts between MMPs and the collagen triple-helix.

  20. Production of matrix metalloproteinases in response to mycobacterial infection.

    Science.gov (United States)

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  1. Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    García-Alvarez, Jorge; Ramirez, Remedios; Sampieri, Clara L; Nuttall, Robert K; Edwards, Dylan R; Selman, Moises; Pardo, Annie

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. Some secreted matrix metalloproteinases (MMPs) as MMP2 are highly upregulated in IPF lungs. Membrane-type (MT)-MMPs participate in the activation of pro-MMP2. However, they have not been examined in IPF. Type I transmembrane MT-MMPs, MT1, MT2, MT3, and MT5-MMP were analyzed by real-time PCR and immunohistochemistry in IPF and normal lungs. MMP-2 was also immunolocalized and evaluated by gelatin zymography in BAL fluids. Additionally, the MT-MMPs were examined by real time PCR in lung fibroblasts stimulated with TGF-beta1 and IFN-gamma. MT1-MMP, was the most highly expressed followed by MT2- and MT5-MMP, and by a moderate expression of MT3-MMP. Regarding their localization, MT1- and MT2-MMPs were found in alveolar epithelial cells, MT3-MMP in fibroblasts from fibroblastic foci and alveolar epithelial cells and MT5-MMP in basal bronchiolar epithelial cells and in areas of squamous metaplasia. MMP2 was localized in alveolar and basal bronchiolar epithelial cells and fibroblasts, and increased active enzyme was observed in BAL fluids. In lung fibroblasts, TGF-beta1 induced a strong upregulation of MT3-MMP, both at the gene and protein level. This effect was blocked by genistein, a protein tyrosin kinase inhibitor and partially repressed by SB203580 a p38 MAP kinase inhibitor. IFN-gamma had no effect. MT-MMPs are expressed in IPF, in the same cell types as MMP2. Mostly by different types of epithelial cells a pivotal component in the aberrant remodeling of the lung microenvironment. Interestingly MT3-MMP that was found in fibroblastic foci was upregulated in vitro by TGF-beta1 a potent profibrotic mediator.

  2. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling.

    Science.gov (United States)

    Ashworth, J L; Murphy, G; Rock, M J; Sherratt, M J; Shapiro, S D; Shuttleworth, C A; Kielty, C M

    1999-05-15

    Fibrillin is the principal structural component of the 10-12 nm diameter elastic microfibrils of the extracellular matrix. We have previously shown that both fibrillin molecules and assembled microfibrils are susceptible to degradation by serine proteases. In this study, we have investigated the potential catabolic effects of six matrix metalloproteinases (MMP-2, MMP-3, MMP-9, MMP-12, MMP-13 and MMP-14) on fibrillin molecules and on intact fibrillin-rich microfibrils isolated from ciliary zonules. Using newly synthesized recombinant fibrillin molecules, major cleavage sites within fibrillin-1 were identified. In particular, the six different MMPs generated a major degradation product of approximately 45 kDa from the N-terminal region of the molecule, whereas treatment of truncated, unprocessed and furin-processed C-termini also generated large degradation products. Introduction of a single ectopia lentis-causing amino acid substitution (E2447K; one-letter symbols for amino acids) in a calcium-binding epidermal growth factor-like domain, predicted to disrupt calcium binding, markedly altered the pattern of C-terminal fibrillin-1 degradation. However, the fragmentation pattern of a mutant fibrillin-1 with a comparable E-->K substitution in an upstream calcium-binding epidermal growth factor-like domain was indistinguishable from wild-type molecules. Ultrastructural examination highlighted that fibrillin-rich microfibrils isolated from ciliary zonules were grossly disrupted by MMPs. This is the first demonstration that fibrillin molecules and fibrillin-rich microfibrils are degraded by MMPs and that certain amino acid substitutions change the fragmentation patterns. These studies have important implications for physiological and pathological fibrillin catabolism and for loss of connective tissue elasticity in ageing and disease.

  3. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  4. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    Directory of Open Access Journals (Sweden)

    Kim YS

    2013-11-01

    Full Text Available Yeon Seong Kim,1,* Young-Il Jeong,2,* Shu-Guang Jin,2 Jian Pei,2 Min Wen,2 In-Young Kim,1 Kyung-Sub Moon,1 Tae-Young Jung,1 Hyang-Hwa Ryu2, Shin Jung1–3 1Department of Neurosurgery, 2Brain Tumor Research Laboratory, 3Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Jeollanam-do, Korea *These authors contributed equally to this work Background: In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2 and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods: The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results: Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v. Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion: Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. Keywords: 293T cells, tissue inhibitor of metalloproteinase-2, alginate microcapsule, therapeutic protein

  5. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Institute of Scientific and Technical Information of China (English)

    Jun-peng Liu; Yin-zhou Wang; Yong-kun Li; Qiong Cheng; Zheng Zheng

    2015-01-01

    Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study in-vestigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that resteno-sis occurred in 30% (3/10) of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically signiifcant (P > 0.05). Experimental ifndings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervi-cal and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  6. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Directory of Open Access Journals (Sweden)

    Jun-peng Liu

    2015-01-01

    Full Text Available Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10 of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05. Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  7. Prostaglandin induces the expression of matrix metalloproteinase-1 In ciliary melanocytes

    Institute of Scientific and Technical Information of China (English)

    WANG Ning-li; LU Qing-jun; LI Jun-hong; WANG Ling

    2008-01-01

    Background Latanoprost,a prostaglandin F2a analog,has been shown to be an effective intraocular pressure lowering agent which acts by inducing ciliary muscle cells to synthesise matrix metalloproteinases.However,the response of ciliary melanocytes to latanoprost has never been reported.This research has investigated the ability of latanoprost to induce matrix metalloproteinase-1 expression in human ciliary melanocytes,and thereby advance the understanding of the mechanism of PGF2a in decreasing Intraocular pressure.Methods In vitro human ciliary melanocytes were treated for 48 hours with five different concentrations of latanoprost (100,150,200,500,and 1000 nmol/L).Ciliary melanocytes treated with 0.01% ethanel(vehicle)were used as a control.The expression of matrix metalloproteinase-1 in ciliary melanocytes was determined by Western blotting and immunofluorescent staining.Results Western blotting showed that the expression of matrix metalloproteinase-1 in ciliary melanocytes was induced by latanoprost,and the level of expression was dependent on the concentration of latanoprost in the culture medium.Immunofluorescent staining showed that matrix metalloproteinase-1 was confined to the ciliary melanocyte cytoplasm.Conclusions Latanoprost induced the expression of matrix metalloproteinase-1 in human ciliary melanocytes in a dose-dependent manner.Ciliary melanocytes,as well as ciliary muscle cells,may also play an important role in uveoscleral outflow modulation.

  8. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  9. Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells.

    Science.gov (United States)

    Kato, Yasuhito; Yamashita, Tsuyoshi; Ishikawa, Mutsuo

    2002-01-01

    Constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumors. MMPs are a family of zinc endopeptidases consisting of at least 20 different members. In particular, MMP-2 and MMP-9 are reported to be closely associated with invasion and metastasis in several cancers. We investigated whether expression of MMP-2 and MMP-9 is associated with invasion ability of seven cervical cancer cells by administration of o-phenanthroline as MMP inhibitor. In two cell lines, Siha and Caski, MMP-2 mRNA and protein were expressed at high levels. After treatment with o-phenanthroline, the rate of invasion in these two cell lines was significantly decreased. In contrast, in the other two cell lines, HT-3 and Caski, high levels of MMP-9 mRNA and protein were expressed but there was no decrease in the rate of invasion in these cells after treatment with o-phenanthroline. The data suggest that expression level of MMP-2 mRNA may regulate with invasion ability of cervical cancer.

  10. Matrix metalloproteinase 20-dentin sialophosphoprotein interaction in oral cancer.

    Science.gov (United States)

    Saxena, G; Koli, K; de la Garza, J; Ogbureke, K U E

    2015-04-01

    Matrix metalloproteinase 20 (MMP-20), widely regarded as tooth specific, participates with MMP-2 in processing dentin sialophosphoprotein (DSPP) into dentin sialoprotein, dentin phosphoprotein, and dentin glycoprotein. In biochemical system, MMP-2, MMP-3, and MMP-9 bind with high affinity to, and are activated by, specific small integrin-binding ligand N-linked glycoproteins (SIBLINGs): bone sialoprotein, osteopontin, and dentin matrix protein 1, respectively. Subsequent reports documented possible biological relevance of SIBLING-MMP interaction in vivo by showing that SIBLINGs are always coexpressed with their MMP partners. However, the cognate MMPs for 2 other SIBLINGs-DSPP and matrix extracellular phosphogylcoprotein-are yet to be identified. Our goal was to investigate MMP-20 expression and to explore preliminary evidence of its interaction with DSPP in oral squamous cell carcinomas (OSCCs). Immunohistochemistry analysis of sections from 21 cases of archived human OSCC tissues showed immunoreactivity for MMP-20 in 18 (86%) and coexpression with DSPP in all 15 cases (71%) positive for DSPP. Similarly, 28 (93%) of 30 cases of oral epithelial dysplasia were positive for MMP-20. Western blot and quantitative real-time polymerase chain reaction analysis on OSCC cell lines showed upregulation of MMP-20 protein and mRNA, respectively, while immunofluorescence showed coexpression of MMP-20 and DSPP. Colocalization and potential interaction of MMP-20 with dentin sialoprotein was confirmed by coimmunoprecipitation and mass spectrometry analysis of immunoprecipitation product from OSCC cell lysate, and in situ proximity ligation assays. Significantly, results of chromatin immunoprecipation revealed a 9-fold enrichment of DSPP at MMP-20 promoter-proximal elements. Our data provide evidence that MMP-20 has a wider tissue distribution than previously acknowledged. MMP-20-DSPP specific interaction, excluding other MMP-20-SIBLING pairings, identifies MMP-20 as DSPP cognate MMP

  11. Expression of matrix metalloproteinase-8 gene in fixed orthodontic patients

    Directory of Open Access Journals (Sweden)

    Susilowati Susilowati

    2011-03-01

    Full Text Available Background: Orthodontic treatment with fixed appliance produces structural and biochemical changes and breaking the balance between the synthesis and the breakdown of the collagen in the periodontium. Matrix metalloproteinase-8 (MMP-8 plays an important role in the remodeling of periodontal ligament during orthodontic movement. Purpose: The purpose of this study was to observe the expression of MMP-8 gene in the gingival crevicular fluid (GCF of fixed orthodontic patients. It is expexted that the result can be used as a reference to decide the proper time for elastomeric chain to be reactivated. Methods: Orthodontic fixed appliances were placed on 8 patients and elastomeric chains exerting 75 grams were attached to produce canine distalization. GCF samples were collected from the distal side of upper canines before force application, 1-, 2-, 3-, and 4 weeks after application consecutively. The samples were analyzed by using RT-PCR. Statistical analyses used were univariate analysis and Mann-WhitneyU test. Results: The expression of MMP-8 in the GCF at t0 was 31.3% but the force application elevated its expression to 65.6% at t1, and then decreased continously at t2, t3, and t4. There was no statistically significant difference of MMP-8 gene expression between t0 and t3. Conclusion: The highest level of MMP-8 gene expression due to orthodontic forces was occured in the first week, but it declined continously in the following weeks. The proper time to reactivate an elastomeric chain was 3 weeks after application.Latar belakang: Perawatan ortodontik dengan peranti cekat menghasilkan perubahan-perubahan stuktural dan biokimiawi pada jaringan periodontal dan mengganggu keseimbangan antara sintesis dan pemecahan kolagen pada periodonsium. Matrix metalloproteinase-8MMP-8 memainkan peran yang penting dalam remodeling ligamentum periodontal selama pergerakan gigi ortodontik. Tujuan: Tujuan dari penelitian ini ialah untuk mengamati ekspresi gen MMP-8

  12. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    Science.gov (United States)

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  13. Matrix metalloproteinase inhibitory properties of benzalkonium chloride stabilizes adhesive interfaces.

    Science.gov (United States)

    Sabatini, Camila; Patel, Shaival K

    2013-12-01

    This study evaluated the effects of different concentrations of benzalkonium chloride (BAC) on the preservation of adhesive interfaces created with two etch-and-rinse adhesives and its inhibitory properties on dentin matrix metalloproteinase (MMP) activity. The following groups were tested with the adhesive systems Optibond Solo Plus and All-Bond 3: Group 1, adhesive without inhibitor (control); Group 2, topical 2.0% chlorhexidine (2.0% CHX); Group 3, phosphoric acid with 1.0%wt BAC (BAC-PA); Group 4, 0.25% BAC-adhesive (0.25% BAC); Group 5, 0.5% BAC-adhesive (0.5% BAC); Group 6, 1.0% BAC-adhesive (1.0% BAC); and Group 7, 2.0% BAC-adhesive (2.0% BAC). Composite cylinders were fabricated, and shear bond strength (SBS) was evaluated after 24 h, 6 months, and 18 months of storage. Extracts from concentrated demineralized human dentin powder were subjected to SDS-PAGE and incubated in the presence of 0.25, 0.5, 1.0, and 2.0% BAC. Overall, stable bonds were maintained for 18 months. Improved bond strengths were seen for 0.5% BAC and 1.0% BAC when bonding with Optibond Solo Plus, and for 0.25% BAC and 0.5% BAC when bonding with All-Bond 3. Zymographic analysis revealed complete inhibition of gelatinolytic activity with BAC. Benzalkonium chloride, at all concentrations, inhibited dentin proteolytic activity, which seems to have contributed to the improved bond stability after 18 months for specific combinations of BAC concentration and adhesive.

  14. Role of Matrix Metalloproteinase-2, Matrix Metalloproteinase-9, and Vascular Endothelial Growth Factor in the Development of Chronic Subdural Hematoma.

    Science.gov (United States)

    Hua, Cong; Zhao, Gang; Feng, Yan; Yuan, Hongyan; Song, Hongmei; Bie, Li

    2016-01-01

    Chronic subdural hematoma (CSDH) is an inflammatory and angiogenic disease. Vascular endothelial growth factor (VEGF) has an important effect on the pathological progression of CSDH. The matrix metalloproteinases (MMPs) and VEGF also play a significant role in pathological angiogenesis. Our research was to investigate the level of MMPs and VEGF in serum and hematoma fluid. Magnetic Resonance Imaging (MRI) shows the characteristics of different stages of CSDH. We also analyzed the relationship between the level of VEGF in subdural hematoma fluid and the appearances of the patients' MRI. We performed a study comparing serum and hematoma fluid in 37 consecutive patients with primary CSDHs using enzyme-linked immunosorbent assay (ELISA). MMP-2 and MMP-9 activity was assayed by the gelatin zymography method. The patients were divided into five groups according to the appearance of the hematomas on MRI: group 1 (T1-weighted low, T2-weighted low, n=4), group 2 (T1-weighted high, T2-weighted low, n=11), group 3 (T1-weighted mixed, T2-weighted mixed, n=9), group 4 (T1-weighted high, T2-weighted high, n=5), and group 5 (T1-weighted low, T2-weighted high, n=8). Neurological status was assessed by Markwalder score on admission and at follow-up. The mean age, sex, and Markwalder score were not significantly different among groups. The mean concentration of VEGF, MMP-2, and MMP-9 were significantly higher in hematoma fluid than in serum (pMMP-2 was higher in hematoma fluid (pMMP-2 and MMP-9 are significantly elevated in hematoma fluid, suggesting that the MMPs/VEGF system may be involved in the angiogenesis of CSDH. We also demonstrate a significant correlation between the concentrations of VEGF and MRI appearance. This finding supports the hypothesis that high VEGF concentration in the hematoma fluid is of major pathophysiological importance in the generation and steady increase of the hematoma volume, as well as the determination of MRI appearance.

  15. The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives

    OpenAIRE

    Zhang, Shan-chuan; Kern, Matthias

    2009-01-01

    Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which migh...

  16. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  17. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Institute of Scientific and Technical Information of China (English)

    Yun-Liang Cui; Sheng Zhang; Zhao-Tao Tian; Zhao-Fen Lin; De-Chang Chen

    2016-01-01

    Background:Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis.Dysfunction of the latter is an underlying cause of various organ pathologies.In a previous study,we showed that rhubarb,a traditional Chinese medicine,protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia.In this study,we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability.Methods:Rhubarb monomers were extracted and purified by a series of chromatography approaches.The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR),carbon-13 NMR,and distortionless enhancement by polarization transfer magnetic resonance spectroscopy.We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert.We measured the HUVEC permeability,proliferation,and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay,3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay,and enzyme-linked immunosorbent assay,respectively,in response to treatment with MMP9 and/or rhubarb monomers.Results:A total of 21 rhubarb monomers were extracted and identified.MMP9 significantly increased the permeability of the HUVEC monolayer,which was significantly reduced by five individual rhubarb monomer (emodin,3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid,1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose,daucosterol linoleate,and rhein) or a combination of all five monomers (1 μmol/L for each monomer).Mechanistically,the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation.In addition,MMP9 stimulated the secretion of VE-cadherin into the culture medium,which was significantly inhibited by the five-monomer mixture.Conclusions:The rhubarb mixture of emodin,3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid,1-O-caffeoyl-2-(4-hydroxyl

  18. A novel urokinase receptor-targeted inhibitor for plasmin and matrix metalloproteinases suppresses vein graft disease

    NARCIS (Netherlands)

    Eefting, D.; Seghers, L.; Grimbergen, J.M.; Vries, M.R. de; Boer, H.C. de; Lardenoye, J.W.H.P.; Jukema, J.W.; Bockel, J.H. van; Quax, P.H.A.

    2010-01-01

    Aims Matrix metalloproteinases (MMP) and plasminogen activator (PA)/plasmin-mediated proteolysis, especially at the cell surface, play important roles in matrix degeneration and smooth muscle cell migration, which largely contributes to vein graft failure. In this study, a novel hybrid protein was d

  19. Matrix metalloproteinases as profibrotic factors in terminal ileum in Crohn's disease

    NARCIS (Netherlands)

    Warnaar, Nienke; Hofker, H. Sijbrand; Maathuis, Mark H. J.; Niesing, Jan; Bruggink, Annette H.; Dijkstra, Gerard; Ploeg, Rutger J.; Schuurs, Theo A.

    2006-01-01

    Background: Returning stenosis in Crohn's disease (CD) patients is poorly understood. After resection, newly developed strictures are seen within 10 years in 50% to 70%. Matrix metalloproteinases (MMPs) are involved in matrix-turnover processes. This study analyzes spatial expression of MMP-1, MMP-3

  20. The matrix metalloproteinase inhibitor BB-94 improves the strength of intestinal anastomoses in the rat.

    NARCIS (Netherlands)

    Hingh, I.H.J.T. de; Siemonsma, M.A.; Man, B.M. de; Lomme, R.M.L.M.; Hendriks, T.

    2002-01-01

    BACKGROUND AND AIMS: The strength of intestinal anastomoses is relatively low in the first days after operation, possibly as a result of localized degradation of the supporting matrix by enzymes from the matrix metalloproteinase (MMP) family. This study examined whether BB-94, a broad spectrum

  1. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy.

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Cappello, Joseph; Ghandehari, Hamidreza

    2015-09-10

    Silk-elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure-function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.

  2. Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Kantor, A M; Dong, S; Held, N L; Ishimwe, E; Passarelli, A L; Clem, R J; Franz, A W E

    2017-02-01

    Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1-9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut. © 2016 The Royal Entomological Society.

  3. Expressions of matrix metalloproteinases and tissue inhibitor of metalloproteinases after bare and magnetic stent implantation in rabbits

    Institute of Scientific and Technical Information of China (English)

    Xinhong Guo; Guoliang Jia; Anlin Lu; Xinguo Zhao; Fei Li; Rongqing Zhang

    2008-01-01

    Objective We aimed to investigate whether magnetic stent has preventive effect on in-stent restenosis by observing expressions of matrix metalioproteinase (MMP)2,MMP9,tissue inhibitor of matrix metalloproteinase (TIMP)1 and TIMP2 after balloon angioplasty,bare and magnetic stent implantation in rabbits.Methods Rabbits underwent balloon angioplasty,bare and magnetic stent implantation in the left iliac arteries.The changes of MMPs and TIMPs were examined at various time points in the injured arteries using the methods of zymography,Western blot analysis,reverse transcription-polymerase chain reaction (RT-PCR) and morphometric analysis.Results Balloon angioplasty group (BA) and magnetic stent group (MS) showed lower intrinsic gelatinolytic activity and higher expression of TIMPs with less intimae hyperplasia;Whereas bare stent (BS) group exhibited higher intrinsic gelatinolytic activity and lower expression of TIMPs with significant intimae hyperplasia.Conclusion Magnetic stent probably has preventive effect on in-stent restenosis by changing intrinsic matrix metalloproteinases activity and expression of TIMPs.

  4. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    DEFF Research Database (Denmark)

    Ramachandran, Rahimsan K.; Sørensen, Mia D.; Aaberg-Jessen, Charlotte

    2017-01-01

    of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed.......033). We found a positive correlation between MMP-2 and tissue inhibitor of metalloproteinases-1 (TIMP-1), and combined MMP-2 and TIMP-1 had stronger prognostic value than MMP-2 alone also when adjusting for age and gender (HR 2.78; 95% CI 1.30-5.92; p = 0.008). These findings were validated...

  5. Matrix metalloproteinases as candidate biomarkers in adults with congenital heart disease.

    Science.gov (United States)

    Baggen, Vivan J M; Eindhoven, Jannet A; van den Bosch, Annemien E; Witsenburg, Maarten; Cuypers, Judith A A E; Langstraat, Jannette S; Boersma, Eric; Roos-Hesselink, Jolien W

    2016-07-01

    Context Matrix metalloproteinases (MMPs) are associated with diastolic dysfunction and heart failure in acquired heart disease. Objective To investigate the role of MMPs as novel biomarkers in clinically stable adults with congenital heart disease. Methods We measured serum MMP-2, -3, -9 and tissue inhibitor of matrix metalloproteinase-1 in 425 patients and analysed the association with cardiac function and exercise capacity. Results MMP-2 was significantly associated with exercise capacity, ventilatory efficiency and left ventricular deceleration time, independently of age, sex, body surface area and NT-proBNP. Conclusion MMP-2 may provide new information in the clinical evaluation of adults with congenital heart disease.

  6. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, S A; Engelen, Lian; Buijs, J

    2017-01-01

    BACKGROUND: Altered regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1, and ca...

  7. Nonselective matrix metalloproteinase but not tumor necrosis factor-a inhibition effectively preserves the early critical colon anastomotic integrity

    DEFF Research Database (Denmark)

    Ågren, Magnus S.; Andersen, Thomas L.; Andersen, Line;

    2011-01-01

    Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-a (TNF-a) induces MMPs and may influence anastomosis repair.......Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-a (TNF-a) induces MMPs and may influence anastomosis repair....

  8. Plasma matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 as biomarkers of ulcerative colitis activity

    Institute of Scientific and Technical Information of China (English)

    Alicja Wiercinska-Drapalo; Jerzy Jaroszewicz; Robert Flisiak; Danuta Prokopowicz

    2003-01-01

    AIM: Overexpression of mucosal metalloproteinases (MMP)has been demonstrated recently in inflammatory boweldisease. Their activity can be counterbalanced by the tissueinhibitor of metalloproteinases (TIMP). The aim of this studywas to evaluate the effect of ulcerative colitis (UC) on MMP-1 and TTMP-1 plasma concentrations, as two possiblebiomarkers of the disease activity.METHODS: MMP-1 and TIMP-1 plasma concentrations weremeasured with an enzyme immunoassay in 16 patients withendoscopically confirmed active UC.RESULTS: Plasma concentrations of both MMP-11 (13.7±0.2ng/ml) and TIMP-L (799±140 ng/ml) were significantlyelevated in UC patients in comparison to healthy controls(11.9±0.9 ng/ml and 220±7 ng/ml respectively). There wasno correlation between TIMP-1 and MMP-1 concentrations(r=-0.02). TIMP-1 levels revealed significant positivecorrelations with scored endoscopic degree of mucosai injury,disease activity index and clinical activity index values aswell as C-reactive protein concentration. There was nocorrelation between MMP-1 and laboratory, clinical orendoscopic indices of the disease activity.CONCLUSION: These results confirm the role of both MMP-1 and TIMP-1 in the pathogenesis of ulcerative colitis.However only TIMP-1 can be useful as a biomarker of thedisease activity, demonstrating association with clinical andendoscopic pictures.

  9. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

    Science.gov (United States)

    Purcell, Brendan P.; Lobb, David; Charati, Manoj B.; Dorsey, Shauna M.; Wade, Ryan J.; Zellars, Kia N.; Doviak, Heather; Pettaway, Sara; Logdon, Christina B.; Shuman, James A.; Freels, Parker D.; Gorman, Joseph H., III; Gorman, Robert C.; Spinale, Francis G.; Burdick, Jason A.

    2014-06-01

    Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel.

  10. Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity.

    Science.gov (United States)

    Thornton, Peter; Pinteaux, Emmanuel; Allan, Stuart M; Rothwell, Nancy J

    2008-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases known to mediate acute neuronal injury, but it is unclear whether these proteases are induced by the primary insult or by inflammation associated with injury. We have reported recently that interleukin-1 (IL-1) induces neurotoxicity by an astrocyte-dependent mechanism. The aim of the present study was to test the hypothesis that MMPs mediate IL-1 neurotoxicity in rat, glial-neuronal cocultures. IL-1beta induced the release of astrocytic MMP-9 in cocultures, whilst an antagonist of MMP-9 inhibited IL-1beta-induced neuronal death. Urokinase plasminogen activator (uPA) was constitutively expressed on neuronal membrane fractions, and amiloride (an antagonist of uPA) or plasminogen activator inhibitor (PAI)-1 significantly reduced IL-1beta-induced neurotoxicity. Thus, neuronal uPA contributes to IL-1 neurotoxicity, and may be responsible for activating MMP-9 released from IL-1-primed astrocytes. In summary, IL-1-induced neurotoxicity is dependent on extracellular protease activity, and these mechanisms may contribute to neuronal cell death in CNS diseases.

  11. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes.

    Science.gov (United States)

    Decean, H; Perde-Schrepler, M; Tatomir, C; Fischer-Fodor, E; Brie, I; Virag, P

    2013-10-01

    The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm(2)) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines' secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

  12. Immunohistochemical Correlation of Matrix Metalloproteinase-2 and Tissue Inhibitors of Metalloproteinase-2 in Tobacco Associated Epithelial Dysplasia

    Directory of Open Access Journals (Sweden)

    Dipshikha Bajracharya

    2014-01-01

    Full Text Available Aim. To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs progressing to oral cancer are related to the severity of epithelial dysplasia. Methods. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Results. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P<0.001. Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P<0.001, and a Spearman’s correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Conclusion. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  13. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    Science.gov (United States)

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  14. of Matrix Metalloproteinase-9 and Neutrophil Gelatinase-Associated Lipocalin

    Directory of Open Access Journals (Sweden)

    De Caridi Giovanni

    2015-01-01

    Full Text Available The association of an axillary artery aneurysm and an abdominal aortic aneurysm is extremely rare. In this study, we describe this association in a 69 year-old-man. We measured this patient’s metalloproteinases (MMPs and Neutrophil Gelatinase - Associated Lipocalin (NGAL levels over a three years period before the abdominal aortic aneurysm rupture. We speculate that high serium levels of MMPs and NGAL may have a prognostic role and may predict aneurysm rupture in patients with an uncommon association of arterial aneurysms.

  15. Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1β induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes.

    Science.gov (United States)

    Dunn, S L; Wilkinson, J M; Crawford, A; Le Maitre, C L; Bunning, R A D

    2014-01-01

    Interleukin-1β (IL-1β) is involved in the up-regulation of matrix metalloproteinases (MMPs) leading to cartilage degradation. Cannabinoids are anti-inflammatory and reduce joint damage in animal models of arthritis. This study aimed to determine a mechanism whereby the synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) may inhibit cartilage degradation. Effects of WIN-55 were studied on IL-1β stimulated production of MMP-3 and -13 and their inhibitors TIMP-1 and -2 in human chondrocytes. Chondrocytes were obtained from articular cartilage of patients undergoing total knee replacement. Chondrocytes were grown in monolayer and 3D alginate bead cultures. Real-time polymerase chain reaction (PCR) was used to determine the gene expression of MMP-3, -13, TIMP-1 and -2 and Enzyme Linked Immunosorbent Assay (ELISA) to measure the amount of MMP-3 and MMP-13 protein released into media. Immunocytochemistry was used to investigate the expression of cannabinoid receptors in chondrocyte cultures. Treatment with WIN-55 alone or in combination with IL-1β, decreased or abolished MMP-3, -13, TIMP-1 and -2 gene expression in human chondrocyte monolayer and alginate bead cultures in both a concentration and time dependent manner. WIN-55 treatment alone, and in combination with IL-1β, reduced MMP-3 and -13 protein production by chondrocytes cultured in alginate beads. Immunocytochemistry demonstrated the expression of cannabinoid receptors in chondrocyte cultures. Cannabinoid WIN-55 can reduce both basal and IL-1β stimulated gene and protein expression of MMP-3 and -13. However WIN-55 also decreased basal levels of TIMP-1 and -2 mRNA. These actions of WIN-55 suggest a mechanism by which cannabinoids may act to prevent cartilage breakdown in arthritis. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. [Role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in hypertension. Pathogenesis of hypertension and obesity].

    Science.gov (United States)

    Trojanek, Joanna B

    2015-01-01

    Hypertension (HT), obesity and related metabolic disorders are increasing cause diseases with risk of premature death in western societies. Both hypertension and obesity are characterized by similar disorders such as chronic low systemic inflammation, changes in the vessel wall, abdominal obesity, insulin-resistance or dyslipidemia. Chronic, untreated HT leads to adverse changes in internal organs like kidney damage, arterial remodeling and hypertrophy of the left ventricle. The important role metalloproteinases and their inhibitors (TIMPs) in the pathophysiology of hypertension is associated with the degradation of vascular wall components, especially collagen and elastin. The activated RAAS system (renin-angiotensin-aldosterone) is displaying direct impact in the pathogenesis and progress of hypertension. Angiotensin II affects the expression and activation of many growth factors, cytokines and MMPs. The fat tissue of obese people is in the state of low intensity chronic inflammation and undergoes continual process of remodeling. Obesity is one of the direct cause of hypertension.

  17. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...

  18. A Barcode-Free Combinatorial Screening Platform for Matrix Metalloproteinase Screening

    OpenAIRE

    Rane, Tushar D.; Zec, Helena C.; Wang, Tza-Huei

    2014-01-01

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application.

  19. Chemically modified tetracyclines stimulate matrix metalloproteinase-2 production by periodontal ligament cells.

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2006-01-01

    BACKGROUND AND OBJECTIVE: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases. MATERIA

  20. A barcode-free combinatorial screening platform for matrix metalloproteinase screening.

    Science.gov (United States)

    Rane, Tushar D; Zec, Helena C; Wang, Tza-Huei

    2015-02-03

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application.

  1. Serum matrix metalloproteinase 3 in early rheumatoid arthritis is correlated with disease activity and radiological progression

    NARCIS (Netherlands)

    Posthumus, MD; Limburg, PC; Westra, J; van Leeuwen, MA; van Rijswijk, MH

    2000-01-01

    Objective. To analyze the clinical significance of serial measurements of serum matrix metalloproteinase 3 (MMP-3) levels in relation to markers of disease activity and radiological progression in early rheumatoid arthritis (RA). Methods. In a 3 year prospective study of 33 patients with early RA (s

  2. Doxycycline inhibits matrix metalloproteinase-2 secretion from TSC2-null mouse embryonic fibroblasts and lymphangioleiomyomatosis cells

    NARCIS (Netherlands)

    Moir, L M; Ng, H Y; Poniris, M H; Santa, T; Burgess, J K; Oliver, B G G; Krymskaya, V P; Black, J L

    2011-01-01

    BACKGROUND AND PURPOSE: Lymphangioleiomyomatosis (LAM) is characterized by the abnormal growth of smooth muscle-like cells (LAM cells) and cystic destruction of the lung parenchyma. LAM cell-derived matrix metalloproteinases (MMPs) are thought to play a prominent role in the tissue destruction. The

  3. Matrix metalloproteinases in premature coronary atherosclerosis: influence of inhibitors, inflammation, and genetic polymorphisms

    NARCIS (Netherlands)

    Nanni, S.; Melandri, G.; Hanemaaijer, R.; Cervi, V.; Tomasi, L.; Altimari, A.; Lent, N. van; Tricoci, P.; Bacchi, L.; Branzi, A.

    2007-01-01

    Matrix metalloproteinases (MMPs) are thought to participate in the pathogenesis of coronary artery disease (CAD), particularly in the occurrence of acute coronary syndrome (ACS). Little is known about human in vivo MMP regulation in CAD. The expression and regulation of MMPs and their tissue inhibit

  4. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Science.gov (United States)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  5. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  6. Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer.

    NARCIS (Netherlands)

    Waas, E.T.; Lomme, R.M.L.M.; Groot, J. de; Wobbes, Th.; Hendriks, T.

    2002-01-01

    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a li

  7. Effect of collagen turnover and matrix metalloproteinase activity on healing of venous leg ulcers

    NARCIS (Netherlands)

    Meyer, F.J.; Burnand, K.G.; Abisi, S.; TeKoppele, J.M.; Els, B. van; Smith, A.

    2008-01-01

    Background: The presence of fibrous tissue in poorly healing venous leg ulcers suggests abnormal collagen metabolism. The aim was to determine whether there were differences in collagen turnover and matrix metalloproteinase (MMP) activity between ulcers that healed, those that did not heal and norma

  8. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets.

    Science.gov (United States)

    Reinboldt, Stephan; Wenzel, Folker; Rauch, Bernhard H; Hohlfeld, Thomas; Grandoch, Maria; Fischer, Jens W; Weber, Artur-Aron

    2009-09-01

    Platelets are the major source of soluble CD40 ligand (sCD40L) in the blood. It has been demonstrated that CD40L is cleaved from the surface of activated platelets to release sCD40L. However, the enzyme involved in sCD40L shedding has not been identified yet. Using a panel of pharmacological inhibitors of serine, cysteine, aspartate, or metalloproteinases, preliminary evidence is presented for the hypothesis that matrix metalloproteinase-2 (MMP-2) might be the protease, primarily responsible for CD40L cleavage from platelet surface.

  9. Matrix metalloproteinase 13‐containing exosomes promote nasopharyngeal carcinoma metastasis

    OpenAIRE

    2015-01-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is kno...

  10. Preparation and in vitro studies of microencapsulated cells releasing human tissue inhibitor of metalloproteinase-2

    Institute of Scientific and Technical Information of China (English)

    JIANG Qiang; ZHANG Su-zhan; PENG Jia-ping; WANG Xu-lin

    2005-01-01

    Objective: To prepare microencapsulated cells releasing human tissue inhibitor ofmetalloproteinase-2 (TIMP-2), and investigate their biological characteristics in vitro. Methods: Chinese hamster ovary (CHO) cells were stably transfected with a human TIMP-2 expression vector, encapsulated in barium alginate microcapsules and cultured in vitro. Morphological appearance of the microcapsules was observed under a light microscope. Cell viability was assessed using MTT (3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide) assay. Enzyme linked immunosorbent assay (ELISA) and reverse zymography were used to confirm the release of biologically active TIMP-2 from the microcapsules. Cryopreservation study of the microencapsulated cells was carried out using dimethyl sulfoxide (DMSO) as preservative agent. Results: The microcapsules appeared like a sphere kept proliferating over the 6 weeks observed. No significant difference in TIMP-2 secretion was found between encapsulated and unencapsulated cells. Reverse zymography confirmed the bioactivity of MMP (matrix metalloproteinase) inhibition of TIMP-2.The cryopreservation process did not damage the microcapsule morphology nor the viability of the cells inside. Conclusion:Microencapsulated engineered CHO cells survive at least 6 weeks after preparation in vitro, and secrete bioactive TIMP-2 freely from the microcapsules.

  11. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    Institute of Scientific and Technical Information of China (English)

    Clara; Luz; Sampieri; Sol; de; la; Pea; Mariana; Ochoa-Lara; Roberto; Zenteno-Cuevas; Kenneth; León-Córdoba

    2010-01-01

    AIM:To assess expression of matrix metalloproteinases 2(MMP2)and MMP9 in gastric cancer,superficial gastritis and normal mucosa,and to measure metalloproteinase activity.METHODS:MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction.Normalization was carried out using three different factors.Proteins were analyzed by quantitative gelatin zymography(qGZ).RESULTS:18S ribosomal RNA(18SRNA)was very highly expressed,while hypoxanthine ribosyltransferase-1(HPRT-1)was mode...

  12. Relationship between uterine expression of matrix metalloproteinases and their inhibitors and endometrial receptivity

    Institute of Scientific and Technical Information of China (English)

    高飞; 魏鹏; 陈鑫磊; 张志宏; 刘以训

    2002-01-01

    In order to investigate the relationship between the endometrial receptivity and matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1,-3 (TIMP-1,-3) in the endometrium, we used early pregnant mice as the animal model and studied the expression of MMP-2, TIMP-1,-3 in the endometrium in relation to the number of implantation sites after RU486 treatment. The results indicated that RU486 could significantly inhibit embryo implantation and change the expression of MMP-2 and TIMP-1,-3 in a dose-dependent pattern. When the mice were treated with 12 mg/kg RU486, there were a few embryos implanted as compared with the control. The expression of matrix metalloproteinase MMP-2 was low during the period of "implantation window", while the tissue inhibitor of metalloproteinase in the endometrial cells was high, suggesting that the activity of the proteolytic enzyme was strictly controlled by its inhibitors. After RU486 treatment, the generation of TIMP-1,3 was decreased while the MMP-2 was significantly increased, indicating that the normal balance between the activators and their inhibitors in the tissue was broken and the extracellular matrix was excessively degraded, subsequently the embryo implantation was inhibited. Therefore, it is suggested that the anti-implantation effect of RU486 may be mediated by MMPs and their inhibitors TIMPs.

  13. Association of metalloproteinases, tissue inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and osteoarthritis processes in mouse temporomandibular joint.

    Science.gov (United States)

    Gepstein, Amira; Arbel, Gil; Blumenfeld, Israel; Peled, Micha; Livne, Erella

    2003-07-01

    The temporomandibular joint (TMJ) is an important growth and articulation center in the craniofacial complex. In aging it develops spontaneous degenerative osteoarthritic (OA) lesions. Metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPS) play key roles in extracellular matrix remodeling and degradation. Gelatinase activities and immunohistochemical localization of MMP-2, -3, -8, -9, and -13 and TIMP-1 and -2 were examined in mandibular condyle cartilage of neonatal mice up to 18 months old. The most intense immunostaining for all enzymes and TIMPs and the peak of gelatinase activities were found in animals in the stages of early growth (1 week to 3 months) followed by a decrease during maturation and aging. However, clusters of positively immunoreactive chondrocytes were detected in cartilages of old animals displaying OA lesions. Positive safranin-O staining, indicative of sulfated proteoglycans (PGs), was prominent in the TMJ of newborn mice up to 3 months old followed by reduction during maturation and aging, except in regions displaying OA lesions. Temporal codistribution of PGs, MMPs, and TIMPs during skeletal maturation reflected an active growth phase, whereas their reduction coincided with the more quiescent articulating and maintenance phase in the joint cartilage. Osteoarthritic lesions were associated with both increased PG synthesis and MMP immunoreactivity, indicating limited repair activity during initial stages of osteoarthritis.

  14. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  15. "Flexible Ligand Docking Studies of Matrix Metalloproteinase Inhibitors Using Lamarckian Genetic Algorithm "

    Directory of Open Access Journals (Sweden)

    lOrkideh Ghorban Dadrass

    2004-06-01

    Full Text Available As important therapeutic drug targets, matrix metalloproteinases (MMPs have recently attracted great interest in the search for potent and selective inhibitors using computer-aided molecular modelling and docking techniques. Availability of more than 60 X-ray crystal structures or NMR solution structures related to MMPs in Protein Data Bank (PDB of which more than half of them are in complex with various MMP inhibitors (MMPIs, provides a great opportunity for docking studies. In this study AutoDock 3.0.5 along with its LGA algorithm were used for automated flexible ligand docking of 32 MMPI-MMP complexes and docking accuracy and reliability of the estimated inhibition constants were evaluated. Twenty-six out of 32 docks had RMSD less than 3.0 Å which is considered as well-docked, however, for the most of the cases (15 out of 27, predicted pKi values were considerably overestimated in comparison to experimental values. To improve pKi prediction regarding MMPI-MMP complexes, inclusion of at least one such a complex in calibration of empirical free energy function in the next release of AutoDock is highly recommended.

  16. Matrix metalloproteinase-2 (MMP-2) generates soluble HLA-G1 by cell surface proteolytic shedding.

    Science.gov (United States)

    Rizzo, Roberta; Trentini, Alessandro; Bortolotti, Daria; Manfrinato, Maria C; Rotola, Antonella; Castellazzi, Massimiliano; Melchiorri, Loredana; Di Luca, Dario; Dallocchio, Franco; Fainardi, Enrico; Bellini, Tiziana

    2013-09-01

    Human leukocyte antigen-G (HLA-G) molecules are non-classical HLA class I antigens with an important role in pregnancy immune regulation and inflammation control. Soluble HLA-G proteins can be generated through two mechanisms: alternative splicing and proteolytic release, which is known to be metalloprotease mediated. Among this class of enzymes, matrix metalloproteinases (MMPs) might be involved in the HLA-G1 membrane cleavage. Of particular interest are MMP-2 and MMP-9, which regulate the inflammatory process by cytokine and chemokine modulation. We evaluated the effect of MMP-9 and MMP-2 on HLA-G1 membrane shedding. In particular, we analyzed the in vitro effect of these two gelatinases on the secretion of HLA-G1 via proteolytic cleavage in 221-G1-transfected cell line, in JEG3 cell line, and in peripheral blood mononuclear cells. The results obtained by both cell lines showed the role of MMP-2 in HLA-G1 shedding. On the contrary, MMP-9 was not involved in this process. In addition, we identified three possible highly specific cleavage sites for MMP-2, whereas none were detected for MMP-9. This study suggests an effective link between MMP-2 and HLA-G1 shedding, increasing our knowledge on the regulatory machinery beyond HLA-G regulation in physiological and pathological conditions.

  17. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Tso-Chou Lin

    2015-01-01

    Full Text Available Background. Cardiopulmonary bypass (CPB causes release of matrix metalloproteinase- (MMP- 9, contributing to pulmonary infiltration and dysfunction. The aims were to investigate MMP-9 production and associated perioperative variables and oxygenation following CPB. Methods. Thirty patients undergoing elective cardiac surgery were included. Arterial blood was sampled at 6 sequential points (before anesthesia induction, before CPB and at 2, 4, 6, and 24 h after beginning CPB for plasma MMP-9 concentrations by ELISA. The perioperative laboratory data and variables, including bypass time, PaO2/FiO2, and extubation time, were also recorded. Results. The plasma MMP-9 concentrations significantly elevated at 2–6 h after beginning CPB (P<0.001 and returned to the preanesthesia level at 24 h (P=0.23, with predominant neutrophil counts after surgery (P<0.001. The plasma MMP-9 levels at 4 and 6 h were not correlated with prolonged CPB time and displayed no association with postoperative PaO2/FiO2, regardless of reduced ratio from preoperative 342.9±81.2 to postoperative 207.3±121.3 mmHg (P<0.001. Conclusion. Elective cardiac surgery with CPB induced short-term elevation of plasma MMP-9 concentrations within 24 hours, however, without significant correlation with CPB time and postoperative pulmonary dysfunction, despite predominantly increased neutrophils and reduced oxygenation.

  18. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  19. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  20. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  1. Purification and properties of a small latent matrix metalloproteinase of the rat uterus.

    Science.gov (United States)

    Woessner, J F; Taplin, C J

    1988-11-15

    A small metalloproteinase that digests Azocoll was found in the uterus of the rat. Its activity increased to high levels during the postpartum period in parallel with the breakdown of the extracellular matrix exclusive of collagen (Sellers, A., and Woessner, J.F., Jr. (1980) Biochem. J. 189, 521-531). This enzyme has now been purified almost 7,000-fold to homogeneity from 12 g of tissue using molecular sieve chromatography, blue sepharose chromatography, and zinc-chelate chromatography. Gel electrophoresis with sodium dodecyl sulfate and dithiothreitol gives Mr = 28,000 for the latent form of the enzyme and Mr = 19,000 for the active form that arises spontaneously or by treatment with aminophenylmercuric acetate. The enzyme digests components of the extracellular matrix including gelatins of types I, III, IV, and V, fibronectin, and proteoglycan. It digests the alpha 2(I) chain of gelatin in preference to the alpha 1(I) chain and cleaves dinitrophenyl-Pro-Leu-Gly-Ile-Ala-Gly-Pro-D-Arg. It cleaves the B chain of insulin at two points: Ala14-Leu15 and Tyr16-Leu17. It has no action on collagens of types I, III, IV, or V at 26 degrees C and no action on elastin or phenylazo-Pro-Leu-Gly-Pro-D-Arg. The pH optimum is at pH 7 and the pI at 5.9. The enzyme requires zinc and calcium ions for activity; cobalt and strontium can partially replace these metal ions. The enzyme is not inhibited by low levels of phosphoramidon or Zincov. Its properties clearly distinguish it from collagenase, gelatinase (matrix metalloproteinase 2), and stromelysin (matrix metalloproteinase 3); it therefore constitutes a further member of the family of extracellular matrix metalloendopeptidases. The name matrix metalloproteinase 7 is proposed.

  2. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    Science.gov (United States)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  3. Preparation and Characterization of Sustained Release Matrix ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research October 2015; 14(10): 1749-1754 ... prolonged drug release and improvement in motor activity after spinal injuries. Methods: Matrix .... The friability test was performed using a Roche friabilator ...

  4. Matrix metalloproteinase and its inhibitor in temporomandibular joint osteoarthrosis after indirect trauma in young goats.

    Science.gov (United States)

    Wang, Yan-Liang; Li, Xin-Jun; Qin, Rui-Feng; Lei, De-Lin; Liu, Yan-Pu; Wu, Gao-Yi; Zhang, Yong-Jie; Yan-Jin; Wang, Da-Zhang; Hu, Kai-Jin

    2008-04-01

    Our aim was to examine the change in expression of matrix metalloproteinases (MMP-13), matrix metalloproteinases-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in the articular cartilage of goats with experimentally-induced osteoarthrosis of the temporomandibular joint (TMJ) at various times. Osteoarthrosis was induced in 20 goats in the bilateral TMJ and 5 goats acted as controls. There were 5 goats in each group, and a group was killed at 7 days, and 1, 3, and 6 months postoperatively. The samples were collected, and the joints evaluated histologically. Immunofluorescence was used to detect the presence of MMPs and TIMP-1 in the articular disc and condylar cartilage. The ultrastructure of the articular disc and condylar surface at 1 month was examined with scanning electron microscopy (SEM). Osteoarthrosis of the TMJ progressed gradually over time. MMP-13, MMP-3, and TIMP-1 were expressed strongly in the TMJ soon after injury; MMP-13 became gradually weakened, and MMP-3 strengthened later. None of these were expressed in the normal condyle. After a month the surface of the arthrotic condyle was uneven, and the underlying collagen fibrils were exposed in irregular fissures on the surface. The secretion of TIMP-1 was related closely to the changes of MMPs during osteoarthrosis of the TMJ. The unbalanced ratio between them caused degradation of the matrix of the cartilage and might be the cause of osteoarthrosis of the TMJ.

  5. Caries correlates strongly to salivary levels of matrix metalloproteinase-8

    DEFF Research Database (Denmark)

    Hedenbjörk-Lager, Anders; Bjørndal, Lars; Gustafsson, Anders;

    2015-01-01

    examinations were performed, and stimulated saliva was collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein, using an immunofluorometric assay, an enzyme-linked immunosorbent assay and the Bradford assay, respectively. Salivary numbers of mutans streptococci and lactobacilli were......The caries process in dentin involves the degradation of both mineral and organic matrix. The demineralization has been demonstrated to be caused by bacterial acids. However, the collagen degradation is considered to be initiated by endogenous proteolytic enzymes, mainly collagenolytic matrix...

  6. Matrix Metalloproteinases Polymorphisms as Prognostic Biomarkers in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Danijela Štrbac

    2017-01-01

    Full Text Available Background. Malignant pleural mesothelioma (MPM is a rare disease with a relatively short overall survival (OS. Metalloproteinases (MMPs have a vast biological effect on tumor progression, invasion, metastasis formation, and apoptosis. MMP expression was previously associated with survival in MPM. Our aim was to evaluate if genetic variability of MMP genes could also serve as a prognostic biomarker in MPM. Methods. We genotyped 199 MPM patients for ten polymorphisms: rs243865, rs243849 and rs7201, in MMP2; rs17576, rs17577, rs20544, and rs2250889 in MMP9; and rs1042703, rs1042704, and rs743257 in MMP14. We determined the influence on survival using Cox regression. Results. Carriers of polymorphic MMP9 rs2250889 allele had shorter time to progression (TTP (6.07 versus 10.03 months, HR = 2.45, 95% CI = 1.45–4.14, p=0.001 and OS (9.23 versus 19.2 months, HR = 2.39, 95% CI = 1.37–4.18, p=0.002. In contrast, carriers of at least one polymorphic MMP9 rs20544 allele had longer TTP (10.93 versus 9.40 months, HR = 0.57, 95% CI = 0.38–0.86 p=0.007 and OS (20.67 versus 13.50 months, HR = 0.56, 95% CI = 0.37–0.85, p=0.007. MMP14 rs1042703 was associated with nominally shorter TTP (8.7 versus 9.27 months, HR = 2.09, 95% CI = 1.06–4.12, p=0.032. Conclusions. Selected MMP SNPs were associated with survival and could be used as potential genetic biomarkers in MPM.

  7. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions.

    Science.gov (United States)

    Guglielmini, Giuseppe; Appolloni, Viviana; Momi, Stefania; De Groot, Philip G; Battiston, Monica; De Marco, Luigi; Falcinelli, Emanuela; Gresele, Paolo

    2016-01-01

    Platelets contain and release matrix metalloproteinase-2 (MMP-2) that in turn potentiates platelet aggregation. Platelet deposition on a damaged vascular wall is the first, crucial, step leading to thrombosis. Little is known about the effects of MMP-2 on platelet activation and adhesion under flow conditions. We studied the effect of MMP-2 on shear-dependent platelet activation using the O'Brien filtration system, and on platelet deposition using a parallel-plate perfusion chamber. Preincubation of human whole blood with active MMP-2 (50 ng/ml, i.e. 0.78 nM) shortened filter closure time (from 51.8 ± 3.6 sec to 40 ± 2.7 sec, pMMP-2 inhibitor. High shear stress induced the release of MMP-2 from platelets, while TIMP-2 levels were not significantly reduced, therefore, the MMP-2/TIMP-2 ratio increased significantly showing enhanced MMP-2 activity. Preincubation of whole blood with active MMP-2 (0.5 to 50 ng/ml, i.e 0.0078 to 0.78 nM) increased dose-dependently human platelet deposition on collagen under high shear-rate flow conditions (3000 sec⁻¹) (maximum +47.0 ± 11.9%, pMMP-2 inhibitor reduced platelet deposition. In real-time microscopy studies, increased deposition of platelets on collagen induced by MMP-2 started 85 sec from the beginning of perfusion, and was abolished by a GPIIb/IIIa antagonist, while MMP-2 had no effect on platelet deposition on fibrinogen or VWF. Confocal microscopy showed that MMP-2 enhances thrombus volume (+20.0 ± 3.0% vs control) rather than adhesion. In conclusion, we show that MMP-2 potentiates shear-induced platelet activation by enhancing thrombus formation.

  8. A study on the expression levels of matrix metalloproteinases and ...

    African Journals Online (AJOL)

    cells. In addition, the expression was coupled with changes in the tissue architecture ... Keywords: Glandular epithelium, Inflammatory cells, Inhibitors, Matrix ... were older than 21 years of age. .... Figure 2: Immunohistochemical expression of (a) TIMP-1 and (b) TIMP-2 in ... MMP-2 expression was associated with erosions.

  9. Significant relation of tissue inhibitor of matrix metalloproteinase-2 and its combination with matrix metalloproteinase-2 to survival of patients with cancer of uterine cervix.

    Science.gov (United States)

    Wang, Po-Hui; Ko, Jiunn-Liang; Yang, Shun-Fa; Tsai, Hsiu-Ting; Tee, Yi-Torng; Han, Chih-Ping; Lin, Long-Yau; Chen, Shiuan-Chih; Shih, Yang-Tse

    2011-08-01

    Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) has high affinity for matrix metalloproteinase-2 (MMP-2). Few studies simultaneously investigate their implication in prognosis of patients with cervical cancer. We used reverse transcription-polymerase chain reaction and immunohistochemical method for cervical tissues and microarrays to investigate the association among TIMP-2, MMP-2, clinicopathological parameters, and prognosis of patients with cancer. Our results showed that cancer tissues exhibited less TIMP-2 expression and patients with pelvic lymph node metastasis had less TIMP-2 expression. Positive TIMP-2 constellated with negative MMP-2 indicated lower recurrence probability and better overall survival. The protective effect of TIMP-2 expression may overcome the adverse effect of MMP-2 expression in terms of disease-free interval and overall survival while neither TIMP-2 nor MMP-2 alone can be used to predict outcome. We suggest that following patients other than those with positive TIMP-2 and negative MMP-2 expression more closely and intensely may improve their prognosis.

  10. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    Science.gov (United States)

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC.

  11. [Reference ranges of matrix metalloproteinase-1, -2, -9 and tissue inhibitor of matrix metalloproteinases-1 concentrations in amniotic fluid in physiological pregnancy].

    Science.gov (United States)

    Korenovsky, Yu V; Remneva, O V

    2016-01-01

    The aim of this study was to determine reference values of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in the amniotic fluid at the first stage of labor in physiological pregnancy. 89 women at the first stage of term labor have been examined. Samples of amniotic fluid were taken at the first period of labor by vaginal amniotomy. Concentrations ofMMP-1, MMP-2, MMP-9, and TIMP-1 were investigated in amniotic fluid by ELISA kits. We have determined normal concentration ranges for MMP-1, MMP-2, MMP-9, TIMP-1, and ratios of concentrations of MMPs and TIMP-1 (MMP-1/TIMP-1, MMP-2/TIMP-1, MMP-9/TIMP-1) in the amniotic fluid at the first period of labor in physiological pregnancy. These included: MMP-1--5.1-16.8 pg/mg of protein, MMP-2--238.3-374.1 pg/mg of protein, MMP-9--66.1-113.3 pg/mg of protein, TIMP-1--4.7-13.6 pg/mg of protein, ratio of MMP-1/TIMP-1--0.1-2.2, ratio of MMP-2/TIMP-1--19.9-55.7, ratio of MMP-9/TIMP-1--4.2-17.2.

  12. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  13. Action of matrix metalloproteinases at restricted sites in colon anastomosis repair

    DEFF Research Database (Denmark)

    Ågran, Magnus S.; Levin Andersen, Thomas; Mirastschijski, Ursula;

    2006-01-01

    BACKGROUND: Dehiscence of colon anastomosis is a common, serious and potentially life-threatening complication after colorectal operation. In experimental models, impaired biomechanic strength of colon anastomoses is preventable by general inhibitors of matrix metalloproteinases (MMPs) and associ......BACKGROUND: Dehiscence of colon anastomosis is a common, serious and potentially life-threatening complication after colorectal operation. In experimental models, impaired biomechanic strength of colon anastomoses is preventable by general inhibitors of matrix metalloproteinases (MMPs....... CONCLUSIONS: The unique finding of this study was that the specific tissue holding the sutures of a colon anastomosis lost the most collagen presumably through induction and activation of multiple MMPs that may explain the beneficial effects of treatment with non-selective MMP antagonists....

  14. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity.

    Science.gov (United States)

    Grass, G Daniel; Toole, Bryan P

    2015-11-24

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.

  15. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in pigmented villonodular synovitis suggests their potential role for joint destruction.

    Science.gov (United States)

    Uchibori, Mitsutoshi; Nishida, Yoshihiro; Tabata, Izuru; Sugiura, Hideshi; Nakashima, Hiroatsu; Yamada, Yoshihisa; Ishiguro, Naoki

    2004-01-01

    Pigmented villonodular synovitis (PVNS) is an uncommon idiopathic, proliferative synovial disease. Since matrix metalloproteinases (MMP) are assumed to play an important role in the pathogenesis of PVNS, we examined the expression and activity of MMP and tissue inhibitor of metalloproteinases (TIMP) in PVNS. Synovial tissue samples were obtained from 10 patients with PVNS (knee 8, ankle 2) and 4 patients each with rheumatoid arthritis (RA) or osteoarthritis (OA) for comparison. Protein deposition and mRNA expression were determined by conventional immunohistochemical studies and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Gelatin zymography was performed for detection of gelatin-degrading activity. The quantity of MMP and TIMP was measured by ELISA. Intense immunostaining for MMP-1 was detected in both the multinucleated giant cells and mononuclear cells, whereas TIMP-1 was weakly positive. MMP-9 immunostained predominantly in the multinucleated cells, whereas other MMP and TIMP were weakly detected. RT-PCR analysis showed that mRNA expression of MMP-9 was stimulated in PVNS, whereas MMP-2 mRNA was not, compared to RA or OA. The gelatin zymogram indicated protease activities predominantly at 92 kDa and 67 kDa. In accord with the immunostaining results, the amount of MMP-1 and MMP-9 protein was significantly higher than that of TIMP-1 and MMP-2, respectively. We characterized the expression and activity of MMP in PVNS and observed that PVNS tissues predominantly produce MMP-1 and MMP-9. Given that PVNS occasionally induces joint destruction, stimulated expression of MMP-1 and MMP-9 may contribute to the invasive activity and the bone and cartilage loss in PVNS.

  16. Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets

    NARCIS (Netherlands)

    Jager, Nynke A.; de Vries, Bastiaan M. Wallis; Hillebrands, Jan-Luuk; Harlaar, Niels J.; Tio, Rene A.; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Boersma, Hendrikus H.; Zeebregts, Clark J.; Westra, Johanna

    In this study, the potential of matrix metalloproteinase (MMP) sense for detection of atherosclerotic plaque instability was explored. Secondly, expression of MMPs by macrophage subtypes and smooth muscle cells (SMCs) was investigated. Twenty-three consecutive plaques removed during carotid

  17. The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue

    NARCIS (Netherlands)

    de Abreu, J.R.F.; de Launay, D.; Sanders, M.E.; Grabiec, A.M.; van de Sande, M.G.; Tak, P.P.; Reedquist, K.A.

    2009-01-01

    Introduction Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis ( RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases ( MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to

  18. Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair

    DEFF Research Database (Denmark)

    Krarup, Peter-Martin; Eld, Mikkel; Heinemeier, Katja Maria;

    2013-01-01

    Submucosal collagen is paramount for colonic anastomotic integrity. Matrix metalloproteinases (MMPs) mediate collagen degradation that increases the risk of wound dehiscence. Although broad-spectrum MMP inhibitors are beneficial for anastomotic strength, they can cause adverse reactions. Knowledg...

  19. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    OpenAIRE

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don; Nagel, Maria A.

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Ne...

  20. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains

    DEFF Research Database (Denmark)

    Manon-Jensen, Tina; Multhaupt, Hinke A B; Couchman, John R

    2013-01-01

    , which makes them key effectors in the pericellular microenvironment. Extracellular shedding of syndecans by tumour-associated matrix metalloproteinases (MMPs) may have an important role in tumour progression. Such ectodomain shedding generates soluble ectodomains that may function as paracrine......Syndecans are transmembrane heparan sulfate proteoglycans with roles in cell proliferation, differentiation, adhesion, and migration. They have been associated with multiple functions in tumour progression, through their ability to interact with a wide range of ligands as well as other receptors...

  1. Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis.

    Directory of Open Access Journals (Sweden)

    Logan A Walsh

    Full Text Available Matrix metalloproteinases (MMPs and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs, are two protein families that work together to remodel the extracellular matrix (ECM. TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP, two TIMPs (TIMP-2, TIMP-3 and a potent gelatinase (Gel-A that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.

  2. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Yixuan Gong

    2014-06-01

    Full Text Available Matrix metalloproteinases (MMPs, a group of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix, play an important role in tissue remodeling associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair, as well as pathological processes including cirrhosis, arthritis and cancer. The MMPs are well established as mediators of tumor invasion and metastasis by breaking down connective tissue barriers. Although there has been a vast amount of literature on the role of MMPs in invasion, metastasis and angiogenesis of various cancers, the role of these endopeptidases in prostate cancer progression has not been systematically reviewed. This overview summarizes findings on the tissue and blood expression of MMPs, their function, regulation and prognostic implication in human prostate cancer, with a focus on MMP-2, -7, -9, MT1-MMP and tissue inhibitor of metalloproteinase 1 (TIMP-1. This review also summarizes the efficacy and failure of early-generation matrix metalloproteinase inhibitors (MMPIs in the treatment of metastatic prostate cancer and highlights the lessons and challenges for next generation MMPIs.

  3. Matrix Metalloproteinases in Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Vivek Mehta

    2013-01-01

    Full Text Available Delayed cerebral vasospasm is a significant cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH. While the cellular mechanisms underlying vasospasm remain unclear, it is believed that inflammation may play a critical role in vasospasm. Matrix metalloproteinasees (MMPs are a family of extracellular and membrane-bound proteases capable of degrading the blood-rain barrier (BBB. As such, MMP upregulation following SAH may result in a proinflammatory extravascular environment capable of inciting delayed cerebral vasospasm. This paper presents an overview of MMPs and describes existing data pertinent to delayed cerebral vasospasm.

  4. EXPRESSION OF MATRIX METALLOPROTEINASE-9 IN HUMANABDOMINAL AORTIC ANEURYSMAL TISSUES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Abdominal aortic aneuryzms(AAAs)are char-acterized by the degradation of structural proteins,including both collagen and elastin and remodelingof the extracellular matrix(ECM).The matrixmetalloproteinases(MMPs)are responsible for col-lagen and elastin degradation withinthe aortic wall.Up to date,14MMPs have beenidentified.Amongthem,in particular,MMP-9(92-kDtypeⅣcolla-genase)shows strong elastinolytic activity[1].Recentstudies showedthat elevated plasmalevel of MMP-9wasassociated with AAAs,i mplicating its p...

  5. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    DEFF Research Database (Denmark)

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T;

    2003-01-01

    is based on a model of osteoclast recruitment in primitive long bones, an assay of osteoclast invasion through collagen gel, and the effect of proteinase inhibitors/knockouts in these models. Furthermore, we mention observations indicating a role of MMPs in initiation of bone resorption. Finally, we......The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...

  6. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  7. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  8. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells.

    Science.gov (United States)

    Hirakawa, Satoshi; Kojima, Takashi; Obata, Kazufumi; Okabayashi, Tamaki; Yokota, Shin-Ichi; Nomura, Kazuaki; Obonai, Toshimasa; Fuchimoto, Jun; Himi, Tetsuo; Tsutsumi, Hiroyuki; Sawada, Norimasa

    2013-12-01

    Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.

  9. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters.

    Science.gov (United States)

    Shahed, Asha; Simmons, Jamie J; Featherstone, Sydney L; Young, Kelly A

    2015-05-15

    Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.

  10. Effects of doxycycline on production of growth factors and matrix metalloproteinases in pulmonary fibrosis.

    Science.gov (United States)

    Fujita, Hanako; Sakamoto, Noriho; Ishimatsu, Yuji; Kakugawa, Tomoyuki; Hara, Shintaro; Hara, Atsuko; Amenomori, Misato; Ishimoto, Hiroshi; Nagata, Towako; Mukae, Hiroshi; Kohno, Shigeru

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrosis and a poor prognosis. Alveolar epithelial cells (AECs) are considered to play important roles by releasing growth factors and matrix metalloproteinases (MMPs) and by being involved in epithelial mesenchymal transition in IPF. Doxycycline hydrochloride (DOXY), an inhibitor of MMPs, attenuates pulmonary fibrosis in models and in patients with IPF; however, the mechanism of this action remains obscure. The present study investigated the effect of DOXY on growth factors and MMP production in AECs. Bleomycin (BL)-induced murine pulmonary fibrosis was treated with DOXY and examined by pathological and immunohistochemical staining. The human alveolar epithelial cell line A549 was stimulated with transforming growth factor (TGF)-β1 and incubated with DOXY, and then the expression of growth factors, MMPs, and collagen type I was evaluated at the mRNA and protein levels. We also evaluated the effects of DOXY on the TGF-β1-induced Smad signaling pathway. DOXY reduced fibrosis scores and the production of collagen type I, connective tissue growth factor (CTGF), and TGF-β1 in BL models. DOXY inhibited the mRNA expression of MMP-2, MPP-9, CTGF, and collagen type I as well as the production of MMP-2 and platelet-derived growth factor-AA protein induced in A549 cells by TGF-β1 but not by Smad2 and Smad3 phosphorylation. We did not find a similar effect of DOXY in normal lung fibroblasts. Our results suggest that DOXY could be useful for attenuating pulmonary fibrosis through the inhibition of growth factors and MMP production in AECs. Copyright © 2011 S. Karger AG, Basel.

  11. Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro

    Science.gov (United States)

    Wang, Anxun; Zhang, Bin; Huang, Hongzhang; Zhang, Leitao; Zeng, Donglin; Tao, Qian; Wang, Jianguang; Pan, Chaobin

    2008-01-01

    Background Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Methods Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Results Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P ameloblastoma. Conclusion These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research. PMID:18588710

  12. Expression of matrix metalloproteinases 2 and 9 and TGF-b in ligamentum flavum hypertrophy

    Directory of Open Access Journals (Sweden)

    Marcelo Ferraz de Campos

    2014-09-01

    Full Text Available OBJECTIVE: To evaluate the expression of matrix metalloproteinases and TGFb in patients with spinal stenosis and in younger patients who have herniated disc. METHODS: 19 samples of LA were analyzed, nine of them with lumbar canal stenosis and 10 with disc herniation. Of the total, five patients were aged between 15 and 40 years, 10 were between 40 and 65 years and four had more than 65 years. Representative areas of LF were chosen based on the staining of tissues with hematoxylin-eosin. The 3µm-thick sections embedded in paraffin and fixed in formalin were deparaffinized and rehydrated. All ligaments were incubated overnight at 4 °C with primary antibodies. RESULTS: An increase of TGFb was verified in older individuals, although without statistical significance. CONCLUSION: Metalloproteinases showed no significant difference between both groups with respect to age and type of abnormality of the spine.

  13. Effects of estradiol on reduction of osteoarthritis in rabbits through effect on matrix metalloproteinase proteins

    Directory of Open Access Journals (Sweden)

    Weiguo Wang

    2016-03-01

    Full Text Available Objective(s: Osteoarthritis (OA, as a known degenerative joint disease, is the most common form of arthritis. In this study, we aimed to elucidate unclear pathogenesis of OA. Materials and Methods: Rabbit models of OA were established by the transection of the anterior cruciate ligament. Rabbits were randomly divided into three equal groups: the experimental group (OA modeling, treated with estradiol, the control group (OA modeling, treated with normal saline and the normal group (without OA modeling. The glycosaminoglycan (GAG and hyaluronan (HA content of knee joint were collected and assayed. In addition, gene expression of matrix metalloproteinase (MMP-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP-1 were evaluated by real-time PCR and Western blot analysis. Results: Animal models were developed successfully. GAG and HA concentrations were significantly increased in the experimental and the normal group compared with the control group (PP

  14. Fragment-Based Discovery of 5-Arylisatin-Based Inhibitors of Matrix Metalloproteinases 2 and 13.

    Science.gov (United States)

    Agamennone, Mariangela; Belov, Dmitry S; Laghezza, Antonio; Ivanov, Vladimir N; Novoselov, Anton M; Andreev, Ivan A; Ratmanova, Nina K; Altieri, Andrea; Tortorella, Paolo; Kurkin, Alexander V

    2016-09-06

    Matrix metalloproteinases (MMPs) are well-established targets for several pathologies. In particular, MMP-2 and MMP-13 play a prominent role in cancer progression. In this study, a structure-based screening campaign was applied to prioritize metalloproteinase-oriented fragments. This computational model was applied to a representative fragment set from the publically available EDASA Scientific compound library. These fragments were prioritized, and the top-ranking hits were tested in a biological assay to validate the model. Two scaffolds showed consistent activity in the assay, and the isatin-based compounds were the most interesting. These latter fragments have significant potential as tools for the design and realization of novel MMP inhibitors. In addition to their micromolar activity, the chemical synthesis affords flexible and creative access to their analogues.

  15. Correlation of matrix metalloproteinase-2, -9, tissue inhibitor-1 of matrix metalloproteinase and CD44 variant 6 in head and neck cancer metastasis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This study aimed to explore the molecular mechanism in tumor invasion and metastasis. The expression of matrix metalloproteinase-2,-9 (MMP-2, MMP-9), tissue inhibitor-1 of matrix metalloproteinase (TIMP-1), cell adhesion molecule 44 variant 6 (CD44v6), HER2/neu and p53 was investigated in 154 patients with head and neck squamous cell carcinoma (SCC) by ABC and ImmunoMax immunohistochemical method. Their clinical relevance and correlation were analysed. The expression of MMP-2, MMP-9, TIMP-1, CD44v6, HER2/neu and p53 was found in cancer cells in 87.01%, 85.71%, 68.18%, 98.05%, 55.19% and 50.65% cases respectively. Linear regression and correlation analysis revealed that there was close positive relationship (P<0.05) between the expression of MMP-2 and MMP-9, TIMP-1 and CD44v6, HER2/neu and MMP-9, MMP-2 and p53. Up-regulation of MMP-2 was accompanied by advanced T stage(P<0.01). There was also a trend of MMP-2 expression being related with tumor metastasis. Increased expression of HER2/neu was found in patients with tumor recurrence(P<0.05). The expression of TIMP-1 was higher in laryngeal cancer than that in pharyngeal cancer, and higher in keratinizing and non-keratinizing SCC than that in basaloid SCC(P<0.05). These findings suggested that MMP-2 and MMP-9, HER2/neu and MMP-9, MMP-2 and p53 had a coordinate function in aggression of tumor; that MMP-2 had a more important function than MMP-9 in tumor invasion and metastasis; and that HER2/neu might serve as a biomarker for poor prognosis in HNSCC.

  16. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients.

    Science.gov (United States)

    Ranogajec, Irena; Jakić-Razumović, Jasminka; Puzović, Velibor; Gabrilovac, Jelka

    2012-06-01

    The aim of this study was to analyse the expression of matrix metalloproteinase-2(MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase APN/CD13 in breast carcinoma samples, and their possible prognostic value in breast cancer patients. The expression of MMP-2, MMP-9 and APN/CD13 in tumor cells was analysed in 138 breast carcinomas by immunohistochemical staining of tumor cells using the semiquantitative method for the detection of cytoplasmic and membrane reaction in tumor cells as well as stromal cells positivity. MMP-2 was positive in tumor cells of 52.9% patients and in stromal cells of 74.6% patients, while MMP-9 positive tumor and stromal cells were found in 84.8 and 63.8% patients, respectively. Tumor cell APN/CD13 expression was found in 36.2% patients. Stromal cell MMP-2 expression correlated significantly with tumor size and neoangiogenesis. A positive correlation was also observed between tumor cell MMP-9 expression and hormone receptor status. Stromal cell coexpression of MMP-2/MMP-9 correlated significantly with tumor size. APN/CD13 expression in tumor cells significantly correlated with tumor type and neoangiogenesis. Overall survival was significantly shorter in patients with MMP-2, MMP-2/MMP-9 positive tumor cells, and tended to be shorter in patients with APN/CD13 positive tumor cells. Coexpression of MMP-2/MMP-9 in tumor cells was an independent risk factor for patient survival (OD = 13.9). Our results suggest that MMP-2, MMP-9, APN/CD13 expression and MMP-2/MMP-9 coexpression in combination with other standard prognostic factors can serve as a poor prognostic factor in the evaluation of breast cancer prognosis.

  17. Peptide from the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) inhibits membrane activation of matrix metalloproteinase-2 (MMP-2).

    Science.gov (United States)

    Xu, Xiaoping; Mikhailova, Margarita; Chen, Zhihua; Pal, Sanjay; Robichaud, Trista K; Lafer, Eileen M; Baber, Sam; Steffensen, Bjorn

    2011-09-01

    Cellular activation of latent matrix metalloproteinase-2 (proMMP-2) requires formation of a cell membrane-associated activation complex that involves specific binding between the hemopexin domain of proMMP-2 (PEX) and the C-terminal domain of tissue inhibitor of matrix metalloproteinases-2 (C-TIMP-2). In this study, we tested the feasibility of inhibiting activation of proMMP-2 by exogenous inhibitors, which block the binding between PEX and TIMP-2. The recombinant C-TIMP-2 and synthetic peptides from C-TIMP-2 were used as inhibitors for proMMP-2 activation. Recombinant C-TIMP-2 bound specifically to both the catalytically inactive MMP-2(E404A) and the C-terminal domain of MMP-2 (PEX) in a concentration dependent manner with apparent K(d) of 3.9×10(-7)M and 1.7×10(-7)M, respectively. Moreover, C-TIMP-2 competed the binding between MMP-2(E404A) and full-length TIMP-2. Finally, activity assays showed that addition of C-TIMP-2 to HT-1080 fibrosarcoma cells inhibited proMMP-2 activation in a concentration-dependent manner. We then designed a synthetic peptide, P175L, consisting of 20 residues from the PEX-binding tail region of C-TIMP-2. P175L bound PEX and inhibited cell membrane-mediated activation of proMMP-2 in a concentration dependent manner. Deletion of the last 9 tail residues of C-TIMP-2 in P175L abrogated the inhibitory activities of the peptide showing that these residues were essential for function. Overall, these experiments have demonstrated that proMMP-2 activation can be inhibited by exogenous inhibitors which points to a potential strategy for MMP-2 specific inhibition.

  18. Duodenal-jejunal bypass surgery on type 2 diabetic rats reduces the expression of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in the thoracic aorta

    Institute of Scientific and Technical Information of China (English)

    Maimaitiyusufu Wubulikasimu; Han Haifeng; Yan Zhibo; Zhang Xiang; Liu Shaozhuang; Zhang Guangyong; Kasimu Aimaiti

    2014-01-01

    Background Bariatric surgery offers a productive resolution of type 2 diabetes mellitus (T2DM).The development of T2DM vasculopathy is due to chronic inflammation,which increases matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) expression.This study sought to examine MMP-9 and TIMP-1 expression in the thoracic aorta after duodenal-jejunal bypass (DJB) surgery on a T2DM rat model induced by a high-fat diet and low dose streptozotocin (STZ).Methods Twenty-one T2DM Wistar rats induced by high-fat diet and low dose STZ were randomly divided into DJB and sham duodenal-jejunal bypass (S-DJB) groups.Ten Wistar rats were fed a normal diet as a control.Recovery of gastrointestinal function post-operation and resumption of a normal diet completed the experiment.Body weight,blood glucose,blood lipid levels,and MMP-9 and TIMP-1 expression levels in aortic endothelial cells were measured throughout.Results DJB rats showed significant weight loss 2 weeks post-operation compared with S-DJB rats.After surgery,DJB rats showed significant improvement and steady glycemic control with improved insulin sensitivity and glucose tolerance.They also exhibited improved lipid metabolism with a decrease in fasting free fatty acids (FFAs) and triglycerides (all P <0.05).Immunohistochemistry showed decreased MMP-9 and TIMP-1 expression 12 weeks after surgery (P < 0.01).Conclusions DJB surgery on an induced T2DM rat model improves blood glucose levels and lipids,following a high-fat diet and low dose STZ treatment.In addition,DJB decreased MMP-9 and TIMP-1 expression in vascular endothelial cells,which may play an important role in delaying the development of T2DM vascular disease.

  19. Expression and correlation of CD44v6, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9 in Krukenberg tumor

    Institute of Scientific and Technical Information of China (English)

    Ge Lou; Ying Gao; Xiao-Ming Ning; Qi-Fan Zhang

    2005-01-01

    AIM: To explore the expression and correlation of CD44v6,vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and matrix metalloproteinase (MMP)-9 in Krukenberg and primary epithelial ovarian carcinoma.METHODS: The expressions of CD44v6, VEGF, MMP-2and MMP-9 were detected by immunohistochemical method in 20 cases of normal ovarian tissues, 38 cases of Krukenberg tumor and 45 cases of primary epithelial ovarian carcinoma.RESULTS: The expression of CD44v6 (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue:x2= 4.516, P= 0.034; Krukenberg tumor tissue vsnormal ovarian tissue: x2 = 19.537, P= 0.001) and VEGF (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: P = 0.026; Krukenberg tumor tissue vs normal ovarian tissue: x2= 22.895, P = 0.001) was significantly higher in primary epithelial ovarian carcinoma tissue and Krukenberg tumor tissue than in normal ovarian tissue.The positive expression rate of MMP-2 and MMP-9 was 0%in the normal ovarian tissue. The positive expression rate of CD44v6 (x2 = 10.398, P = 0.001), VEGF (x2 = 13.149,P= 0.001), MMP-2 (x2= 33.668, P= 0.001) and MMP-9(x2= 38.839, P = 0.001) was remarkably higher in Krukenberg tumor than in primary epithelial ovarian carcinoma. The correlation of CD44v6, VEGF, MMP-2, and MMP-9 was observed in primary epithelial ovarian carcinoma and Krukenberg tumor.CONCLUSION: CD44v6, VEGF, MMP-2, and MMP-9 are involved in ovarian carcinoma, gastric cancer and Krukenberg tumor. Detection of CD44v6, VEGF, MMP-2and MMP-9 may contribute to the diagnosis of ovarian carcinoma, gastric cancer, and Krukenberg tumor.

  20. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    Science.gov (United States)

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  1. Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation

    DEFF Research Database (Denmark)

    Karsdal, Morten Asser; Sumer, Eren Ufuk; Wulf, Helle

    2007-01-01

    was assessed by 1) quantification of C-terminal crosslinking telopeptide of type II collagen fragments (CTX-II), 2) matrix metalloproteinase (MMP)-mediated aggrecan degradation by (342)FFGV- G2 assay, 3) aggrecanase-mediated degradation by (374)ARGS-G2 assay, 4) release of sulfated glycosaminoglycans (s......-dependently inhibited by forskolin and IBMX. The highest concentration of IBMX lowered cytokine-induced release of sGAG by 72%. CONCLUSION: Levels of cAMP in chondrocytes play a key role in controlling catabolic activity. Increased cAMP levels in chondrocytes inhibited MMP expression and activity and consequently...

  2. Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9.

    Science.gov (United States)

    Han, Sang Won; Koh, Won-Gun

    2016-06-21

    Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused.

  3. Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney

    Directory of Open Access Journals (Sweden)

    Tadeusz Sulikowski

    2012-01-01

    Full Text Available Matrix metalloproteinases and tissue inhibitor of metalloproteinases play an important role in the regulation of mesangial cell proliferation and may be involved in ischemia-reperfusion injuries. Preservation solutions are thought to diminish the ischemic injury and appropriate choice of the solution should guarantee a better graft function and good prognosis for graft survival. The aim of the study was to examine the effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney.The study was carried out on Wistar rat kidneys divided into 3 groups: kidneys perfused with 0.9�0NaCl (control group, with UW, and with EC preservation solution.The results show an enhancement of MMP-2 and TIMP-2 gene expression after 12 min of cold ischemia. This increase was more expressed in kidneys preserved with UW solution in comparison with kidneys perfused with EC solution and 0.9�0NaCl. After 24 h of cold ischemia the expression of MMP-2 and TIMP-2 genes in kidney perfused with UW solution decreased, while in kidneys perfused with EC it was increased. After warm ischemia the MMP-2 and TIMP-2 gene expression increased, whereas it was significantly lower in kidneys perfused with EC solution.

  4. Titanium implants induce expression of matrix metalloproteinases in bone during osseointegration.

    Science.gov (United States)

    Shubayev, Veronica I; Brånemark, Rickard; Steinauer, Joanne; Myers, Robert R

    2004-01-01

    Implanted pure titanium fixtures are able to completely integrate with bone, in part because of the formation of a strong extracellular matrix (ECM) bond at the titanium-bone interface. In this study, we used a rodent femur model of intramedullary osseointegration to analyze the changes in immunoreactivity of ECM-controlling matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinase-3 (TIMP-3), and tumor necrosis factor alpha (TNF-alpha) during osseointegration. We observed dramatic increases in MMP-2, MMP-9, MMP-7, TIMP-3, and TNF-alpha in osteocytes, osteoclasts, haversian canals, and the interface matrix in bone ipsilateral to the titanium implant. An increase in TIMP-3, MMP-9, and MMP-7 in hypertrophied chondrocytes and the vascular component of the epiphysial growth plate was also observed in experimental bone. These findings were not seen in contralateral or sham-operated bone, where the titanium fixtures were threaded into the femur and immediately removed. Our data link titanium-induced bone remodeling to changes in expression and distribution of MMPs.

  5. EFFECTS OF GENISTEIN ON INVASION AND MATRIX METALLOPROTEINASE ACTIVITIES OF HT1080 HUMAN FIBROSARCOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Effects of genistein on invasion and matrix metalloproteinase activities were investigated in HT1080 human sarcoma cells.Invasion of HT1080 cells through reconstituted basement membrane was inhibited when the cells were treated with 100 μ mol/L and 200 μ mol/L genistein.At the same concentrations,genistein not only suppressed latent forms of matrix metalloprotinese-2 and-9(MMP-2 and MMP-9) to convert into active forms,but also increase dramatically the tissue inhibitor of metalloproteinase(TIMP-1) mRNA contents and reverse the imbalance of MMPs and TIMPs.However,expressions of MMP-2 and MMP-9 were not significantly affected.Suppression of MMP activation and increase of TIMP-1 expression will decrease matrix degradation by MMPs,and consequently inhibit invasions of the cells.These results emphasized the existence of the imbalance between MMPs and TIMPs in tumor invasion and metastasis formation.The value of genistein as a drug for antiinvasion and anti-metastasis chemotherapy was suggested.

  6. EFFECTS OF GENISTEIN ON INVASION AND MATRIX METALLOPROTEINASE ACTIVITIES OF HT1080 HUMAN FIBROSARCOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    颜春洪; 韩锐

    1999-01-01

    Effects of genistein on invasion and matrix metalloproteinase activities were investigated in HT1080 human sarcoma cells, lnvasion of HTI080 cells through reconstituted basement membnme was inhibited when the cells were treated with 100μmol/L and 200μmol/L genistein; At the same concentrations,genistein not only suppressed latent forms of matrix metalloprotinese-2 and-9 (MMP-2 mad MMP-9) to convert into active forms, but also increase dramatically the tissue inhibitor of metalloproteinase (TIMP-1 ) mRNA contents and reverse the imbalance of MMPs and TIMPs. However, expressions of MMP-2 and MMP-9 were not sigrdficantly affected. Suppression of MMP activation and increase of TMP-1 expression will decrease matrix degradation by MMPs, and consequently inhibit invasions of the cells. These results emphasized the existence of the imbalance between MMPs and TIMPs in tumor invasion mad metastasis formation, The value of genistein as a drug for antiinvasion and anti-metastasis chemotherapy was suggested.

  7. Clinical significance of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 and 2 in Kawasaki disease

    Directory of Open Access Journals (Sweden)

    Ki Wook Yun

    2010-04-01

    Full Text Available Purpose : Kawasaki disease (KD is a systemic vasculitis, a leading cause of pediatric acquired heart disease. Histopathological findings of coronary artery lesion (CAL in KD indicate destruction of the coronary artery wall with diffuse vasculitis. Matrix metalloproteinases (MMPs and their endogenous tissue inhibitors (TIMPs might play central roles in this process. Special attention to MMP-9 has recently been emerging. This study was performed to investigate the clinical significance of MMP-9 and its inhibitors, TIMP-1 and TIMP-2, in KD. Methods : We compared 47 KD patients with 14 febrile controls. Serum MMP-9 and TIMP-1, TIMP-2 were measured by ELISA and compared according to clinical stages and coronary involvement. Results : In acute stage, MMP-9 and TIMP-1 were significantly higher, whereas TIMP-2 was lower, in KD than those in febrile controls (P &lt;0.05. The elevated MMP-9 levels in acute phase significantly decreased during the subacute and convalescent phases (P &lt;0.05. During acute phase, the MMP-9, TIMP-1, and MMP-9/TIMP-2 levels in the CAL group were lower than those in the non-CAL group, but they increased significantly in the subacute phase (P &lt;0.05. MMP-9 has a positive correlation with TIMP-1 in the acute and subacute phases, and negative correlation with TIMP-2 in the subacute and convalescent phases (P &lt;0.05. Conclusion : These results suggest that MMP-9, TIMP-1, and the imbalance in MMP-9 and TIMP-2 might play important roles on the pathophysiology of KD and especially on the development of CAL. However, further larger studies are needed.

  8. Understanding the Mechanisms Through Which Matrix Metalloproteinases (MMPs) Contribute to Breast Cancer-Associated Osteolytic Lesions

    Science.gov (United States)

    2009-03-01

    in osteoblasts results  in an  osteoporosis ‐like phenotype. J Cell Biol 132, 195‐210.  Fournier, P. G., Chirgwin, J. M., and Guise, T. A. (2006...and Thrailkill, K. M. (1994). Proteolysis of insulin‐like growth factor  binding protein‐3 during rat  pregnancy : a role for matrix metalloproteinases

  9. Change Profiles in Matrix Metalloproteinase-2 and-9 in Induced Endometriosis in Mice

    Institute of Scientific and Technical Information of China (English)

    陈琼华; 邱娜璇; 濮德敏; 周玉明; 李天; 杨宏毅

    2010-01-01

    To examine the changes in matrix metalloproteinase-2(MMP-2) and-9(MMP-9) in the development and progression of endometriosis,real time quantitative polymerase chain reaction,enzyme-linked immunoabsorbent assay and gelatin zymography were employed to determine the mRNA and protein levels and activities of MMP-2 and MMP-9 from the first day to the 21st day after the induction in mice with induced endometriosis(experimental group) and sham-operated animals(controls).The results showed that the mRNA and protein...

  10. Relationship between the expression of matrix metalloproteinase-9 and angiogenesis in glioma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To explore the role and significance of matrix metalloproteinase-9(MMP-9)in angiogenesis through observing the relationship between the expression of MMP-9 and microvessel density(MVD)in glioma.Methods The expressions of MMP-9 and CD34 in 10 cases of normal brain tissues and 58 cases of glioma(14 cases of grade Ⅰ,20 cases of grade Ⅱ,15 cases of grade Ⅲ,and 9 cases of grade Ⅳ)were detected by immunohistochemical streptavidin-peroxidase technique.The positive cells of MMP-9 and the positive microves...

  11. Matrix Metalloproteinase and Their Inhibitors: Molecular Aspects of their Roles in the Tumor Metastasis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes, whose physiological functions include tissue remo-delling and embryogenesis. The importance of this group of proteins in the processes of tumor invasion and metastasis is now widely acknowledged, and has led to the search for MMP inhibitors for use as anticancer treatments in a clinical setting. The review aims to introduce current research relating to MMPs as well as their native and synthetic inhibitor, with particular emphasis on the molecular aspects of their roles in tumor metastasis.

  12. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.

    Science.gov (United States)

    Apte, Suneel S; Parks, William C

    2015-01-01

    This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes

  14. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review

    OpenAIRE

    Archana Venugopal; T.N. Uma Maheswari

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight...

  15. Fluorinated matrix metalloproteinases inhibitors--Phosphonate based potential probes for positron emission tomography.

    Science.gov (United States)

    Beutel, Bernd; Daniliuc, Constantin G; Riemann, Burkhard; Schäfers, Michael; Haufe, Günter

    2016-02-15

    Fluorine-containing inhibitors of matrix metalloproteinases (MMPs) can serve as lead structures for the development of (18)F-labeled radioligands. These compounds might be useful as non-invasive imaging probes to characterize pathologies associated with increased MMP activity. Results with a series of fluorinated analogs of a known biphenyl sulfonamide inhibitor have shown that fluorine can be incorporated into two different positions of the molecular scaffold without significant loss of potency in the nanomolar range. Additionally, the potential of a hitherto unknown fluorinated tertiary sulfonamide as MMP inhibitor has been demonstrated.

  16. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via their acti...

  17. Expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in radiation exposed small intestinal mucosa of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Hyon Joo [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Lee, Kyoung Ja; Rhee, Chung Sik [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2003-03-01

    The matrix metalloproteinases (MMPs) are a family of enzymes whose main function is the degradation of the extracellular matrix. Several studies have revealed that MMPs and TIMPs are related to the wound healing process and in photoaging caused by ultraviolet irradiation. However, the expressions of MMP and TIMP after irradiation have not, to the best of our knowledge, been studied. This study investigates the expressions of MMP-2 and TIMP-2 in rat intestinal mucosa following irradiation. The entire abdomen of Sprague-Dawley rats was irradiated using a single dose method. The rats were sacrificed on day 1, 2, 3, 5, 7 and 14 following irradiation. Histopathological observations were made using hematoxilin and eosin staining. The expressions of MMP-2 and TIMP-2 were examined using immunohistochemistry, immunoblotting and ELISA. Radiation induced damage, associated with atrophic villi, and infiltration of inflammatory cells was observed from the first postirradiation day, and severe tissue damage was observed on the second and the third postirradiation days. An increase in mitosis and the number of regenerating crypts, as evidence of regeneration, were most noticeable on the fifth postirradiation day. From the immunohistochemistry, the MMP-2 expression was observed from the first postirradiation day, but was most conspicuous on the third and the fifth postirradiation days. The TIMP-2 expression was most conspicuous on the fifth postirradiation day. From the immunoblotting, the MMP-2 expression was strongly positive on the third postirradiation day, and that of TIMP-2 showed a strong positive response on the fifth postirradiation day. In ELISA, tests, the expressions of MMP-2 and TIMP-2. were increased in the postirradiation groups compared to those of the normal controls, and showed a maximum increase on the fifth postirradiation day. These results were statistically significant. The expressions of MMP-2 and TIMP-2 were increased in the intestinal mucosa of the rats

  18. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    Science.gov (United States)

    Yang, Chih-Chang; Lin, Cheng-Yu; Wang, Hwai-Shi; Lyu, Shaw-Ruey

    2013-01-01

    Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  19. Expressions of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in malignant peripheral nerve sheath tumor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Matrix metalloproteinase-9 (MMP-9) can degrade collagen Ⅳ (the main structural ingredient of basilar membrane), and it also plays an important role in tumor vascularization, tumor cell progression, formation of metastatic focus, etc. Tissue inhibitor of metalloproteinase-1 (TIMP-1) can bind with MMP-9 to form 1∶1 compound and inhibit its activity, and can negatively regulate the tumor progression and metastasis.OBJECTIVE: To analyze the relationship of MMP-9 and TIMP-1 expressions with the pathological grade,metastasis and prognosis of malignant peripheral nerve sheath tumor (MPNST).DESIGN: An observational comparative experiment.SETTING: Heze Medical College.PARTICIPANTS: Fifty-eight surgical pathological samples, which were clearly diagnosed to be MPNST,were collected from the pathological laboratory archives in the Department of Pathology, Heze Municipal Hospital from January 1988 to December 2003. The MPNST pathological types were common tumor in 53 cases, malignant triton tumor in 2 cases, epithelial MPNST in 2 cases and MPNST with gland differentiation in 1 case. The pathological grade was grade 1 in 11 cases, grade 2 in 24 cases and grade 3 in 23 cases.Besides, the resected tumor samples of 20 patients with benign peripheral nerve tumor (10 cases of nerve sheath tumor and 10 cases of neurofibromatosis) and the normal peripheral nerves (by-products of some surgeries) of 5 patients were also collected. The samples were used with the approval of the patients.Rat-anti-human MMP-9, TIMP-1 monoclonal antibody and S-P kit were purchased from Fuzhou Maixin Biotechnology, Co.,Ltd.METHODS: The documented paraffin blocks were again prepared to sections of 5 μ m. The expressions of MMP-9 and TIMP-1 in the samples were detected with mmunohistochemical S-P method. The relationships of the MPNST severity, recurrence, metastasis and survival rate with the expressions of MMP-9 and TIMP-1 were analyzed.MAIN OUTCOME MEASURES: Relationships of MMP-9 and TIMP-1

  20. Comparison of matrix metalloproteinase-3 and tissue inhibitor of matrix metalloproteinase-1 levels in gingival crevicular fluid in periodontal health, disease and after treatment: A clinico biochemical study

    Directory of Open Access Journals (Sweden)

    P Mohan Kumar

    2013-01-01

    Full Text Available Background: Considering the role of matrix metalloproteinase-3 (MMP-3 and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 in the pathogenesis of periodontitis, the present study is to estimate the levels of MMP-3 and TIMP-1 in gingival crevicular fluid (GCF in periodontal health, disease and to evaluate the effect of periodontal therapy on MMP-3 and TIMP-1 concentrations in GCF. Materials and Methods: A periodontal examination and collection of GCF by extra-crevicular method was performed in 30 subjects selected randomly and categorized into 3 groups. Group I consists of 10 subjects Group II consists of 20 patients and Group III consists of 20 patients of Group II. Non surgical periodontal therapy was performed, and GCF was collected after 8 weeks from the same site of 20 chronic periodontitis patients who are considered as Group III. MMP- 3 and TIMP-1 levels were estimated in GCF-samples by using enzyme-linked immunosorbent assay. The findings were analyzed using the software and descriptive statistical methods such as Mann- Whitney U-test and Kruskal-Wallis test. P value < 0.001 was considered significant. Results: MMP-3 and TIMP-1 was detected in all samples. Highest mean MMP-3 concentrations in GCF were obtained for Group II (7.490 ng/ml while the lowest concentrations were seen in Group I (0.344 ng/ml and Group III (2.129 ng/ml. This suggests that MMP-3 levels in GCF increases proportionally with the progression of periodontal disease and decreases after treatment. Lowest mean TIMP-1 concentrations in GCF were obtained for Group-II (1.592 ng/ml, while the highest concentrations were seen in Group-I (8.78 ng/ml and Group-III (6.40 ng/ml. This suggests that TIMP-1 levels in GCF decreases proportionally with progression of periodontal disease and increases after treatment. Conclusion: There is a substantial increase in the concentrations of MMP-3 and decrease in TIMP-1 as periodontal disease progress. Since MMP-3 and TIMP-1 levels

  1. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury

    Institute of Scientific and Technical Information of China (English)

    Linda L. Phillips; Julie L. Chan; Adele E. Doperalski; Thomas M. Reeves

    2014-01-01

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic re-organization after brain insult. The present review ifrst summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metal-loproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellu-lar response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.

  2. Analysis of X-ray Structures of Matrix Metalloproteinases via Chaotic Map Clustering

    Directory of Open Access Journals (Sweden)

    Gargano Gianfranco

    2010-10-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. With this in mind, the perception of the intimate relationships among diverse MMPs could be a solid basis for accelerated learning in designing new selective MMP inhibitors. In this regard, decrypting the latent molecular reasons in order to elucidate similarity among MMPs is a key challenge. Results We describe a pairwise variant of the non-parametric chaotic map clustering (CMC algorithm and its application to 104 X-ray MMP structures. In this analysis electrostatic potentials are computed and used as input for the CMC algorithm. It was shown that differences between proteins reflect genuine variation of their electrostatic potentials. In addition, the analysis has been also extended to analyze the protein primary structures and the molecular shapes of the MMP co-crystallised ligands. Conclusions The CMC algorithm was shown to be a valuable tool in knowledge acquisition and transfer from MMP structures. Based on the variation of electrostatic potentials, CMC was successful in analysing the MMP target family landscape and different subsites. The first investigation resulted in rational figure interpretation of both domain organization as well as of substrate specificity classifications. The second made it possible to distinguish the MMP classes, demonstrating the high specificity of the S1' pocket, to detect both the occurrence of punctual mutations of ionisable residues and different side-chain conformations that likely account for induced-fit phenomena. In addition, CMC demonstrated a potential comparable to the most popular UPGMA (Unweighted Pair Group Method with Arithmetic mean method that, at present, represents a standard clustering bioinformatics approach. Interestingly, CMC and

  3. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  4. Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension.

    Science.gov (United States)

    Martinez-Aguayo, Alejandro; Campino, Carmen; Baudrand, Rene; Carvajal, Cristian A; García, Hernán; Aglony, Marlene; Bancalari, Rodrigo; García, Lorena; Loureiro, Carolina; Vecchiola, Andrea; Tapia-Castillo, Alejandra; Valdivia, Carolina; Sanhueza, Sebastian; Fuentes, Cristobal A; Lagos, Carlos F; Solari, Sandra; Allende, Fidel; Kalergis, Alexis M; Fardella, Carlos E

    2016-09-01

    To identify novel biomarkers associated with pediatric primary hypertension. We recruited 350 participants (4-16 years). Anthropometric parameters and aldosterone, plasma renin activity, cortisol, cortisone, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), high-sensitivity C-reactive protein, adiponectin, IL-6, plasminogen activator inhibitor type 1 levels and matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9 and MMP-2) activities were measured. Genomic DNA was isolated. Patients with altered glucose metabolism, severe obesity [BMI-SD score (BMI-SDS) > 2.5], renovascular disease, primary aldosteronism and apparent mineralocorticoid excess syndrome were excluded. In selected participants (n = 320), SBP was positively correlated with BMI-SDS (r = 0.382, P cortisone ratio (r = 0.231, P cortisone ratio (P cortisone ratio (OR = 3.92; 95% CI = 1.98-7.71) and increased MMP-9 activity (OR = 4.23; 95% CI = 2.15-8.32). We report that MMP-9 activity and the cortisol/cortisone ratio were higher in pediatric primary hypertensive patients, and these associations were independent of the effect of obesity. The potential role of these novel biomarkers in predicting hypertension risk and blood pressure regulation warrants further investigation.

  5. Immunohistochemical expression of matrix metalloproteinases in photodamaged skin by photodynamic therapy.

    Science.gov (United States)

    Almeida Issa, M C; Piñeiro-Maceira, J; Farias, R E; Pureza, M; Raggio Luiz, R; Manela-Azulay, M

    2009-09-01

    Photodynamic therapy (PDT) has been described for photoageing treatment, but its mechanism of action is not clarified. Although PDT-induced matrix metalloproteinase (MMP) expression and collagen production have been studied in normal skin and in inflammatory disease, there is no report about the effect of PDT on the extracellular matrix in photodamaged skin. To evaluate skin remodelling induced by methyl aminolaevulinate (MAL)-PDT in photodamaged skin by histological and immunohistochemical studies. Fourteen patients were treated with two sessions of MAL-PDT. The light source was a light-emitting diode (635 nm, 37 J cm(-2)). Skin biopsies were performed in all patients before and at 3 and 6 months after treatment. Immunohistochemical studies evaluated collagen types I and III, MMP-1, MMP-3, MMP-7, MMP-9, MMP-12 and tissue inhibitor of metalloproteinases-1. Global improvement in photodamaged skin was observed. A significant increase in expression of MMP-9 in the dermis was detected at 3 months after treatment (P = 0.002). Significant increases in the expression of collagen type I at 3 months (P = 0.002) and at 6 months after treatment (P = 0.001) were also observed. Skin remodelling induced by MAL-PDT was demonstrated in photodamaged skin. Two sessions of MAL-PDT increases immunohistochemical expression of MMP-9 in the dermis at 3 months after treatment, and also of collagen type I.

  6. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  7. The Behavior of Matrix Metalloproteinases and Their Inhibitors in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Zsolt Tulassay

    2012-10-01

    Full Text Available Matrix metalloproteinases (MMPs play an important role in the degradation of extracellular matrix components crucial for tumor growth, invasion and metastasis. MMPs are controlled by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs. We and others have demonstrated that MMPs and TIMPs are especially important in the process of tumor invasion, progression and the metastasis of colorectal cancer (CRC. It has been proposed that MMPs and TIMPs might play a part not only in tumor invasion and initiation of metastasis but also in carcinogenesis from colorectal adenomas. Several recent studies demonstrated that high preoperative serum or plasma MMP-2, MMP-9 and TIMP-1 antigen levels are strong predictive factors for poor prognosis in patients with CRC and their determination might be useful for identification of patients with higher risk for cancer recurrence. MMP-9 and TIMP-1 have significant potential tumor marker impact in CRC. Their diagnostic sensitivity is consistently higher than those of conventional biomarkers. The pharmacological targeting of CRC by the development of a new generation of selective inhibitors of MMPs, that is highly specific for certain MMPs, is a promising and challenging area for the future.

  8. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    Science.gov (United States)

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  9. Prophylactic sesame oil attenuates sinusoidal obstruction syndrome by inhibiting matrix metalloproteinase-9 and oxidative stress.

    Science.gov (United States)

    Periasamy, Srinivasan; Yang, Shan-Shan; Chen, Shin-Yi; Chang, Chih-Ching; Liu, Ming-Yie

    2013-07-01

    Sinusoidal obstruction syndrome (SOS) occurs in patients undergoing hematopoietic cell transplantation and chemotherapy. The chemotherapeutic drugs oxaliplatin and cyclophosphamide cause SOS. Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its antioxidant property. The authors investigated the protective effect of prophylactic sesame oil against monocrotaline-induced SOS in rats. Male Sprague-Dawley rats were gavaged with a single dose of sesame oil (0.5, 1, 2, or 4 mL/kg). One hour later, those rats were gavaged with monocrotaline (90 mg/kg) to induce SOS. Control rats were treated with saline only. Aspartate transaminase, alanine transaminase, laminin, collagen, myeloperoxidase, nitrate content, lipid peroxidation, glutathione levels, matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed 48 hours after the monocrotaline gavage. All tested parameters except TIMP-1, laminin, collagen, and glutathione were higher in monocrotaline-treated rats than in saline-only-treated control rats. In sesame oil-treated rats, all tested parameters except TIMP-1, laminin, collagen, and glutathione were significantly attenuated compared with monocrotaline-only-treated rats. Sesame oil downregulated MMP-9 expression but upregulated TIMP-1 expression in monocrotaline-only-treated rats. In addition, a histological analysis of liver tissue samples showed that sesame oil showed significant protection. A single prophylactic dose of sesame oil protects against SOS by downregulating MMP-9 expression, upregulating TIMP-1 expression, and inhibiting oxidative stress.

  10. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shubham Dayal

    2017-03-01

    Full Text Available The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1 to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase activity to increase cell migration. Activity of matrix metalloproteinase (MMP-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  11. Contributions of Matrix Metalloproteinases to Neural Plasticity, Habituation, Associative Learning and Drug Addiction

    Directory of Open Access Journals (Sweden)

    John W. Wright

    2009-01-01

    Full Text Available The premise of this paper is that increased expression of matrix metalloproteinases (MMPs permits the reconfiguration of synaptic connections (i.e., neural plasticity by degrading cell adhesion molecules (CAMs designed to provide stability to those extracellular matrix (ECM proteins that form scaffolding supporting neurons and glia. It is presumed that while these ECM proteins are weakened, and/or detached, synaptic connections can form resulting in new neural pathways. Tissue inhibitors of metalloproteinases (TIMPs are designed to deactivate MMPs permitting the reestablishment of CAMs, thus returning the system to a reasonably fixed state. This review considers available findings concerning the roles of MMPs and TIMPs in reorganizing ECM proteins thus facilitating the neural plasticity underlying long-term potentiation (LTP, habituation, and associative learning. We conclude with a consideration of the influence of these phenomena on drug addiction, given that these same processes may be instrumental in the formation of addiction and subsequent relapse. However, our knowledge concerning the precise spatial and temporal relationships among the mechanisms of neural plasticity, habituation, associative learning, and memory consolidation is far from complete and the possibility that these phenomena mediate drug addiction is a new direction of research.

  12. Matrix Metalloproteinases During Axonal Regeneration, a Multifactorial Role from Start to Finish.

    Science.gov (United States)

    Andries, Lien; Van Hove, Inge; Moons, Lieve; De Groef, Lies

    2017-04-01

    By proteolytic cleavage, matrix metalloproteinases (MMPs) not only remodel the extracellular matrix (ECM) but they also modify the structure and activity of other proteinases, growth factors, signaling molecules, cell surface receptors, etc. Their vast substrate repertoire adds a complex extra dimension of biological control and turns MMPs into important regulatory nodes in the protease web. In the central nervous system (CNS), the detrimental impact of elevated MMP activities has been well-described for traumatic injuries and many neurodegenerative diseases. Nonetheless, there is ample proof corroborating MMPs as fine regulators of CNS physiology, and well-balanced MMP activity is instrumental to development, plasticity, and repair. In this manuscript, we review the emerging evidence for MMPs as beneficial modulators of axonal regeneration in the mammalian CNS. By exploring the multifactorial causes underlying the inability of mature axons to regenerate, and describing how MMPs can help to overcome these hurdles, we emphasize the benign actions of these Janus-faced proteases.

  13. Matrix metalloproteinase expression and localization in turkey (Meleagris gallopavo) during the endochondral ossification process.

    Science.gov (United States)

    Simsa, S; Genina, O; Ornan, E Monsonego

    2007-06-01

    Vertebrate long bones are formed by endochondral ossification, a process accompanied by changes in extracellular matrix synthesis and remodeling, performed mainly by the matrix metalloproteinases (MMP). The temporal/spatial expression patterns of 5 members of the MMP family known to be important for endochondral ossification were studied, for the first time, in the turkey growth plate during embryonic and juvenile stages. The expression of MMP-2 was detected in the proliferative zone, MMP-3, MMP-9, and MMP-13 in cells lining the blood vessels; MMP-13 was also detected in hypertrophic chondrocytes. The MMP-16 expression was detected in the reserve zone of the growth plate. These results present a detailed survey of turkey MMP, serving as a data source (atlas) for further studies in this subject.

  14. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling.

    Science.gov (United States)

    Lindsey, Merry L; Iyer, Rugmani Padmanabhan; Jung, Mira; DeLeon-Pennell, Kristine Y; Ma, Yonggang

    2016-02-01

    Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.

  15. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...... differences between the eight enzyme-substrate complexes were studied with particular emphasis on the active site, and possible sites for obtaining selectivity among the MMP's are discussed. Differences in the P1' pocket are well-documented and have been extensively exploited in inhibitor design. The present......Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...

  16. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review.

    Science.gov (United States)

    Christensen, Sara; Purslow, Peter P

    2016-09-01

    Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted.

  17. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis.

    Science.gov (United States)

    Peng, Wen-jia; Yan, Jun-wei; Wan, Ya-nan; Wang, Bing-xiang; Tao, Jin-hui; Yang, Guo-jun; Pan, Hai-feng; Wang, Jing

    2012-12-01

    Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.

  18. Nicotine Treatment Induces Expression of Matrix Metalloproteinases in Human Osteoblastic Saos-2 Cells

    Institute of Scientific and Technical Information of China (English)

    Tomoko KATONO; Takayuki KAWATO; Natsuko TANABE; Naoto SUZUKI; Kazuhiro YAMANAKA; Hitoshi OKA; Masafumi MOTOHASHI; Masao MAENO

    2006-01-01

    Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1(PAI- 1), α7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3,and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the α7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process.

  19. Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer

    Science.gov (United States)

    Hojilla, Carlo V; Wood, Geoffrey A; Khokha, Rama

    2008-01-01

    Two rapidly evolving fields are converging to impact breast cancer: one has identified novel substrates of metalloproteinases that alter immune cell function, and the other has revealed a role for inflammation in human cancers. Evidence now shows that the mechanisms underlying these two fields interact in the context of breast cancer, providing new opportunities to understand this disease and uncover novel therapeutic strategies. The metalloproteinase class of enzymes is well studied in mammary gland development and physiology, but mostly in the context of extracellular matrix modification. Aberrant metalloproteinase expression has also been implicated in breast cancer progression, where these genes act as tumor modifiers. Here, we review how the metalloproteinase axis impacts mammary physiology and tumorigenesis and is associated with inflammatory cell influx in human breast cancer, and evaluate its potential as a regulator of inflammation in the mammary gland. PMID:18394187

  20. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Nadia Calabriso

    2016-08-01

    Full Text Available Matrix metalloproteinases (MMPs are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases’ activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5–25 μg/mL of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively or their specific components (0.5–25 μmol/L, before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  1. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis.

    Science.gov (United States)

    Wang, Ling-Feng; Tai, Chih-Feng; Chien, Chen-Yu; Chiang, Feng-Yu; Chen, Jeff Yi-Fu

    2015-05-01

    Vitamin D and its derivatives have modulatory effects in immunological and inflammatory responses. Such properties suggest that they might have an impact on chronic inflammatory airway diseases, including nasal polyposis. The aim of this study was to understand the role of vitamin D in chronic rhinosinusitis with nasal polyps (CRSwNP) by investigating its effect on the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 in nasal polyp-derived fibroblasts. Two primary fibroblast cultures were established from nasal polyp tissues obtained during surgery. The nasal polyp-derived fibroblasts were stimulated with tumor necrosis factor-α (TNF-α; 10 ng/mL) for 24 hours, followed by replacement with media alone or with vitamin D derivatives (calcitriol or tacalcitol; 10μM) and incubated for another 24 hours. After the treatments, the levels of MMP-2 and MMP-9 secreted were evaluated by both enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. ELISA results revealed that TNF-α could substantially stimulate the secretion of MMP-2 (p MMP-2 and p MMP-2 and MMP-9). The ELISA results were also confirmed by Western blot analysis. The inhibitory effect of vitamin D derivatives on MMP-2 and MMP-9 secretion could potentiate their application in pharmacotherapy of Taiwanese CRSwNP patients.

  2. Matrix metalloproteinase-13 expression in the progression of colorectal adenoma to carcinoma : Matrix metalloproteinase-13 expression in the colorectal adenoma and carcinoma.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2014-06-01

    Most colorectal carcinomas (CRCs) are considered to arise from conventional adenoma based on the concept of the adenoma-carcinoma sequence. Matrix metalloproteinases (MMPs) are known to be overexpressed as normal mucosa progresses to adenomas and carcinomas. There has been little previous investigation about MMP-13 expression in adenoma-carcinoma sequence. In this study, we aimed to investigate the immunohistochemical expression of MMP-13 in colorectal adenoma and CRC specimens using tissue microarray (TMA) technique. A total of 40 cases of CRC associated with adenoma were collected from files of the Pathology laboratory at Mansoura Gastroenterology Center between January 2007 and January 2012. Sections from TMA blocks were prepared and stained for MMP-13. Immunoreactivity to MMP-13 staining was localized to the cytoplasm of mildly, moderately, and severely dysplatic cells of adenomas and CRC tumor cells that were either homogenous or heterogeneous. There was no significant difference in MMP-13 expression between adenomas and CRCs either non-mucinous or mucinous. Adenomas with high MMP-13 expression were significantly associated with moderate to marked degree of inflammatory cellular infiltrate and presence of familial adenomatous polyps. In conclusion, MMP-13 may be a potential biological marker of early tumorigenesis in the adenoma-carcinoma sequence.

  3. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    Science.gov (United States)

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  4. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases.

    Science.gov (United States)

    Hui, Wang; Litherland, Gary J; Elias, Martina S; Kitson, Gareth I; Cawston, Tim E; Rowan, Andrew D; Young, David A

    2012-03-01

    To investigate the effect of leptin on cartilage destruction. Collagen release was assessed in bovine cartilage explant cultures, while collagenolytic and gelatinolytic activities in culture supernatants were determined by bioassay and gelatin zymography. The expression of matrix metalloproteinases (MMP) was analysed by real-time RT-PCR. Signalling pathway activation was studied by immunoblotting. Leptin levels in cultured osteoarthritic joint infrapatellar fat pad or peri-enthesal deposit supernatants were measured by immunoassay. Leptin, either alone or in synergy with IL-1, significantly induced collagen release from bovine cartilage by upregulating collagenolytic and gelatinolytic activity. In chondrocytes, leptin induced MMP1 and MMP13 expression with a concomitant activation of STAT1, STAT3, STAT5, MAPK (JNK, Erk, p38), Akt and NF-κB signalling pathways. Selective inhibitor blockade of PI3K, p38, Erk and Akt pathways significantly reduced MMP1 and MMP13 expression in chondrocytes, and reduced cartilage collagen release induced by leptin or leptin plus IL-1. JNK inhibition had no effect on leptin-induced MMP13 expression or leptin plus IL-1-induced cartilage collagen release. Conditioned media from cultured white adipose tissue (WAT) from osteoarthritis knee joint fat pads contained leptin, induced cartilage collagen release and increased MMP1 and MMP13 expression in chondrocytes; the latter being partly blocked with an anti-leptin antibody. Leptin acts as a pro-inflammatory adipokine with a catabolic role on cartilage metabolism via the upregulation of proteolytic enzymes and acts synergistically with other pro-inflammatory stimuli. This suggests that the infrapatellar fat pad and other WAT in arthritic joints are local producers of leptin, which may contribute to the inflammatory and degenerative processes in cartilage catabolism, providing a mechanistic link between obesity and osteoarthritis.

  5. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette;

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in cancer...

  6. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in cancer...

  7. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1...

  8. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    Directory of Open Access Journals (Sweden)

    Guanglin Shen

    2016-01-01

    Full Text Available Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI questionnaire, fluorescein tear film break-up time (TBUT, corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P=0.03, whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S, and progesterone. Tear MMP-2 and MMP-9 concentrations (P<0.001, as well as the MMP-9 mRNA expression in conjunctival samples (P=0.02, were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye.

  9. Effect of topical fluoroquinolones on the expression of matrix metalloproteinases in the cornea

    Directory of Open Access Journals (Sweden)

    O'Brien Terrence P

    2003-10-01

    Full Text Available Abstract Background Matrix metalloproteinases play an important role in extracellular matrix deposition and degradation. Based on previous clinical observations of corneal perforations during topical fluoroquinolone treatment, we decided to evaluate the comparative effects of various fluoroquinolone eye drops on the expression of matrix metalloproteinases (MMPs in cornea. Methods Eighty female Lewis rats were divided into two experimental groups: intact and wounded corneal epithelium. Uniform corneal epithelial defects were created in the right eye with application of 75% alcohol in the center of the tissue for 6 seconds. The treatment groups were tested as follows: 1 Tear drops: carboxymethylcellulose sodium 0.5 % (Refresh, Allergan; 2 Ciprofloxacin 0.3% (Ciloxan, Alcon; 3 Ofloxacin 0.3%(Ocuflox, Allergan; 4 Levofloxacin 0.5%(Quixin, Santen. Eye drops were administered 6 times a day for 48 hours. Rats were sacrificed at 48 hours. Immunohistochemical analysis and zymography were conducted using antibodies specific to MMPs-1, 2, 8 and 9. Results MMP-1, MMP-2, MMP-8 and MMP-9 expression were detected at 48 hrs in undebrided corneal epithelium groups treated with the topical fluoroquinolones. No statistical difference was observed in quantitative expression of MMPs among ciprofloxacin 0.3%, ofloxacin 0.3%, levofloxacin 0.5%. When the artificial tear group and the fluoroquinolone groups with corneal epithelial defect were compared, increased expression of MMPs was observed as a result of the wound healing process. However, the fluoroquinolone treated group exhibited high statistically significantly levels of MMPs expression. Conclusions Our study provides preliminary evidence that topical application of fluoroquinolone drugs can induce the expression of MMP-1, MMP-2, MMP-8 and MMP-9 in the undebrided corneal epithelium compared to artificial tear eye drops.

  10. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    董凤芹; 李红; 蔡卫民; 陶君; 李群; 阮昱; 郑芬萍; 张哲

    2004-01-01

    Background The changes in matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions were examined in the kidneys of diabetic rats to investigate the degradative pathway of collagen type Ⅳ (C-Ⅳ) and the protective effects of pioglitazone on an experimental model of diabetic nephropathy.Methods In 54 SD rats used in our study, 18 served as normal controls. Diabetes mellitus was induced in 36 age- and weight-matched rats by intraperitoneal injection of streptozotocin (70 mg/kg); 18 of the diabetic rats were allocated at random to receive pioglitazone (20 mg*kg-1*d-1) in their drinking water and 18 served as diabetic controls. Rats were killed after 2, 4, or 8 weeks of treatment. Kidneys were examined pathomorphologically and the expressions of MMP-2, MMP-9, and C-Ⅳ were analyzed by immunohistochemistry, and the results were quantified by image analysis techniques.Results Diabetes mellitus was associated with a decrease in the expression of MMP-2 in the glomeruli (P0.05, vs control). The expression of MMP-9 did not show any change when comparing the three groups (P>0.05, vs control). STZ-diabetic rats were also associated with an increase in the expression of C-Ⅳ in the glomeruli and the interstitium (P<0.05, vs control). All diabetes-associated changes in MMP-2 expression were attenuated by pioglitazone treatment in association with reduced C-Ⅳ accumulation. Conclusions These results indicate that a decrease in MMP-2 expression in the glomeruli of diabetic rats may lead to impairment of C-Ⅳ degradation and contribute to the matrix accumulation in diabetic nephropathy. Pioglitazone treatment, which can attenuate the decrease of glomerular MMP-2 and the increase of C-Ⅳ degradation, has curative effects on diabetic nephropathy.

  11. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease.

    Science.gov (United States)

    MacColl, Elisabeth; Khalil, Raouf A

    2015-12-01

    Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca(2+) signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined.

  12. Exogenous l-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension

    DEFF Research Database (Denmark)

    Garcia, Vinicius P; Rocha, Helena N M; Silva, Gustavo M;

    2016-01-01

    AIMS: Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective l-arginine-NO pathway. Exogenous l-arginine improves endothelial function to prevent the onset of cardiovascular ...... between groups during the saline infusion (P>0.05). SIGNIFICANCE: Exogenous l-arginine diminished metalloproteinase-2 and -9 activities and MMP-9/TIMP-1 ratio along with restoring the oxidative stress balance in patients with hypertension.......AIMS: Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective l-arginine-NO pathway. Exogenous l-arginine improves endothelial function to prevent the onset of cardiovascular...

  13. Effect of Electro-acupuncture on Matrix Metalloproteinase in Degenerated Cervical Intervertebral Disc of Rats

    Institute of Scientific and Technical Information of China (English)

    SHI Zheng; HUANG Qiang; MA Xiao-peng; LIU Shi-min; LIU Hui-rong; ZHU Zhong-chun

    2007-01-01

    To observe the effect of electro-acupuncture on matrix metalloproteinase in degenerated cervical intervertebral disc rats.Methods:The rat model of cervical intervertebral disc degeneration was induced by unbalanced dynamic and static forces,then the rats were randomly allocated to model group,electro-acupuncture groupⅠ(acupoints Dazhu(BL 11) and Tianzhu(BL 10) were electro-acupunctured),and electro-acupuncture group Ⅱ(acupoints Dazhu (BL 11),Tianzhu(BL 10)and Shenshu(BL 23) were electro-acupunctured),with the normal rats as control.then the HE staining method was adopted to observe the morphological change of cervical intervertebral disc and the immunohistochemical staining method was used to detect the marx metalloproteinases-1(MMP-1) and matrix metalloproteinases-3(MMP-3) in cervical intervertebral disc.Results:The morphological observation showed that after electro-acupuncture treatment,the degrees of cervical intervertebral disc degeneration in electro-acupuncture groupⅠand electro-acupuncture group Ⅱ were alleviated,and the electro-acupuncture group Ⅱ was superior to electro-acupuncture group Ⅰ.The expressions of MMP-1 and MMP-3 in degenerated cervical intervertebral disc were increased(P<0.01),and after electro-acupuncture treatment,the expressions of MMP-1 and MMP-3 in degenerated cervical intervertebral disc were decreased,especially the electro-acupuncture group Ⅱpresented the better effect as compared with electro-acupuncture group Ⅰ(P<0.05).Conclusions:Electro-acupuncture at acupoints Dazhu (BL 11) and Tianzhu (BL 10) had a certain therapeutic effect on cervical intervertebral disc degeneration,and in combination with acupoint Shenshu(BL 23),this therapeutic effect could be enhanced,its action mechanism might be that electro-acupuncture can reduce the expressions of MMP-l and MMP-3 in degenerated cervical intervertebral disc,inhibit the degradation of matrix in intervertebral disc.so as to relieve cervical intervertebral disc

  14. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers and heterocomplexes, but our...... knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast with a conventional notion of a dimeric nature of MMP-9 homomultimers, we...... in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers compared with monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1....

  15. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis.

    Science.gov (United States)

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-03-28

    To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish.

  16. Monocyte matrix metalloproteinase production in Type 2 diabetes and controls – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Davies Isabel R

    2003-03-01

    Full Text Available Abstract Background Coronary plaque rupture may result from localised over expression of matrix metalloproteinases (MMPs within the plaque by infiltrating monocyte – macrophages. As MMP expression can be promoted by the modified lipoproteins, oxidative stress and hyperglycaemia that characterises Type 2 diabetes, we hypothesised that peripheral monocytes in these patients, exposed to these factors in vivo, would demonstrate increased MMP production compared to controls. Methods We examined peripheral venous monocyte expression of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1 in 18 controls and 22 subjects with Type 2 diabetes and no previous cardiovascular complications. Results No significant difference in MMP-1, 3 or 9 or TIMP-1 production was observed between control and diabetes groups. Conclusions Monocyte MMP-1, 3, and 9, and TIMP-1, production are not abnormal in Type 2 diabetes. This data cannot be extrapolated to monocyte – macrophage behaviour in the vessel wall, but it does suggest MMP and TIMP-1 expression prior to monocyte infiltration and transformation are not abnormal in Type 2 diabetes.

  17. Matrix metalloproteinase-8 levels in periodontal disease patients: A systematic review.

    Science.gov (United States)

    de Morais, E F; Pinheiro, J C; Leite, R B; Santos, P P A; Barboza, C A G; Freitas, R A

    2017-09-12

    Periodontal disease is characterized as a disorder of the oral microbiota resulting in an immune response which, in turn, leads to the destruction of periodontal tissue. Matrix metalloproteinase-8 (MMP-8) has been reported as the major metalloproteinase involved in periodontal disease, being present at high levels in gingival crevicular fluid and salivary fluid (SF). The aim of this systematic review was to evaluate the scientific literature regarding the expression of MMP-8 in gingival crevicular fluid and SF in patients with periodontal disease, analyzing its validity as a possible biomarker in the diagnosis of periodontal disease. A systematic review of the literature was performed using the PubMed/Medline, CENTRAL and Science Direct databases. Studies concerning the use of MMP-8 in the diagnosis of periodontal disease that evaluated its effectiveness as a biomarker for periodontal disease were selected. The search strategy provided a total of 6483 studies. After selection, six articles met all the inclusion criteria and were included in the present systematic review. The studies demonstrated significantly higher concentrations of MMP-8 in patients with periodontal disease compared with controls, as well as in patients presenting more advanced stages of periodontal disease. The findings on higher MMP-8 concentrations in patients with periodontal disease compared with controls imply the potential adjunctive use of MMP-8 in the diagnosis of periodontal disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Increased expression of the matrix metalloproteinase 2 in differentiating Tera 2 human embryonal carcinoma cells.

    Science.gov (United States)

    Tienari, J; Pertovaara, L; Saksela, O; Lehtonen, E; Vartio, T

    1994-01-15

    Secretion of proteolytic enzymes by cells has been implicated in tissue remodeling during embryonic development as well as in invasive neoplastic diseases. We studied the regulation of type-IV-collagenase activity in Tera 2 human embryonal carcinoma cells, which in the undifferentiated state proliferate rapidly and are tumorigenic. The undifferentiated cells produced relatively low levels of matrix-metalloproteinase-2 (MMP-2) activity. This activity was not markedly affected by exogenous basic fibroblast growth factor (bFGF) or 12-O-tetradecanoyl-phorbol-13-acetate (TPA), even though the plasminogen activator activity of the cells was increased by these agents. Tera 2 cells can be induced by retinoic acid to differentiate into quiescent cells, of which many express neuronal characteristics. The type-IV-collagenase activity of the cells increased markedly during the differentiation. This increase was mainly due to increased expression of MMP-2. Expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) was not markedly affected by the differentiation of Tera 2 cells. The results show that in the Tera 2 cell system, increased expression of MMP-2 is characteristic of the differentiated derivatives. This is in contrast with many other model systems, where increased type-IV-collagenase activity is associated with the malignant phenotype. This pattern of regulation may reflect the facts that Tera 2 cells resemble early embryonic cells and that their differentiation mimics related cell-differentiation processes in the developing embryo.

  19. Acute eccentric resistance exercise decreases matrix metalloproteinase activity in obese elderly women.

    Science.gov (United States)

    Nascimento, Dahan da Cunha; Navalta, James Wilfred; Durigan, João Luiz Quagliotti; Marqueti, Rita de Cassia; Tibana, Ramires Alsamir; Luiz Franco, Octavio; de Almeida, Jesser Alves; Camarço, Nathalia Ferreira; Neto, Ivo Vieira de Sousa; Prestes, Jonato

    2016-03-01

    The association of ageing with obesity commits elderly women and has been correlated with multiple degenerative processes, which could be occasioned by an enhancing in levels of matrix metalloproteinase-2 and metalloproteinase-9 (MMPs) as well by an cytokine unbalance that included an enhancing on interleukin-6 (IL-6). Furthermore, other factors could be also related to degenerative process, as they could be reduced by eccentric resistance exercise (ERE), which seems particularly important to initiate resistance training in obese older adults. In this view, this study aims to determinate the effects of an acute ERE session on serum MMP-2, MMP-9 and IL-6 in elderly obese women. Ten elderly obese women participated in this study and completed a 10 repetitions maximum test (10 RM) utilizing leg extension exercise. Subjects then completed an acute ERE session consisting of seven sets of 10 repetitions at 110% of 10 RM with a rest of 3 min between sets. Blood samples were collected before, immediately after, 3, 24 and 48 h following the ERE session. Zymograms were utilized to measure the MMP-2 and MMP-9 enzymes from all individuals. Moreover, IL-6 concentration was also determinated. After ERE session, MMP-2 and MMP-9 decreased, remaining significantly below baseline values after 48 h (Pelderly obese women, possibly indicating a transient protection against the low grade inflammation present in this specific population.

  20. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    Science.gov (United States)

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-01-01

    AIM: To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. METHODS: MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). RESULTS: 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. CONCLUSION: MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish. PMID:20333791

  1. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  2. Effect of food on the pharmacokinetics of oral MMI270B (CGS 27023A), a novel matrix metalloproteinase inhibitor

    NARCIS (Netherlands)

    F.A.L.M. Eskens (Ferry); N.C. Levitt; A. Sparreboom (Alex); L. Choi; R. Mather; J. Verweij (Jaap); A.L. Harris

    2000-01-01

    textabstractMMI270B is a matrix metalloproteinase inhibitor (MMPI) with in vitro and in vivo activity. To exert optimal target inhibition, MMPI must be given chronically, and therefore, oral bioavailability is important. We analyzed the effect of food intake on AUC0-8

  3. Clinical evaluation of a matrix metalloproteinase-12 cleaved fragment of titin as a cardiovascular-specific serological biomarker

    DEFF Research Database (Denmark)

    Vassiliadis, Efstathios; Melholt Rasmussen, Lars; Byrjalsen, Inger;

    2012-01-01

    ', derived by the degradation of titin by matrix metalloproteinase (MMP)-12. Serum samples from 90 individuals were divided into 3 equally sized groups. One group had been diagnosed with acute myocardial infarction (AMI) while the remaining two were asymptomatic individuals either with CT-scan signs...

  4. Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets

    NARCIS (Netherlands)

    Jager, Nynke A.; de Vries, Bastiaan M. Wallis; Hillebrands, Jan-Luuk; Harlaar, Niels J.; Tio, Rene A.; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Boersma, Hendrikus H.; Zeebregts, Clark J.; Westra, Johanna

    2016-01-01

    In this study, the potential of matrix metalloproteinase (MMP) sense for detection of atherosclerotic plaque instability was explored. Secondly, expression of MMPs by macrophage subtypes and smooth muscle cells (SMCs) was investigated. Twenty-three consecutive plaques removed during carotid endarter

  5. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter

    2014-01-01

    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP) play a critical role during vascular remodelling, in both health and disease. Impaired MMP regulation is associated with many diabetes-related complications. This study examined whether exercise-induced regulation of MMPs...

  6. Structural differences of matrix metalloproteinases with potential implications for inhibitor selectivity examined by the GRID/CPCA approach

    DEFF Research Database (Denmark)

    Terp, Gitte Elgaard; Cruciani, Gabriele; Christensen, Inge Thøger

    2002-01-01

    The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes, which have been the focus of a lot of research in recent years because of their involvement in various disease conditions. In this study, structures of 10 enzymes (MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP12, MMP13, MMP14...

  7. Expression of Matrix Metalloproteinase-9 and -12 in Porcine Lung Infections

    DEFF Research Database (Denmark)

    Bruun, C. S.; Leifsson, P. S.; Johansen, L. K.

    2012-01-01

    Matrix metalloproteinases (MMPs) play a variety of roles during organogenesis, in the immune response and during acute and chronic diseases as well as in tissue remodelling. During the last decade, the pig has become used increasingly as a model for human diseases; however, studies on the express...... expressions were seen in the alveolar epithelium (MMP-9) and alveolar macrophages (MMP-12). These results are in accordance with studies of human lungs....... on the expression of porcine MMPs are limited. In the present study species-specific antibodies were produced to investigate the expression of MMP-9 and MMP-12 immunohistochemically in lungs from pigs infected with Actinobacillus pleuropneumoniae, Pasteurella multocida and Staphylococcus aureus. The immunolabelling...... of lung tissues (one infected and one control pig representing each infection) was evaluated for cellular distribution and intensity, which was scored semiquantitatively. When compared with healthy, non-infected controls, the expression of both MMP-9 and MMP-12 was higher in infected lungs. The highest...

  8. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    Science.gov (United States)

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  9. Adult Vascular Wall Resident Multipotent Vascular Stem Cells, Matrix Metalloproteinases, and Arterial Aneurysms

    Directory of Open Access Journals (Sweden)

    Bruno Amato

    2015-01-01

    Full Text Available Evidences have shown the presence of multipotent stem cells (SCs at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.

  10. Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

    Science.gov (United States)

    Hall, Christopher J; Boyle, Rachel H; Sun, Xueying; Wicker, Sophie M; Misa, June P; Krissansen, Geoffrey W; Print, Cristin G; Crosier, Kathryn E; Crosier, Philip S

    2014-05-23

    In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.

  11. Resveratrol reduces matrix metalloproteinases and alleviates intrahepatic cholestasis of pregnancy in rats.

    Science.gov (United States)

    Chen, Zhong; Hu, Lingqing; Lu, Mudan; Shen, Zongji

    2016-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disorder occurring specifically in pregnancy, and matrix metalloproteinase (MMP)-2 and MMP-9 were found to be elevated in ICP patients. Using ethinylestradiol-induced ICP rats as the model, we examined the effect of resveratrol on ICP symptoms such as bile flow rate, serum enzymatic activities, and TBA concentration, as well as MMP levels, and compared with the known ICP drug ursodeoxycholic acid. Both MMP-2 and MMP-9 were upregulated in ICP rats, and resveratrol treatment could inhibit the elevation of both MMPs, whereas ursodeoxycholic acid did not exhibit any effect. Although ursodeoxycholic acid alleviated ICP symptoms, resveratrol treatment in general exhibited better outcome in restoring bile flow rate, serum enzymatic activities, and TBA concentration. Our results for the first instance strongly supported the potential of RE as a new therapeutic agent in treating ICP, possibly through inhibiting MMP-2 and MMP-9.

  12. A highly soluble matrix metalloproteinase-9 inhibitor for potential treatment of dry eye syndrome.

    Science.gov (United States)

    Mori, Mattia; De Lorenzo, Emanuele; Torre, Eugenio; Fragai, Marco; Nativi, Cristina; Luchinat, Claudio; Arcangeli, Annarosa

    2012-11-01

    Dry eye syndrome (DES) or keratoconjunctivitis sicca is an eye disease caused by the chronic lack of lubrication and moisture of the eye. The pathogenesis of DES involves the over-expression and over-activity of corneal Matrix Metalloproteinase 9 (MMP-9). We propose herein a new, non-symptomatic approach for the treatment of DES based on the inhibition of MMP-9 by a new highly soluble molecule, designed as PES_103 that has been shown to inhibit MMP-9 both in vitro and in vivo. The efficacy of PES_103 in vivo and the potential benefits of this treatment in restoring tear production were studied in this work using an animal model of reduced lacrimation. PES_103 did not show any significant corneal toxicity. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  13. Observation on In Situ Hybridization and Immunocytochemistry of Matrix Metalloproteinases in Rat Pancreas

    Institute of Scientific and Technical Information of China (English)

    唐立华; 刘胜洪; 王芳; 刘子龙; 许耘; 王小丽; 李肇春

    2003-01-01

    In situ hybridization and immunocytochemical techniques were employed to examine the expression of matrix metalloproteinases-1 (MMP-1) and to identify the pattern of its distribution in rat pancreas. The results indicated that the signal of MMP-1 mRNA and MMP-1 positive immunoreaction were detected in some fiberoblasts around interlobular ducts and exocrine cell in margin acinus of some lobules, but the signal of MMP-1 mRNA and MMP-1 positive immunoreaction could not be detected in most of other acinus and islets of pancreas. It is concluded that the expression of MMP-1 in above cells of rat might play an important role in acinar proliferation and differentiation of rat pancreatic tissues.

  14. Signatures of positive selection at hemopexin (PEX) domain of matrix metalloproteinase-9 (MMP-9) gene

    Indian Academy of Sciences (India)

    Yang Liu; Yang Zhao; Chunlei Lu; Maobin Fu; Tonghai Dou; Xiaoming Tan

    2015-12-01

    Matrix metalloproteinases-9 (MMP-9) is an important cancer-associated, zinc-dependent endopeptidase. To investigate the natural selection hypothesis of MMP-9, the orthologous sequences from 12 vertebrates were compared and a molecular evolution analysis was performed. Results suggest that amino acid residues present in the middle region of the protein are more selectively constrained, whereas amino acid residues in the C-terminal region of the MM~P-9 protein including exon 13 showed lowest conservation level in non-primate species, suggesting that it is an exon with fast evolving rate compared to the others analyzed. InterProScan analysis shows that exon 13 was located in hemopexin (PEX) domain of MM~P-9. Positive selection was detected in PEX domain of MMP-9 protein between human and other species, which indicates that selective pressure may play a role in shaping the function of MM~P-9 in the course of evolution.

  15. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders.

    Science.gov (United States)

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-07-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes.

  16. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  17. DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity.

    Science.gov (United States)

    Yeghiazaryan, Marine; Rutkowska-Wlodarczyk, Izabela; Konopka, Anna; Wilczyński, Grzegorz M; Melikyan, Armenuhi; Korkotian, Eduard; Kaczmarek, Leszek; Figiel, Izabela

    2014-01-01

    DP-b99 is a membrane-activated chelator of zinc and calcium ions, recently proposed as a therapeutic agent. Matrix metalloproteinases (MMPs) are zinc-dependent extracellularly operating proteases that might contribute to synaptic plasticity, learning and memory under physiological conditions. In excessive amounts these enzymes contribute to a number of neuronal pathologies ranging from the stroke to neurodegeneration and epileptogenesis. In the present study, we report that DP-b99 delays onset and severity of PTZ-induced seizures in mice, as well as displays neuroprotective effect on kainate excitotoxicity in hippocampal organotypic slices and furthermore blocks morphological reorganization of the dendritic spines evoked by a major neuronal MMP, MMP-9. Taken together, our findings suggest that DP-b99 may inhibit neuronal plasticity driven by MMPs, in particular MMP-9, and thus may be considered as a therapeutic agent under conditions of aberrant plasticity, such as those subserving epileptogenesis.

  18. Amino Acid Derivatives as New Zinc Binding Groups for the Design of Selective Matrix Metalloproteinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Mariateresa Giustiniano

    2013-01-01

    Full Text Available A number of matrix metalloproteinases (MMPs are important medicinal targets for conditions ranging from rheumatoid arthritis to cardiomyopathy, periodontal disease, liver cirrhosis, multiple sclerosis, and cancer invasion and metastasis, where they showed to have a dual role, inhibiting or promoting important processes involved in the pathology. MMPs contain a zinc (II ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In an effort to devise new approaches to selective inhibitors, in this paper, we describe the synthesis and preliminary biological evaluation of amino acid derivatives as new zinc binding groups (ZBGs. The incorporation of selected metal-binding functions in more complex biphenyl sulfonamide moieties allowed the identification of one compound able to interact selectively with different MMP enzymatic isoforms.

  19. Inhibitory Effects of Polygoni Multiflori Caulis Extracts on Matrix Metalloproteinase Activities

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-song; YANG Jin-gang; HONG Yuan; JIN Feng-hai; WANG Ming-cui; ZHAO Shu-hua; FANG Xue-xun

    2009-01-01

    Matrix metalloproteinases(MMPs) play an essential role in development and tissue remodeling of living organisms.However,the overexpression of MMPs has lead to a series of diseases,such as cancer,arthritis,and atherosclerosis;and inhibition of MMPs may have therapeutic benefits.The discovery of MMP inhibitors from herbal has become a prospective event.We showed that the extract of Polygoni multiflori caulis from ethy1 acetate or water(ethy1 acetate extract and water extract) can inhibit the activities of MMPs 9,14,and 16 in a dose-dependent manner and n-buty1 alcohol extract of it can also inhibit these MMPs.Furthermore,we found that n-buty1 alcohol extract and water extract of it influence the cell viability.These discoveries may contribute to the development of MMP inhibitors for the therapy of a variety of pathological conditions.

  20. Matrix metalloproteinase-9: A deleterious link between hepatic ischemia-reperfusion and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Sébastien Lenglet; Fran(c)ois Mach; Fabrizio Montecucco

    2012-01-01

    Despite the advent of improved surgical techniques and the development of cytotoxic chemotherapeutic agents useful for the treatment of colorectal cancer,the primary clinical challenge remains that of preventing and combating metastatic spread.Surgical resection is the best treatment for colorectal metastases isolated to the liver.However,in rodent models,the hepatic ischemia-reperfusion (I/R) applied during the surgery accelerates the outgrowth of implanted tumors.Among the adverse effects of I/R on cellular function,several studies have demonstrated an over expression of the matrix metalloproteinase-9 (MMP-9) in the ischemic liver.Since several studies showed high local levels of expression and activity of this proteolytic enzyme in the primary colorectal adenocarcinoma,the role of MMP-9 might be considered as a potential common mediator,favoring both growth of local tumor and the dissemination of colorectal carcinoma metastases.

  1. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L;

    2004-01-01

    , and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...... in vitro of both primary osteoblasts and MC3T3 cells by approximately 75%. To further investigate at which level of osteoblast differentiation MMP inhibition was attenuating osteoblast function, we found that neither preosteoblast nor mature osteoblast activity was affected. In contrast, cell survival...... of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from...

  2. Matrix metalloproteinase-2 is elevated in midtrimester amniotic fluid prior to the development of preeclampsia

    Directory of Open Access Journals (Sweden)

    Daniel-Spiegel Etty

    2009-08-01

    Full Text Available Abstract Objective To evaluate levels of matrix metalloproteinases (MMP and their inhibitors (TIMP in second trimester amniotic fluid of women with hypertensive disorders compared to normotensive women. Study Design Amniotic fluid was obtained from 133 women undergoing genetic second trimester amniocentesis. Zymography was performed for MMP characterization and an MMP-2 ELISA kit was used to determine MMP-2 levels. TIMP-2 expression was evaluated using western blot. Results Mean amniotic fluid MMP-2 and TIMP-2 levels were significantly higher in women who developed a hypertensive disorder compared to normotensive women (P Conclusion Higher amniotic fluid MMP-2 and TIMP-2 levels are found in women who eventually develop preeclampsia.

  3. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration

    Science.gov (United States)

    López-Rivera, Esther; Lizarbe, Tania R.; Martínez-Moreno, Mónica; López-Novoa, José Miguel; Rodríguez-Barbero, Alicia; Rodrigo, José; Fernández, Ana Patricia; Álvarez-Barrientos, Alberto; Lamas, Santiago; Zaragoza, Carlos

    2005-01-01

    To explore the mechanisms by which NO elicits endothelial cell (EC) migration we used murine and bovine aortic ECs in an in vitro wound-healing model. We found that exogenous or endogenous NO stimulated EC migration. Moreover, migration was significantly delayed in ECs derived from endothelial NO synthase-deficient mice compared with WT murine aortic EC. To assess the contribution of matrix metalloproteinase (MMP)-13 to NO-mediated EC migration, we used RNA interference to silence MMP-13 expression in ECs. Migration was delayed in cells in which MMP-13 was silenced. In untreated cells MMP-13 was localized to caveolae, forming a complex with caveolin-1. Stimulation with NO disrupted this complex and significantly increased extracellular MMP-13 abundance, leading to collagen breakdown. Our findings show that MMP-13 is an important effector of NO-activated endothelial migration. PMID:15728377

  4. Macrophage Inflammatory Protein-1alpha mediates Matrix Metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment

    Institute of Scientific and Technical Information of China (English)

    Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

    2011-01-01

    Objective:To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9)expression, release and activity induced by phagocytosis of malarial pigment (haemozoin,HZ) in human monocytes. Methods: Human adherent monocytes were unfed/fed with nativeHZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively,HZ-unfed/fed monocytes were treated in presence/absence of anti-humanMIP-1alpha blocking antibodies or recombinant humanMIP-1alpha for15 h (RNA studies) or 24 h (protein studies); therefore,MMP-9mRNA expression was evaluated in cell lysates by Real TimeRT-PCR, whereas proMMP-9and activeMMP-9protein release were measured in cell supernatants by Western blotting and gelatin zymography.Results: Phagocytosis ofHZ by human monocytes increased production ofMIP-1alpha, mRNA expression ofMMP-9and protein release of proMMP-9 and activeMMP-9. All theHZ-enhancing effects onMMP-9 were abrogated by anti-humanMIP-1alpha blocking antibodies and mimicked by recombinant humanMIP-1alpha.Conclusions:The present work suggests a role for MIP-1alpha in theHZ-dependent enhancement ofMMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects ofHZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.

  5. Neurokinin-1 receptor directly mediates glioma cell migration by up-regulation of matrix metalloproteinase-2 (MMP-2) and membrane type 1-matrix metalloproteinase (MT1-MMP).

    Science.gov (United States)

    Mou, Lingyun; Kang, Yawei; Zhou, Ying; Zeng, Qian; Song, Hongjing; Wang, Rui

    2013-01-04

    Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the G(q)-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.

  6. Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for proMMP-2 generates active MMP-2.

    Science.gov (United States)

    Nishida, Yuki; Miyamori, Hisashi; Thompson, Erik W; Takino, Takahisa; Endo, Yoshio; Sato, Hiroshi

    2008-11-01

    The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.

  7. Bi-directional induction of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 during T lymphoma/endothelial cell contact: implication of ICAM-1.

    Science.gov (United States)

    Aoudjit, F; Potworowski, E F; St-Pierre, Y

    1998-03-15

    The mechanisms that lead to the expression of matrix metalloproteinases (MMP) and tissue inhibitors of MMP (TIMPs) during the invasive process of normal and transformed T cells remain largely unknown. Since vascular cells form a dynamic tissue capable of responding to local stimuli and activating cells through the expression of cytokine receptors and specific cell adhesion molecules, we hypothesized that the firm adhesion of T lymphoma cells to endothelial cells is a critical event in the local production of MMP and TIMP. In the present work, we show that adhesion of lymphoma cells to endothelial cells induced a transient and reciprocal de novo expression of MMP-9 mRNA and enzymatic activity by both cell types. Up-regulation of MMP-9 in T lymphoma cells was concomitant to that of TIMP-1, and required direct contact with endothelial cells. Induction of MMP-9, but not of TIMP-1, was blocked by anti-LFA-1 and anti-intercellular adhesion molecule-1 Abs, indicating that induction of MMP-9 and TIMP-1 in lymphoma cells required direct, yet distinct, intercellular contact. In contrast, the induction of MMP-9 in endothelial cells by T lymphoma cells did not necessitate direct contact and could be achieved by exposure to IL-1 and TNF, or to the supernatant of T lymphoma cell culture. Together, these results demonstrate that firm adhesion of T lymphoma cells to endothelial cells participates in the production of MMP-9 in both cell types through bi-directional signaling pathways, and identify intercellular adhesion molecule-1/LFA-1 as a key interaction in the up-regulation of MMP-9 in T lymphoma cells.

  8. Molecular docking analysis of selected Clinacanthus nutans constituents as xanthine oxidase, nitric oxide synthase, human neutrophil elastase, matrix metalloproteinase 2, matrix metalloproteinase 9 and squalene synthase inhibitors

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Narayanaswamy

    2016-01-01

    Full Text Available Background: Clinacanthus nutans (Burm. f. Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO, nitric oxide synthase (NOS, human neutrophil elastase (HNE, matrix metalloproteinase (MMP 2 and 9, and squalene synthase (SQS using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET, and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0 toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS.

  9. Do phosphatase of regenerating liver-3, matrix metalloproteinases-2, matrix metalloproteinases-9, and epidermal growth factor receptor-1 predict response to therapy and survival in glioblastoma multiforme?

    Directory of Open Access Journals (Sweden)

    Priyanka Soni

    2016-01-01

    Full Text Available Context: Poor survival of the glioblastoma multiforme (GBM has been attributed in part to the invasive nature of the lesion making complete surgical removal near impossible. Phosphatase of regenerating liver-3 (PRL-3, matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9, and epidermal growth factor receptor (EGFR-1 play a role in invasive nature of tumor cells. Aims: This study was conducted to evaluate PRL-3, MMP-2, MMP-9, and EGFR-1 (markers expression in cases to GBM and to correlate their expression with therapy response and survival. Settings and Design: GBM cases (n = 62 underwent surgery followed by radiation (n = 34 and chemoradiation (n = 28. Using WHO Response Evaluation Criteria in Solid Tumors criteria response to therapy was assessed at 3 months and cases followed up for survival. Subjects and Methods: Expression of markers was assessed by immunohistochemistry as a percentage of positive tumor cells in hot spots. Statistical Analysis Used: Kaplan–Meier, ANOVA, Chi-square test, univariate, and multivariate Cox-regression analysis was done. Results: Response to therapy was evident in 54.8% cases of responders with the mean survival of 494.03 ± 201.13 days and 45.2% cases of non responders (278.32 ± 121.66 days with P = 0.001. Mean survival for the patient's opted chemoradiation was 457.43 ± 222.48 days which was approximately 3 months greater than those who opted radiation alone (P = 0.029. We found PRL-3 overexpression was an independent, significant, poor prognostic factor for survival by multivariate analysis (P = 0.044. Cases negative for MMP's and EGFR showed increased survival, but the difference was insignificant. Conclusion: PRL-3 expression appears to be related to an adverse disease outcome.

  10. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).

    Science.gov (United States)

    Zhang, Min; Zhu, Wusheng; Yun, Wenwei; Wang, Qizhang; Cheng, Maogang; Zhang, Zhizhong; Liu, Xinfeng; Zhou, Xianju; Xu, Gelin

    2015-09-15

    Maladjustment of matrix metalloproteinases (MMPs) results in cerebral vasculature and blood-brain barrier dysfunction, which is associated with small vessel disease (SVD). This study was to aim at evaluating correlations between matrix metalloproteinase-2 and 9 single nucleotide polymorphisms and the risk of SVD. A total of 178 patients with SVD were enrolled into this study via Nanjing Stroke Registry Program (NSRP) from January 2010 to November 2011. SVD patients were further subtyped as isolated lacunar infarction (ILI, absent or with mild leukoaraiosis) and ischemic leukoaraiosis (ILA, with moderate or severe leukoaraiosis) according to the Fazekas scale. 100 age- and gender-matched individuals from outpatient medical examination were recruited as the control group. The genotypes of MMP-2-1306 T/C and MMP-9-1562 C/T were determined by the TaqMan method. Of 178 SVD patients, 86 and 92 patients were classified as ILI and ILA, respectively. Comparison analysis between SVD patients and controls revealed a significant correlation between SVD and hypertension, as well as a prevalence of hypertension in ILA. Further genotype analysis showed that the frequency of MMP-2-1306 CC genotype was higher in ILA patients than in controls (P=0.009, χ(2) test; P=0.027, the multiple test with Bonferroni correction). Finally, logistic regression analysis with adjustment of age, sex and vascular risk factors showed that the MMP-2-1306 T/C polymorphism was an independent predictor for ILA (OR: 2.605; 95% confidence interval [CI], 1.067-6.364; P=0.036). Our findings suggest that the MMP-2-1306 T/C polymorphism is a direct risk factor for ILA. Copyright © 2015. Published by Elsevier B.V.

  11. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms

    Directory of Open Access Journals (Sweden)

    Vacek TP

    2015-02-01

    Full Text Available Thomas P Vacek, Shahnaz Rehman, Diana Neamtu, Shipeng Yu, Srikanth Givimani, Suresh C Tyagi Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA Abstract: Atherosclerosis is an inflammatory process that involves activation of matrix metalloproteinases (MMPs; MMPs degrade collagen and allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of other cellular material, resulting in occlusion of the vessel and ischemic events to tissues in need of nutrients. Homocysteine has been shown to activate MMPs via an increase in oxidative stress and acting as a signaling molecule on receptors like the peroxisome proliferator activated receptor- and N-methyl-d-aspartate receptor. Nitric oxide has been shown to be beneficial in some cases of deactivating MMPs. However, in other cases, it has been shown to be harmful. Further studies are warranted on the scenarios that are beneficial versus destructive. Hydrogen sulfide (H2S has been shown to decrease MMP activities in all cases in the literature by acting as an antioxidant and vasodilator. Various MMP-knockout and gene-silencing models have been used to determine the function of the many different MMPs. This has allowed us to discern the role that each MMP has in promoting or alleviating pathological conditions. Furthermore, there has been some study into the MMP polymorphisms that exist in the population. The purpose of this review is to examine the role of MMPs and their polymorphisms on the development of atherosclerosis, with emphasis placed on pathways that involve nitric oxide, hydrogen sulfide, and homocysteine. Keywords: homocysteine, matrix metalloproteinases, oxidative stress, bone remodeling, collagen cross-linking, hydrogen sulfide, nitric oxide

  12. Collagen and matrix metalloproteinase-2 and -9 in the ewe cervix during the estrous cycle.

    Science.gov (United States)

    Rodríguez-Piñón, M; Tasende, C; Casuriaga, D; Bielli, A; Genovese, P; Garófalo, E G

    2015-09-15

    The cervical collagen remodeling during the estrous cycle of the ewe was examined. The collagen concentration determined by a hydroxyproline assay and the area occupied by collagen fibers (%C), determined by van Gieson staining, were assessed in the cranial and caudal cervix of Corriedale ewes on Days 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (defined as Day 0). In addition, the gelatinase activity by in situ and SDS-PAGE gelatin zymographies and matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) expression by immunohistochemistry were determined. The collagen concentration and %C were lowest on Day 1 of the estrous cycle (P MMP-2 activity was highest (P MMP-2 trend to be highest (P = 0.0819). The MMP-2 activity was detected in 73% of the homogenized cervical samples, and its expression was mainly detected in active fibroblasts. By contrast, the MMP-9 activity was detected in 9% of the samples, and its scarce expression was associated with plasmocytes, macrophages, and lymphocytes. Matrix metalloproteinase-2 expression was maximal on Day 1 in the cranial cervix and on Day 13 in the caudal cervix and was lower in the cranial than in the caudal cervix (P MMP-2 expression that differed between the cranial and caudal cervix may reflect their different physiological roles. The decrease in the collagen content and increase in fibroblast MMP-2 activity in sheep cervix on Day 1 of the estrous cycle suggests that cervical dilation at estrus is due to the occurrence of collagen fiber degradation modulated by changes in periovulatory hormone levels.

  13. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Xue, Qin; Li, Yong; Zhang, Lubo

    2011-11-01

    Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.

  14. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh

    2010-09-01

    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  15. Expression of tissue inhibitor of matrix metalloproteinases-1 during aging in rat liver

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Zhang; Xiang-Mei Chen; Di Wu; Suo-Zhu Shi; Zhong Yin; Rui Ding; Yang Lü

    2005-01-01

    AIM: To investigate the expression and role of tissueinhibitor of matrix metalloproteinases-1 (TIMP-1) during natural aging in rat liver and to detect the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.METHODS: The rats were divided into 3-mo-old group (n = 5), 10-mo-old group (n = 5) and 24-mo-old group(n = 5). Histopathologic changes of liver were observed with HE and Masson stain. The location and protein expressions of TIMP-1 were determined by immunohistochemistry and Westem blot; message RNA (mRNA) levels were measured in livers from rats of various ages by semi-quantitative reverse transcriptional polymerase chain reaction (RT-PCR). In addition, the expression of MMP-2 and MMP-9was assessed by RT-PCR and Western blot.RESULTS: Histologic examination showed that the aging liver had excessive fatty degeneration and collagen deposition. Immunohistochemical staining showed that TIMP-1 related antigen in livers was located in cytoplasm. The proteinexpression of TIMP-1 was significantly higher in the oldestanimals and the mRNA expression was increased significantlyin the 24-mo-old rats (t= 4.61, P= 0.002<0.05, 24-vs 10-mo-old rats; t= 4.31, P= 0.003<0.05, 24- vs 3-mo-oldrats). The expression of MMP-2 and MMP-9 had no change during aging; the ratios TIMP-1/MMP-2 and TIMP-1/MMP-9 in aging liver were significantly higher than those in maturation and young livers.CONCLUSION: TIMP-1 may play an important role in the process of liver aging.

  16. Sesame oil attenuates nutritional fibrosing steatohepatitis by modulating matrix metalloproteinases-2, 9 and PPAR-γ.

    Science.gov (United States)

    Periasamy, Srinivasan; Hsu, Dur-Zong; Chang, Po-Cheng; Liu, Ming-Yie

    2014-03-01

    Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its improved liver function in various animal model studies. However, its effect on nutritional fibrosing steatohepatitis is unclear. We investigated therapeutic sesame oil on matrix metalloproteinases-2, 9 (MMP-2, 9) in nutritional fibrosing steatohepatitic mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 35 days to induce fibrosing steatohepatitis. Sesame oil was treated from 29-35th day. Body weight, steatosis, aspartate transaminase, alanine transaminase, peroxisome proliferator-activated receptor (PPAR)-γ, α-smooth muscle actin (α-SMA), MMP-2, 9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed after 35 days. All tested parameters except TIMP-1 and PPAR-γ were higher in MCD fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, necrotic-inflammation, and fibrosis. In sesame-oil (4 ml)-treated mice, all tested parameters except TIMP-1, α-SMA, and PPAR-γ were significantly attenuated compared with MCD fed mice. Sesame oil inhibited MMP-2, 9 activities, but up-regulated TIMP-1 expression in MCD fed mice. In addition, a histological analysis of liver tissue samples showed that sesame oil provided significant protection against fibrosis. We conclude that therapeutic sesame oil protects against fibrosing steatohepatitis by inhibiting MMP-2, 9 activities, up-regulating TIMP-1 expression, and PPAR-γ. © 2014.

  17. Activity of Matrix Metalloproteinase in Airway Epithelial Cells of COPD Patients

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To examine the mRNA expression of matrix metalloproteinase 9 (MMP-9) and the gelatinase activity of its inhibitor, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) in the primary epithelial cells of patients with COPD, airway epithelial cells were taken from 15 COPD patients and cultured in vitro. The patients were divided into three groups, COPD group, normal smoking control group and non-smoking control group, with 5 subjects in each group, on basis of the smoking history and lung function. The semi-qualitative RT-PCR was employed to determine the mRNA levels of MMP 9 and TIMP-1 and SDS PAGE was used for the determination of the gelatinase activity of MMP-9 and TIMP-1. Our result showed that the mRNA of MMP-9 and TIMP-1 in epithelial cells of the non-smoking subjects was at a low level The mRNA of MMP 9 and TIMP-1 in COPD patients and smokers was significantly higher than that in non-smokers (P<0.05). No significant difference was found in the levels of MMP-9 and TIMP-1 in epithelial cells between the COPD patients and smokers. The MMP-9/TIMP-1 ratios in COPD patients and smokers were significantly lower than that of non-smokers (P<0.05). The gelatinase activity in the epithelial cells of both COPD patients and normal smokers was increased (P<0.05), but no difference existed in the gelatinase activity in the epithelial cells between COPD patients and normal smokers. It is concluded that the transcription of MMP-9 and TIMP-1 and the gelatinase activity of MMP-9 and MMP-2 in the epithelial cells in COPD patients were increased, which resulted in an imbalance of MMP-9/TIMP-1, thereby causing pulmonary fibrosis. These factors play important roles in the pathogenesis of COPD.

  18. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via their acti......During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...... their activity in the proteolytic degradation of extracellular macromolecules such as collagens, resulting in the generation of specific cleavage fragments. These neo-epitopes may be used as markers of fibrosis....

  19. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Directory of Open Access Journals (Sweden)

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  20. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Directory of Open Access Journals (Sweden)

    Sandra Matabi Ayuk

    2016-01-01

    Full Text Available The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI or photobiomodulation (PBM is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.

  1. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation

    Science.gov (United States)

    2016-01-01

    The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM. PMID:27314046

  2. Perioceutics: Matrix metalloproteinase inhibitors as an adjunctive therapy for inflammatory periodontal disease

    Directory of Open Access Journals (Sweden)

    Esther Nalini Honibald

    2012-01-01

    Full Text Available Matrix metalloproteinases (MMPs form a group of more than 20 zinc-dependent enzymes that are crucial in the degradation of the main components in the extracellular matrix, and thereby play important roles in cell migration, wound healing, and tissue remodeling. MMPs have outgrown the field of extracellular matrix biology and have progressed toward being important regulatory molecules in inflammation, and hence are key components in the pathogenesis of periodontitis. This rise in status has led to the development of MMP inhibitors which can act as switches or delicate tuners in acute and chronic inflammation and the regenerative phase after inflammation. The new challenge in MMP research is to better understand the complex role these enzymes play in periodontal disease and to design inhibitors that are successful in the clinic. Perioceutics or the use of the pharmacological agents specifically developed to manage periodontitis is an interesting and emerging aid in the management of periodontal diseases along with mechanical debridement. The purpose of this review is to provide an introduction to MMPs and their inhibitors, the pathologic effects of a disturbance in the functions of enzyme cascades in balance with natural inhibitors, and highlight on the adjunctive use of MMP inhibitors in periodontal therapy and some of the current challenges with an overview of what has been achieved till date.

  3. The promoter polymorphism -1562C/T in matrix metalloproteinase-9 and COPD severity

    Directory of Open Access Journals (Sweden)

    D. G. Yanbaeva

    2006-12-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a complex heterogeneous respiratory disease. COPD is characterized by a progressive irreversible airflow limitation that is due to a loss of lung elasticity resulting from peripheral airflow obstruction (chronic bronchitis and parenchymal destruction (emphysema. Matrix metalloproteinases (MMP are a major group of proteases known to regulate extracellular matrix turnover. They have been suggested to be important in the process of lung diseases associated with tissue remodeling. Polymorphisms in MMPs which known to upregulate their activity may result in the degradation of a lung matrix. A case-control study was performed to investigate the association of polymorphisms of MMP type 1 (-1607G/GG, 9 (-1562C/T and 12 (-82A/G genes with COPD and disease severity. A total of 309 COPD patients admitted to departments of respiratory medicine have been recruited in Ufa city hospitals (## 13, 21, and 22. COPD patients have been undergone a spirometry and a physical examination by a chest physician to refer the GOLD II-IV stages. The control group comprised of 305 healthy subjects without evidence of chronic diseases (Table Basic characteristic of study groups.

  4. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  5. Matrix metalloproteinase-9 expression in pterygium Expressão da metaloprotease de matriz-9 no pterígio

    Directory of Open Access Journals (Sweden)

    Silvana Artioli Schellini

    2006-04-01

    Full Text Available PURPOSE: To assess matrix metalloproteinase (MMP-9 expression in pterygium lesion. METHODS: A prospective randomized clinical trial was done to evaluate the expression of matrix metalloproteinase in normal and in primary or recurrent pterygia in Tenon's capsule by immunohistochemical analysis and a computerized image analysis system. The data were submitted to statistical analysis. RESULTS: Matrix metalloproteinase expression showed no difference in normal Tenon's capsule and in primary or recurrent pterygia. CONCLUSION: The similar expression of the matrix metalloproteinase in normal Tenon's capsule and in primary or recurrent pterygia allowed us to conclude that matrix metalloproteinase is not implicated in the genesis or the recurrence of pterygium lesion.OBJETIVO: Avaliar a expressão da metaloprotease de matriz (MMP-9 nos pterígios. MÉTODOS: Foi realizado na Faculdade de Medicina de Botucatu estudo prospectivo, aleatório, com o intuito de avaliar a expressão da metaloprotease de matriz na cápsula de Tenon normal e de pterígios primários e recidivados, usando o método da imuno-histoquímica e o sistema computadorizado de análise de imagem. Os resultados foram avaliados estatisticamente. RESULTADOS: A expressão da metaloprotease de matriz foi semelhante na cápsula de Tenon normal e nos pterígios primários e recidivados. CONCLUSÃO: A expressão da metaloprotease de matriz na cápsula de Tenon normal e nos pterígios primários ou recidivados é semelhante, o que nos leva a concluir que esta metaloprotease de matriz não esteja envolvida na gênese ou na recidiva do pterígio.

  6. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases

    DEFF Research Database (Denmark)

    Genovese, Federica; Barascuk, Natasha; Larsen, Lise Skakkebæk;

    2013-01-01

    The proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis...

  7. Prognostic impact of polymorphism of matrix metalloproteinase-2 and metalloproteinase tissue inhibitor-2 promoters in breast cancer in Tunisia: case-control study.

    Science.gov (United States)

    Ben Néjima, Dalel; Ben Zarkouna, Yosr; Gammoudi, Amor; Manai, Mohamed; Boussen, Hamouda

    2015-05-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that play important roles in tumor invasion and metastasis by degrading extracellular matrix components. Genetic variations in promoter regions of MMP genes, affecting their expression, have been associated with susceptibility to cancers. The aim of this study was to investigate the susceptibility and prognostic implications of the matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) polymorphism in Tunisian breast cancer patients. MMP-2 genotypes were determined by real-time polymerase chain reaction (RT-PCR), and TIMP-2 genotypes were identified using a PCR-restriction fragment length polymorphism (RFLP) method in 210 breast cancer patients and 250 frequency-matched control women. Association of the clinicopathological parameters and the genetic markers with risk of breast cancer was assessed using univariate analyses. We found that the variant MMP-2 genotype (-1306CT or TT) was associated with substantially reduced risk of breast cancer [odds ratio (OR), 0.49; 95 % confidence interval (95 % CI), 0.033-0.73], compared with the CC genotype. For TIMP-2, a moderately reduced risk of the cancer (OR, 0.57; 95 % CI, 0.37-0.87) was also associated with the variant allele (-418GC or CC), compared with the GG common allele. Furthermore, polymorphisms in both genes seem to have additive effects and the highest risk for breast cancer has been observed in those with MMP-2 CC genotype and TIMP-2 GC or CC genotype (p = 0.006). A significant association was also found between the CC genotype and the aggressive forms of breast cancer as defined by advanced stages at the time of diagnosis and metastasis. This is the first report on the association of MMP-2 and TIMP-2 gene polymorphisms in breast cancer in Tunisian population. Our results suggest that the presence of the variant allele in the promoter of MMP-2 or TIMP-2 may be a protective factor for the development of breast cancer.

  8. Local IL-13 gene transfer prior to immune-complex arthritis inhibits chondrocyte death and matrix-metalloproteinase-mediated cartilage matrix degradation despite enhanced joint inflammation.

    NARCIS (Netherlands)

    Nabbe, K.C.A.M.; Lent, P.L.E.M. van; Holthuysen, A.E.M.; Sloetjes, A.W.; Koch, A.E.; Radstake, T.R.D.J.; Berg, W.B. van den

    2005-01-01

    During immune-complex-mediated arthritis (ICA), severe cartilage destruction is mediated by Fcgamma receptors (FcgammaRs) (mainly FcgammaRI), cytokines (e.g. IL-1), and enzymes (matrix metalloproteinases (MMPs)). IL-13, a T helper 2 (Th2) cytokine abundantly found in synovial fluid of patients with

  9. Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro.

    Science.gov (United States)

    Lu, Shijin; Xiao, Xungang; Cheng, Minghua

    2015-01-01

    Interleukin (IL)-1β plays an important role in promoting osteoarthritis (OA) lesions by inducing chondrocytes to secrete matrix metalloproteinases (MMPs), which degrade the extracellular matrix and facilitate chondrocyte apoptosis. Matrine was shown to exert anti-inflammatory effects. However, the role of matrine in OA is still unclear. Therefore, in this study, we investigated the effects of matrine on the expression of MMPs in IL-1β-treated human chondrocytes and the underlying mechanism. The cell viability of chondrocytes was detected by MTT assay. The cell apoptosis of chondrocytes was measured by flow cytometric analysis. The protein production of MMPs was determined by ELISA. The protein expression of phosphorylation of mitogen-activated protein kinases (MAPKs) and the inhibitor of kappaB alpha (IκBα) was determined by Western blot. Matrine significantly inhibited the IL-1β-induced apoptosis in chondrocytes. It also significantly inhibited the IL-1β-induced release of MMP-3 and MMP-13, and increased the production of TIMP-1. Furthermore, matrine inhibits the phosphorylation of p-38, extracellular regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and IκBα degradation induced by IL-1β in chondrocytes. Taken together, our results show that matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Therefore,-matrine may be beneficial in the treatment of OA.

  10. THE ROLE OF MATRIX METALLOPROTEINASES IN PROCESSES OF HEART RE-MODELING IN CHILDREN WITH RESTRICTIVE CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    T.V. Bershova

    2009-01-01

    Full Text Available Restrictive cardiomyopathy (RCMP is heart disorder with unclear etiology; it can be characterized as disease with disorder of diastolic myocardium function of left ventricle, conditioned by restriction. The chronic heart failure as a syndrome of RCMP can develop as a result of disbalance in system of complex biochemical, structural, and geometrical mechanisms of myocardium re-modeling. Extra cellular matrix play significant role in heart structure and geometry breaking. The destruction of heart is realized by matrix metalloproteinases (MMP. The activity of MMP, in its turn, is controlled by its tissue inhibitors. The present study analyzed the role of MMP in process of collagen’s synthesis and catabolism deregulation, myocardium fibrosis, change of heart chambers, and development of diastolic dysfunction in children with RCMP.Key words: children, chronic heart failure, restrictive cardiomyopathy, matrix metalloproteinases.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(5:36-39

  11. Extracellular matrix assessment of infected chronic venous leg ulcers: role of metalloproteinases and inflammatory cytokines.

    Science.gov (United States)

    Serra, Raffaele; Grande, Raffaele; Buffone, Gianluca; Molinari, Vincenzo; Perri, Paolo; Perri, Aldina; Amato, Bruno; Colosimo, Manuela; de Franciscis, Stefano

    2016-02-01

    Chronic venous ulcer (CVU) represents a dreaded complication of chronic venous disease (CVD). The onset of infection may further delay the already precarious healing process in such lesions. Some evidences have shown that matrix metalloproteinases (MMPs) are involved and play a central role in both CVUs and infectious diseases. Two groups of patients were enrolled to evaluate the expression of MMPs in infected ulcers and the levels of inflammatory cytokines as well as their prevalence. Group I comprised 63 patients (36 females and 27 males with a median age of 68·7 years) with infected CVUs, and group II (control group) comprised 66 patients (38 females and 28 males with a median age of 61·2 years) with non-infected venous ulcers. MMP evaluation and dosage of inflammatory cytokines in plasma and wound fluid was performed by means of enzyme-linked immunosorbent assay test; protein extraction and immunoblot analysis were performed on biopsied wounds. The first three most common agents involved in CVUs were Staphylococcus aureus (38·09%), Corynebacterium striatum (19·05%) and Pseudomonas aeruginosa (12·7%). In this study, we documented overall higher levels of MMP-1 and MMP-8 in patients with infected ulcers compared to those with uninfected ulcers that showed higher levels of MMP-2 and MMP-9. We also documented higher levels of interleukin (IL)-1, IL-6, IL-8, vascular endothelial growth factor and tumour necrosis factor-alpha in patients with infected ulcers with respect to those with uninfected ulcers, documenting a possible association between infection, MMP activation, cytokine secretions and symptoms. The present results could represent the basis for further studies on drug use that mimic the action of tissue inhibitors of metalloproteinases in order to make infected CVU more manageable.

  12. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice

    Institute of Scientific and Technical Information of China (English)

    Alfredo Santana; Carlos Medina; Maria Iristina Paz-Cabrera; Federico Díaz-Gonzalez; Esther Farré; Antonio Salas; Marek W Radomski; Enrique Quintero

    2006-01-01

    AIM: To study whether matrix metalloproteinase-9(MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice.METHODS: MMP-9-deficient and wild-type (wt)mice were given 5% DSS in drinking water for 5 dfollowed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases,MMP-2 and MMP-9,were measured in homogenates of colonic tissue by zymography and Western blot, whereas Tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover,intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs.Finally, colonic mucosal lesions were measured by microscopic examination.RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24±0.1 vs 21.3±6.4,P<0.05) and PMN from peripheral blood in wt (0.5±0.1 vs 10.4±0.7,P<0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5±0.5 vs 14.7±3.0, P<0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelial injury were significantly attenuated when compared with wt mice.CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modulated by MMP-9 and that inhibition of this gelatinase may reduce inflammation.

  13. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis

    Science.gov (United States)

    2012-01-01

    Introduction The pathology of ankylosing spondylitis (AS) suggests that certain cytokines and matrix metalloproteinases (MMPs) might provide useful markers of disease activity. Serum levels of some cytokines and MMPs have been found to be elevated in active disease, but there is a general lack of information about biomarker profiles in AS and how these are related to disease activity and function. The purpose of this study was to investigate whether clinical measures of disease activity and function in AS are associated with particular profiles of circulating cytokines and MMPs. Methods Measurement of 30 cytokines, five MMPs and four tissue inhibitors of metalloproteinases was carried out using Luminex® technology on a well-characterised population of AS patients (n = 157). The relationship between biomarker levels and measures of disease activity (Bath ankylosing spondylitis disease activity index (BASDAI)), function (Bath ankylosing spondylitis functional index) and global health (Bath ankylosing spondylitis global health) was investigated. Principal component analysis was used to reduce the large number of biomarkers to a smaller set of independent components, which were investigated for their association with clinical measures. Further analyses were carried out using hierarchical clustering, multiple regression or multivariate logistic regression. Results Principal component analysis identified eight clusters consisting of various combinations of cytokines and MMPs. The strongest association with the BASDAI was found with a component consisting of MMP-8, MMP-9, hepatocyte growth factor and CXCL8, and was independent of C-reactive protein levels. This component was also associated with current smoking. Hierarchical clustering revealed two distinct patient clusters that could be separated on the basis of MMP levels. The high MMP cluster was associated with increased C-reactive protein, the BASDAI and the Bath ankylosing spondylitis functional index. Conclusions

  14. Molecular design of a highly selective and strong protein inhibitor against matrix metalloproteinase-2 (MMP-2).

    Science.gov (United States)

    Higashi, Shouichi; Hirose, Tomokazu; Takeuchi, Tomoka; Miyazaki, Kaoru

    2013-03-29

    Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Ki(app) = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.

  15. Matrix metalloproteinases in a sea urchin ligament with adaptable mechanical properties.

    Directory of Open Access Journals (Sweden)

    Ana R Ribeiro

    Full Text Available Mutable collagenous tissues (MCTs of echinoderms show reversible changes in tensile properties (mutability that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs. There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states ("standard", "compliant" and "stiff" was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the

  16. Increased expression of matrix metalloproteinase-9 associated with gastric ulcer recurrence.

    Science.gov (United States)

    Li, Sen-Lin; Zhao, Jing-Run; Ren, Xiao-Yan; Xie, Jia-Ping; Ma, Qing-Zhu; Rong, Qiu-Hua

    2013-07-28

    To compare matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in gastric ulcer (GU) and chronic superficial gastritis (CSG). This study enrolled 63 patients with GU and 25 patients with CSG. During upper gastroduodenal endoscopy, we took samples of gastric mucosa from the antrum and ulcer site from patients with GU, and samples of antral mucosa from patients with CSG. Mucosal biopsy tissues were cultured for 24 h, and the culture supernatant was measured for levels of MMP-9 and TIMP-1. After receiving eradication therapy for Helicobacter pylori (H. pylori) and 8 wk proton-pump inhibitor therapy for GU, follow-up endoscopy examination was performed after 6 mo and whenever severe symptoms occurred. Levels of MMP-9 and TIMP-1 at the ulcer site or in the antrum were significantly higher in GU than CSG patients. MMP-9 levels at the ulcer site were significantly higher than in the antrum in GU patients, and had a significantly positive correlation with TIMP-1. MMP-9 levels were significantly higher in H. pylori-positive than H. pylori-negative GU and CSG patients. Levels of MMP-9 or TIMP-1 at the ulcer site were associated with the histological severity of activity and inflammation. About 57 GU patients were followed up, and seven had GU recurrence. H. pyloriinfection and MMP-9 levels were risk factors for the recurrence of GU adjusted for age and sex by multiple logistic regression analysis. MMP-9 may perform an important function in gastric ulcer formation and recurrence.

  17. Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Krizanac-Bengez Liljana

    2009-03-01

    Full Text Available Abstract Background Metalloproteinase inhibitors can protect mice against experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis (MS. Matrix metalloproteinase-9 (MMP-9 has been implicated, but it is not clear if other MMPs are also involved, including matrilysin/MMP-7 – an enzyme capable of cleaving proteins that are essential for blood brain barrier integrity and immune suppression. Results Here we report that MMP-7-deficient (mmp7-/- mice on the C57Bl/6 background are resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG. Brain sections from MOG-primed mmp7-/-mice did not show signs of immune cell infiltration of the CNS, but MOG-primed wild-type mice showed extensive vascular cuffing and mononuclear cell infiltration 15 days after vaccination. At the peak of EAE wild-type mice had MMP-7 immuno-reactive cells in vascular cuffs that also expressed the macrophage markers Iba-1 and Gr-1, as well as tomato lectin. MOG-specific proliferation of splenocytes, lymphocytes, CD4+ and CD8+ cells were reduced in cells isolated from MOG-primed mmp7-/- mice, compared with MOG-primed wild-type mice. However, the adoptive transfer of splenocytes and lymphocytes from MOG-primed mmp7-/- mice induced EAE in naïve wild-type recipients, but not naïve mmp7-/- recipients. Finally, we found that recombinant MMP-7 increased permeability between endothelial cells in an in vitro blood-brain barrier model. Conclusion Our findings suggest that MMP-7 may facilitate immune cell access or re-stimulation in perivascular areas, which are critical events in EAE and multiple sclerosis, and provide a new therapeutic target to treat this disorder.

  18. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  19. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  20. Acetylcholine induces neurite outgrowth and modulates matrix metalloproteinase 2 and 9.

    Science.gov (United States)

    Anelli, Tonino; Mannello, Ferdinando; Salani, Monica; Tonti, Gaetana A; Poiana, Giancarlo; Biagioni, Stefano

    2007-10-19

    The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na(+) channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.

  1. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    Science.gov (United States)

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.

  2. Prenatal nicotine increases matrix metalloproteinase 2 (MMP-2) expression in fetal guinea pig hearts.

    Science.gov (United States)

    Thompson, Loren P; Liu, Hongshan; Evans, LaShauna; Mong, Jessica A

    2011-11-01

    This study tested the hypothesis that maternal nicotine ingestion increases matrix metalloproteinase (MMP) expression in fetal hearts, which is mediated by the generation of reactive oxygen species. Timed pregnant guinea pigs were administered either water alone, nicotine (200 μg/mL), N-acetylcysteine (NAC), or nicotine plus NAC in their drinking water for 10 days at 52-day gestation (term = 65 days). Near-term (62 days), anesthetized fetuses were extracted, hearts were excised, and left cardiac ventricles snap frozen for analysis of MMP-2/-9/-13 protein and activity levels. Interstitial collagens were identified by Picrosirius red stain to assess changes in the extracellular matrix. Prenatal nicotine increased active MMP-2 forms and interstitial collagen but had no effect on either pro- or active MMP-9 or MMP-13 forms. In the presence of nicotine, NAC decreased active MMP-2 protein levels and reversed the nicotine-induced increase in collagen staining. We conclude that prenatal nicotine alters MMP-2 expression in fetal hearts that may be mediated by reactive oxygen species generation.

  3. Low matrix metalloproteinase levels precede vascular lesion formation in the JCR:LA-cp rat.

    Science.gov (United States)

    Wilson, David; Massaeli, Hamid; Russell, James C; Pierce, Grant N; Zahradka, Peter

    2003-07-01

    Clinically significant occlusive vascular lesions contain more extracellular matrix (ECM) proteins and lipid deposition than healthy vascular tissue. The events leading to this condition remain unresolved. One possibility is that ECM deposition may exceed ECM degradation which would contribute to the expansion of the vascular lesion. Utilizing lean (+/?) and insulin-resistant, corpulent (cp/cp) JCR:LA-cp rats, which are predisposed to develop vascular lesions, we have compared the matrix metalloproteinase (MMP) profile prior to the development of significant vascular lesions. Analysis of serum MMPs revealed that cp/cp rats have lower circulating levels than (+/?) controls. This is observed prior to the development of any noticeable atherosclerotic lesions. It also occurs as the hyperinsulinemia and insulin resistance is first developing in these rats. Female corpulent animals, which are less prone to develop vascular lesions, also exhibit a depressed serum MMP profile of a similar magnitude to their male counterparts. Primary vascular smooth muscle cells isolated from cp/cp animals also showed a reduction in secreted MMP compared with cells derived from +/? lean controls. We conclude that reduced MMP levels could lead to increased ECM accumulation and thus contribute to early vascular lesion formation.

  4. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin.

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A; Hoshika, Tomohiro; Tay, Franklin R; Pashley, David H

    2010-10-01

    This study has examined the use of polyvinylphosphonic acid (PVPA) as a potential matrix metalloproteinase (MMP) inhibitor and how brief cross-linking of demineralized dentin matrix that did not affect its mechanical properties enhanced the anti-MMP activity of PVPA. The anti-MMP potential of five PVPA concentrations (100-3000 microgml(-1)) was initially screened using a rhMMP-9 colorimetic assay. Demineralized dentin beams were treated with the same five concentrations of PVPA to collagen and then aged for 30 days in a calcium- and zinc-containing medium. The changes in modulus of elasticity, loss of dry mass and dissolution of collagen peptides were measured via three-point bending, precision weighing and hydroxyproline assay, respectively. All tested PVPA concentrations were highly effective (P<0.05) in inhibiting MMP-9. Ageing in the incubation medium did not significantly alter the modulus of elasticity of the five PVPA treatment groups. Conversely, aged dentin beams from the control group exhibited a significant decline in their modulus of elasticity (P<0.05) over time. Mass loss from the dentin beams and the corresponding increase in hydroxyproline in the medium in the five PVPA treatment groups were significantly lower than for the control (P<0.05). PVPA is a potent inhibitor of endogenous MMP activities in demineralized dentin. It may be used as an alternative to chlorhexidine to prevent collagen degradation within hybrid layers to extend the longevity of resin-dentin bonds.

  5. Gelatinase activity of matrix metalloproteinases in the cerebrospinal fluid of various patient populations.

    Science.gov (United States)

    Valenzuela, M A; Cartier, L; Collados, L; Kettlun, A M; Araya, F; Concha, C; Flores, L; Wolf, M E; Mosnaim, A D

    1999-01-01

    We have studied the enzymatic gelatinolytic activity of matrix metalloproteinases (MMPs) present in cerebrospinal fluid (CSF) of samples obtained from 67 individuals, twenty-one nonneurological patients (considered controls) and 46 subjects with various neurological disorders e.g., vascular lesions, demyelination, inflammatory, degenerative and prion diseases. Biochemical characterization of MMPs, a family of neutral proteolytic enzymes involved in extracellular matrix modeling, included determination of substrate specificity and Ca+2 dependency, as well as the effects of protease inactivators, carboxylic and His (histidine) residue modifiers, and antibiotics. Whereas all CSF samples expressed MMP-2 (gelatinase A) activity, it corresponded in most cases (normal and pathological samples) to its latent form (proenzyme; pMMP-2). In general, inflammatory neurological diseases (especially meningitis and neurocisticercosis) were associated with the presence of a second enzyme, MMP-9 (or gelatinase B). Whereas MMP-9 was found in the CSF of every tropical spastic paraparesis patient studied, its presence in samples from individuals with vascular lesions was uncommon. Patients blood-brain barrier damage was ascertained by determining total CSF protein content using both, the conventional polyacrylamide gel electrophoresis procedure under denaturing conditions and capillary zone electrophoresis.

  6. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration.

    Directory of Open Access Journals (Sweden)

    Danielle J Behonick

    Full Text Available Extracellular matrix (ECM remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3 plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.

  7. Invasiveness of Hepatocellular Carcinoma Cell Lines: Contribution of Membrane-Type 1 Matrix Metalloproteinase

    Directory of Open Access Journals (Sweden)

    Koji Murakami

    1999-11-01

    Full Text Available Intrahepatic metastasis is one of the malignant features of hepatocellular carcinoma (HCC. Matrix metalloproteoinases (MMPs and urokinase-type plasminogen activator (u-PA/plasmin, are known to be associated with the invasive properties of various types of tumor cells. In this study, we examined which proteinases play a role in the metastatic invasion of human HCC cell lines. JHH-5 and JHH-6 cells constitutively expressed mRNAs for both membrane-type 1 matrix metalloproteinase (MT1-MMP and u-PA and invaded through reconstituted MATRIGEL in vitro, whereas JHH-7 cells expressed u-PA mRNA but not MT1-MMP and did not invade. However, hepatocyte growth factor (HGF induced MT1-MMP expression on the surface of JHH-7 cells and markedly increased invasiveness of JHH-7 in a concentration-dependent manner. Moreover, cleavage activity for pro-MMP-2 was induced in HGF-treated JHH7 cells. MMP inhibitor, rather than serine proteinase inhibitor, potently inhibited HCC cell invasion. Intrahepatic injection of HCC cell lines into athymic nude mice caused visible intrahepatic metastases in vivo. Moreover, JHH-7 tumors showed expression of MT1-MMP mRNA, while in vitro cultured JHH-7 cells did not. These findings suggest that MTi-MMP plays an important role in the invasive properties of HCC cells, and that HGF modifies the invasive properties of noninvasive HCC cells.

  8. Matrix metalloproteinase-9 and cell division in neuroblastoma cells and bone marrow macrophages.

    Science.gov (United States)

    Sans-Fons, M Gloria; Sole, Sonia; Sanfeliu, Coral; Planas, Anna M

    2010-12-01

    Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions in cell development, cancer, injury, and regeneration. In addition to its well recognized extracellular action, functional intracellular MMP activity under certain conditions is supported by increasing evidence. In this study, we observed higher gelatinase activity by in situ zymography and increased MMP-9 immunoreactivity in human neuroblastoma cells and in bone marrow macrophages undergoing mitosis compared with resting cells. We studied the pattern of immunoreactivity at the different stages of cell division by confocal microscopy. Immunostaining with different monoclonal antibodies against MMP-9 revealed a precise, dynamic, and well orchestrated localization of MMP-9 at the different stages of cell division. The cellular distribution of MMP-9 staining was studied in relation to that of microtubules. The spatial pattern of MMP-9 immunoreactivity suggested some participation in both the reorganization of the nuclear content and the process of chromatid segmentation. We then used several MMP-9 inhibitors to find out whether MMP-9 might be involved in the cell cycle. These drugs impaired the entry of cells into mitosis, as revealed by flow cytometry, and reduced cell culture growth. In addition, the silencing of MMP-9 expression with small interfering RNA also reduced cell growth. Taken together, these results suggest that intracellular MMP-9 is involved in the process of cell division in neuroblastoma cells and in primary cultures of macrophages.

  9. Serum matrix metalloproteinase 9 (MMP9) as a biochemical marker for wasting marmoset syndrome.

    Science.gov (United States)

    Yoshimoto, Takuro; Niimi, Kimie; Takahashi, Eiki

    2016-06-01

    Use of the common marmoset (Callithrix jacchus) as a non-human primate experimental animal has increased in recent years. Although wasting marmoset syndrome (WMS) is one of the biggest problems in captive marmoset colonies, the molecular mechanisms, biochemical markers for accurate diagnosis and a reliable treatment remain unknown. In this study, as a first step to finding biochemical marker(s) for the accurate diagnosis of WMS, we conducted blood cell counts, including hematocrit, hemoglobin and platelets, and examined serum chemistry values, including albumin, calcium and levels of serum matrix metalloproteinase 9 (MMP9), using a colony of marmosets with and without weight loss. MMP9 is thought to be an enzyme responsible for the degradation of extracellular matrix components and participates in the pathogenesis of inflammatory conditions, such as human and murine inflammatory bowel disease, which, like WMS, are characterized histologically by inflammatory cell infiltrations in the intestines. The values of hematocrit and hemoglobin and levels of serum albumin and calcium in the WMS group were significantly decreased versus the control group. The platelet values and serum MMP9 concentrations were increased significantly in the WMS group compared with the control group. MMP9 could be a new and useful marker for the diagnosis of WMS in addition to hematocrit, hemoglobin, serum albumin and calcium. Our results also indicate that MMP9 could be a useful molecular candidate for treatment.

  10. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  11. cag Pathogenicity island-dependent upregulation of matrix metalloproteinase-7 in infected patients with Helicobacter pylori.

    Science.gov (United States)

    Sadeghiani, Marzieh; Bagheri, Nader; Shahi, Heshmat; Reiisi, Somayeh; Rahimian, Ghorbanali; Rashidi, Reza; Mahsa, Majid; Shafigh, Mohammedhadi; Salimi, Elaheh; Rafieian-Kopaei, Mahmoud; Hashemzadeh-Chaleshtori, Morteza; Shirzad, Hedayatollah

    2017-07-12

    Helicobacter pylori (H. pylori) infection has been involved in the pathogenesis of most important gastroduodenal diseases. Matrix metalloproteinases (MMPs) are a large family of zincendopeptidases which play important roles in degradation of extracellular matrix (ECM) and various inflammatory diseases. Therefore, we examined MMP-7 mRNA levels in the gastric mucosa of patients with H. pylori infection and evaluated the effects of virulence factors, such as vacA (vacuolating cytotoxin A) and cagA (cytotoxin-associated gene), in H. pylori-infected patients upon the MMP-7 mRNA mucosal levels. We also determined the correlation between mucosal MMP-7 mRNA levels and the types of disease. Total RNA was extracted from gastric biopsies of 50 H. pylori-infected patients and 50 uninfected individuals. Mucosal MMP-7 mRNA expression level in H. pylori-infected and non-infected gastric biopsies was determined by real-time polymerase chain reaction (PCR). The presences of cagA and vacA virulence factors was evaluated using PCR. MMP-7 expression was significantly higher in biopsies of patients infected with H .pylori compared to uninfected individuals. In addition, mucosal MMP-7 mRNA expression in H. pylori-infected patients significantly associated with the cagA status and the types of disease. Our results suggest that MMP-7 might be involved in the pathogenesis of H. pylori. Peptic ulcer was associated with cag pathogenicity island-dependent MMP-7 upregulation.

  12. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-01-01

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411

  13. Effect of Supracervical Apposition and Spontaneous Labour on Apoptosis and Matrix Metalloproteinases in Human Fetal Membranes

    Directory of Open Access Journals (Sweden)

    Mahalia Chai

    2013-01-01

    Full Text Available Background. Apoptosis and matrix metalloproteinase (MMP-9 are capable of hydrolysing components of the extracellular matrix and weakening the fetal membranes which leads to eventual rupture, a key process of human parturition. The aim of this study was to determine the effect of supracervical apposition and spontaneous labour on apoptosis and MMP-9 in human fetal membranes at term. Methods. Fetal membranes were obtained from term non-labouring supracervical site (SCS and compared to (i a paired distal site (DS or (ii site of rupture (SOR after spontaneous labour onset. Results. The expression of the proapoptotic markers Bax, Smac, Fas, FasL, caspase-3, and PARP, was significantly higher in the non-labouring SCS chorion compared to paired DS. Bax, Smac, FasL, caspase-3, and PARP staining was higher in the non-labouring SCS fetal membranes than that in the post-labour SOR. MMP-9 expression and activity were higher in the post-labour SOR fetal membranes compared to non-labouring SCS fetal membranes. Conclusion. Components of the apoptotic signalling pathways and MMP-9 may play a role in rupture and labour. Non-labouring SCS fetal membranes display altered morphology and altered apoptotic biochemical characteristics in preparation for labour, while the laboured SOR displays unique MMP characteristics.

  14. The parasite Entamoeba histolytica exploits the activities of human matrix metalloproteinases to invade colonic tissue.

    Science.gov (United States)

    Thibeaux, Roman; Avé, Patrick; Bernier, Michèle; Morcelet, Marie; Frileux, Pascal; Guillén, Nancy; Labruyère, Elisabeth

    2014-10-07

    Intestinal invasion by the protozoan parasite Entamoeba histolytica is characterized by remodelling of the extracellular matrix (ECM). The parasite cysteine proteinase A5 (CP-A5) is thought to cooperate with human matrix metalloproteinases (MMPs) involved in ECM degradation. Here, we investigate the role CP-A5 plays in the regulation of MMPs upon mucosal invasion. We use human colon explants to determine whether CP-A5 activates human MMPs. Inhibition of the MMPs' proteolytic activities abolishes remodelling of the fibrillar collagen structure and prevents trophozoite invasion of the mucosa. In the presence of trophozoites, MMPs-1 and -3 are overexpressed and are associated with fibrillar collagen remodelling. In vitro, CP-A5 performs the catalytic cleavage needed to activate pro-MMP-3, which in turn activates pro-MMP-1. Ex vivo, incubation with recombinant CP-A5 was enough to rescue CP-A5-defective trophozoites. Our results suggest that MMP-3 and/or CP-A5 inhibitors may be of value in further studies aiming to treat intestinal amoebiasis.

  15. Enhancement of Achilles tendon repair mediated by matrix metalloproteinase inhibition via systemic administration of doxycycline.

    Science.gov (United States)

    Kessler, Michael W; Barr, Jerome; Greenwald, Robert; Lane, Lewis B; Dines, Joshua S; Dines, David M; Drakos, Mark C; Grande, Daniel A; Chahine, Nadeen O

    2014-04-01

    Collagenases or matrix metalloproteinases (MMPs) have been shown to play an important role in the matrix degradation cascade associated with Achilles tendon rupture and disease. The goal of this study was to examine the effects of daily administration of doxycycline (Doxy) through oral gavage on MMP activity and on the repair quality of Achilles tendons in vivo. Our findings indicate that Achilles tendon transection resulted in increasing MMP-8 activity from 2 to 6 weeks post-injury, with peak increases in activity occurring at 4 weeks post-injury. Doxy adiministration at clinically relevant serum concentrations was found to significantly inhibit MMP activity after continuous treatment for 4 weeks, but not for continuous administration for shorter durations (96 h or 2 weeks). Extended doxy administration was also associated with improved collagen fibril organization, and enhanced biomechanical properties (stiffness, ultimate tensile strength, maximum load to failure, and elastic toughness). Our findings indicate that a temporal delay exists between Achilles tendon transection and associated increases in MMP-8 activity in situ. Our findings suggest that inhibition of MMP-8 at its peak activity levels ameliorates fibrosis development and improves biomechanical properties of the Achilles tendon. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The inhibition of matrix metalloproteinase activity in chronic wounds by a polyacrylate superabsorber.

    Science.gov (United States)

    Eming, Sabine; Smola, Hans; Hartmann, Berenike; Malchau, Gebhart; Wegner, Ronny; Krieg, Thomas; Smola-Hess, Sigrun

    2008-07-01

    Excessive matrix metalloproteinase (MMP) levels have been observed in wound fluid of impaired healing wounds. This is thought to interfere with granulation tissue formation as newly formed extracellular matrix and cytokines are degraded and the wound becomes deadlocked, unable to progress to the next healing stages. In the cleansing phase, associated with high MMP activity levels, hydroactive wound dressings containing polyacrylate superabsorber particles are particularly effective. We tested whether these particles can block MMP activity in wound fluid obtained from chronic venous leg ulcers. Polyacrylate superabsorber particles inhibited MMP activity by more than 87% in a fluorogenic peptide substrate assay. Further analysis revealed two underlying molecular mechanisms. First, experiments showed direct binding of MMPs to the particles. Secondly, polyacrylate superabsorber particles can bind Ca2+ and Zn2+ ions competing with MMPs for divalent ions required for enzymatic activity. Furthermore, we provide the first evidence in vivo that MMPs bind effectively to polyacrylate superabsorber particles within the hostile environment of chronic wounds. We conclude that polyacrylate superabsorber particles can rescue the highly proteolytic microenvironment of non-healing wounds from MMP activity so that more conductive conditions allow healing to proceed.

  17. Phosphoramidate-based peptidomimetic inhibitors of membrane type-1 matrix metalloproteinase.

    Science.gov (United States)

    Mendes, Desiree E; Wong-On-Wing, Annie; Berkman, Clifford E

    2016-01-01

    Membrane-type I matrix metalloproteinases (MT1-MMP) is an enzyme critical to the remodeling and homeostasis of extracellular matrix, and when over expressed it contributes to metastasis and cancer cell progression. Because of its role and implication as a biomarker that is upregulated in various cancers, MT1-MMP has become an attractive target for drug discovery. A small pilot library of peptidomimetics containing a phosphoramidate core as a zinc-binding group was synthesized and tested for inhibitory potency against MT1-MMP. From this library, a novel two residue peptidomimetic scaffold was identified that confers potency against MT1-MMP at submicromolar concentrations. The results of this study confirm that for this scaffold, valine is favored as a P1 residue and leucine in the P1' position. Furthermore, steric tolerance was observed for the N-terminus, thus implicating that a second-generation library could be constructed to extend the scaffold to P2 without concomitant loss of affinity within the MT1-MMP catalytic domain.

  18. Interlukin-18 Is a Pivot Regulatory Factor on Matrix Metalloproteinase-13 Expression and Brain Astrocytic Migration.

    Science.gov (United States)

    Chen, Jia-Hong; Tsai, Chon-Haw; Lin, Hsiao-Yun; Huang, Chien-Fang; Leung, Yuk-Man; Lai, Sheng-Wei; Tsai, Cheng-Fang; Chang, Pei-Chun; Lu, Dah-Yuu; Lin, Chingju

    2016-11-01

    The expression of matrix metalloproteinase-13 (MMP-13) has been shown to be elevated in some pathophysiological conditions and is involved in the degradation of extracellular matrix in astrocytes. In current study, the function of MMP-13 was further investigated. The conditioned medium (CM) collected from activated microglia increased interleukin (IL)-18 production and enhanced MMP-13 expression in astrocytes. Furthermore, treatment with recombinant IL-18 increased MMP-13 protein and mRNA levels in astrocytes. Recombinant IL-18 stimulation also increased the enzymatic activity of MMP-13 and the migratory activity of astrocytes, while administration of MMP-13 or pan-MMP inhibitors antagonized IL-18-induced migratory activity of astrocytes. In addition, administration of recombinant IL-18 to astrocytes led to the phosphorylation of JNK, Akt, or PKCδ, and treatment of astrocytes with JNK, PI3 kinase/Akt, or PKCδ inhibitors significantly decreased the IL-18-induced migratory activity. Taken together, the results suggest that IL-18-induced MMP-13 expression in astrocytes is regulated by JNK, PI3 kinase/Akt, and PKCδ signaling pathways. These findings also indicate that IL-18 is an important regulator leading to MMP-13 expression and cell migration in astrocytes.

  19. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  20. Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients.

    Science.gov (United States)

    Groblewska, Magdalena; Mroczko, Barbara; Gryko, Mariusz; Pryczynicz, Anna; Guzińska-Ustymowicz, Katarzyna; Kędra, Bogusław; Kemona, Andrzej; Szmitkowski, Maciej

    2014-04-01

    The objective of the study was the assessment of serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2) in patients with colorectal cancer (CRC). The study included 72 CRC patients and 68 healthy subjects. The serum levels of MMP-2 and TIMP-2 were measured using enzyme-linked immunosorbent assay (ELISA) method, whereas tissue expression of MMP-2 and TIMP-2 in cancer cells, interstitial inflammatory cells, and adjacent normal colorectal mucosa were examined by immunohistochemical staining of tumor samples. The serum levels of MMP-2 and TIMP-2 in cancer patients were significantly lower than those in control group, but the percentage of positive immunoreactivity of these proteins were higher in malignant and inflammatory cells as compared to normal tissue. There was a significant correlation between MMP-2 immunoreactivity in inflammatory cells and the presence of distant metastases and between TIMP-2 expression in inflammatory cells and tumor size, nodal involvement, and distant metastases. Area under receiver operating characteristic (ROC) curve (AUC) for serum MMP-2 was higher than for serum TIMP-2. Moreover, positive tissue expression of MMP-2 was a significant prognostic factor for CRC patients' survival. Our findings suggest that MMP-2 and TIMP-2 might play a role in the process of colorectal cancer invasion and metastasis, but the significance of their interactions with tumor stroma and interstitial inflammatory infiltration in colorectal neoplasia require further elucidation.

  1. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma

    Science.gov (United States)

    Ruan, Shaobo; He, Qin; Gao, Huile

    2015-05-01

    To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to

  2. Kallikrein 4 and matrix metalloproteinase-20 immunoexpression in malignant, benign and infiltrative odontogenic tumors

    Science.gov (United States)

    Crivelini, Marcelo Macedo; Oliveira, Denise Tostes; de Mesquita, Ricardo Alves; de Sousa, Suzana Cantanhede Orsini Machado; Loyola, Adriano Motta

    2016-01-01

    Context: Matrix metalloproteinase-20 (MMP20) (enamelysin) and kallikrein 4 (KLK4) are enzymes secreted by ameloblasts that play an important role in enamel matrix degradation during amelogenesis. However, studies have shown that neoplastic cells can produce such enzymes, which may affect the tumor infiltrative and metastatic behaviors. Aims: The aim of this study is to assess the biological role of MMP20 and KLK4 in odontogenic tumors. Materials and Methods: The enzymes were analyzed immunohistochemically in ameloblastoma, adenomatoid odontogenic tumor (AOT), calcifying epithelial odontogenic tumor, keratocystic odontogenic tumor with or without recurrence and odontogenic carcinoma. Statistical Analysis Used: Clinicopathological parameters were statistically correlated with protein expression using the Fisher's exact test. Kruskal–Wallis and Wilcoxon-independent methods were used to evaluate the differences in median values. Results: Positive Immunoexpression was detected in all benign lesions, with a prevalence of 75–100% immunolabeled cells. Patients were predominantly young, Caucasian, female, with slow-growing tumors located in the mandible causing asymptomatic swelling. No KLK4 expression was seen in carcinomas, and the amount of MMP20-positive cells varied between 20% and 80%. Rapid evolution, recurrence and age >60 years characterized the malignant nature of these lesions. Conclusions: Data showed that KLK4 and MMP20 enzymes may not be crucial to tumoral infiltrative capacity, especially in malignant tumors, considering the diversity and peculiarity of these lesions. The significant immunoexpression in benign lesions, remarkably in AOT, is likely associated with differentiated tumor cells that can produce and degrade enamel matrix-like substances. This would be expected since the histogenesis of odontogenic tumors commonly comes from epithelium that recently performed a secretory activity in tooth formation. PMID:27601817

  3. The role of matrix metalloproteinase-2 promoter polymorphisms in coronary artery disease and myocardial infarction.

    Science.gov (United States)

    Alp, Ebru; Menevse, Sevda; Tulmac, Murat; Yilmaz, Akin; Yalcin, Ridvan; Cengel, Atiye

    2011-04-01

    The matrix metalloproteinase (MMP) family are key enzymes involved in the breakdown of the extracellular matrix in normal physiological processes, including tissue remodeling, and disease processes, such as arthritis and metastasis. The promoter polymorphism in the MMP2 gene may be responsible for multiple diseases related to extracellular matrix degradation. Therefore, we aimed to investigate the relationship between genotypes or haplotypes of -1575 G/A, -1306 C/T, -790 T/G, and -735 C/T promoter polymorphisms and coronary artery disease (CAD) with or without myocardial infarction (MI) history. This study included 298 patients with angiographically confirmed CAD and 299 age matched controls. Genomic DNA was isolated from whole blood and genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism method. No significant associations were found between -1575 G/A, -1306 C/T, and -790 T/G polymorphisms and CAD with or without MI history. However, the frequency of the -735 TT genotype was significantly lower in the controls than in the patients with MI alone when compared with the CC genotype (p=0.021). Only the distribution of the ACGC haplotype in CAD patients exhibited a significant difference than that in controls (p<0.05). The distribution of other haplotypes did not differ between CAD patients and controls. The present investigation is the first report to detect an association between MMP2 promoter polymorphisms and CAD with or without MI history in the Turkish population. Further case-control studies in CAD development might be contributed to clarify the role of these polymorphisms.

  4. The upregulation of matrix metalloproteinase -2 and -9 genes caused by resistin in human chondrocytes

    Directory of Open Access Journals (Sweden)

    Kürşat Oğuz Yaykaşlı

    2014-02-01

    Full Text Available  OBJECTIVES: The articular cartilage allows movement by absorbing mechanical loading within a physiological range. However, the accumulation of excessive adipose tissue has catabolic effect on extracellular matrix (ECM components in some diseases such as rheumatoid arthritis (RA and osteoarthritis (OA. Resistin, inflammatory adipokines is secreted by adipose tissue, and the elevated serum level was reported in obese subjects and patients with RA and OA. Gelatinases (MMP-2 and MMP-9, a subfamily of matrix metalloproteinases are responsible for destruction of collagen and matrix components. In this study, the effect of resistin on gelatinases genes expression was investigated. METHODS: Human chondrocytes was stimulated by resistin at 100 and 250 ng/ml doses for 3h, 6h, 12h, 24h and 48h. 2 µg RNA was subject to reverse transcription after RNA extraction. Gelatinases expressions were analyzed by quantitative Real-Time Polymerase Chain Reaction method. RESULTS: The expression levels of gelatinases were increased at both 100 and 250 ng/mL and peaked at 250 ng/ml dose for 48 hours. CONCLUSIONS: The clarification of etiology for irreversible destruction of ECM has a vital importance to develop new treatment strategies for RA and OA. In conclusion, increased levels of gelatinases expression caused by resistin were founded. The upregulation of gelatinases caused by resistin is might be a new target for obesity associated patients with RA and OA. However, the molecular pathways of this induction should be investigated in other studies. 

  5. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Directory of Open Access Journals (Sweden)

    Hisanori Eba

    Full Text Available Matrix metalloproteinases (MMPs are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  6. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    Science.gov (United States)

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  7. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate.

    Science.gov (United States)

    Leight, Jennifer L; Alge, Daniel L; Maier, Andrew J; Anseth, Kristi S

    2013-10-01

    Incorporation of degradable moieties into synthetic hydrogels has greatly increased the utility of these three-dimensional matrices for in vitro cell culture as well as tissue engineering applications. A common method for introducing degradability is the inclusion of oligopeptides sensitive to cleavage by matrix metalloproteinases (MMPs), enabling cell-mediated remodeling and migration within the material. While this strategy has been effective, characterization and measurement of cell-mediated degradation in these materials has remained challenging. There are 20+ MMP family members whose activity is regulated in space and time by a number of biochemical and biophysical cues. Thus, the typical approach of characterizing cleavage of degradable moieties in solution with recombinant enzymes does not easily translate to three-dimensional cell-mediated matrix remodeling. To address this challenge, we report here the synthesis of a cell-laden hydrogel matrix functionalized with a fluorogenic peptide substrate to provide real-time, quantitative monitoring of global MMP activity. Using this system, stimulation of MMP activity was observed with growth factor treatment in mammary epithelial cells and compared to classical zymography results. Further, the effect of biophysical cues on MMP activity of human mesenchymal stem cells was also investigated where more rigid hydrogels were observed to increase MMP activity. The regulation of MMP activity by these biochemical and biophysical cues highlights the need for in situ, real-time measurement of hydrogel degradation, and use of these functionalized hydrogels will aid in future rational design of degradable synthetic hydrogels for in vitro cell studies and tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Expression of tissue inhibitor of matrix metalloproteinase-1 in aging of transgenic mouse liver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is related to the aging of many organs, but few data are available on the change of TIMP-1 in liver aging. The purpose of this study was to investigate the expression and role of TIMP-1, matrix metalloproteinase-2 (MMP-2) and MMP-9 in the process of natural aging in the livers of normal and transgenic mice, and to detect the effects of TIMP-1 on oxidative level and anti-oxidative ability of the livers of transgenic young mice.Methods Normal and transgenic mice were divided into 3 groups according to their age: 3-month-old group (n=5), 12-month-old group (n=5) and 24-month-old group (n=5). Histopathological changes of the liver were observed after HE and Masson staining. The messenger RNA (mRNA) levels of TIMP-1, MMP-2 and MMP-9 were determined by semi-quantitative reverse transcriptional polymerase chain reaction; protein expression was measured by Western blot in the livers of normal and transgenic mice of various ages. Changes in levels of superoxide dismutase (SOD), monoamine oxidase (MAO), malondialdehyde (MDA) as well as oxidative and anti-oxidative ability were measured.Results Histologically, more fatty degeneration and collagen deposition were found in the aging livers of transgenic mice than in those of the normal mice as their age of months increased. The mRNA and protein expressions of TIMP-1 were significantly high in the oldest animals. The histopathological changes, mRNA and protein expressions of TIMP-1 increased significantly in the liver of transgenic mice as compared with normal mice. The expression of MMP-2 and MMP-9 showed a minor change in the process of aging. Liver change and collagen deposition were not observed in young mice, but the activity of SOD decreased (P<0.05), and the activity of MAO (P<0.01) and the content of MDA increased in the liver of transgenic mice (P<0.01).Conclusions The expression of TIMP-1 is significantly high in the liver of transgenic mouse in the

  9. Preoperative radiotherapy and extracellular matrix remodeling in rectal mucosa and tumour matrix metalloproteinases and plasminogen components

    Energy Technology Data Exchange (ETDEWEB)

    Angenete, Eva; Oeresland, Tom; Falk, Peter; Breimer, Michael; Ivarsson, Marie-Louise (Dept. of Surgery, Inst. of Clinical Sciences, Sahlgrenska Academy at Univ. of Goeteborg, Goeteborg (Sweden)); Hultborn, Ragnar (Dept. of Oncology, Institute of Clinical Sciences, Sahlgrenska Univ. Hospital/Sahlgrenska, Goeteborg (Sweden))

    2009-11-15

    Background. Preoperative radiotherapy reduces recurrence but increases postoperative morbidity. The aim of this study was to explore the effect of radiotherapy in rectal mucosa and rectal tumour extracellular matrix (ECM) by studying enzymes and growth factors involved in ECM remodeling. Materials and methods. Twenty patients with short-term preoperative radiotherapy and 12 control patients without radiotherapy were studied. Biopsies from rectal mucosa and tumour were collected prior to radiotherapy and at surgery. Tissue MMP-1, -2, -9, TIMP-1, uPA, PAI-1, TGF-beta1 and calprotectin were determined by ELISA. Biopsies from irradiated and non-irradiated peritoneal areas were also analysed. Results. Radiotherapy increased the tissue levels of MMP-2 and PAI-1 in both the rectal mucosa and tumours while calprotectin and uPA showed an increase only in the mucosa after irradiation. The increase of calprotectin was due to an influx of inflammatory cells as revealed by immunohistochemistry. Prior to irradiation, the tumour tissues had increased levels of MMP-1, -2, -9, total TGF-beta1, uPA, PAI-1 and calprotectin compared to mucosa, while TIMP-1 and the active TGF-beta1 fraction showed no statistical difference. Conclusions. This study indicates a radiation-induced effect on selected ECM remodeling proteases. This reaction may be responsible for early and late morbidity. Interference of this response might reduce these consequences.

  10. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart.

    Science.gov (United States)

    Lauer, Dilyara; Slavic, Svetlana; Sommerfeld, Manuela; Thöne-Reineke, Christa; Sharkovska, Yuliya; Hallberg, Anders; Dahlöf, Bjorn; Kintscher, Ulrich; Unger, Thomas; Steckelings, Ulrike Muscha; Kaschina, Elena

    2014-03-01

    Left ventricular (LV) remodeling is the main reason for the development of progressive cardiac dysfunction after myocardial infarction (MI). This study investigated whether stimulation of the angiotensin type 2 receptor is able to ameliorate post-MI cardiac remodeling and what the underlying mechanisms may be. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the angiotensin type 2 receptor agonist compound 21 (0.03 mg/kg) was started 6 hours post-MI and continued for 6 weeks. Hemodynamic parameters were measured by echocardiography and intracardiac catheter. Effects on proteolysis were studied in heart tissue and primary cardiac fibroblasts. Compound 21 significantly improved systolic and diastolic functions, resulting in improved ejection fraction (71.2±4.7% versus 53.4±7.0%; Pventricular filling velocities, and maximum and minimum rate of LV pressure rise (P<0.05). Compound 21 improved arterial stiffness parameters and reduced collagen content in peri-infarct myocardium. Tissue inhibitor of matrix metalloproteinase 1 was strongly upregulated, whereas matrix metalloproteinases 2 and 9 and transforming growth factor β1 were diminished in LV of treated animals. In cardiac fibroblasts, compound 21 initially induced tissue inhibitor of matrix metalloproteinase 1 expression followed by attenuated matrix metalloproteinase 9 and transforming growth factor β1 secretion. In conclusion, angiotensin type 2 receptor stimulation improves cardiac function and prevents cardiac remodeling in the late stage after MI, suggesting that angiotensin type 2 receptor agonists may be considered a future pharmacological approach for the improvement of post-MI cardiac dysfunction.

  11. Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1 activity and increase airway smooth muscle contraction in asthma.

    Directory of Open Access Journals (Sweden)

    Natasha K Rogers

    Full Text Available Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM deposition. Matrix metalloproteinase-1 (MMP-1 is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.

  12. Selection of Peptide Inhibitor to Matrix Metalloproteinase-2 Using Phage Display and Its Effects on Pancreatic Cancer Cell lines PANC-1 and CFPAC-1

    Directory of Open Access Journals (Sweden)

    Gao Lu, Maqing Zheng, Yunxia Zhu, Min Sha, Yue Wu, Xiao Han

    2012-01-01

    Full Text Available Despite tremendous advances in cancer treatment and survival rates, pancreatic cancer remains one of the most deadly afflictions and the fourth leading cause of cancer deaths in the world. Matrix Metalloproteinases (MMPs are thought to be involved in cancer progression. Matrix metalloproteinase (MMP-2 is known to play a pivotal role in tumor invasion, metastasis and angiogenesis, and validated to be the anticancer target. Inhibition of MMP-2 activity is able to reduce the cancer cell invasion and suppress tumor growth in vivo. Two novel peptides, M204C4 and M205C4, which could specially inhibit MMP-2 activity, were identified by a phage display library screening. We showed that M204C4 and M205C4 inhibited the activity of MMP-2 in a dose dependent manner in vitro. Two peptides reduced MMP-2 mediated invasion of the pancreatic cancer cell lines PANC-1 and CFPAC-1, but not affected the expression and release of MMP-2. Furthermore, these two peptides could suppress tumor growth in vivo. Our results indicated that two peptides selected by phase display technology may be used as anticancer drugs in the future.

  13. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming

    Science.gov (United States)

    Gutiérrez, José María; Escalante, Teresa; Rucavado, Alexandra; Herrera, Cristina; Fox, Jay W.

    2016-01-01

    Snake venom metalloproteinases (SVMPs) affect the extracellular matrix (ECM) in multiple and complex ways. Previously, the combination of various methodological platforms, including electron microscopy, histochemistry, immunohistochemistry, and Western blot, has allowed a partial understanding of such complex pathology. In recent years, the proteomics analysis of exudates collected in the vicinity of tissues affected by SVMPs has provided novel and exciting information on SVMP-induced ECM alterations. The presence of fragments of an array of ECM proteins, including those of the basement membrane, has revealed a complex pathological scenario caused by the direct action of SVMPs. In addition, the time-course analysis of these changes has underscored that degradation of some fibrillar collagens is likely to depend on the action of endogenous proteinases, such as matrix metalloproteinases (MMPs), synthesized as a consequence of the inflammatory process. The action of SVMPs on the ECM also results in the release of ECM-derived biologically-active peptides that exert diverse actions in the tissue, some of which might be associated with reparative events or with further tissue damage. The study of the effects of SVMP on the ECM is an open field of research which may bring a renewed understanding of snake venom-induced pathology. PMID:27782073

  14. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    Science.gov (United States)

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  15. The Value of Combined Use of Survivin mRNA and Matrix Metalloproteinase 2 and 9 for Bladder Cancer Detection in Voided Urine

    Directory of Open Access Journals (Sweden)

    Sanaa Eissa

    2013-01-01

    Full Text Available Objective: In a trial to improve the diagnostic efficacy of conventional urine cytology we determine survivin RNA and matrix metalloproteinase 2 and 9 in urine of bladder cancer cases.

  16. SCARLESS SKIN WOUND HEALING IN FOXN1 DEFICIENT (NUDE) MICE IS ASSOCIATED WITH DISTINCTIVE MATRIX METALLOPROTEINASE EXPRESSION

    OpenAIRE

    2011-01-01

    Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin w...

  17. The clinical role of increase of serum matrix metalloproteinase-8 concentration in patients with acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    强华; 周朝霞; 孙超峰; 马爱群; 程华; 周萍

    2008-01-01

    Objective To study the clinical role of the variation of serum matrix metalloproteinase-8 (MMP-8) concentration in patients with acute coronary syndrome (ACS). Methods ELISA method was adopted to detect serum MMP-8 concentration and to observe concentration's differences and features among 80 selected ACS cases (43 acute myocardial infarction and 37 unstable angina pectoris), 43 stable angina pectoris (SAP) cases and 37 control cases. And meanwhile the atherosclerosis risk factors of each case, such as age,...

  18. Stiff substrates increase YAP-signaling-mediated matrix metalloproteinase-7 expression.

    Science.gov (United States)

    Nukuda, A; Sasaki, C; Ishihara, S; Mizutani, T; Nakamura, K; Ayabe, T; Kawabata, K; Haga, H

    2015-09-07

    Abnormally stiff substrates have been shown to trigger cancer progression. However, the detailed molecular mechanisms underlying this trigger are not clear. In this study, we cultured T84 human colorectal cancer cells on plastic dishes to create a stiff substrate or on collagen-I gel to create a soft substrate. The stiff substrate enhanced the expression of matrix metalloproteinase-7 (MMP-7), an indicator of poor prognosis. In addition, we used polyacrylamide gels (2, 67 and 126 kPa) so that the MMP-7 expression on the 126-kPa gel was higher compared with that on the 2-kPa gel. Next, we investigated whether yes-associated protein (YAP) affected the MMP-7 expression. YAP knockdown decreased MMP-7 expression. Treatment with inhibitors of epidermal growth factor receptor (EGFR) and myosin regulatory light chain (MRLC) and integrin-α2 or integrin-β1 knockdown downregulated MMP-7 expression. Finally, we demonstrated that YAP, EGFR, integrin-α2β1 and MRLC produced a positive feedback loop that enhanced MMP-7 expression. These findings suggest that stiff substrates enhanced colorectal cancer cell viability by upregulating MMP-7 expression through a positive feedback loop.

  19. Effects of Mutations on Structure–Function Relationships of Matrix Metalloproteinase-1

    Directory of Open Access Journals (Sweden)

    Warispreet Singh

    2016-10-01

    Full Text Available Matrix metalloproteinase-1 (MMP-1 is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX domain have been shown to modulate activity of the MMP-1 catalytic (CAT domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP. The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  20. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis

    Science.gov (United States)

    Bosco, Dale B.; Roycik, Mark D.; Jin, Yonghao; Schwartz, Martin A.; Lively, Ty J.; Zorio, Diego A. R.

    2017-01-01

    Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since matrix metalloproteinases (MMPs) play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI), YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001) were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma), at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research. PMID:28234995

  1. Protection of the Transplant Kidney from Preservation Injury by Inhibition of Matrix Metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Michael A J Moser

    Full Text Available Matrix metalloproteinases (MMPs, particularly MMP-2 and MMP-9, play an important role in ischemic injury to the heart, yet it is not known if these MMPs are involved in the injury that occurs to the transplant kidney. We therefore studied the pharmacologic protection of transplant kidneys during machine cold perfusion.Human kidney perfusates were analyzed for the presence of injury markers such as cytochrome c oxidase, lactate dehydrogenase, and neutrophil-gelatinase associated lipocalin (NGAL, and MMP-2 and MMP-9 were measured. The effects of MMP inhibitors MMP-2 siRNA and doxycycline were studied in an animal model of donation after circulatory determination of death (DCDD.Markers of injury were present in all analyzed perfusates, with higher levels seen in perfusates from human kidneys donated after controlled DCDD compared to brain death and in perfusate from kidneys with delayed graft function. When rat kidneys were perfused at 4°C for 22 hours with the addition of MMP inhibitors, this resulted in markedly reduced levels of MMP-2, MMP-9 and analyzed injury markers.Based on our study, MMPs are involved in preservation injury and the supplementation of preservation solution with MMP inhibitors is a potential novel strategy in protecting the transplant kidney from preservation injury.

  2. Matrix metalloproteinase-9 predicts pulmonary status declines in α1-antitrypsin deficiency

    Directory of Open Access Journals (Sweden)

    Rames Alexis

    2011-03-01

    Full Text Available Abstract Background Matrix metalloproteinase-9 (MMP-9 may be important in the progression of emphysema, but there have been few longitudinal clinical studies of MMP-9 including pulmonary status and COPD exacerbation outcomes. Methods We utilized data from the placebo arm (n = 126 of a clinical trial of patients with alpha1-antitrypsin deficiency (AATD and emphysema to examine the links between plasma MMP-9 levels, pulmonary status, and COPD exacerbations over a one year observation period. Pulmonary function, computed tomography lung density, incremental shuttle walk test (ISWT, and COPD exacerbations were assessed at regular intervals over 12 months. Prospective analyses used generalized estimating equations to incorporate repeated longitudinal measurements of MMP-9 and all endpoints, controlling for age, gender, race-ethnicity, leukocyte count, and tobacco history. A secondary analysis also incorporated highly-sensitive C-reactive protein levels in predictive models. Results At baseline, higher plasma MMP-9 levels were cross-sectionally associated with lower FEV1 (p = 0.03, FVC (p Conclusions Increased plasma MMP-9 levels generally predicted pulmonary status declines, including worsening transfer factor and lung density as well as greater COPD exacerbations in AATD-associated emphysema.

  3. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail: ruth.oltenfreiter@rug.ac.be; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-05-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  4. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations.

    Science.gov (United States)

    Kuntze, Luciana B; Antonio, Raquel C; Izidoro-Toledo, Tatiane C; Meschiari, Cesar A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2014-03-01

    Matrix metalloproteinase-2 (MMP-2) shares structural similarities with the angiotensin-converting enzyme (ACE). ACE inhibitors have been described to inhibit MMP-2, but this inhibitory potential was not shown using a highly purified MMP-2. This study aimed to investigate the inhibitory potential of captopril and lisinopril regarding MMP-2 activity. The first objective was to test the potential of captopril to change the pH of the buffer solution. The second objective was to test the direct inhibitory effect of captopril and lisinopril on plasma MMP-2 and on recombinant human MMP-2 (rhMMP-2). The in vitro activity assays included gelatin zymography and a fluorimetric assay. Captopril solubilization significantly decreased the pH of the 50 mM Tris buffer solution at the following concentrations: 2 mM (p MMP-2 and rhMMP-2 showed that inhibition only happened at captopril concentrations ≥ 4 and 1 mM, respectively (p MMP-2 (p MMP-2 are 3 orders of magnitude higher than those present in vivo after drug administration. We also discuss possible pitfalls for gelatinase inhibitory assays (besides the obvious pH problem already cited). In conclusion, this study's data show that captopril and lisinopril did not inhibit MMP-2 directly at the concentrations reached in vivo.

  5. Matrix Metalloproteinase-2 Polymorphisms and Incident Coronary Artery Disease: A Meta-Analysis.

    Science.gov (United States)

    Shi, Yujie; Zhang, Jian; Tan, Chen; Xu, Wei; Sun, Qi; Li, Junxia

    2015-07-01

    Previous studies have yielded controversial results related to the contribution of matrix metalloproteinase-2 (MMP-2) -1306 C/T and -735 C/T polymorphisms in the progression of coronary artery disease (CAD). This study aimed to provide strong evidence for the role of the 2 polymorphisms in genetic risk of CAD.The human case-control studies regarding the association of MMP-2 polymorphisms with CAD risk were systematically identified through online databases (PubMed, Embase, the Cochrane Library, and CNKI) and manual search. Inclusion criteria were defined for the eligible studies. The fixed-effects meta-analysis was performed to combine the values when homogeneity was indicated. Alternatively, the random-effects meta-analysis was utilized.A total of 2118 samples were analyzed in the meta-analysis of -1306 C/T. The odds ratio for the initially tested genetic model was 0.93 (95% confidence interval: 0.78-1.10 under TT + CT vs CC). The remaining comparisons similarly showed -1306 C/T genotypes were not significantly associated with the risk of CAD. We noted the same trend when data were retrained to myocardial infarction studies. Meta-analysis of -735 C/T suggested no clear association with the development of CAD.The results of the current work fail to support a significant involvement of MMP-2 -1306 C/T and -735 C/T polymorphisms in the risk of developing CAD.

  6. Disturbed Matrix Metalloproteinase Pathway in Both Age-Related Macular Degeneration and Alzheimer's Disease

    Science.gov (United States)

    Lee, Yunhee; Zhang, Jin-Jun; Francis, Paul T.

    2017-01-01

    Purpose. Abnormal protein deposits including β-amyloid, found in ageing Bruch's membrane and brain, are susceptible to degradation by matrix metalloproteinases (MMPs). In ageing Bruch's membrane, these MMPs become less effective due to polymerisation and aggregation reactions (constituting the MMP Pathway), a situation much advanced in age-related macular degeneration (AMD). The likely presence of this MMP Pathway in brain with the potential to compromise the degradation of β-amyloid associated with Alzheimer's disease (AD) has been investigated. Methods. Presence of high molecular weight MMP species (HMW1 and HMW2) together with the much larger aggregate termed LMMC was determined by standard zymographic techniques. Centrigugation and gel filtration techniques were used to separate and quantify the distribution between bound and free MMP species. Results. The MMP Pathway, initially identified in Bruch's membrane, was also present in brain tissue. The various MMP species displayed bound-free equilibrium and in AD samples, the amount of bound HMW1 and pro-MMP9 species was significantly reduced (p < 0.05). The abnormal operation of the MMP Pathway in AD served to reduce the degradation potential of the MMP system. Conclusion. The presence and abnormalities of the MMP Pathway in both brain and ocular tissues may therefore contribute to the anomalous deposits associated with AD and AMD.

  7. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation.

    Science.gov (United States)

    Sorsa, Timo; Tjäderhane, Leo; Konttinen, Yrjö T; Lauhio, Anneli; Salo, Tuula; Lee, Hsi-Ming; Golub, Lorne M; Brown, David L; Mäntylä, Päivi

    2006-01-01

    Matrix metalloproteinases (MMPs) form a family of enzymes that mediate multiple functions both in the tissue destruction and immune responses related to periodontal inflammation. The expression and activity of MMPs in non-inflamed periodontium is low but is drastically enhanced to pathologically elevated levels due to the dental plaque and infection-induced periodontal inflammation. Soft and hard tissue destruction during periodontitis and peri-implantitis are thought to reflect a cascade of events involving bacterial virulence factors/enzymes, pro-inflammatory cytokines, reactive oxygen species and MMPs. However, recent studies suggest that MMPs can also exert anti-inflammatory effects in defence of the host by processing anti-inflammatory cytokines and chemokines, as well as by regulating apoptotic and immune responses. MMP-inhibitor (MMPI)-drugs, such as doxycycline, can be used as adjunctive medication to augment both the scaling and root planing-treatment of periodontitis locally and to reduce inflammation systematically. Furthermore, MMPs present in oral fluids (gingival crevicular fluid (GCF), peri-implant sulcular fluid (PISF), mouth-rinses and saliva) can be utilized to develop new non-invasive, chair/bed-side, point-of-care diagnostics for periodontitis and dental peri-implantitis.

  8. Matrix metalloproteinase 9 expression and survival of patients with osteosarcoma: a meta-analysis.

    Science.gov (United States)

    Liu, Y; Wang, Y; Teng, Z; Chen, J; Li, Y; Chen, Z; Li, Z; Zhang, Z

    2017-01-01

    Several studies have evaluated the effect of matrix metalloproteinase-9 (MMP-9) expression on the overall survival of patients with osteosarcoma, but the results remain conflicting. To examine the prognostic significance of MMP-9 expression in osteosarcoma risk, we conducted this meta-analysis to systematically review the published studies. We searched the commonly used electronic databases updated to September 2013 for relevant studies which evaluated the correction between MMP-9 expression and survival of patients with osteosarcoma. Overall, a total of eight studies including 437 cases were screened out. No significant heterogeneity was observed between studies. The MMP-9 was expressed in 73.9% (323/437) of cases, and the results showed that MMP-9 expression was associated with increased mortality rate of osteosarcoma during the follow-up (risk ratio = 2.79, 95% confidence interval, CI = 1.96-3.97, P osteosarcoma risk among Asian and non-Asian population (P osteosarcoma. In conclusion, this meta-analysis indicated that MMP-9 expression might be a biomarker of poor prognosis for patients with osteosarcoma. However, the prognostic value of MMP-9 on survival of osteosarcoma patients still needs further large-scale trials to be clarified. © 2015 John Wiley & Sons Ltd.

  9. Identification of Matrix Metalloproteinase-2 and 9 as Biomarker of Intrahepatic Cholestasis of Pregnancy.

    Science.gov (United States)

    Chen, Zhong; Shen, Zongji; Hu, Lingqing; Lu, Mudan; Feng, Yizhong

    2017-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disease uniquely occurring during pregnancy. In this study we aimed to identify novel biomarker for the diagnosis of ICP in Chinese population. 50 healthy pregnant women, 50 mild ICP patients and 48 severe ICP patients were enrolled for this study. Liver function tests, including serum total bilirubin, direct bilirubin, alanine transaminase, aspartate aminotransferase and cholyglycine, were performed in all participants. After an overnight fast serum levels of total bile acids (TBA), matrix metalloproteinase (MMP)-2 and MMP-9 were measured, and their correlation with liver function tests were analyzed. The observed increase in serum TBA in ICP patients was not statistically significant which made it unreliable for diagnosis of ICP in Chinese population. On the other hand, both MMP-2 and MMP-9 serum levels exhibited a progressive and significant elevation in mild and severe ICP patients compared with healthy pregnant women, which also positively correlated with liver function tests. Serum levels of both MMP-2 and MMP-9 could be reliably used as laboratory abnormalities for accurate diagnosis and sensitive grading of ICP in Chinese population.

  10. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis.

    Science.gov (United States)

    Wang, Jing; Shi, Qiong; Yuan, Tai-Xian; Song, Qi-Lin; Zhang, Yan; Wei, Qiang; Zhou, Lan; Luo, Jinyong; Zuo, Guowei; Tang, Min; He, Tong-Chuan; Weng, Yaguang

    2014-06-10

    The aim of this study is to determine the value of matrix metalloproteinase 9 (MMP-9) in diagnosis of osteosarcoma (OS). A systematic review and meta-analysis was conducted using MEDLINE, Embase, ISI Web of Knowledge, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, China Biomedical literature Database (CBM) and China National Knowledge Internet (CNKI) from inception through Aug 29, 2013. Articles written in English or Chinese that investigated the accuracy of MMP-9 for the diagnosis of OS were included. Pooled sensitivity, specificity and the area under the receiver operating characteristic curve (AUC) were determined. I(2) was used to test heterogeneity and source of heterogeneity was investigated by meta-regression (tested with Meta-DiSc and STATA 12.0 statistical softwares). A total of 3729 articles were retrieved, of which 18 were included, accounting for 892 patients. Overall, the pooled sensitivity, specificity and AUC were 0.78 (95% CI 0.730-0.83), 0.90 (95% CI 0.79-0.95), and 0.87 (95% CI 0.83-0.89), respectively. The studies had substantial heterogeneity (I(2)=84%, 95% CI 65-100) (96%, 95% CI 94-99). Assay kit subgroup was the main source of the heterogeneity. Although MMP-9 was identified as a potential biomarker for OS, more studies were clearly needed to establish its diagnostic value.

  11. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers.

    Science.gov (United States)

    Sampieri, Clara L; León-Córdoba, Kenneth; Remes-Troche, Jos Maria

    2013-01-01

    Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  12. Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development

    Science.gov (United States)

    2016-01-01

    Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy. PMID:28104930

  13. Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development

    Directory of Open Access Journals (Sweden)

    Elżbieta Bronisz

    2016-01-01

    Full Text Available Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy.

  14. Elevated expression of matrix metalloproteinase-3 in human osteosarcoma and its association with tumor metastasis.

    Science.gov (United States)

    Huang, Jie-Feng; Du, Wen-Xi; Chen, Jun-Jie

    2016-01-01

    Matrix metalloproteinase-3 (MMP-3) is one of the several MMPs that is associated with malignant tumors of breast, colon, cervix and lung, where its expression has been correlated with tumor invasion and metastasis. However, the role of MMP-3 in metastasis of osteosarcoma has not yet been explored. MMP-3 expression in 15 primary and metastatic osteosarcomas with case-matched adjacent non-tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. Further, MMP-3 mRNA and protein levels were also determined in osteoblast and osteosarcoma cell lines. Additionally, migration and invasion assays were performed in MMP-3 knockdown cells. MMP-3 was expressed in 86.6% (13/15) of the osteosarcoma patients and its expression was significantly higher in metastatic tumors as compared to the primary osteosarcoma tumor tissues. Furthermore, osteosarcoma cell lines showed higher MMP-3 expression as compared to osteoblast cell lines. siRNA-mediated MMP-3 knockdown in osteosarcoma cell lines significantly inhibited their migration and invasion properties. Our results demonstrated that MMP-3 expression is deregulated in osteosarcomas and this potentially contributes to metastasis and might be a promising marker for the prognosis and therapy of metastatic osteosarcoma.

  15. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongbo; Chen, Xiaohong; Huang, Junwei [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Deng, Weiwei [Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Zhong, Qi [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Yue, Changli [Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Wang, Pingzhang, E-mail: wangpzh@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health (China); Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Huang, Zhigang, E-mail: enthuangzhigang@sohu.com [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)

    2013-06-21

    Highlights: •A novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors was defined. •GPR65 was identified to induce the MMP3 expression. •GPR65 mediated MMP induction under acidic conditions. •AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. •GPR65 overexpression can accelerate the invision of A549 cells. -- Abstract: Matrix metalloproteinases (MMPs) are over-expressed in nearly all cancers. To study novel regulatory factors of MMP expression in head and neck cancer (HNC), we screened a total of 636 candidate genes encoding putative human transmembrane proteins using MMP promoter reporter in a dual luciferase assay system. Three genes GPR65, AXL and TNFRSF10B dramatically activated the induction of MMP3 expression. The induction of MMP expression by GPR65 was further confirmed in A549 and/or FaDu cells. GPR65 mediated MMP induction under acidic conditions. The AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. Moreover, the A549 cells infected by recombinant adenovirus of GPR65 showed accelerated cell invasion. In conclusion, we validate that GPR65 is vital regulatory genes upstream of MMP3, and define a novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors.

  16. High matrix metalloproteinase levels are associated with dermal graft failure in diabetic foot ulcers.

    Science.gov (United States)

    Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Giurato, Laura; Ruotolo, Valeria; Uccioli, Luigi

    2014-09-01

    The aim of our study is to analyze factors, including matrix metalloproteinase (MMP) levels, that could influence the integration of dermal grafts in diabetic foot ulcers. From September 2012 to September 2013, 35 diabetic patients with IIA lesion (Texas Wound Classification) and an extensive foot tissue loss were considered suitable for dermal graft. Before the enrollment we ensured the best local conditions: adequate blood supply, control of infection, and offloading. The MMP level of each lesion was evaluated blindly before the application of dermal substitutes. At 1-month follow-up, we analyzed the correlation between clinical patient characteristics, local wound features including MMP levels, dermal substitute applied, and the outcome expressed in terms of dermal graft integration. We observed dermal graft integration in 28/35 patients (80% of our population). In multivariate analysis high MMP level was the only negative predictor for dermal graft integration (P < .0007). In addition, we divided the patients into 2 groups according to MMP levels: group 1 with low protease activity (24 patients) and group 2 with elevated protease activity (11 patients). The integration of the dermal graft was 100% in group 1 (n = 24 patients) and 36.4% in group 2 (n = 4patients), P < .0001. According to our data, the evaluation of MMP levels may be useful to choose the right strategy to get the best results in terms of clinical success and cost saving. However, further studies are necessary to confirm these findings.

  17. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence

    Directory of Open Access Journals (Sweden)

    Ridnour Lisa A

    2011-09-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s by which they occur. Methods We have examined the matrix metalloproteinase (MMP protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which we examined 22 month old APPSw mice that had received anti-Aβ antibodies for 1, 2 or 3 months. The second is an active vaccination study in which we examined 16 month old APPSw/NOS2-/- mice treated with Aβ vaccination for 4 months. Results There is a significant activation of the MMP2 and MMP9 proteinase degradation systems by anti-Aβ immunotherapy, regardless of whether this is delivered through active vaccination or passive immunization. We have characterized this activation by gene expression, protein expression and zymography assessment of MMP activity. Conclusions Since the MMP2 and MMP9 systems are heavily implicated in the pathophysiology of intracerbral hemorrhage, these data may provide a potential mechanism of microhemorrhage due to immunotherapy. Increased activity of the MMP system, therefore, is likely to be a major factor in increased microhemorrhage occurrence.

  18. Expression of matrix metalloproteinase-9 in nasopharyngeal carcinoma and association with Epstein-Barr virus infection

    Institute of Scientific and Technical Information of China (English)

    汤建国; 李旋; 陈萍

    2004-01-01

    Objective: To evaluate the expression of matrix metalloproteinase-9 (MMP9) in nasopharyngeal carcinoma and the association between MMP9 and Epstein-Barr virus infection. Methods: The MMP9 expression was studied by immunohistochemical analysis; and Epstein-Barr virus encoded small nuclear mRNA-1 (EBER-1) produced by in situ hybridization were examined in 41 nasopharyngeal carcinoma sections, and the relation between them, and the associations of MMP9 with clinical features were statistically analyzed. Results: Positive expression rate of MMP9 was 73.17%. The expression of MMP9 showed significant positive correlation with the expression of EBER-1(γ=0.483, P=0.001 ). There was significant association of MMP9 expression with lymph nodes metastasis and clinical stage (P<0.001), non-significant association with age, gender, pathological classification and T classification. Conclusions: The highly pronounced expression of MMP9 is associated with cervical lymph nodes metastasis. Epstein-Barr virus can enhance NPC metastasis by up-regulating the expression of MMP9.

  19. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction.

    Science.gov (United States)

    Mohammad, Ghulam; Kowluru, Renu A

    2010-09-01

    In the pathogenesis of diabetic retinopathy, retinal mitochondria become dysfunctional resulting in accelerated apoptosis of its capillary cells. Matrix metalloproteinase-2 (MMP2) is considered critical in cell integrity and cell survival, and diabetes activates MMP2 in the retina and its capillary cells. This study aims at elucidating the mechanism by which MMP2 contributes to the development of diabetic retinopathy. Using isolated bovine retinal endothelial cells, the effect of regulation of MMP2 (by its siRNA and pharmacological inhibitor) on superoxide accumulation and mitochondrial dysfunction was evaluated. The effect of inhibiting diabetes-induced retinal superoxide accumulation on MMP2 and its regulators was investigated in diabetic mice overexpressing mitochondrial superoxide dismutase (MnSOD). Inhibition of MMP2 ameliorated glucose-induced increase in mitochondrial superoxide and membrane permeability, prevented cytochrome c leakage from the mitochondria, and inhibited capillary cell apoptosis. Overexpression of MnSOD protected the retina from diabetes-induced increase in MMP2 and its membrane activator (MT1-MMP), and decrease in its tissue inhibitor (TIMP-2). These results implicate that, in diabetes, MMP2 activates apoptosis of retinal capillary cells by mitochondrial dysfunction increasing their membrane permeability. Understanding the role of MMP2 in the pathogenesis of diabetic retinopathy should help lay ground for MMP2-targeted therapy to retard the development of retinopathy in diabetic patients.

  20. Expression of survivin and matrix metalloproteinases in adenocarcinoma and squamous cell carcinoma of the uterine cervix.

    Science.gov (United States)

    Yoshida, Hiroyuki; Sumi, Toshiyuki; Hyun, Yooji; Nakagawa, Eri; Hattori, Kanae; Yasui, Tomoyo; Morimura, Mina; Honda, Ken-Ichi; Nakatani, Tatsuya; Ishiko, Osamu

    2003-01-01

    Cervical cancer can be classified into two histological types: squamous cell carcinoma (SCA) and adenocarcinoma (ACA). Reportedly ACA has poorer prognoses, metastasizes more easily to lymph nodes, and is more resistant to radiotherapy than SCA. To clarify the cause of characteristic differences between these histological types, we examined the expressions of apoptosis inhibiting and tumor-invasion related factors in both histological types. We reviewed the 34 cases of cervical cancer (17 ACA, 17 SCA) that had surgery as their initial treatment at Osaka City University Medical School Hospital between 1996 and 2001. The differences of survivin, and matrix metalloproteinase (MMP-2, and MMP-7) expressions between both histological types were immunohistochemically assayed, and the correlation between the expression of each protein and clinicopathological characteristics was analyzed. Survivin was expressed significantly stronger in ACA cases (p=0.035). The number of patients who expressed MMP-2 and MMP-7 simultaneously was significantly higher in SCA cases (p=0.039). MMP-2 and MMP-7 had tendencies to be expressed stronger in SCA (p=0.057 and p=0.084, respectively). These results suggest that the differences of the expression of survivin (an apoptosis inhibiting factor), MMP-2, and MMP-7 (tumor-invasion related factors) between ACA and SCA were causes of the characteristic differences between the two histological types.

  1. Matrix metalloproteinases-2 and -9 in cervical cancer: different roles in tumor progression.

    Science.gov (United States)

    Rauvala, M; Aglund, K; Puistola, U; Turpeenniemi-Hujanen, T; Horvath, G; Willén, R; Stendahl, U

    2006-01-01

    The incidence of uterine cervical cancer has increased slightly in Western countries, with an increase in relatively young women. Overexpression of matrix metalloproteinases (MMPs)-2 and -9 has turned out as a prognostic factor in many cancers. We compared the expression of the proteins MMP-2 and MMP-9 in cervical primary tumors with clinical outcome and risk factors of cervical cancer. One hundred sixty-one patients with cervical cancer treated in Umeå University Hospital or Sahlgrenska University Hospital, Sweden, between 1991 and 1995 were included in the study. Paraffin-embedded tissue samples obtained prior to treatment were examined immunohistochemically by specific antibodies for MMP-2 and MMP-9. Forty-two percent of the tumors were intensively positive for MMP-2 and 31% for MMP-9. Nineteen percent of the samples were intensively positive for both proteinases and 47% negative or weak for both. Overexpression of MMP-2 seemed to predict unfavorable survival under Kaplan-Meier analysis and in the multivariate analysis. Early sexual activity and low parity seemed to correlate to overexpression of MMP-2. MMP-9 was not associated with survival or sexual behavior. Intensive MMP-9 was noted in grade 1 tumors. We conclude that MMP-2 and MMP-9 have different roles in uterine cervical cancer. MMP-2 could be associated with aggressive behavior, but MMP-9 expression diminishes in high-grade tumors.

  2. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.

    Science.gov (United States)

    Ramer, Robert; Merkord, Jutta; Rohde, Helga; Hinz, Burkhard

    2010-04-01

    Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB(1) and CB(2) receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls. Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.

  3. Influence of HPV16 E2 and its localisation on the expression of matrix metalloproteinase-9.

    Science.gov (United States)

    Mühlen, Sabrina; Behren, Andreas; Iftner, Thomas; Simon, Christian

    2010-08-01

    Infection with the high-risk HPV types 16 and 18 is the major cause of cervical cancer and plays a role in the development of certain head and neck and skin cancers. We have previously demonstrated that the Early Protein 2 of the Cottontail Rabbit papillomavirus (CRPV), required for skin carcinogenesis in a rabbit model, is able to induce the expression of a matrix metalloproteinase (MMP-9); a protease known to play a key role in invasion and metastasis. However, as of now we do not understand the underlying mechanism of activation nor relevance for the human system. Here, we report that high-risk human papillomavirus HPV16 E2 similar to our previously reported results on CRPV E2 activates the human MMP-9 promoter predominantly via the MEK1-ERK1/2-AP-1-signaling pathway. In addition this activation is associated with a nuclear sub-localisation of HPV16-E2 suggesting a nuclear protein-protein or protein-DNA interaction of E2 as the underlying mechanism of activation.

  4. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Jin Man Kim; Sang Wook Kang; Su-Mi Shin; Duck Su Kim; Kyong-Kyu Choi; Eun-Cheol Kim; Sun-Young Kim

    2014-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and-9 in HDPCs. The productions and messenger RNA (mRNA) expressions of MMP-2 and-9 were accessed by gelatin zymography and real-time polymerase chain reaction (PCR), respectively. ATRA was found to decrease MMP-2 level in a dose-dependent manner. Significant reduction in MMP-2 mRNA expression was also observed in HDPCs treated with 25 mmol?L21 ATRA. However, HDPCs treated with ATRA had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. Taken together, ATRA had an inhibitory effect on MMP-2 expression in HDPCs, which suggests that ATRA could be a candidate as a medicament which could control the inflammation of pulp tissue in vital pulp therapy and regenerative endodontics.

  5. Association between promoter polymorphisms of matrix metalloproteinase-1 and risk of gastric cancer.

    Science.gov (United States)

    Peng, Qisong; Xu, Yong

    2015-01-01

    Growing evidences show that matrix metalloproteinase-1 (MMP1) plays important roles in tumorigenesis and cancer metastasis. The interactions between MMP1-1607 1G>2G polymorphism and risk of gastric cancer (GC) have been reported, but results remained ambiguous. To determine the association between MMP1-1607 1G>2G polymorphism and risk of GC, we conducted a meta-analysis and identified the outcome data from all the research papers estimating the association between MMP1-1607 1G>2G polymorphism and GC risk, which was based on comprehensive searches using databases such as PubMed, Elsevier Science Direct, Excerpta Medica Database (EMBASE), and Chinese National Knowledge Infrastructure (CNKI). The fixed-effects model was used in this meta-analysis. Data were extracted, and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. In this meta-analysis, six studies involving 1,377 cases and 1,543 controls were included. We identified the significant association between MMP1-1607 1G>2G polymorphism and GC risk for allele model (OR =1.05; 95% CI, 1.01-1.08), for dominant model (OR =1.11; 95% CI, 1.08-1.15), and for recessive model (OR =1.06; 95% CI, 0.98-1.14). In summary, our analysis demonstrated that MMP1-1607 1G>2G polymorphism was significantly associated with an increased risk of GC.

  6. Dark quenched matrix metalloproteinase fluorogenic probe for imaging osteoarthritis development in vivo.

    Science.gov (United States)

    Lee, Seulki; Park, Kyeongsoon; Lee, Seung-Young; Ryu, Ju Hee; Park, Jong Woong; Ahn, Hyung Jun; Kwon, Ick Chan; Youn, In-Chan; Kim, Kwangmeyung; Choi, Kuiwon

    2008-09-01

    The early detection of osteoarthritis (OA) is currently a key challenge in the field of rheumatology. Biochemical studies of OA have indicated that matrix metalloproteinase-13 (MMP-13) plays a central role in cartilage degradation. In this study, we describe the potential use of a dark-quenched fluorogenic MMP-13 probe to image MMP-13 in both in vitro and rat models. The imaging technique involved using a MMP-13 peptide substrate, near-infrared (NIR) dye, and a NIR dark quencher. The results from this study demonstrate that the use of a dark-quenched fluorogenic probe allows for the visual detection of MMP-13 in vitro and in OA-induced rat models. In particular, by targeting this OA biomarker, the symptoms of the early and late stages of OA can be readily monitored, imaged, and analyzed in a rapid and efficient fashion. We anticipate that this simple and highly efficient fluorogenic probe will assist in the clinical management of patients with OA, not only for early diagnosis but also to assess individual patient responses to new drug treatments.

  7. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, T.J.; Kallmes, D.F. [Mayo Clinic and Foundation, Department of Radiology, Rochester, MN (United States); Marx, W.F. [Asheville Radiology Associates, Asheville, NC (United States)

    2006-03-15

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  8. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  9. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  10. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression.

    Science.gov (United States)

    Polte, Tobias; Tyrrell, Rex M

    2004-06-15

    Ultraviolet A (UVA) irradiation causes human skin aging and skin cancer at least partially through the activation of matrix metalloproteinases (MMPs). MMP-1, the interstitial collagenase, is responsible for the degradation of collagen and is involved in tumor progression in human skin. The present study uses human skin fibroblast cells (FEK4) to investigate the involvement of lipid peroxidation and the role of peroxides as possible mediators in MMP-1 activation by UVA. Preincubation with the antioxidants butylated hydroxytoluene and Trolox reduced UVA-dependent MMP-1 upregulation, suggesting that peroxidation of membrane lipids is involved. Blocking the iron-driven generation of lipid peroxides and hydroxyl radicals by different iron chelators led to a decrease in UVA-induced MMP-1 mRNA accumulation. Moreover, modulation of glutathione peroxidase activity by use of the specific inhibitor mercaptosuccinate (MS) or by the depletion of glutathione (using buthionine-S, R-sulfoximine, BSO), enhanced the UVA-dependent MMP-1 response. Finally, UVA irradiation generated a significant increase in intracellular peroxide levels which is augmented by pretreatment of the cells with BSO or MS. Our results demonstrate that lipid peroxidation and the production of peroxides are important events in the signalling pathway of MMP-1 activation by UVA.

  11. Matrix metalloproteinase-1 expression in oral submucous fibrosis: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Mishra Gauri

    2010-01-01

    Full Text Available Context: Oral submucous fibrosis (OSF is a form of pathological fibrosis affecting the oral mucosa. There is compelling evidence to implicate the habitual chewing of areca nut with the development of OSF. Because collagens are the major structural components of connective tissues, including oral submucosa, the composition of collagen within each tissue needs to be precisely regulated to maintain tissue integrity. Arecoline stimulates fibroblasts to increase the production of collagen by 150%. Aim: As the role of collagenase is implicated in cleaving the collagen under physical conditions, this study was carried out to evaluate the role of collagenase-1 (matrix metalloproteinase [MMP]-1 in a pathologic condition like OSF. Settings and Design: A total of 40 patients were included in the study, comprising of 30 OSF as Group 1 and 10 normal buccal mucosa tissue as Group 2. Materials and Methods: Both the groups were stained for MMP-1 by the immunohistochemical method using the streptavidin HRP-biotin labeling technique. MMP-1 expression intensity in the epithelium and connective tissue was decreased in Group 1 when compared to Group 2. Statistical Analysis Used: Chi-square test of association was used to determine the difference in the expression of MMP-1 between OSF and normal buccal mucosa and among different histological gradings of OSF. Results: The results were statistically significant. However, there was no statistically significant difference between the expression of MMP-1 among different histological grades of OSF in Group 1.

  12. Matrix metalloproteinases and their tissue inhibitors in gastric cancer as molecular markers

    Directory of Open Access Journals (Sweden)

    Clara L Sampieri

    2013-01-01

    Full Text Available Gastric cancer is a complex disease that involves a range of biological individuals and tumors with histopathological features. The pathogenesis of this disease is multi-factorial and includes the interaction of genetic predisposition with environmental factors. Gastric cancer is normally diagnosed in advanced stages where there are few alternatives to offer and the prognosis is difficult to establish. Metastasis is the leading cause of cancer deaths. Identification of key genes and signaling pathways involved in metastasis and recurrence could predict these events and thereby identify therapeutic targets. In this context, the extracellular matrix metalloproteinases (MMPs and their inhibitors (TIMPs represent a potential prognostic tool, because both genetic families regulate growth, angiogenesis, invasion, immune response, epithelial mesenchymal transition and cellular survival. Proteolytic parameters based on MMP/TIMP expression could be useful in the identification of patients with a high probability of developing distant metastases or peritoneal dissemination for each degree of histological malignancy. It is also probable that these parameters can allow improvement in the extent of surgery and dictate the most suitable therapy. We reviewed papers focused on human gastric epithelial cancer as a model and focus on the potential use of MMPs and TIMPs as molecular markers; also we include literature regarding gastric cancer risk factors, classification systems and MMP/TIMP regulation.

  13. Effects of cytokines, growth factors and drugs on matrix metalloproteinases activities of osteoarthritic chondrocytes and synoviocytes

    Institute of Scientific and Technical Information of China (English)

    GUAN Jian-long; HAN Xing-hai; SHI Gui-ying; YUAN Guo-hua

    2001-01-01

    Objective: To evaluate the effects of some cytokines, TGF-β1 and drugs on matrix metalloproteinases (MMPs) activities in culture medium of arthritic chondrocytes and synoviocytes. Methods: The chondrocyte and synoviocyte monolayers isolated from the cartilages and synovial fluids in 10 knee OA patients were treated with IL-1β TGF-β1, TNF-α, diclofenac acid, dexamethasone or doxycycline individually and together for 72 h. Zymography was used to determine the activities of MMP-2 and -9. Results: The chondrocyte monolayers produced MMP-2 and -9, while the synoviocytes only produced MMP-2. The MMP-9 activity was markedly enhanced by IL-1β TNF-α and diclofenac. IL-1β was the most effective stimulus, and had synergistic effect with TNF-α or diclifenac. MMP-2 activity was not affected. Doxcycline, TGF-β1 and dexamethasone could depress the activities of MMP-9 and MMP-2, and antagonize the enhancing effect of IL-1β TNF-α or diclofenac. Conclusion: IL-1β and TNF-α may play important roles degrading OA cartilage, while TGF-β1 and doxycycline may be protective factors.

  14. Matrix metalloproteinase gene polymorphisms and periodontitis susceptibility: a meta-analysis involving 6,162 individuals.

    Science.gov (United States)

    Weng, Hong; Yan, Yan; Jin, Ying-Hui; Meng, Xiang-Yu; Mo, Yuan-Yuan; Zeng, Xian-Tao

    2016-04-20

    We aimed to systematically investigate the potential association of matrix metalloproteinase (MMP)-9, -3, -2, and -8 gene polymorphisms with susceptibility to periodontitis using meta-analysis. A literature search in PubMed, Embase, and Web of Science was conducted to obtain relevant publications. Finally a total of 16 articles with 24 case-control studies (nine on MMP-9-1562 C/T, seven on MMP-3-1171 A5/A6, four on MMP-2-753C/T, and four on MMP-8-799 C/T) were considered in this meta-analysis. The results based on 2,724 periodontitis patients and 3,438 controls showed that MMP-9-1562C/T, MMP-3-1171 A5/A6, and MMP-8-799C/T polymorphisms were associated with periodontitis susceptibility. No significant association was found between MMP-2-753 C/T and periodontitis susceptibility. Subgroup analyses suggested that the MMP-9-1562 C/T polymorphism reduced chronic periodontitis susceptibility and MMP-3-1171 A5/A6 polymorphism increased chronic periodontitis susceptibility. In summary, current evidence demonstrated that MMP-9-753 C/T polymorphism reduced the risk of periodontitis, MMP-3-1171 5A/6A and MMP-8-799 C/T polymorphisms increased the risk of periodontitis, and MMP-2-753 C/T was not associated with risk of periodontitis.

  15. Matrix metalloproteinase-14 triggers an anti-inflammatory proteolytic cascade in endotoxemia.

    Science.gov (United States)

    Aguirre, Alina; Blázquez-Prieto, Jorge; Amado-Rodriguez, Laura; López-Alonso, Inés; Batalla-Solís, Estefanía; González-López, Adrián; Sánchez-Pérez, Moisés; Mayoral-Garcia, Carlos; Gutiérrez-Fernández, Ana; Albaiceta, Guillermo M

    2017-01-24

    ᅟ: Matrix metalloproteinases can modulate the inflammatory response through processing of cyto- and chemokines. Among them, MMP-14 is a non-dispensable collagenase responsible for the activation of other enzymes, triggering a proteolytic cascade. To identify the role of MMP-14 during the pro-inflammatory response, wildtype and Mmp14 (-/-) mice were challenged with lipopolysaccharide. MMP-14 levels decreased after endotoxemia. Mutant animals showed 100% mortality, compared to 50% in wildtype mice. The increased mortality was related to a more severe lung injury, an impaired lung MMP-2 activation, and increased levels of the alarmin S100A9. There were no differences in the expression of other mediators including Il6, Cxcl2, Tgfb, Il10, or S100a8. A similar result was observed in lung explants of both genotypes cultured in presence of lipopolysaccharide. In this ex vivo model, exogenous activated MMP-2 ameliorated the observed increase in alarmins. Samples from septic patients showed a decrease in serum MMP-14 and activated MMP-2 compared to non-septic critically ill patients. These results demonstrate that the MMP-14-MMP-2 axis is downregulated during sepsis, leading to a proinflammatory response involving S100A9 and a more severe lung injury. This anti-inflammatory role of MMP-14 could have a therapeutic value in sepsis.

  16. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review.

    Science.gov (United States)

    Venugopal, Archana; Uma Maheswari, T N

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis) and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation.

  17. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review

    Directory of Open Access Journals (Sweden)

    Archana Venugopal

    2016-01-01

    Full Text Available Matrix metalloproteinase-9 (MMP-9 is an inducible enzyme. Oral potentially malignant disorders (OPMDs are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation.

  18. Serum Matrix Metalloproteinase-3 as a Noninvasive Biomarker of Histological Synovitis for Diagnosis of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jian-Da Ma

    2014-01-01

    Full Text Available Objective. To explore the correlation between matrix metalloproteinase- (MMP- 3 and histological synovitis in rheumatoid arthritis (RA. Methods. Serum MMP-3 of 62 patients with active RA was detected by ELISA. Serial synovial tissue sections from all RA patients, 13 osteoarthritis, and 10 orthopedic arthropathies patients were stained with hematoxylin and eosin and immunohistochemically for MMP-3, CD3, CD20, CD38, CD68, and CD15. Results. The percentage of lining MMP3+ cells was significantly higher in RA patients especially with high grade synovitis and it was significantly correlated with Krenn’s synovitis score r=0.574, P<0.001 and sublining inflammatory cells. Multivariate stepwise linear regression analysis revealed that the association of the percentage of lining MMP3+ cells with activation of synovial stroma, sublining CD68+ macrophages, and CD15+ neutrophils was stronger than other histological indicators. The percentage of lining MMP3+ cells was significantly correlated with serum MMP-3 in RA r=0.656, P<0.001. Serum MMP-3 was higher in RA patients with high grade synovitis than that of low grade synovitis and significantly correlated with synovitis score and activation of synovial stroma subscore (all P<0.05. Conclusion. Serum MMP-3 may be an alternative noninvasive biomarker of histological synovitis and RA diagnosis.

  19. Dentin Sialoprotein is a Novel Substrate of Matrix Metalloproteinase 9 in vitro and in vivo

    Science.gov (United States)

    Yuan, Guohua; Chen, Lei; Feng, Junsheng; Yang, Guobin; Ni, Qingwen; Xu, Xiaoping; Wan, Chunyan; Lindsey, Merry; Donly, Kevin J.; MacDougall, Mary; Chen, Zhi; Chen, Shuo

    2017-01-01

    Dentin sialoprotein (DSP) is essential for dentinogenesis and processed into fragments in the odontoblast-like cells and the tooth compartments. Matrix metalloproteinase 9 (MMP9) is expressed in teeth from early embryonic to adult stage. Although MMP9 has been reported to be involved in some physiological and pathological conditions through processing substrates, its role in tooth development and whether DSP is a substrate of MMP9 remain unknown. In this study, the function of MMP9 in the tooth development was examined by observation of Mmp9 knockout (Mmp9−/−) mouse phenotype, and whether DSP is a substrate of MMP9 was explored by in vitro and in vivo experiments. The results showed that Mmp9−/− teeth displayed a phenotype similar to dentinogenesis imperfecta, including decreased dentin mineral density, abnormal dentin architecture, widened predentin and irregular predentin-dentin boundary. The distribution of MMP9 and DSP overlapped in the odontoblasts, the predentin, and the mineralized dentin, and MMP9 was able to specifically bind to DSP. MMP9 highly efficiently cleaved DSP into distinct fragments in vitro, and the deletion of Mmp9 caused improper processing of DSP in natural teeth. Therefore, our findings demonstrate that MMP9 is important for tooth development and DSP is a novel target of MMP9 during dentinogenesis. PMID:28195206

  20. Differentiation-dependent expression of gelatinase B/matrix metalloproteinase-9 in trophoblast cells.

    Science.gov (United States)

    Peters, T J; Albieri, A; Bevilacqua, E; Chapman, B M; Crane, L H; Hamlin, G P; Seiki, M; Soares, M J

    1999-02-01

    The purpose of this study was to evaluate the Rcho-1 trophoblast culture system as a model for studying trophoblast invasion and to examine stage-specific expression of enzyme(s) potentially participating in rat trophoblast giant cell invasive behavior. The invasive behavior of the differentiating Rcho-1 trophoblast cells was demonstrated using Matrigel invasion chambers. Gelatin zymography and Western blot analysis of conditioned medium from differentiating Rcho-1 trophoblast cell cultures and rat ectoplacental cone outgrowths revealed a differentiation-dependent increase in gelatinase B/matrix metalloproteinase (MMP-9). Nothern blot and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of Rcho-1 trophoblast or ectoplacental cone cells also showed increasing expression of MMP-9 accompanying cell differentiation. Rcho-1 trophoblast cells stably transfected with MMP-9 promoter/luciferase reporter constructs exhibited a differentiation-dependent increase in MMP-9 promoter activation. In conclusion, trophoblast giant cell differentiation is characterized by transcriptional activation of the MMP-9 gene and appearance of the invasive phenotype.

  1. Expression of matrix metalloproteinase-9 in nasopharyngeal carcinoma and association with Epstein-Barr virus infection

    Institute of Scientific and Technical Information of China (English)

    汤建国; 李旋; 陈萍

    2004-01-01

    Objective: To evaluate the expression of matrix metalloproteinase-9 (MMP9) in nasopharyngeal carcinoma and the association between MMP9 and Epstein-Barr virus infection. Methods: The MMP9 expression was studied by immunohistochemical analysis; and Epstein-Barr virus encoded small nuclear mRNA-1 (EBER-1) produced by in situ hybridization were examined in 41 nasopharyngeal carcinoma sections, and the relation between them, and the associations of MMP9 with clinical features were statistically analyzed. Results: Positive expression rate of MMP9 was 73.17%. The expression of MMP9 showed significant positive correlation with the expression of EBER- 1 (γ=0.483, P=0.001). There was significant association of MMP9 expression with lymph nodes metastasis and clinical stage (P<0.001), non-significant association with age, gender, pathological classification and T classification. Conclusions: The highly pronounced expression of MMP9 is associated with cervical lymph nodes metastasis. Epstein-Barr virus can enhance NPC metastasis by up-regulating the expression of MMP9.

  2. Cardioprotective Effects of Voluntary Exercise in a Rat Model: Role of Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available Background. Regular exercise at moderate intensity reduces cardiovascular risks. Matrix metalloproteinases (MMPs play a major role in cardiac remodeling, facilitating physiological adaptation to exercise. The aim of this study was to examine the influence of voluntary physical exercise on the MMP-2 enzyme activity and to investigate the cardiac performance by measurement of angina susceptibility of the heart, the basal blood pressure, the surviving aorta ring contraction, and the cardiac infarct size after I/R-induced injury. Methods. Male Wistar rats were divided into control and exercising groups. After a 6-week period, the serum level of MMP-2, basal blood pressure, cardiac angina susceptibility (the ST segment depression provoked by epinephrine and 30 s later phentolamine, AVP-induced heart perfusion and aorta ring contraction, infarct size following 30 min ischemia and 120 min reperfusion, and coronary effluent MMP-2 activity were measured. Results. Voluntary wheel-running exercise decreased both the sera (64 kDa and 72 kDa and the coronary effluent (64 kDa MMP-2 level, reduced the development of ST depression, improved the isolated heart perfusion, and decreased the ratio of infarct size. Conclusion. 6 weeks of voluntary exercise training preserved the heart against cardiac injury. This protective mechanism might be associated with the decreased activity of MMP-2.

  3. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-04-01

    Full Text Available Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue-type plasminogen activator (tPA remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs in blood-brain barrier (BBB disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPAassociated hemorrhagic complications.Reactive oxygen species (ROS can enhance the effects of tPA on MMP activation through the loss of caveolin-1, a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs' role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined.

  4. Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease.

    Science.gov (United States)

    Amor, Melina; Moreno-Viedma, Veronica; Sarabi, Alisina; Grün, Nicole G; Itariu, Bianca; Leitner, Lukas; Steiner, Irene; Bilban, Martin; Kodama, Keiichi; Butte, Atul J; Staffler, Guenther; Zeyda, Maximilian; Stulnig, Thomas M

    2016-06-30

    Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. These included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (Mmp12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of Mmp12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.

  5. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.

    Science.gov (United States)

    Gabriely, Galina; Wurdinger, Thomas; Kesari, Santosh; Esau, Christine C; Burchard, Julja; Linsley, Peter S; Krichevsky, Anna M

    2008-09-01

    Substantial data indicate that microRNA 21 (miR-21) is significantly elevated in glioblastoma (GBM) and in many other tumors of various origins. This microRNA has been implicated in various aspects of carcinogenesis, including cellular proliferation, apoptosis, and migration. We demonstrate that miR-21 regulates multiple genes associated with glioma cell apoptosis, migration, and invasiveness, including the RECK and TIMP3 genes, which are suppressors of malignancy and inhibitors of matrix metalloproteinases (MMPs). Specific inhibition of miR-21 with antisense oligonucleotides leads to elevated levels of RECK and TIMP3 and therefore reduces MMP activities in vitro and in a human model of gliomas in nude mice. Moreover, downregulation of miR-21 in glioma cells leads to decreases of their migratory and invasion abilities. Our data suggest that miR-21 contributes to glioma malignancy by downregulation of MMP inhibitors, which leads to activation of MMPs, thus promoting invasiveness of cancer cells. Our results also indicate that inhibition of a single oncomir, like miR-21, with specific antisense molecules can provide a novel therapeutic approach for "physiological" modulation of multiple proteins whose expression is deregulated in cancer.

  6. Immunoexpression of matrix metalloproteinase-2 (MMP-2) in epithelial ovarian cancers (EOCs)

    Institute of Scientific and Technical Information of China (English)

    Ibrahim A Abdelazim; Mohannad Lutfi Abu faza; Mohammed Al-Kadi

    2013-01-01

    Objective: To evaluate the relation between matrix metalloproteinase-2 (MMP-2) expression and the clinical and/or pathological parameters of the epithelial ovarian cancers (EOCs). Methods: Forty-two (42) patients with EOCs diagnosed after histopathological examination of the specimens were included in this study. The pathological specimens were additionally stained by immunoperoxidase technique for MMP-2 using a monoclonal antibody against activated MMP 2. The staining intensity of MMP-2 was correlated with the clinical and pathological parameters of the studied cases, including patient's age, surgical stage, histological grade, omental, and lymph node metastasis. Results: The studied cases of EOCs were classified according to the intensity or the degree of MMP-2 expression, as; seven cases (16.7%) negative, eighteen cases (42.8%) weak, seven cases (16.7%) moderate and ten cases (23.8%) intense for MMP-2 staining. There was a significant positive correlation between MMP-2 expression and the histological grades and the surgical stages of the studied EOC (r <1, P<0.05), while, there was no significant relation between MMP-2 expression and the histopathological types of the studied EOCs. MMP-2 expression was significantly high in EOCs with ascites, omental, distant and uterine metastasis, while, there was no significant relation between MMP-2 expressions and lymph node metastasis or bilaterality of the EOCs. Conclusions: MMP-2 expression was associated with advanced, aggressive EOCs and there was direct relation between expression of MMP-2 and degree of invasiveness and metastasis of EOCs.

  7. Folding of matrix metalloproteinase-2 prevents endogenous generation of MHC class-I restricted epitope.

    Directory of Open Access Journals (Sweden)

    Virginie Renaud

    Full Text Available BACKGROUND: We previously demonstrated that the matrix metalloproteinase-2 (MMP-2 contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope. METHODOLOGY/PRINCIPAL FINDINGS: By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex. CONCLUSIONS/SIGNIFICANCE: These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols.

  8. Expression of matrix metalloproteinases and ovarian morphological changes in androgenized cyclic female guinea pigs.

    Science.gov (United States)

    Li, Jun-rong; Shen, Ting; Wang, Yan-li; Wei, Quan-wei; Shi, Fang-xiong

    2016-02-01

    This study was conducted to investigate expression of matrix metalloproteinases (MMPs) and ovarian morphological changes in androgenized cyclic female guinea pigs. Adult cyclic female guinea pigs were injected daily for 28 days with medium doses of testosterone propionate (TP; 1 mg/100g), high doses of TP (2 mg/100g), or saline (control). Serum concentrations of testosterone, estradiol (E2), and progesterone (P4) were measured. Histologic sections of ovaries were stained with hematoxylin-eosin and by immunohistochemistry. Expressions of steroidogenic acute regulatory protein, proliferating cell nuclear antigen, and MMP-2 and MMP-9 in the ovary were characterized by immunohistochemistry. After 28 days of TP injection, serum testosterone concentrations were increased dose-dependently. An appropriate dosage of TP could induce permanent anovulation in guinea pigs, making them a potential model for human polycystic ovary syndrome. MMP-2 and MMP-9 are jointly involved in the growth and atresia of ovarian follicles in cyclic guinea pigs. Increased numbers of atretic antral follicles in the ovary might be associated with the observed high expression of MMP-2 in androgenized cyclic guinea pigs.

  9. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production.

    Science.gov (United States)

    Zhu, Y; Hojo, Y; Ikeda, U; Takahashi, M; Shimada, K

    2000-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in atherosclerotic plaque rupture. The purpose of this study was to investigate the expression of MMP-1 by cell-to-cell interactions between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cells) were cocultured. MMP-1 levels were measured by enzyme-linked immunosorbent assay. Collagenolytic activity was determined by fluorescent labeled-collagen digestion. Immunohistochemistry was performed to determine which types of cells produce MMP-1. Adding THP-1 cells to VSMCs markedly increased the MMP-1 levels and activity of the culture media. MMP-1 levels were maximal when the cellular ratio of THP-1 cells/VSMCs was 1.0. Immunohistochemistry revealed that both types of cells in the coculture produced MMP-1. Separated coculture experiments showed that both direct contact and a soluble factor(s) contributed to MMP-1 production. Neutralizing anti-interleukin (IL)-6 and tumor necrosis factor-alpha antibodies inhibited coculture conditioned medium-induced MMP-1 production by VSMCs and THP-1 cells. Protein kinase C inhibitors, tyrosine kinase inhibitors, and a mitogen-activated protein kinase inhibitor significantly inhibited MMP-1 production by cocultures. Direct cell-to-cell interaction between THP-1 cells and VSMCs enhanced MMP-1 synthesis in both types of cells. Increased local MMP-1 production and activity induced by monocyte-VSMC interaction play an important pathogenic role in atherosclerotic plaque rupture.

  10. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity.

    Science.gov (United States)

    Nassar, Mohannad; Hiraishi, Noriko; Shimokawa, Hitoyata; Tamura, Yukihiko; Otsuki, Masayuki; Kasugai, Shohei; Ohya, Keiichi; Tagami, Junji

    2014-03-01

    Phosphoric acid (PA) etching used in etch-and-rinse adhesives is known to activate host-derived dentinal matrix-metalloproteinases (MMPs) and increase dentinal permeability. These two phenomena will result, respectively; in degradation of dentine-adhesive bond and leaching of some monomers especially 2-hydroxyethyl methacrylate (HEMA) into the pulp that would negatively affect the viability of pulpal cells. This study is the first to investigate the inhibitory effect of non-protein thiols (NPSH); namely reduced glutathione (GSH) and N-acetylcysteine (NAC) on dentinal MMPs and compare their effects on HEMA cytotoxicity. Dentine powder was prepared from human teeth, demineralized with 1% PA and then treated with 2% GSH, 2% NAC or 2% chlorhexidine (CHX). Zymographic analysis of extracted proteins was performed. To evaluate the effect of GSH, NAC and CHX on HEMA cytotoxicity, solutions of these compounds were prepared with or without HEMA and rat pulpal cells were treated with the tested solutions for (6 and 24h). Cells viability was measured by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cytotoxicity data were analysed by one-way ANOVA and Tukey post hoc tests (pcytotoxicity inhibition. NPSH were effective to inhibit dentinal MMPs and HEMA cytotoxicity. The tested properties of NPSH provide promising clinical use of these agents which would enhance dentine-bond durability and decrease post-operative sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Matrix metalloproteinases and left ventricular function and structure in spinal cord injured subjects.

    Science.gov (United States)

    Schreiber, Roberto; Paim, Layde R; de Rossi, Guilherme; Matos-Souza, José R; Costa E Silva, Anselmo de A; Souza, Cristiane M; Borges, Mariane; Azevedo, Eliza R; Alonso, Karina C; Gorla, José I; Cliquet, Alberto; Nadruz, Wilson

    2014-11-01

    Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects.

  12. Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.

    Science.gov (United States)

    Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G

    2016-10-14

    Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.

  13. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.

    Science.gov (United States)

    Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain

    2014-01-01

    The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.

  14. Expression and activity of matrix metalloproteinases in the uterus of bitches after spontaneous and induced abortion.

    Science.gov (United States)

    Kanca, H; Walter, I; Miller, I; Schäfer-Somi, S; Izgur, H; Aslan, S

    2011-04-01

    Aim of this study was to determine the intrauterine activity of matrix metalloproteinases (MMP)-2 and -9 after cessation of the local effect of progesterone. For this purpose, pregnancy was terminated in 10 bitches at mid-gestation with the progesterone receptor antagonist aglepristone (10 mg/kg body weight, sc, Alizine®; Virbac, France) at two subsequent days (group IRA = induced resorption/abortion). The IRA group was divided into two subgroups (Group I, n = 5, days 25-35 of pregnancy; group II, n = 5, days 36-45). Five further bitches were introduced with beginning abortion (group SRA = spontaneous resorption/abortion). Seven healthy bitches between day 25 and 45 of gestation served as controls. After ovariohysterectomy at the end of abortion and between days 25 and 45 of gestation, respectively, the distribution and activity of collagenases were investigated by immunohistochemistry and gelatin zymography. At placental sites, MMP-2 activity in the endometrium was significantly lower in IRA groups than in the SRA group (33.7 ± 11.8% and 39.3 ± 5.4% vs 52.2 ± 10.2%, p control group (control: 21.4 ± 6.3%; p controls: 13.1 ± 2.5%; p control group in comparison to SRA and IRA groups (11.8 ± 3.2%; p control group. It is concluded that the blockade of the biological progesterone effect was associated with an increase in activity of both collagenases.

  15. A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism.

    Science.gov (United States)

    Fortuna, Geisa M; Figueiredo-Lopes, Lívia; Dias-Junior, Carlos A C; Gerlach, Raquel F; Tanus-Santos, Jose E

    2007-01-02

    Matrix metalloproteinases (MMPs) modulate vascular contractility and may affect acute pulmonary embolism (APE)-induced pulmonary hypertension. We examined the effects of the administration of doxycycline (a MMP inhibitor) following APE in anesthetized dogs. Sham operated dogs (N=5) received only saline. APE was induced by intravenous injections of microspheres in amounts to increase mean pulmonary artery pressure (MPAP) by 20 mm Hg, and embolized dogs received saline (Emb group, N=8), or doxycycline (10 mg/kg, i.v.) 5 or 30 min of APE (Emb+Doxy 5 and Emb+Doxy 30 groups, N=9 and 8, respectively). Hemodynamic evaluation was performed at baseline and 5-120 after APE. Gelatin zymography of MMP-2 and MMP-9 from plasma samples was performed. No significant hemodynamic changes were found in Sham animals. Embolization increased MPAP by 218+/-16% and the pulmonary vascular resistance index (PVRI) by 289+/-42% in Emb group (both PDoxy 30+Emb group. In addition, doxycyline reduced MPAP and PVRI 30 min after APE with maximum effects seen 120 min after APE (25+/-4% decrease in MPAP and 33+/-6% decrease in PVRI; both PDoxy+5 group. Plasma pro-MMP-9 and MMP-9 levels increased only in Emb group and MMP-2 remained unaltered. Our study shows that doxycycline attenuates APE-induced pulmonary hypertension, and indicates that MMP-9 has a role in APE-induced pulmonary hypertension. MMP-9 may be a pharmacological target in APE.

  16. Differential expression of matrix metalloproteinase-13 in mucinous and nonmucinous colorectal carcinomas.

    Science.gov (United States)

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira K; Abdel-Aziz, Azza

    2013-08-01

    Colorectal carcinoma (CRC) is a major health problem all over the world. Mucinous CRCs are known to have a peculiar behavior and genetic derangements. This study aimed to investigate matrix metalloproteinase (MMP)-13 expression in mucinous and nonmucinous CRCs. We studied tumor tissue specimens from 150 patients with mucinous and nonmucinous CRC who underwent radical surgery from January 2007 to January 2012. High-density manual tissue microarrays were constructed using a modified mechanical pencil tip technique, and paraffin sections were submitted for immunohistochemistry using MMP-13. Statistical analysis was performed for clinical and pathological data of all studied cases together with MMP-13 expression in mucinous and nonmucinous groups. Mucinous carcinoma was significantly associated with young age, more depth of invasion, lymph node metastasis, and less peritumoral and intratumoral neutrophils. Nonmucinous carcinomas showed higher MMP-13 expression compared with mucinous carcinomas. Despite the negative or low expression of MMP-13, mucinous carcinomas had more depth of invasion and more frequency of lymph node metastasis than did nonmucinous carcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review

    Science.gov (United States)

    Venugopal, Archana; Uma Maheswari, TN

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis) and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation. PMID:27721614

  18. Exploring the subtleties of drug-receptor interactions: the case of matrix metalloproteinases.

    Science.gov (United States)

    Bertini, Ivano; Calderone, Vito; Fragai, Marco; Giachetti, Andrea; Loconte, Mauro; Luchinat, Claudio; Maletta, Massimiliano; Nativi, Cristina; Yeo, Kwon Joo

    2007-03-07

    By solving high-resolution crystal structures of a large number (14 in this case) of adducts of matrix metalloproteinase 12 (MMP12) with strong, nanomolar, inhibitors all derived from a single ligand scaffold, it is shown that the energetics of the ligand-protein interactions can be accounted for directly from the structures to a level of detail that allows us to rationalize for the differential binding affinity between pairs of closely related ligands. In each case, variations in binding affinities can be traced back to slight improvements or worsening of specific interactions with the protein of one or more ligand atoms. Isothermal calorimetry measurements show that the binding of this class of MMP inhibitors is largely enthalpy driven, but a favorable entropic contribution is always present. The binding enthalpy of acetohydroxamic acid (AHA), the prototype zinc-binding group in MMP drug discovery, has been also accurately measured. In principle, this research permits the planning of either improved inhibitors, or inhibitors with improved selectivity for one or another MMP. The present analysis is applicable to any drug target for which structural information on adducts with a series of homologous ligands can be obtained, while structural information obtained from in silico docking is probably not accurate enough for this type of study.

  19. Role of salivary matrix metalloproteinase-8 (MMP-8) in chronic periodontitis diagnosis.

    Science.gov (United States)

    Gupta, Namita; Gupta, N D; Gupta, Akash; Khan, Saif; Bansal, Neha

    2015-03-01

    Periodontitis is an inflammatory disease of the periodontium. Any imbalance between the matrix metalloproteinases (MMPs) secreted by neutrophils and tissue inhibitors initiates the destruction of collagen in gum tissue, leading to chronic periodontitis. This study aimed to correlate salivary levels of MMP-8 and periodontal parameters of chronic periodontitis to establish MMP-8 as a noninvasive marker for the early diagnosis of chronic periodontitis. The study involved 40 subjects visiting the periodontic OPD of Dr. Ziauddin Ahmad Dental College and Hospital, located in Aligarh, U.P., India, from 2011 to 2012. The subjects were divided into two groups: group I consisted of 20 periodontally healthy subjects (controls) while group II consisted of 20 patients with chronic periodontitis. Chronic periodontitis was assessed on the basis of several periodontal parameters, including pocket probing depth (PPD), clinical attachment level (CAL), gingival index (GI), and plaque index (PI). Around 3ml of unstimulated and whole expectorated saliva was collected for MMP-8 estimation by ELISA using Quantikine human total MMP-8 immunoassay kits. Data were analyzed using STATISTICA (Windows version 6) software. Salivary MMP-8 levels of groups I and II were 190.91 ± 143.89 ng/ml and 348.26 ± 202.1 ng/ml, respectively. The MMP-8 levels and periodontal status (PPD, CAL, GI, and PI) of groups I and II showed positive and significant correlations (for PPD, r = 0.63, P chronic periodontitis.

  20. Pressure therapy upregulates matrix metalloproteinase expression and downregulates collagen expression in hypertrophic scar tissue

    Institute of Scientific and Technical Information of China (English)

    HUANG Dong; SHEN Kuan-hong; WANG Hong-gang

    2013-01-01

    Background Pressure therapy improves hypertrophic scar healing,but the mechanisms for this process are not well understood.We sought to investigate the differential expression of matrix metalloproteinases (Mmps) and collagen in posttraumatic hypertrophic scar tissue with mechanical pressure and delineate the molecular mechanisms of pressure therapy for hypertrophic scars.Methods Fibroblast lines of normal skin and scar tissue were established and a mechanical pressure system was devised to simulate pressure therapy.Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assays were used to compare differences in the mRNA and protein expression of Mmps and collagen in scar fibroblasts before and after pressure therapy.Results The expression differed between the hypertrophic scar cell line and the normal cell line.RT-PCR assays showed that Collagen I,highly expressed in the hypertrophic scar cell line,decreased significantly after pressure therapy.Mmp2,Mmp9,and Mmp12 expression in the hypertrophic scar tissue increased significantly after pressure therapy (P <0.05).Western blotting assays further revealed that Mmp9 and Mmp12 expression increased significantly in the hypertrophic scar tissue after pressure therapy (P <0.05) but not Mmp2 expression (P >0.05).Conclusion Mechanical pressure induces degradation of Collagen Ⅰ in hypertrophic scar tissue by affecting the expression of Mmp9 and Mmp12.

  1. ADHESION INDUCES MATRIX METALLOPROTEINASE-9 GENE EXPRESSION IN OVARIAN CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    田方; 颜春洪; 薛红; 肖凤君

    2002-01-01

    Objective: To investigate the expression of matrix metalloproteinase-9 (MMP-9) gene in cancer cells induced by adhesion with fibronectin and the underlying mechanism of cell invasion. Methods: Following adhesion of ovarian cancer cells A2780 to fibronectin, MMP mRNA expression was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). MMP-9 promoter was cloned from genomic DNA of HT1080 cells with PCR. The MMP-9-pGL2 reporter gene vector was constructed and then transiently transfected into A2780 cells. Results: Adhesion could induce the expression of MMP-9 gene in A2780 cells, but did not affect longer theexpression of MMP-2 or TIMP-1 gene. The induction was enhanced with longer adhesion time. When the transfected cells were allowed to adhere and spread on FN-coated surface, the promoter activity of MMP-9 gene was also enhanced dramatically. Conclusion: adhesion of cells with ECM may stimulate the expression of MMP-9 gene through stimulating the promoter activity, thereby enhancing cancer cell invasion and metastasis.

  2. Plasma matrix metalloproteinases, low density lipoprotein oxidisability and soluble adhesion molecules after a glucose load in Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Brown Jackie

    2004-06-01

    Full Text Available Abstract Background Acute hyperglycaemia is an independent cardiovascular risk factor in Type 2 diabetes which may be mediated through increased oxidative damage to plasma low density lipoprotein, and in vitro, high glucose concentrations promote proatherogenic adhesion molecule expression and matrix metalloproteinase expression. Methods We examined these atherogenic risk markers in 21 subjects with Type 2 diabetes and 20 controls during an oral 75 g glucose tolerance test. Plasma soluble adhesion molecule concentrations [E-selectin, VCAM-1 and ICAM-1], plasma matrix metalloproteinases [MMP-3 and 9] and plasma LDL oxidisability were measured at 30 minute intervals. Results In the diabetes group, the concentrations of all plasma soluble adhesion molecules fell promptly [all p Conclusions A glucose load leads to a rapid fall in plasma soluble adhesion molecule concentrations in Type 2 diabetes and controls, perhaps reflecting reduced generation of soluble from membrane forms during enhanced leukocyte – endothelial adhesion or increased hepatic clearance, without changes in plasma matrix metalloproteinase concentrations or low density lipoprotein oxidisability. These in vivo findings are in contrast with in vitro data.

  3. Serum levels of matrix metalloproteinases MMP-2 and MMP-9 and their tissue natural inhibitors in breast tumors.

    Science.gov (United States)

    Jinga, D; Stefanescu, Maria; Blidaru, A; Condrea, Ileana; Pistol, Gina; Matache, Cristiana

    2004-01-01

    In this study, the levels of matrix metalloproteinases MMP-2 and MMP-9 were simultaneously analyzed with the levels of their tissue natural inhibitors TIMP-1 and TIMP-2 in sera of patients with breast tumors. At the same time, the activity of these two matrix metalloproteinases was evaluated. The decrease of TIMP-2 level in sera from patients with breast cancer as well as an imbalance between MMP-2 and TIMP-2 in neoplasic processes were found. The serum levels of MMP-2, MMP-9 and TIMP-1 were comparable between the patients with breast cancer and benign tumors. These experimental studied parameters were found to correlate with some of clinicopathological disease variables (TNM or pTNM staging system, tumor size and node invasion) suggesting their potential value for diagnosis and prognosis of breast cancer. Matrix metalloproteinases or their natural inhibitors and tumor markers (CA15.3 and CEA) not correlated between but, each of them correlated with another clinicopathological disease variable, suggesting their usefulness in the evaluation.

  4. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential.

    Directory of Open Access Journals (Sweden)

    Verline Justilien

    Full Text Available Matrix metalloproteinases (Mmps stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2 in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC. Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10(-/- mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.

  5. Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer.

    Science.gov (United States)

    Sauter, Wiebke; Rosenberger, Albert; Beckmann, Lars; Kropp, Silke; Mittelstrass, Kirstin; Timofeeva, Maria; Wölke, Gabi; Steinwachs, Angelika; Scheiner, Daniela; Meese, Eckart; Sybrecht, Gerhard; Kronenberg, Florian; Dienemann, Hendrik; Chang-Claude, Jenny; Illig, Thomas; Wichmann, Heinz-Erich; Bickeböller, Heike; Risch, Angela

    2008-05-01

    Matrix metalloproteinases (MMP) play a key role in the breakdown of extracellular matrix and in inflammatory processes. MMP1 is the most highly expressed interstitial collagenase degrading fibrillar collagens. Overexpression of MMP1 has been shown in tumor tissues and has been suggested to be associated with tumor invasion and metastasis. Nine haplotype tagging and additional two intronic single nucleotide polymorphisms (SNP) of MMP1 were genotyped in a case control sample, consisting of 635 lung cancer cases with onset of disease below 51 years of age and 1,300 age- and sex-matched cancer-free controls. Two regions of linkage disequilibrium (LD) of MMP1 could be observed: a region of low LD comprising the 5' region including the promoter and a region of high LD starting from exon 1 to the end of the gene and including the 3' flanking region. Several SNPs were identified to be individually significantly associated with risk of early-onset lung cancer. The most significant effect was seen for rs1938901 (P = 0.0089), rs193008 (P = 0.0108), and rs996999 (P = 0.0459). For rs996999, significance vanished after correction for multiple testing. For each of these SNPs, the major allele was associated with an increase in risk with an odds ratio between 1.2 and 1.3 (95% confidence interval, 1.0-1.5). The haplotype analysis supported these findings, especially for subgroups with high smoking intensity. In summary, we identified MMP1 to be associated with an increased risk for lung cancer, which was modified by smoking.

  6. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    Science.gov (United States)

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  7. Matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Sullu, Yurdanur; Demirag, Guzin G; Yildirim, Arzu; Karagoz, Filiz; Kandemir, Bedri

    2011-12-15

    Matrix metalloproteinase-2 (MMP-2) and MMP-9 are gelatinases that play a role in the invasion and metastasis of cancer through the destruction of the basal membrane and extracellular matrix. In this study, we investigated the immunohistochemical expression of MMP-2 and MMP-9 and the correlation between the expression levels and prognostic clinicopathological parameters in 140 patients with invasive ductal carcinoma (IDC). The staining scores for MMP-9 were negative in 21 cases (15%), mild in 27 cases (19%), and strong in 92 cases (66%). MMP-9 expression was increased in high-grade (p=0.001), triple-negative (ER, PR, HER2 negative) (p=0.006), and ER-negative tumors (p=0.004) and tumors with distant metastases (p=0.028). MMP-9 expression was increased in cases with HER2 over-expression/amplification, but no statistically significant difference was found (p=0.215). No correlation was found between lymph node metastasis or tumor size and MMP-9 expression (p=0.492 and p=0.448, respectively). The staining scores for MMP-2 in 140 cases were negative in 10 cases (7%), mild in 25 cases (18%), and strong in 105 cases (75%). MMP-2 expression was increased in ER-negative and high-grade tumors in the lymph node-negative group (p=0.025 and 0.026, respectively). High MMP-9 expression was associated with a shorter disease-free survival and overall survival times (p=0.042 and p=0.046, respectively). In conclusion, increased MMP-9 expression is related to poor prognostic clinicopathological factors in IDC, and hence, it can be utilized as a supplementary prognostic marker. The role of MMP-2 expression in the prognosis of IDC is rather limited.

  8. Modification of matrix metalloproteinase activities from alveolar macrophages during chronic coal mine dust exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Oberson, D.; Wastiaux, A.; Lefevre, J.P.; Sebastien, P.; Lafuma, C. [Centre National de la Recherche Scientifique (UA-CNRS), Creteil (France). Lab. de Biochimie du Tissu Conjunctif

    1994-12-31

    Macrophage derived products have been implicated in pneumoconiosis induced by chronic coal dust inhalation. To assess the role of macrophages during chronic inflammatory processes in relation to pneumoconiosis, their capacity to secrete matrix metalloproteinase (MMP) activities was studied. Two groups of rats were exposed to 100 or 200 mg m{sup -3}, 6 h per day, 5 days per week and sacrified at 9, 28 and 78 days of exposure, and 6 months following the end of exposure. A total of 92 kDa proform and 88 kDa active form collagenase type IV (gelatinase) were investigated in macrophage culture medium (MEM), macrophage extracts (MACs) and bronchoalveolar fluid (BAL). In parallel, net gelatinase and interstitial collagenase activities were evaluated by degradation of radiolabelled specific substrates. Pneumoconiotic lessons developed during the late dust exposure and the recovery phase and were associated with macrophage alveolitis. Results showed that chronic coal dust inhalation induced the increase of total gelatinase activities secreted into the MEM and the BAL. The net gelatinase and collagenase activities were increased in parallel in MEM whereas they appeared inhibited when secreted in the BAL whatever the dust exposure time. These results suggest that chronic coal mine dust exposure is capable of inducing chronic alveolar MACs activation in regard to their persistent highly increased capacity to degrade in situ extracelluar matrix components, namely collagen types IV or V. Such a deregulation associated with the acute inhibition process towards MMPs in the alveolar space, allowed the authors to propose a role of MMPs during pneumoconiosis. 17 refs., 5 figs., 1 tab.

  9. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  10. MMP-9 directed shRNAs as relevant inhibitors of matrix metalloproteinase 9 activity and signaling

    Directory of Open Access Journals (Sweden)

    Ewa Nowak

    2013-08-01

    Full Text Available Introduction: The main function of matrix metalloproteinases is the degradation of extracellular matrix components, which is related to changes in the proliferation of cells, their differentiation, motility, and death. MMPs play an important role in physiological processes such as embryogenesis, angiogenesis and tissue remodeling. The increase of MMPs activity is also observed in pathological conditions including tumorigenesis where MMP-2 (gelatinase A and MMP-9 (gelatinase B show the ability to degrade the basement membrane of vessels and they are involved in metastasis. The aim of our study was to verify the changes of MMP-9 enzymatic activity and the mobility of cells after inhibition of MMP-9 gene expression.Material and Methods: The oligonucleotide shRNA insert had been designed to silence MMP-9 gene expression and was cloned into the pSUPER.neo expression vector. The construct was introduced into the HeLa (CCL-2 cervical cancer cells by lipotransfection. Simultaneously in control cells MMP-9 were inhibited by doxycycline. Changes in activity of MMP-9 were analyzed by gelatin zymography and wound-healing assay.Results/Conclusions: Gelatin zymography allowed us to confirm that activity of MMP-9 in cells transfected by shRNA-MMP-9 and treated by doxycycline were similar and significantly lower in comparison with control cells. Phenotypic tests of migration in vitro confirm statistically significant (P<0.05 changes in cell migration – control cells healed 3 to 5 times faster in comparison with transfected or doxycycline treated cells. Our studies show the significant role of MMP-9 in mobility and invasiveness of tumor cells, thus indicating a potential target point of interest for gene therapy.

  11. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    Science.gov (United States)

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications.

  12. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Eyal Zcharia

    Full Text Available BACKGROUND: Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis. PRINCIPAL FINDINGS: We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14 expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231 cells. Immunostaining (kidney tissue and chromatin immunoprecipitation (ChIP analysis (Hpse-KO mouse embryonic fibroblasts suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of beta-catenin. CONCLUSIONS/SIGNIFICANCE: The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development.

  13. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    Directory of Open Access Journals (Sweden)

    Feix Sonja

    2010-10-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma. In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. Methods In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA, three cervical carcinomas (HeLa, Caski, SiHa, three chorioncarcinomas (JEG, JAR, BeWo, two ovarian cancers (BG-1, OAW-42 and one teratocarcinoma (PA-1 were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. Results We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10. Conclusions Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments.

  14. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shin-Hae; Park, Joung-Sun [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Young-Shin [Research Institute of Genetic Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Chung, Hae-Young [Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  15. Optical Imaging of Matrix Metalloproteinase-7 Activity in Vivo Using a Proteolytic Nanobeacon

    Directory of Open Access Journals (Sweden)

    Randy L. Scherer

    2008-05-01

    Full Text Available Matrix metalloproteinases (MMPs are extracellular proteolytic enzymes involved in tumor progression. We present the in vivo detection and quantitation of MMP7 activity using a specific near-infrared polymer-based proteolytic beacon, PB-M7NIR. PB-M7NIR is a pegylated polyamidoamine PAMAM-Generation 4 dendrimer core covalently coupled to a Cy5.5-labeled peptide representing a selective substrate that monitors MMP7 activity (sensor and AF750 as an internal reference to monitor relative substrate concentration (reference. In vivo imaging of tumors expressing MMP7 had a median sensor to reference ratio 2.2-fold higher than a that of a bilateral control tumor. Ex vivo imaging of intestines of multiple intestinal neoplasia (APCMin mice injected systemically with PB-M7NIR revealed a sixfold increase in the sensor to reference ratio in the adenomas of APCMin mice compared with control intestinal tissue or adenomas from MMP7-null Min mice. PB-M7NIR detected tumor sizes as small as 0.01 cm2, and the sensor to reference ratio was independent of tumor size. Histologic sectioning of xenograft tumors localized the proteolytic signal to the extracellular matrix; MMP7-overexpressing tumors displayed an approximately 300-fold enhancement in the sensor to reference ratio compared with nonexpressing tumor cells. In APCMin adenomas, the proteolytic signal colocalized with the endogenously expressed MMP7 protein, with sensor to reference ratios approximately sixfold greater than that of normal intestinal epithelium. PB-M7NIR provides a useful reagent for the in vivo and ex vivo quantitation and localization of MMP-selective proteolytic activity.

  16. Matrix Metalloproteinase Inhibitors as Investigative Tools in the Pathogenesis and Management of Vascular Disease

    Science.gov (United States)

    Benjamin, Mina M.; Khalil, Raouf A.

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates, and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolyic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only on MMP inhibitor, i.e. doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors

  17. Use of Synthetic Peptides to Study Structure-Function Relationships of Matrix Metalloproteinases and Their Substrates.

    Science.gov (United States)

    Netzel-Arnett, Sarah Joann

    The matrix metalloproteinases (MMPs) are a family of zinc proteinases that is collectively capable of degrading the major components of the extracellular matrix. A variety of synthetic peptides has been prepared which are models for the human MMP and their substrates to study structure -function relationships in this enzyme-substrate system. To elucidate the sequence specificity of the MMP, the k _{cat}/K_ M values for the hydrolysis of over 50 synthetic octapeptides has been investigated. Similarities, as well as distinct differences have been found between the individual MMP with the largest differences occurring at subsites P_1, P_1^' and P_3 ^'. Based on these data, quenched -fluorescence substrates with optimized sequences have been developed for five human MMP. The key features of these heptapeptides are a tryptophan on the P_ n^' side and a dinitrophenol quenching group on the amino terminus. To assess the role of the triple helical conformation in the collagenase-collagen system, a series of triple helical peptides has been prepared and shown to compete with collagen in collagenase assays. This provides evidence for the existence of a triple helical recognition site distinct from the active site. All of the MMP are secreted as zymogens and it has been postulated that the portion of the propeptide surrounding a critical cysteine is responsible for maintaining latency. Conformational energy calculations and mutagenesis studies have suggested that this region adopts a specific conformation that stabilizes the latent form. Peptide models of this region of the propeptide have been prepared and shown to inhibit the MMP. CD and NMR studies, however, have failed to provide evidence for the predicted peptide conformation. Thus, the observed inhibition may reflect their propensity to adopt the propeptide conformation upon binding to the enzyme.

  18. Differential expression of matrix metalloproteinases during stimulated ovarian recrudescence in Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Salverson, Trevor J; McMichael, Greer E; Sury, Jonathan J; Shahed, Asha; Young, Kelly A

    2008-02-01

    The matrix metalloproteinases (MMPs) are a family of extracellular matrix-cleaving enzymes involved in ovarian remodeling. In many non-tropical species, including Siberian hamsters, ovarian remodeling is necessary for the functional changes associated with seasonal reproduction. We evaluated MMPs and their endogenous inhibitors (TIMPs), during photoperiod-induced ovarian recrudescence in Siberian hamsters. Hamsters were transferred from long day (LD; 16:8) to short day (SD; 8:16) photoperiods for 14weeks, and then returned to LD for 0, 1, 2, 4, or 8weeks for collection of ovaries and plasma. Post-transfer (PT) LD exposure increased body and ovarian mass. Number of corpora lutea and antral, but not preantral follicles increased in PT groups. Plasma estradiol concentrations were lower in PT weeks 0-4, and returned to LD levels at PT week 8. No change was observed in relative MMP/TIMP mRNA levels at PT week 0 (SD week 14) as compared to LD. Photostimulation increased MMP-2 mRNA at PT week 8 as compared to PT weeks 0-1. MMP-14 mRNA expression peaked at PT weeks 1-2 as compared to LD levels, while MMP-13 expression was low during this time. TIMP-1 mRNA peaked at PT week 8 as compared to PT weeks 0-4. No changes were noted in MMP-9 and TIMP-2 mRNA expression. In general, MMP/TIMP protein immunodetection followed the same patterns with most staining occurring in granulosa cells of follicles and corpora lutea. Our data suggest that mRNA and protein for several members of the MMP/TIMP families are expressed in Siberian hamster ovaries during recrudescence. Because of the variation observed in expression patterns, MMPs and TIMPs may be differentially involved with photostimulated return to ovarian function.

  19. Increased expression of intranuclear matrix metalloproteinase 9 in atrophic renal tubules is associated with renal fibrosis.

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    Full Text Available BACKGROUND: Reduced turnover of extracellular matrix has a role in renal fibrosis. Matrix metalloproteinases (MMPs is associated with many glomerular diseases, but the histological association of MMPs and human renal fibrosis is unclear. METHODS: This is a retrospective study. Institutional Review Board approval was obtained for the review of patients' medical records, data analysis and pathological specimens staining with waiver of informed consents. Specimens of forty-six patients were examined by immunohistochemical stain of MMP-9 in nephrectomized kidneys, and the association of renal expression of MMP-9 and renal fibrosis was determined. MMP-9 expression in individual renal components and fibrosis was graded as high or low based on MMP-9 staining and fibrotic scores. RESULTS: Patients with high interstitial fibrosis scores (IFS and glomerular fibrosis scores (GFS had significantly higher serum creatinine, lower estimated glomerular filtration rate (eGFR, and were more likely to have chronic kidney disease (CKD and urothelial cell carcinoma. Univariate analysis showed that IFS and GFS were negatively associated with normal and atrophic tubular cytoplasmic MMP-9 expression and IFS was positively correlated with atrophic tubular nuclear MMP-9 expression. Multivariate stepwise regression indicated that MMP-9 expression in atrophic tubular nuclei (r = 0.4, p = 0.002 was an independent predictor of IFS, and that MMP-9 expression in normal tubular cytoplasm (r = -0.465, p<0.001 was an independent predictor of GFS. CONCLUSIONS: Interstitial fibrosis correlated with MMP-9 expression in the atrophic tubular nuclei. Our results indicate that renal fibrosis is associated with a decline of MMP-9 expression in the cytoplasm of normal tubular cells and increased expression of MMP-9 in the nuclei of tubular atrophic renal tubules.

  20. Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity

    Institute of Scientific and Technical Information of China (English)

    Chun-yan SUN; Yu HU; Tao GUO; Hua-fang WANG; Xiao-ping ZHANG; Wen-juan HE; Hao TAN

    2006-01-01

    Aim: To examine the in vitro antitumor activity of resveratrol against multiple myeloma (MM) cell lines (RPMI 8226, U266, and KM3), and the mechanisms involved. Methods: The growth inhibition of resveratrol was determined by 3-(4, 5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The effect of resveratrol on the apoptosis was investigated by combined annexin V-propidium iodide staining. The effect of resveratrol on the invasion through Matrigel matrix was detected by transwell invasion analyses. The activity of matrix metalloproteinase (MMP)-2 and -9 proteins were determined by gelatin zymography analysis. The expression of MMP-2, MMP-9, Bcl-2, Bcl-xL, XIAP and Bax protein were detected using Western blotting analysis. Results: Resveratrol inhibited proliferation of MM cells in a dose- and time-dependent manner. Incubation of MM cells with resveratrol resulted in apoptotic cell death. Resveratrol down-regulated the expression of the antiapoptotic proteins Bcl-2, Bcl-xL and XIAP and up-regulated the expression of the proapoptotic protein Bax. Furthermore, resveratrol inhibited invasion of RPMI 8226, U266, and KM3 cells with IC50 values of 64±8 μmol/L, 93±11 μmol/L, and 153±11 μmol/L, respectively. Resveratrol inhibited the constitutive expression of MMP-2 and -9 proteins of MM cells and suppressed its gelatinolytic activity. Conclusion: Resveratrol inhibits the proliferation of MM cells by inducing apoptotic cell death. Resveratrol also inhibits MM cell invasion. The inhibition of invasion may be associated with the attenuation of the enzymatic activities of MMP-2 and -9.

  1. Significance of matrix metalloproteinases in norepinephrine-induced remodelling of rat hearts.

    Science.gov (United States)

    Briest, Wilfried; Hölzl, Alexander; Rassler, Beate; Deten, Alexander; Baba, Hideo A; Zimmer, Heinz-Gerd

    2003-02-01

    Norepinephrine (NE) induced hypertrophy and remodelling of the extracellular matrix (ECM) in the left ventricle (LV) of the rat heart with resulting fibrosis. However, there was no increased collagen deposition in the right ventricle (RV). To test the hypothesis that lack of RV fibrosis is the result of elevated cleavage of collagens we inhibited the activity of matrix metalloproteinases (MMP) by doxycycline (Doxy) and then measured function and collagen metabolism in the RV as compared to the LV. Female Sprague-Dawley rats were treated with 30 mg/kg per day doxycycline alone or in combination with i.v. infusion of NE (0.1 mg/kg per h). The activity of MMP-2 was increased both in the LV and RV after 3 days of NE infusion and reduced after concomitant doxycycline treatment which also caused inhibition when given alone. After 14 days of NE infusion in combination with doxycycline there was an additional increase in the NE-induced elevation of collagen accumulation in the LV (interstitial collagen fraction: NE-Doxy 1.797%, PDoxy: 36.4 mmHg) and RV dP/dt(max) (NE: 5500 mmHg/s, PDoxy: 2550 mmHg/s). Also in the NE-stimulated LV, the doxycycline-induced collagen accumulation was associated with reduced LV dP/dt(max) (NE-Doxy: 13169 mmHg/s; NE: 18849 mmHg/s, P<0.05). MMP inhibition leads to myocardial stiffness with negative functional consequences for the RV and LV in NE-treated rat hearts.

  2. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development.

    Directory of Open Access Journals (Sweden)

    Els Janssens

    Full Text Available BACKGROUND: Matrix metalloproteinases (MMPs are members of the metzincin superfamily of proteinases that cleave structural elements of the extracellular matrix and many molecules involved in signal transduction. Although there is evidence that MMPs promote the proper development of retinotectal projections, the nature and working mechanisms of specific MMPs in retinal development remain to be elucidated. Here, we report a role for zebrafish Mmp14a, one of the two zebrafish paralogs of human MMP14, in retinal neurogenesis and retinotectal development. RESULTS: Whole mount in situ hybridization and immunohistochemical stainings for Mmp14a in developing zebrafish embryos reveal expression in the optic tectum, in the optic nerve and in defined retinal cell populations, including retinal ganglion cells (RGCs. Furthermore, Mmp14a loss-of-function results in perturbed retinoblast cell cycle kinetics and consequently, in a delayed retinal neurogenesis, differentiation and lamination. These Mmp14a-dependent retinal defects lead to microphthalmia and a significantly reduced innervation of the optic tectum (OT by RGC axons. Mmp14b, on the contrary, does not appear to alter retinal neurogenesis or OT innervation. As mammalian MMP14 is known to act as an efficient MMP2-activator, we also explored and found a functional link and a possible co-involvement of Mmp2 and Mmp14a in zebrafish retinotectal development. CONCLUSION: Both the Mmp14a expression in the developing visual system and the Mmp14a loss-of-function phenotype illustrate a critical role for Mmp14a activity in retinal and retinotectal development.

  3. Relationships between serum osteoprotegerin, matrix metalloproteinase-2 levels and bone metabolism in postmenopausal women

    Institute of Scientific and Technical Information of China (English)

    DAI Yi; SHEN Lin

    2007-01-01

    Background Serum osteoprotegerin (OPG) and matrix metalloproteinase-2 (MMP-2) have been shown to play a role in bone metabolism by degrading the bone matrix. The present study was undertaken to compare OPG and MMP-2 with bone mineral density and three markers (alkaline phosphatase (AKP), calcium and phosphorus) in postmenopausal women in Wuhan.Methods Serum OPG, MMP-2, and AKP of 78 Chinese postmenopausal women aged 48 to 65 were measured using enzyme-linked immunosorbent assay (ELISA). Bone mineral density was measured with dual energy X-ray absorptiometry (DEXA), and serum calcium and phosphorus were measured by auto biochemical analysis.Results Serum OPG and MMP-2 concentrations were significantly higher in postmenopausal women with osteoporosis ((127.6±6.3) ng/L; (1388±121) μg/L)) than those in age-matched normal controls ((72.3±2.4) ng/L; (1126±141) μg/L,P<0.01). Negative relationships were found between serum OPG, MMP-2 levels and bone mineral density in osteoporotic women. Adjusted by age and body mass index (BMI), the correlation of MMP-2 with bone mineral density of the neck of the femur disappeared. In osteoporotic women, negative correlations between OPG, MMP-2 levels and serum calcium were found (r=-0.216; r=-0.269, P<0.05), but positive correlations between OPG and serum AKP, serum phosphorus (r=0.235; r=0.124, P<0.05).Conclusions Significant correlations exist between serum OPG, MMP-2 levels and bone metabolism in high bone turnover of postmenopausal osteoporotic women. The concentrations of serum OPG and MMP-2 increase possibly as a concomitant event in the high bone turnover state, such as postmenopausal osteoporosis. Therefore serum OPG and MMP-2 could be used as indicators for the bone metabolism in postmenopausal osteoporotic women.

  4. Matrix metalloproteinases 15 and 19 are stromal regulators of colorectal cancer development from the early stages.

    Science.gov (United States)

    Sena, Paola; Mariani, Francesco; Marzona, Laura; Benincasa, Marta; Ponz de Leon, Maurizio; Palumbo, Carla; Roncucci, Luca

    2012-07-01

    Matrix metalloproteinases (MMPs) have been well characterized for their ability to degrade extracellular matrix proteins and, thus, they have been studied to elucidate their involvement in both tumor development and progression. In the present study, attention was focused on MMP-15 and MMP-19, two less known members of the MMP family. The expression profile of MMP-15 and -19 was assayed in samples of normal colorectal mucosa, microadenomas and cancer using confocal analysis, western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Both qRT-PCR and western blotting showed that MMP-15 and MMP-19 appeared to be upregulated during colorectal tumorigenesis, with different expression patterns: MMP-15 expression level increases from normal mucosa to microadenomas, with a reduced level in cancer with respect to microadenomas; the semiquantitative immunofluorescence analysis showed a stromal localization of this protein in the early phases of neoplastic transformation. Increasing amount of MMP-19 mRNA and protein levels were observed in the progression of colonic lesions; MMP-19 staining increased in the normal mucosa-microadenoma-carcinoma sequence. Such different expression patterns, are probably due to the different roles played in colorectal tumorigenesis by these two molecules. Conflicting data on the role of these proteins in tumor progression have been reported, thus, an improved understanding of the biological roles of MMPs, in particular the lesser known members such as MMP-15 and 19, in colorectal cancer may lead to a re-evaluation of the use of MMP inhibitors and suggests the need of integrated translational studies on MMP expression patterns.