WorldWideScience

Sample records for matrix lie group

  1. A density matrix renormalization group study of low-lying excitations ...

    Indian Academy of Sciences (India)

    Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...

  2. Lie groups and Lie algebras for physicists

    CERN Document Server

    Das, Ashok

    2015-01-01

    The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.

  3. Theory of Lie groups

    CERN Document Server

    Chevalley, Claude

    2018-01-01

    The standard text on the subject for many years, this introductory treatment covers classical linear groups, topological groups, manifolds, analytic groups, differential calculus of Cartan, and compact Lie groups and their representations. 1946 edition.

  4. Quasi-Lie algebras and Lie groups

    International Nuclear Information System (INIS)

    Momo Bangoura

    2006-07-01

    In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr

  5. Lectures on Lie groups

    CERN Document Server

    Hsiang, Wu-Yi

    2017-01-01

    This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartans' theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie t...

  6. Lie groups, lie algebras, and representations an elementary introduction

    CERN Document Server

    Hall, Brian

    2015-01-01

    This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...

  7. Lie groups and algebraic groups

    Indian Academy of Sciences (India)

    We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...

  8. Lie groups for pedestrians

    CERN Document Server

    Lipkin, Harry J

    2002-01-01

    According to the author of this concise, high-level study, physicists often shy away from group theory, perhaps because they are unsure which parts of the subject belong to the physicist and which belong to the mathematician. However, it is possible for physicists to understand and use many techniques which have a group theoretical basis without necessarily understanding all of group theory. This book is designed to familiarize physicists with those techniques. Specifically, the author aims to show how the well-known methods of angular momentum algebra can be extended to treat other Lie group

  9. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  10. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  11. On framed simple Lie groups

    OpenAIRE

    MINAMI, Haruo

    2016-01-01

    For a compact simple Lie group $G$, we show that the element $[G, \\mathcal{L}] \\in \\pi^S_*(S^0)$ represented by the pair $(G, \\mathcal{L})$ is zero, where $\\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].

  12. String Topology for Lie Groups

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2010-01-01

    In 1999 Chas and Sullivan showed that the homology of the free loop space of an oriented manifold admits the structure of a Batalin-Vilkovisky algebra. In this paper we give a direct description of this Batalin-Vilkovisky algebra in the case that the manifold is a compact Lie group G. Our answer ...

  13. The formalism of Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A. [Imperial College of Science and Technology, London (United Kingdom)

    1963-01-15

    Throughout the history of quantum theory, a battle has raged between the amateurs and professional group theorists. The amateurs have maintained that everything one needs in the theory of groups can be discovered by the light of nature provided one knows how to multiply two matrices. In support of this claim, they of course, justifiably, point to the successes of that prince of amateurs in this field, Dirac, particularly with the spinor representations of the Lorentz group. As an amateur myself, I strongly believe in the truth of the non-professionalist creed. I think perhaps there is not much one has to learn in the way of methodology from the group theorists except caution. But this does not mean one should not be aware of the riches which have been amassed over the course of years particularly in that most highly developed of all mathematical disciplines - the theory of Lie groups. My lectures then are an amateur's attempt to gather some of the fascinating results for compact simple Lie groups which are likely to be of physical interest. I shall state theorems; and with a physicist's typical unconcern rarely, if ever, shall I prove these. Throughout, the emphasis will be to show the close similarity of these general groups with that most familiar of all groups, the group of rotations in three dimensions.

  14. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  15. Transformation groups and Lie algebras

    CERN Document Server

    Ibragimov, Nail H

    2013-01-01

    This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.

  16. Lie groups, Lie algebras, and some of their applications

    CERN Document Server

    Gilmore, Robert

    1974-01-01

    Lie group theory plays an increasingly important role in modern physical theories. Many of its calculations remain fundamentally unchanged from one field of physics to another, altering only in terms of symbols and the language. Using the theory of Lie groups as a unifying vehicle, concepts and results from several fields of physics can be expressed in an extremely economical way. With rigor and clarity, this text introduces upper-level undergraduate students to Lie group theory and its physical applications.An opening discussion of introductory concepts leads to explorations of the classical

  17. Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene

    Science.gov (United States)

    Prodhan, Suryoday; Ramasesha, S.

    2018-05-01

    The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.

  18. Introduction to quantized LIE groups and algebras

    International Nuclear Information System (INIS)

    Tjin, T.

    1992-01-01

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl 2 is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl 2 algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory

  19. The structure of complex Lie groups

    CERN Document Server

    Lee, Dong Hoon

    2001-01-01

    Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects.The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups.The differences between complex algebraic groups and complex Lie groups are sometimes subtle ...

  20. Elementary construction of graded lie groups

    International Nuclear Information System (INIS)

    Scheunert, M.; Rittenberg, V.

    1977-06-01

    We show how the definitions of the classical Lie groups have to be modified in the case where Grassmann variables are present. In particular, we construct the general linear, the special linear and the orthosymplectic graded Lie groups. Special attention is paid to the question of how to formulate an adequate 'unitarity condition'. (orig.) [de

  1. Introduction to the theory of Lie groups

    CERN Document Server

    Godement, Roger

    2017-01-01

    This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory. Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.

  2. 2-variable Laguerre matrix polynomials and Lie-algebraic techniques

    International Nuclear Information System (INIS)

    Khan, Subuhi; Hassan, Nader Ali Makboul

    2010-01-01

    The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.

  3. Renormalization group flows and continual Lie algebras

    International Nuclear Information System (INIS)

    Bakas, Ioannis

    2003-01-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  4. Lie groups and grand unified theories

    International Nuclear Information System (INIS)

    Gubitoso, M.D.

    1987-01-01

    This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt

  5. Lie Algebras Associated with Group U(n)

    International Nuclear Information System (INIS)

    Zhang Yufeng; Dong Huanghe; Honwah Tam

    2007-01-01

    Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.

  6. Differential calculus on quantized simple Lie groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)

  7. Harmonic analysis on exponential solvable Lie groups

    CERN Document Server

    Fujiwara, Hidenori

    2015-01-01

    This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated alge...

  8. Differential calculus on quantized simple Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).

  9. Simple Lie groups without the approximation property

    DEFF Research Database (Denmark)

    Haagerup, Uffe; de Laat, Tim

    2013-01-01

    For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...

  10. Analytic factorization of Lie group representations

    DEFF Research Database (Denmark)

    Gimperlein, Heiko; Krötz, Bernhard; Lienau, Christoph

    2012-01-01

    For every moderate growth representation (p,E)(p,E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E¿E¿. There exists a natural algebra of superexponentially decreasing analytic functions A(G)A(G), such that E......¿=¿(A(G))E¿E¿=¿(A(G))E¿. As a corollary we obtain that E¿E¿ coincides with the space of analytic vectors for the Laplace–Beltrami operator on G....

  11. The representations of Lie groups and geometric quantizations

    International Nuclear Information System (INIS)

    Zhao Qiang

    1998-01-01

    In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)

  12. Construction of Difference Equations Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    The theory of prolongations of the generators of groups of point transformations to the grid point values of dependent variables and grid spacings is developed and applied to the construction of group invariant numerical algorithms. The concepts of invariant difference operators and generalized discrete sources are introduced for the discretization of systems of inhomogeneous differential equations and shown to produce exact difference equations. Invariant numerical flux functions are constructed from the general solutions of first order partial differential equations that come out of the evaluation of the Lie derivatives of conservation forms of difference schemes. It is demonstrated that invariant numerical flux functions with invariant flux or slope limiters can be determined to yield high resolution difference schemes. The introduction of an invariant flux or slope limiter can be done so as not to break the symmetry properties of a numerical flux-function

  13. Essays in the history of Lie groups and algebraic groups

    CERN Document Server

    Borel, Armand

    2001-01-01

    Lie groups and algebraic groups are important in many major areas of mathematics and mathematical physics. We find them in diverse roles, notably as groups of automorphisms of geometric structures, as symmetries of differential systems, or as basic tools in the theory of automorphic forms. The author looks at their development, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. Starting from Lie's theory of local analytic transformation groups and early work on Lie algebras, he follows the process of globalization in its two main frameworks: differential geometry and topology on one hand, algebraic geometry on the other. Chapters II to IV are devoted to the former, Chapters V to VIII, to the latter. The essays in the first part of the book survey various proofs of the full reducibility of linear representations of \\mathbf{SL}_2{(\\mathbb{C})}, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and con...

  14. Uncertainty Principles on Two Step Nilpotent Lie Groups

    Indian Academy of Sciences (India)

    Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.

  15. Pro-Lie Groups: A Survey with Open Problems

    Directory of Open Access Journals (Sweden)

    Karl H. Hofmann

    2015-07-01

    Full Text Available A topological group is called a pro-Lie group if it is isomorphic to a closed subgroup of a product of finite-dimensional real Lie groups. This class of groups is closed under the formation of arbitrary products and closed subgroups and forms a complete category. It includes each finite-dimensional Lie group, each locally-compact group that has a compact quotient group modulo its identity component and, thus, in particular, each compact and each connected locally-compact group; it also includes all locally-compact Abelian groups. This paper provides an overview of the structure theory and the Lie theory of pro-Lie groups, including results more recent than those in the authors’ reference book on pro-Lie groups. Significantly, it also includes a review of the recent insight that weakly-complete unital algebras provide a natural habitat for both pro-Lie algebras and pro-Lie groups, indeed for the exponential function that links the two. (A topological vector space is weakly complete if it is isomorphic to a power RX of an arbitrary set of copies of R. This class of real vector spaces is at the basis of the Lie theory of pro-Lie groups. The article also lists 12 open questions connected to pro-Lie groups.

  16. On the q-exponential of matrix q-Lie algebras

    Directory of Open Access Journals (Sweden)

    Ernst Thomas

    2017-01-01

    Full Text Available In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant 1. The corresponding matrix multiplication is twisted under τ, which makes it possible to draw diagrams similar to Lie group theory for the q-exponential, or the so-called q-morphism. There is no definition of letter multiplication in a general alphabet, but in this article we introduce new q-number systems, the biring of q-integers, and the extended q-rational numbers. Furthermore, we provide examples of matrices in suq(4, and its corresponding q-Lie group. We conclude with an example of system of equations with Ward number coeficients.

  17. Cartan determinants, LIE algebra extensions, and the exceptional group series

    International Nuclear Information System (INIS)

    Capps, R.H.

    1986-01-01

    In this note the author utilizes the determinant of the generalized Cartan matrix for candidate Dynkin systems for two purposes. The first is to provide an uncomplicated criterion for classifying candidate one-root extensions of diagrams for semisimple Lie algebras. The second is to help determine some important properties of related Lie algebras and their representations

  18. Lie symmetries and differential galois groups of linear equations

    NARCIS (Netherlands)

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  19. Enveloping algebras of Lie groups with descrete series

    International Nuclear Information System (INIS)

    Nguyen huu Anh; Vuong manh Son

    1990-09-01

    In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs

  20. Quantization and harmonic analysis on nilpotent Lie groups

    International Nuclear Information System (INIS)

    Wildberger, N.J.

    1983-01-01

    Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho 0 of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L 1 (G) → functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho 0 in subspaces of L 2 (O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example

  1. On approximation of Lie groups by discrete subgroups

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The notion of approximation of Lie groups by discrete subgroups was introduced by Tôyama in Kodai Math. Sem. Rep. 1 (1949) 36–37 and investigated in detail by Kuranishi in Nagoya Math. J. 2 (1951) 63–71. It is known as a theorem of Tôyama that any connected Lie group approximated by discrete ...

  2. S7 without any construction of Lie group

    International Nuclear Information System (INIS)

    Zhou Jian; Xu Senlin.

    1988-12-01

    It was proved that the sphere S n is a parallelizable manifold if and only if n = 1,3 or 7, and that S n is an H-space if and only if n = 0,1,3 or 7. Because a Lie group must necessarily be a parallelizable manifold and also an H-space, naturally one asks that S n is a Lie group for n = 0, 1,3 or 7? In this paper we prove that S 7 is not a Lie group, and it is not even a topological group. Therefore, S n is a Lie group (or a topological group) if and only if n = 0,1,3. (author). 11 refs

  3. Quantum algebras as quantizations of dual Poisson–Lie groups

    International Nuclear Information System (INIS)

    Ballesteros, Ángel; Musso, Fabio

    2013-01-01

    A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)

  4. Reflection Positive Stochastic Processes Indexed by Lie Groups

    Science.gov (United States)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  5. Riesz transforms and Lie groups of polynomial growth

    NARCIS (Netherlands)

    Elst, ter A.F.M.; Robinson, D.W.; Sikora, A.

    1999-01-01

    Let G be a Lie group of polynomial growth. We prove that the second-order Riesz transforms onL2(G; dg) are bounded if, and only if, the group is a direct product of a compact group and a nilpotent group, in which case the transforms of all orders are bounded.

  6. Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques

    International Nuclear Information System (INIS)

    Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.

    2011-01-01

    The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.

  7. Anti-Kählerian Geometry on Lie Groups

    Science.gov (United States)

    Fernández-Culma, Edison Alberto; Godoy, Yamile

    2018-03-01

    Let G be a Lie group of even dimension and let ( g, J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure ( g, J) where J is abelian then the Lie algebra of G is unimodular and ( G, g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple ( G, g, J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor 𝜃 on its Lie algebra and prove that such structure is anti-Kähler if and only if 𝜃 is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).

  8. Application of Lie group analysis in geophysical fluid dynamics

    CERN Document Server

    Ibragimov, Ranis

    2011-01-01

    This is the first monograph dealing with the applications of the Lie group analysis to the modeling equations governing internal wave propagation in the deep ocean. A new approach to describe the nonlinear interactions of internal waves in the ocean is presented. While the central idea of the book is to investigate oceanic internal waves through the prism of Lie group analysis, it is also shown for the first time that internal wave beams, representing exact solutions to the equation of motion of stratified fluid, can be found by solving the given model as invariant solutions of nonlinear equat

  9. Bismut's way of the Malliavin calculus for large order generators on a Lie group

    Science.gov (United States)

    Léandre, Rémi

    2018-01-01

    We adapt Bismut's mechanism of the Malliavin Calculus to right invariant big order generator on a Lie group. We use deeply the symmetry in order to avoid the use of the Malliavin matrix. As an application, we deduce logarithmic estimates in small time of the heat kernel.

  10. Controllability of linear vector fields on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Tirao, J.

    1994-11-01

    In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs

  11. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  12. Cluster X-varieties, amalgamation, and Poisson-Lie groups

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2006-01-01

    In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...

  13. On approximation of Lie groups by discrete subgroups

    Indian Academy of Sciences (India)

    1Department of Mathematics, Faculty of Sciences at Sfax, University of Sfax,. Route Soukra ... Let S (G) denote the space of discrete co-compact subgroup of a Lie group G. We ..... For example, it suffices to apply the following fact: The mapping.

  14. Exceptional Lie groups, E-infinity theory and Higgs Boson

    International Nuclear Information System (INIS)

    El-Okaby, Ayman A.

    2008-01-01

    In this paper we study the correlation between El-Naschie's exceptional Lie groups hierarchies and his transfinite E-infinity space-time theory. Subsequently this correlation is used to calculate the number of elementary particles in the standard model, mass of the Higgs Bosons and some coupling constants

  15. Observability of linear control systems on Lie groups

    International Nuclear Information System (INIS)

    Ayala, V.; Hacibekiroglu, A.K.

    1995-01-01

    In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs

  16. Expansion in finite simple groups of Lie type

    CERN Document Server

    Tao, Terence

    2015-01-01

    Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

  17. On discretization of tori of compact simple Lie groups: II

    International Nuclear Information System (INIS)

    Hrivnák, Jiří; Motlochová, Lenka; Patera, Jiří

    2012-01-01

    The discrete orthogonality of special function families, called C- and S-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnák and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the results of Hrivnák and Patera are extended to two additional recently discovered families of special functions, called S s - and S l -functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments F s M and F l M of a lattice in any dimension n ⩾ 2 and of any density controlled by M, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots. (paper)

  18. A representation independent propagator. Pt. 1. Compact Lie groups

    International Nuclear Information System (INIS)

    Tome, W.A.

    1995-01-01

    Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

  19. Non-commutative representation for quantum systems on Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Raasakka, Matti Tapio

    2014-01-27

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase

  20. Non-commutative representation for quantum systems on Lie groups

    International Nuclear Information System (INIS)

    Raasakka, Matti Tapio

    2014-01-01

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path

  1. International Workshop "Groups, Rings, Lie and Hopf Algebras"

    CERN Document Server

    2003-01-01

    The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.

  2. Lie groups, differential equations, and geometry advances and surveys

    CERN Document Server

    2017-01-01

    This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

  3. An introduction to Lie group integrators – basics, new developments and applications

    International Nuclear Information System (INIS)

    Celledoni, Elena; Marthinsen, Håkon; Owren, Brynjulf

    2014-01-01

    We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups

  4. Koszul information geometry and Souriau Lie group thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barbaresco, Frédéric, E-mail: frederic.barbaresco@thalesgroup.com

    2015-01-13

    The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from 'Characteristic Functions', was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF) on convex cones will be presented as cornerstone of 'Information Geometry' theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean 'Moment map' by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. These elements has been developed by author in [10][11].

  5. Topological Poisson Sigma models on Poisson-Lie groups

    International Nuclear Information System (INIS)

    Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David

    2003-01-01

    We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)

  6. Group formalism of Lie transformations to time-fractional partial ...

    Indian Academy of Sciences (India)

    Lie symmetry analysis; Fractional partial differential equation; Riemann–Liouville fractional derivative ... science and engineering. It is known that while ... differential equations occurring in different areas of applied science [11,14]. The Lie ...

  7. The Higgs mass derived from the U(3) Lie group

    DEFF Research Database (Denmark)

    Trinhammer, Ole; Bohr, Henrik; Jensen, Mogens O Stibius

    2015-01-01

    The Higgs mass value is derived from a Hamiltonian on the Lie group U(3) where we relate strong and electroweak energy scales. The baryon states of nucleon and delta resonances originate in specific Bloch wave degrees of freedom coupled to a Higgs mechanism which also gives rise to the usual gauge...... boson masses. The derived Higgs mass is around 125 GeV. From the same Hamiltonian, we derive the relative neutron to proton mass ratio and the N and Delta mass spectra. All compare rather well with the experimental values. We predict scarce neutral flavor baryon singlets that should be visible...... in scattering cross-sections for negative pions on protons, in photoproduction on neutrons, in neutron diffraction dissociation experiments and in invariant mass spectra of protons and negative pions in B-decays. The fundamental predictions are based on just one length scale and the fine structure constant...

  8. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  9. Lie group structures on automorphism groups of real-analytic CR manifolds

    OpenAIRE

    ZAITSEV, DMITRI

    2008-01-01

    PUBLISHED Given any real-analytic CR manifold M, we provide general conditions on M guar- anteeing that the group of all its global real-analytic CR automorphisms AutCR(M) is a Lie group (in an appropriate topology). In particular, we obtain a Lie group structure for AutCR(M) when M is an arbitrary compact real-analytic hypersurface embedded in some Stein manifold. The first author was supported by the Austrian Science Fund FWF, Project P17111 and Project P19667. The second ...

  10. Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation

    International Nuclear Information System (INIS)

    Wu Guocheng

    2011-01-01

    Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Analytic parameter dependence of Harish-Chandra modules for real reductive Lie groups - a family affair

    NARCIS (Netherlands)

    van der Noort, V.

    2009-01-01

    This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations

  12. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    Science.gov (United States)

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  13. 6th Hilbert's problem and S.Lie's infinite groups

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1999-01-01

    The progress in Hilbert's sixth problem solving is demonstrated. That became possible thanks to the gauge field theory in physics and to the geometrical treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is the best basis for solution of the problem being discussed. This talk has been reported at the International Seminar '100 Years after Sophus Lie' (Leipzig, Germany)

  14. 't Hooft's solution for arbitrary semisimple Lie group

    International Nuclear Information System (INIS)

    Leznov, A.N.; Mukhtarov, M.A.

    1990-07-01

    The generalization of the 't Hooft's A 1 solution for every semisimple Lie algebra is found. The solution depends on r-independent chains of linear self-dual systems (Δ s α ) z = (Δ s+1 α ) y -bar, (Δ s α ) y -bar = -(Δ s+1 α ) z (1 ≤ α ≤ r); the length of α chain is equal to 2ω α + 1, where ω α are the indexes of the semisimple algebra and r is its rank. In the special case the O(4)-invariant solutions with instanton number equal to one arises. (author). 6 refs

  15. Lie Group Analysis of the Photo-Induced Fluorescence of Drosophila Oogenesis with the Asymmetrically Localized Gurken Protein.

    Directory of Open Access Journals (Sweden)

    Jen-Cheng Wang

    Full Text Available Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2 matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.

  16. Lie bialgebras with triangular decomposition

    International Nuclear Information System (INIS)

    Andruskiewitsch, N.; Levstein, F.

    1992-06-01

    Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula for the universal R-matrix. (author). 17 refs

  17. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  18. Canonical construction of differential operators intertwining representations of real semisimple Lie groups

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1986-11-01

    Let G be a real linear connected semisimple Lie group. We present a canonical construction of the differential operators intertwining elementary (≡ generalized principal series) representations of G. The results are easily extended to real linear reductive Lie groups. (author). 20 refs

  19. An introduction to Lie groups and the geometry of homogeneous spaces

    CERN Document Server

    Arvanitoyeorgos, Andreas

    2003-01-01

    It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differenti...

  20. Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, M [Departement de Mathematiques et Statistique, Universite de Montreal, 2920 chemin de la Tour, Montreal, Quebec H3T 1J4 (Canada); Lemire, F W [Department of Mathematics, University of Windsor, Windsor, Ontario (Canada); Patera, J, E-mail: larouche@dms.umontreal.ca, E-mail: lemire@uwindsor.ca, E-mail: patera@crm.umontreal.ca [Centre de Recherches Mathematiques, Universite de Montreal, CP 6128-Centre ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-14

    In this paper, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. The centralizer is either a direct product of finite cyclic groups, a continuous group of rank 1, or a product, not necessarily direct, of a continuous group of rank 1 with a finite cyclic group. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given. (paper)

  1. Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglioli

    2014-12-01

    Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.

  2. Statistics on Lie groups: A need to go beyond the pseudo-Riemannian framework

    Science.gov (United States)

    Miolane, Nina; Pennec, Xavier

    2015-01-01

    Lie groups appear in many fields from Medical Imaging to Robotics. In Medical Imaging and particularly in Computational Anatomy, an organ's shape is often modeled as the deformation of a reference shape, in other words: as an element of a Lie group. In this framework, if one wants to model the variability of the human anatomy, e.g. in order to help diagnosis of diseases, one needs to perform statistics on Lie groups. A Lie group G is a manifold that carries an additional group structure. Statistics on Riemannian manifolds have been well studied with the pioneer work of Fréchet, Karcher and Kendall [1, 2, 3, 4] followed by others [5, 6, 7, 8, 9]. In order to use such a Riemannian structure for statistics on Lie groups, one needs to define a Riemannian metric that is compatible with the group structure, i.e a bi-invariant metric. However, it is well known that general Lie groups which cannot be decomposed into the direct product of compact and abelian groups do not admit a bi-invariant metric. One may wonder if removing the positivity of the metric, thus asking only for a bi-invariant pseudo-Riemannian metric, would be sufficient for most of the groups used in Computational Anatomy. In this paper, we provide an algorithmic procedure that constructs bi-invariant pseudo-metrics on a given Lie group G. The procedure relies on a classification theorem of Medina and Revoy. However in doing so, we prove that most Lie groups do not admit any bi-invariant (pseudo-) metric. We conclude that the (pseudo-) Riemannian setting is not the richest setting if one wants to perform statistics on Lie groups. One may have to rely on another framework, such as affine connection space.

  3. Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups

    CERN Document Server

    Coquereaux, Robert

    2010-01-01

    We obtain formulae giving global dimensions for fusion categories defined by Lie groups G at level k and for the associated module-categories obtained via conformal embeddings. The results can be expressed in terms of Lie quantum superfactorials of type G. The later are related, for the type Ar, to the quantum Barnes function.

  4. Some New Lie Symmetry Groups of Differential-Difference Equations Obtained from a Simple Direct Method

    International Nuclear Information System (INIS)

    Zhi Hongyan

    2009-01-01

    In this paper, based on the symbolic computing system Maple, the direct method for Lie symmetry groups presented by Sen-Yue Lou [J. Phys. A: Math. Gen. 38 (2005) L129] is extended from the continuous differential equations to the differential-difference equations. With the extended method, we study the well-known differential-difference KP equation, KZ equation and (2+1)-dimensional ANNV system, and both the Lie point symmetry groups and the non-Lie symmetry groups are obtained.

  5. The Exceptional Lie symmetry groups hierarchy and the expected number of Higgs bosons

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    New insights into the structure of various exceptional Lie symmetry groups hierarchies are utilized to shed light on various problems pertinent to the standard model of high energy physics and the Higgs

  6. Smooth vectors and Weyl-Pedersen calculus for representations of nilpotent Lie groups

    OpenAIRE

    Beltita, Ingrid; Beltita, Daniel

    2009-01-01

    We present some recent results on smooth vectors for unitary irreducible representations of nilpotent Lie groups. Applications to the Weyl-Pedersen calculus of pseudo-differential operators with symbols on the coadjoint orbits are also discussed.

  7. Are There Limits to Collectivism? Culture and Children's Reasoning About Lying to Conceal a Group Transgression.

    Science.gov (United States)

    Sweet, Monica A; Heyman, Gail D; Fu, Genyue; Lee, Kang

    2010-07-01

    This study explored the effects of collectivism on lying to conceal a group transgression. Seven-, 9-, and 11-year-old US and Chinese children (N = 374) were asked to evaluate stories in which protagonists either lied or told the truth about their group's transgression and were then asked about either the protagonist's motivations or justification for their own evaluations. Previous research suggests that children in collectivist societies such as China find lying for one's group to be more acceptable than do children from individualistic societies such as the United States. The current study provides evidence that this is not always the case: Chinese children in this study viewed lies told to conceal a group's transgressions less favourably than did US children. An examination of children's reasoning about protagonists' motivations for lying indicated that children in both countries focused on an impact to self when discussing motivations for protagonists to lie for their group. Overall, results suggest that children living in collectivist societies do not always focus on the needs of the group.

  8. Lie group classification and exact solutions of the generalized Kompaneets equations

    Directory of Open Access Journals (Sweden)

    Oleksii Patsiuk

    2015-04-01

    Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.

  9. Non-coboundary Poisson–Lie structures on the book group

    International Nuclear Information System (INIS)

    Ballesteros, Ángel; Blasco, Alfonso; Musso, Fabio

    2012-01-01

    All possible Poisson–Lie (PL) structures on the 3D real Lie group generated by a dilation and two commuting translations are obtained. Their classification is fully performed by relating these PL groups to the corresponding Lie bialgebra structures on the corresponding ‘book’ Lie algebra. By construction, all these Poisson structures are quadratic Poisson–Hopf algebras for which the group multiplication is a Poisson map. In contrast to the case of simple Lie groups, it turns out that most of the PL structures on the book group are non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most interesting PL book structures are just some of these non-coboundaries, which are explicitly analysed. In particular, we show that the two different q-deformed Poisson versions of the sl(2, R) algebra appear as two distinguished cases in this classification, as well as the quadratic Poisson structure that underlies the integrability of a large class of 3D Lotka–Volterra equations. Finally, the quantization problem for these PL groups is sketched. (paper)

  10. Coxeter groups and the PMNS matrix

    Energy Technology Data Exchange (ETDEWEB)

    Byakti, Pritibhajan [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India); Pal, Palash B. [Saha Institute of Nuclear Physics, Calcutta (India)

    2017-11-15

    We discuss symmetries of the Lagrangian of the leptonic sector. We consider the case when this symmetry group is a Coxeter group, and identify the low energy residual symmetries with the involution generators, i.e., generators with order equal to 2. The number of elements of the PMNS matrix predicted by this group structure would depend on the number of generators of this group. We analyze all finite Coxeter groups with two-four generators and check which ones can produce a PMNS matrix that is consistent with experimental data. We then extend the analysis to other groups which can be presented by generators of order 2, and therefore can be seen as subgroups of infinite Coxeter groups. (orig.)

  11. On renormalization group flow in matrix model

    International Nuclear Information System (INIS)

    Gao, H.B.

    1992-10-01

    The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs

  12. Invariance Lie algebra and group of the non relativistic hydrogen atom

    International Nuclear Information System (INIS)

    Decoster, Alain

    1970-01-01

    The first part of this work contains a general survey of the use of Lie groups and algebras in quantum mechanics, followed by an extensive description of tbe invariance algebra and invariance group of the non-relativistic hydrogen atom; the realization of this group discovered by FOCK is specially examined. The second part is a two-hundred items bibliography on invariance groups and algebras of classical and quantum-mechanical simple systems. (author) [fr

  13. $C^1$ actions on manifolds by lattices in Lie groups with sufficiently high rank

    OpenAIRE

    Damjanovic, Danijela; Zhang, Zhiyuan

    2018-01-01

    In this paper we study Zimmer's conjecture for $C^1$ actions of higher-rank lattices of a connected, semisimple Lie group with finite center on compact manifolds. We show that if the Lie group has no compact factor, and all of whose non-compact factors are of ranks in some sense sufficiently large with respect to the dimension of the manifold, then every $C^1$ action of an irreducible, co-compact lattice has a finite image. As a corollary of our results, for every (uniform or non-uniform) lat...

  14. Mapping Spaces, Centralizers, and p-Local Finite Groups of Lie Type

    DEFF Research Database (Denmark)

    Laude, Isabelle

    We study the space of maps from the classifying space of a finite p-group to theBorel construction of a finite group of Lie type G in characteristic p acting on itsbuilding. The first main result is a description of the homology with Fp-coefficients,showing that the mapping space, up to p...... between a finite p-group and theuncompleted classifying space of the p-local finite group coming from a finite groupof Lie type in characteristic p, providing some of the first results in this uncompletedsetting.......-completion, is a disjoint union indexedover the group homomorphism up to conjugation of classifying spaces of centralizersof p-subgroups in the underlying group G. We complement this description bydetermining the actual homotopy groups of the mapping space. These resultstranslate to descriptions of the space of maps...

  15. Global solvability of the differential operators non-invariants on semi-simple Lie groups

    International Nuclear Information System (INIS)

    El Hussein, K.

    1991-09-01

    Let G be a connected semi-simple Lie group with finite centre and let G=KAN be the Iwasawa decomposition of G. Let P be a differential operator on G, which is right invariant by the sub-group AN and left invariant by the sub-group K. In this paper, we give a necessary and sufficient condition for the global solvability of P on G. (author). 5 refs

  16. Real representations of Lie groups and a theorem of H. Pittie

    International Nuclear Information System (INIS)

    Freitas, R.

    1992-01-01

    In this paper, we prove a structure theorem of the real representation ring RO(T) as a module over the real representation ring RO(G), where G is a compact, connected and simply connected Lie group and T is a maximal torus of G. This provides a real version to a theorem of H. Pittie. (author). 24 refs

  17. Control Algorithms Along Relative Equilibria of Underactuated Lagrangian Systems on Lie Groups

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Bullo, F.

    2008-01-01

    We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...

  18. Control algorithms along relative equilibria of underactuated Lagrangian systems on Lie groups

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Bullo, Francesco

    2007-01-01

    We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...

  19. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Science.gov (United States)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  20. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Directory of Open Access Journals (Sweden)

    Meer Ashwinkumar

    2018-03-01

    Full Text Available We study the ground states and left-excited states of the Ak−1 N=(2,0 little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU(k. The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  1. Poincare-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: II

    International Nuclear Information System (INIS)

    Ton-That, Tuong

    2005-01-01

    In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed

  2. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  3. Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The total sum of dimensions of a magnum exceptional Lie symmetry groups hierarchy is 4α-bar o =(4)(137+k o )≅548. Dividing this value among the various quantum fields leads to the possibility of an eight degrees of freedom Higgs field. However analyzing the same situation using sub groups of the largest exceptional Lie group leads to the conclusion that we are likely to find three Higgs particles only at the energy scale of the standard model. Consequently five of the eight degrees of freedom are unlikely to materialize as particles at this particular energy scale. This conclusion is reinforced by an entirely different approach based on grand unification analysis which excludes any grand unification using 4HD, i.e. four Higgs doublets. This leaves us with one, two and three Higgs doublets. Noting that a super symmetric standard model with two Higgs doublets gives almost perfect grand unification and that the result agrees with our exceptional Lie symmetry groups analysis, we exclude everything else. The final result is that we expect to find at least three more Higgs particles leading to a total of 66 elementary particles while at a somewhat higher energy, the expected number of 69 particles found using E-infinity theory is obtained

  4. An isomorphism for algebra of distributions with compact support on Lie groups

    International Nuclear Information System (INIS)

    El-Hussein, K.

    1991-08-01

    Let (H, H 0 ,...,H L L is an element of IN) be a finite sequence of abelian connected Lie Groups, G L = H, G 1 G i+1 χ ρi+1 H i+1 (0 ≤ i ≤ L - 1) and G = G 0 χ ρo H 0 the Lie groups which are the semi-direct product of G i by H-i (0 ≤ i ≤ L), where ρ i : H i → Aut(G i ) is a group homomorphism (0 ≤ i ≤ L). Let G-tilde = H x H L x...xH 0 be the Lie group of the direct product of H, H L ,..., and H 0 and let ε'(G-tilde) the Topological vector space of all distributions with compact support on G-tilde. In this paper, we prove that there is a structure of algebra on ε'(G-tilde) such that the algebra (convolution) of all distributions with compact support on G is isomorphic onto ε'(G-tilde). (author). 7 refs

  5. Quantum spaces, central extensions of Lie groups and related quantum field theories

    Science.gov (United States)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  6. Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group

    International Nuclear Information System (INIS)

    Morariu, B.

    1997-01-01

    The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin

  7. Lie Group Classification of a Generalized Lane-Emden Type System in Two Dimensions

    Directory of Open Access Journals (Sweden)

    Motlatsi Molati

    2012-01-01

    Full Text Available The aim of this work is to perform a complete Lie symmetry classification of a generalized Lane-Emden type system in two dimensions which models many physical phenomena in biological and physical sciences. The classical approach of group classification is employed for classification. We show that several cases arise in classifying the arbitrary parameters, the forms of which include amongst others the power law nonlinearity, and exponential and quadratic forms.

  8. Analytic vectors and irreducible representations of nilpotent Lie groups and algebras

    International Nuclear Information System (INIS)

    Arnal, D.

    1978-01-01

    Let U be a unitary irreducible locally faithful representation of a nilpotent Lie group G, V the universal enveloping algebra of G, M a simple module on V with kernel ker dU, then there exists an automorphism of V keeping ker dU invariant such that, after transport of structure, M is isomorphic to a submodule of the space of analytic vectors for U. (Auth.)

  9. A very strong difference property for semisimple compact connected lie groups

    Science.gov (United States)

    Shtern, A. I.

    2011-06-01

    Let G be a topological group. For a function f: G → ℝ and h ∈ G, the difference function Δ h f is defined by the rule Δ h f( x) = f( xh) - f( x) ( x ∈ G). A function H: G → ℝ is said to be additive if it satisfies the Cauchy functional equation H( x + y) = H( x) + H( y) for every x, y ∈ G. A class F of real-valued functions defined on G is said to have the difference property if, for every function f: G → ℝ satisfying Δ h f ∈ F for each h ∈ G, there is an additive function H such that f - H ∈ F. Erdős' conjecture claiming that the class of continuous functions on ℝ has the difference property was proved by N. G. de Bruijn; later on, F. W. Carroll and F. S. Koehl obtained a similar result for compact Abelian groups and, under the additional assumption that the other one-sided difference function ∇ h f defined by ∇ h f( x) = f( xh) - f( x) ( x ∈ G, h ∈ G) is measurable for any h ∈ G, also for noncommutative compact metric groups. In the present paper, we consider a narrower class of groups, namely, the family of semisimple compact connected Lie groups. It turns out that these groups admit a significantly stronger difference property. Namely, if a function f: G → ℝ on a semisimple compact connected Lie group has continuous difference functions Δ h f for any h ∈ G (without the additional assumption concerning the measurability of the functions of the form ∇ h f), then f is automatically continuous, and no nontrivial additive function of the form H is needed. Some applications are indicated, including difference theorems for homogeneous spaces of compact connected Lie groups.

  10. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  11. Harmonic analysis and global solvability of a differential operator invariant on motion groups and semi-simple Lie groups

    International Nuclear Information System (INIS)

    El-Hussein, K.

    1991-08-01

    Let V be a real finite dimensional vector space and let K be a connected compact Lie group, which acts on V by means of a continuous linear representation ρ. Let G=V x p K be the motion group which is the semi-direct product of V by K and let P be an invariant differential operator on G. In this paper we give a necessary and sufficient condition for the global solvability of P on G. Now let G be a connected semi-simple Lie group with finite centre and let P be an invariant differential operator on G. We give also a necessary and sufficient condition for the global solvability of P on G. (author). 8 refs

  12. Lie superalgebras

    International Nuclear Information System (INIS)

    Berezin, F.A.

    1977-01-01

    Generalization of the Laplace-Casimir operator theory on the Lie supergroups is considered. The main result is the formula for radial parts of the Laplace operators under some general assumptions about the Lie supergroup. In particular these assumptions are valid for the Lie suppergroups U(p,g) and C (m,n). The first one is the analogue of the unitary group, the second one is the analogue of the linear group of canonical transformations

  13. Lie-optic matrix algorithm for computer simulation of paraxial self ...

    Indian Academy of Sciences (India)

    It gives rise to a matrix method for self-focusing beam propagation that is ... are applicable for other media like linear optical fibers and to more general ..... operators for small slices of the plasma of thickness ¡z each, it is advisable to work.

  14. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

    International Nuclear Information System (INIS)

    Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio

    2012-01-01

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  15. Invariant differential operators for non-compact Lie groups: an introduction

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    2015-01-01

    In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. In the present paper we consider in detail the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,q-1)

  16. Unipotent and nilpotent classes in simple algebraic groups and lie algebras

    CERN Document Server

    Liebeck, Martin W

    2012-01-01

    This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...

  17. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    International Nuclear Information System (INIS)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented

  18. Applications of Lie Group Theory to the Modeling and Control of Multibody Systems

    International Nuclear Information System (INIS)

    Mladenova, Clementina D.

    1999-01-01

    This paper reviews our research activities concerning the modeling and control of rigid and elastic joint multibody mechanical systems, including some investigations into nonholonomic systems. Bearing in mind the different parameterizations of the rotation group in three-dimensional space SO(3), and the fact that the properties of the parameterization more or less influence the efficiency of the dynamics model, here the so-called vector parameter is used for parallel considerations of rigid body motion and of rigid and elastic joint multibody mechanical systems. Besides the fundamental role of this study, the vector-parameter approach is efficient in its computational aspect and quite convenient for real time simulation and control. The consideration of the mechanical system on the configuration space of pure vector parameters with a group structure opens the possibilities for the Lie group theory to be applied in problems of dynamics and control

  19. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.

  20. Steady nanofluid flow with variable fluid possessions over a linearly extending surface: A Lie group exploration

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2018-03-01

    Full Text Available The temperament of stream characteristic, heat and mass transfer of MHD forced convective flow over a linearly expanding porous medium has been scrutinized in the progress exploration. The germane possessions of the liquid like viscosity along with thermal conductivity are believed to be variable in nature, directly influenced by the temperature of flow. As soon as gaining the system of leading equations of the stream, Lie symmetric group transformations have been employed to come across the fitting parallel conversions to alter the central PDEs into a suit of ODEs. The renovated system of ODE with appropriate boundary conditions is numerically solved with the assistance of illustrative software MAPLE 17. The consequences of the relevant factors of the system have been exemplified through charts and graphs. An analogous qualified survey has been prepared among present inquiry and subsisting reads and achieved an admirable accord between them. The variable viscosity parameter has more significant effect on nanofluid velocity than regular fluid and temporal profile as well as nanoparticle concentration is also influenced with variable viscosity. Keywords: Nanofluid, Stretching sheet, Variable viscosity, Variable thermal conductivity, Lie symmetry group

  1. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    Science.gov (United States)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  2. Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies

    International Nuclear Information System (INIS)

    Elokaby, Ayman

    2009-01-01

    The present short note points out a most interesting and quite unexpected connection between the number of distinct knot as a function of their crossing number and exceptional Lie groups and Stein space hierarchies. It is found that the crossing number 7 plays the role of threshold similar to 4 and 5 in E-infinity theory and for the 11 crossing the number of distinct knots is very close to 4α-bar 0 +1=548+1=549, where α-bar 0 =137 is the inverse integer electromagnetic fine structure constant. This is particularly intriguing in view of a similar relation pertinent to the 17 two and three Stein spaces where the total dimension is Σ 1 17 Stein=5α-bar 0 +1=685+1=686, as well as the sum of the eight exceptional Lie symmetry groups Σ i=1 8 |E i |=4α-bar 0 =548. The slight discrepancy of one is explained in both cases by the inclusion of El Naschie's transfinite corrections leading to Σ i=1 8 |E i |=(4)(137+k 0 )=548.328157 and Σ i=1 17 Stein=(5)(137+k 0 )=685.41097, where k o = φ 5 (1 - φ 5 ) and φ=(√(5)-1)/2.

  3. On the Lie symmetry group for classical fields in noncommutative space

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Martinho Lima Santiago [Universidade Federal da Bahia (UFBA), BA (Brazil); Instituto Federal da Bahia (IFBA), BA (Brazil); Ressureicao, Caio G. da [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica; Vianna, Jose David M. [Universidade Federal da Bahia (UFBA), BA (Brazil); Universidade de Brasilia (UnB), DF (Brazil)

    2011-07-01

    Full text: An alternative way to include effects of noncommutative geometries in field theory is based on the concept of noncommutativity among degrees of freedom of the studied system. In this context it is reasonable to consider that, in the multiparticle noncommutative quantum mechanics (NCQM), the noncommutativity among degrees of freedom to discrete system with N particles is also verified. Further, an analysis of the classical limit of the single particle NCQM leads to a deformed Newtonian mechanics where the Newton's second law is modified in order to include the noncommutative parameter {theta}{sub {iota}j} and, for a one-dimensional discrete system with N particles, the dynamical evolution of each particle is given by this modified Newton's second law. Hence, applying the continuous limit to this multiparticle classical system it is possible to obtain a noncommutative extension of two -dimensional field theory in a noncommutative space. In the present communication we consider a noncommutative extension of the scalar field obtained from this approach and we analyze the Lie symmetries in order to compare the Lie group of this field with the usual scalar field in the commutative space. (author)

  4. An Lp−Lq version of Hardy's theorem for spherical Fourier transform on semisimple Lie groups

    Directory of Open Access Journals (Sweden)

    S. Ben Farah

    2004-01-01

    Full Text Available We consider a real semisimple Lie group G with finite center and K a maximal compact subgroup of G. We prove an Lp−Lq version of Hardy's theorem for the spherical Fourier transform on G. More precisely, let a, b be positive real numbers, 1≤p, q≤∞, and f a K-bi-invariant measurable function on G such that ha−1f∈Lp(G and eb‖λ‖2ℱ(f∈Lq(+* (ha is the heat kernel on G. We establish that if ab≥1/4 and p or q is finite, then f=0 almost everywhere. If ab<1/4, we prove that for all p, q, there are infinitely many nonzero functions f and if ab=1/4 with p=q=∞, we have f=const ha.

  5. Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E 8 E 8 of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings

  6. Bidirectional composition on lie groups for gradient-based image alignment.

    Science.gov (United States)

    Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick

    2010-09-01

    In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.

  7. A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Rui Wen-Juan; Wu Li-Xin

    2015-01-01

    With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. (paper)

  8. Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics

    Directory of Open Access Journals (Sweden)

    Frédéric Barbaresco

    2014-08-01

    Full Text Available The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+ algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus Fourier(Min,+ o Log o Laplace(+,X.

  9. On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Savel'ev, M.V.; Savel'eva, S.A.

    1990-01-01

    Nonlinear equations associated through a zero curvature type representation with Lie algebras S 0 Diff T 2 and of infinitesimal diffeomorphisms of (S 1 ) 2 , and also with a new infinite-dimensional Lie algebras. In particular, the general solution (in the sense of the Goursat problem) of the heavently equation which describes self-dual Einstein spaces with one rotational Killing symmetry is discussed, as well as the solutions to a generalized equation. The paper is supplied with Appendix containing the definition of the continuum graded Lie algebras and the general construction of the nonlinear equations associated with them. 11 refs

  10. Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups

    DEFF Research Database (Denmark)

    Hilgert, Joachim; Kobayashi, Toshiyuki; Möllers, Jan

    2012-01-01

    For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g......_C=k_C+p_C is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal-Bargmann transform which...... intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function....

  11. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    Foroutan, A.

    1992-05-01

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  12. Target-space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism. Pt. 1. Remnants of duality at the classic level

    International Nuclear Information System (INIS)

    Alvarez, O.; Liu Chienhao

    1996-01-01

    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group G with a bi-invariant metric and a generating function Γ suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ generated by Γ together with an Ad-invariant metric and a B-field on the associated Lie algebra g of G so that G and g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ including a careful analysis of its domain and image. The geometry of the T-dual structure on g is lightly touched. We leave the task of tracing back the Hamiltonian formalism at the quantum level to the sequel of this paper. (orig.). With 4 figs

  13. Gradings on simple Lie algebras

    CERN Document Server

    Elduque, Alberto

    2013-01-01

    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  14. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    International Nuclear Information System (INIS)

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  15. Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families

    Directory of Open Access Journals (Sweden)

    Frédéric Barbaresco

    2016-11-01

    Full Text Available We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we compare with Koszul works on G/K homogeneous space and bijective correspondence between the set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS (Kostant–Kirillov–Souriau 2-form that associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this model in the framework of information geometry for the action of an affine group for exponential families, and provide some illustrations of use cases for multivariate gaussian densities. Information geometry is presented in the context of the seminal work of Fréchet and his Clairaut-Legendre equation. The Souriau model of statistical physics is validated as compatible with the Balian gauge model of thermodynamics. We recall the precursor work of Casalis on affine group invariance for natural exponential families.

  16. Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The short note gives a derivation for a new E12 exceptional Lie group corresponding to affine KAC-Moody algebra. We derive the dimension of the group by intersectionally embedding the intrinsic dimension of E8 namely D(E8) = 57 into the 12 spacetime dimensions of F theory and finding that Dim E12 = D(E8) (DF) + 1 = (57)(12) + 1 = 685

  17. BRST-operator for quantum Lie algebra and differential calculus on quantum groups

    International Nuclear Information System (INIS)

    Isaev, A.P.; Ogievetskij, O.V.

    2001-01-01

    For A Hopf algebra one determined structure of differential complex in two dual external Hopf algebras: A external expansion and in A* dual algebra external expansion. The Heisenberg double of these two Hopf algebras governs the differential algebra for the Cartan differential calculus on A algebra. The forst differential complex is the analog of the de Rame complex. The second complex coincide with the standard complex. Differential is realized as (anti)commutator with Q BRST-operator. Paper contains recursion relation that determines unequivocally Q operator. For U q (gl(N)) Lie quantum algebra one constructed BRST- and anti-BRST-operators and formulated the theorem of the Hodge expansion [ru

  18. A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation

    Science.gov (United States)

    Somma, Rolando D.

    2016-06-01

    We present a product formula to approximate the exponential of a skew-Hermitian operator that is a sum of generators of a Lie algebra. The number of terms in the product depends on the structure factors. When the generators have large norm with respect to the dimension of the Lie algebra, or when the norm of the effective operator resulting from nested commutators is less than the product of the norms, the number of terms in the product is significantly less than that obtained from well-known results. We apply our results to construct product formulas useful for the quantum simulation of some continuous-variable and bosonic physical systems, including systems whose potential is not quadratic. For many of these systems, we show that the number of terms in the product can be sublinear or even subpolynomial in the dimension of the relevant local Hilbert spaces, where such a dimension is usually determined by the energy scale of the problem. Our results emphasize the power of quantum computers for the simulation of various quantum systems.

  19. A density matrix renormalization group study of low-lying excitations ...

    Indian Academy of Sciences (India)

    Unknown

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 e-mail: ... has been successfully used as an active semicon- .... ing Ohno parametrization.43 The value of zC for carbon ... gated organic polymers without any heteroatoms has ..... mers can lead to addition (removal) of two electrons.

  20. On the definition of an admitted Lie group for stochastic differential equations with multi-Brownian motion

    International Nuclear Information System (INIS)

    Srihirun, B; Meleshko, S V; Schulz, E

    2006-01-01

    The definition of an admitted Lie group of transformations for stochastic differential equations has been already presented for equations with one-dimensional Brownian motion. The transformation of the dependent variables involves time as well, and it has been proven that Brownian motion is transformed to Brownian motion. In this paper, we will discuss this concept for stochastic differential equations involving multi-dimensional Brownian motion and present applications to a variety of stochastic differential equations

  1. The ab-initio density matrix renormalization group in practice.

    Science.gov (United States)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  2. The ab-initio density matrix renormalization group in practice

    Energy Technology Data Exchange (ETDEWEB)

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  3. Broken symmetry of Lie groups of transformation generating general relativistic theories of gravitation

    International Nuclear Information System (INIS)

    Halpern, L.

    1981-01-01

    Invariant varieties of suitable semisimple groups of transformations can serve as models of the space-time of the universe. The metric is expressible in terms of the basis vectors of the group. The symmetry of the group is broken by introducing a gauge formalism in the space of the basis vectors with the adjoint group as gauge group. The gauge potentials are expressible in terms of the basis vectors for the case of the De Sitter group. The resulting gauge theory is equivalent to De Sitter covariant general relativity. Group covariant generalizations of gravitational theory are discussed. (Auth.)

  4. Groups of integral transforms generated by Lie algebras of second-and higher-order differential operators

    International Nuclear Information System (INIS)

    Steinberg, S.; Wolf, K.B.

    1979-01-01

    The authors study the construction and action of certain Lie algebras of second- and higher-order differential operators on spaces of solutions of well-known parabolic, hyperbolic and elliptic linear differential equations. The latter include the N-dimensional quadratic quantum Hamiltonian Schroedinger equations, the one-dimensional heat and wave equations and the two-dimensional Helmholtz equation. In one approach, the usual similarity first-order differential operator algebra of the equation is embedded in the larger one, which appears as a quantum-mechanical dynamic algebra. In a second approach, the new algebra is built as the time evolution of a finite-transformation algebra on the initial conditions. In a third approach, the algebra to inhomogeneous similarity algebra is deformed to a noncompact classical one. In every case, we can integrate the algebra to a Lie group of integral transforms acting effectively on the solution space of the differential equation. (author)

  5. Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group

    International Nuclear Information System (INIS)

    Majid, S.

    1993-01-01

    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups U q (g). They have the same FRT generators l ± but a matrix braided-coproduct ΔL=LxL, where L=l + Sl - , and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BM 1 (2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(U q (sl 2 )) (also known as the 'quantum Lorentz group') is the semidirect product as an algebra of two copies of U q (sl 2 ), and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-limits as doubles of the Lie algebras of Poisson Lie groups. (orig.)

  6. Lie groups and differential equations: symmetries, conservation laws and exact solutions of mathematical models in physics

    International Nuclear Information System (INIS)

    Sheftel', M.B.

    1997-01-01

    The basics of modern group analysis of different equations are presented. The group analysis produces in a natural way the variables, which are most suitable for a problem of question, and also the associated differential-geometric structures, such as pseudo Riemann geometry, connections, Hamiltonian and Lagrangian formalism

  7. Lie groups and symmetric spaces in memory of F. I. Karpelevich

    CERN Document Server

    Gindikin, S G

    2003-01-01

    The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician F. I. Karpelevich (1927-2000).

  8. A comparison between star products on regular orbits of compact Lie groups

    International Nuclear Information System (INIS)

    Fioresi, R.; Lledo, M.A.

    2002-01-01

    In this paper, an algebraic and a differential star product defined on a regular coadjoint orbit of a compact semisimple group are compared. It has been proved that there is an injective algebra homomorphism between the algebra of polynomials with the algebraic star product and the algebra of differential functions with the differential star product structure. (author)

  9. On E-discretization of tori of compact simple Lie groups. II

    Science.gov (United States)

    Hrivnák, Jiří; Juránek, Michal

    2017-10-01

    Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

  10. Lie group classification of first-order delay ordinary differential equations

    Science.gov (United States)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

  11. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation

    Science.gov (United States)

    Long, Feng-Shan; Karnbanjong, Adisak; Suriyawichitseranee, Amornrat; Grigoriev, Yurii N.; Meleshko, Sergey V.

    2017-07-01

    This paper proposes an algorithm for group classification of a nonhomogeneous equation using the group analysis provided for the corresponding homogeneous equation. The approach is illustrated by a partial differential equation, an integro-differential equation, and a delay partial differential equation.

  12. Hyperfunction solutions of the zero rest mass equations and representations of LIE groups

    International Nuclear Information System (INIS)

    Dunne, E.G.

    1984-01-01

    Recently, hyperfunctions have arisen in an essential way in separate results in mathematical physics and in representation theory. In the setting of the twistor program, Wells, with others, has extended the Penrose transform to hyperfunction solutions of the zero rest mass equations, showing that the fundamental isomorphisms hold for this larger space. Meanwhile, Schmid has shown the existence of a canonical globalization of a Harish-Chandra module, V, to a representation of the group. This maximal globalization may be realized as the completion of V in a locally convex vector space in the hyperfunction topology. This thesis shows that the former is a particular case of the latter where the globalization can be done by hand. This explicit globalization is then carried out for a more general case of the Radon transform on homogeneous spaces

  13. Theory of discretely decomposable restrictions of unitary representations of semisimple lie groups and some applications

    CERN Document Server

    Kobayashi, T

    2002-01-01

    Based on an embedding formula of the CAR algebra into the Cuntz algebra ${\\mathcal O}_{2^p}$, properties of the CAR algebra are studied in detail by restricting those of the Cuntz algebra. Various $\\ast$-endomorphisms of the Cuntz algebra are explicitly constructed, and transcribed into those of the CAR algebra. In particular, a set of $\\ast$-endomorphisms of the CAR algebra into its even subalgebra are constructed. According to branching formulae, which are obtained by composing representations and $\\ast$-endomorphisms, it is shown that a KMS state of the CAR algebra is obtained through the above even-CAR endomorphisms from the Fock representation. A $U(2^p)$ action on ${\\mathcal O}_{2^p}$ induces $\\ast$-automorphisms of the CAR algebra, which are given by nonlinear transformations expressed in terms of polynomials in generators. It is shown that, among such $\\ast$-automorphisms of the CAR algebra, there exists a family of one-parameter groups of $\\ast$-automorphisms describing time evolutions of fermions, i...

  14. Applications of Lie-group methods to the equations of magnetohydrodynamics

    International Nuclear Information System (INIS)

    Mandrekas, J.

    1987-01-01

    The invariance properties of various sets of magnetohydrodynamic (MHD) equations are studied using techniques from the theory of differential forms. Equations considered include the ideal MHD equations in different geometries and with different magnetic field configurations, the MHD equations in the presence of gravitational forces due to self-attraction or external fields, and the MHD equations including finite thermal conductivity and magnetic viscosity. The knowledge of the group structure of these equations is then used to introduce similarity variables to these equations. For each choice of similarity variables, the original set of partial differential equations is transformed into a set of ordinary differential equations and the most general form of the initial conditions is determined. Three cases are studied in detail and the corresponding sets of ordinary differential equations are solved numerically: the problem of a blast wave in an inhomogeneous atmosphere, the problem of a piston moving according to a power law in time, and the problem of a piston moving according to an exponential law in time

  15. The time-dependent density matrix renormalisation group method

    Science.gov (United States)

    Ma, Haibo; Luo, Zhen; Yao, Yao

    2018-04-01

    Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.

  16. The density-matrix renormalization group: a short introduction.

    Science.gov (United States)

    Schollwöck, Ulrich

    2011-07-13

    The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.

  17. The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)

    Science.gov (United States)

    Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.

    2018-04-01

    The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.

  18. Lie Superalgebras

    CERN Document Server

    Papi, Paolo; Advances in Lie Superalgebras

    2014-01-01

    The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.

  19. Renormalization-group analysis of the Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Babu, K.S.

    1987-01-01

    The one-loop renormalization-group equations for the quark mixing (Kobayashi-Maskawa) matrix V are derived, independent of one's weak interaction basis, in the standard model as well as in its two Higgs and supersymmetric extensions, and their numerical solutions are presented. While the mixing angles vertical strokeV ub vertical stroke, vertical strokeV cb vertical stroke, vertical strokeV td vertical stroke and the phase-invariant measure of CP nonconservation J all vary slowly with momentum, in the standard model they are predicted to increase in clear contrast to the two Higgs and supersymmetric extensions where they decrease with momentum. (orig.)

  20. Lie Algebras and Integrable Systems

    International Nuclear Information System (INIS)

    Zhang Yufeng; Mei Jianqin

    2012-01-01

    A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

  1. Lie algebraical aspects of quantum statistics

    International Nuclear Information System (INIS)

    Palev, T.D.

    1976-01-01

    It is shown that the secon quantization axioms can, in principle, be satisfied with creation and annihilation operators generating (in the case of n pairs of such operators) the Lie algebra Asub(n) of the group SL(n+1). A concept of the Fock space is introduced. The matrix elements of the operators are found

  2. Two parameters Lie group analysis and numerical solution of unsteady free convective flow of non-Newtonian fluid

    Directory of Open Access Journals (Sweden)

    M.J. Uddin

    2016-09-01

    Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.

  3. Lie Group Solution for Free Convective Flow of a Nanofluid Past a Chemically Reacting Horizontal Plate in a Porous Media

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-01-01

    Full Text Available The optimal homotopy analysis method (OHAM is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth order method. The effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. This close agreement supports our analysis and the accuracy of the numerical computations. This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.

  4. Efficient perturbation theory to improve the density matrix renormalization group

    Science.gov (United States)

    Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej

    2017-02-01

    The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.

  5. Binding lies

    Directory of Open Access Journals (Sweden)

    Avraham eMerzel

    2015-10-01

    Full Text Available Do we feel bound by our own misrepresentations? Does one act of cheating compel the cheater to make subsequent choices that maintain the false image even at a cost? To answer these questions we employed a two-task paradigm such that in the first task the participants could benefit from false reporting of private observations whereas in the second they could benefit from making a prediction in line with their actual, rather than their previously reported observations. Thus, for those participants who inflated their report during the first task, sticking with that report for the second task was likely to lead to a loss, whereas deviating from it would imply that they had lied. Data from three experiments (total N=116 indicate that, having lied, participants were ready to suffer future loss rather than admit, even if implicitly, that they had lied.

  6. Sugawara operators for classical Lie algebras

    CERN Document Server

    Molev, Alexander

    2018-01-01

    The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...

  7. Bicovariant quantum algebras and quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  8. Bosonic construction of the Lie algebras of some non-compact groups appearing in supergravity theories and their oscillator-like unitary representations

    International Nuclear Information System (INIS)

    Guenaydin, M.; Saclioglu, C.

    1981-06-01

    We give a construction of the Lie algebras of the non-compact groups appearing in four dimensional supergravity theories in terms of boson operators. Our construction parallels very closely their emergence in supergravity and is an extension of the well-known construction of the Lie algebras of the non-compact groups Sp(2n,IR) and SO(2n) from boson operators transforming like a fundamental representation of their maximal compact subgroup U(n). However this extension is non-trivial only for n >= 4 and stops at n = 8 leading to the Lie algebras of SU(4) x SU(1,1), SU(5,1), SO(12) and Esub(7(7)). We then give a general construction of an infinite class of unitary irreducible representations of the respective non-compact groups (except for Esub(7(7)) and SO(12) obtained from the extended construction). We illustrate our construction with the examples of SU(5,1) and SO(12). (orig.)

  9. Dual adjacency matrix : exploring link groups in dense networks

    NARCIS (Netherlands)

    Dinkla, K.; Henry Riche, N.; Westenberg, M.A.

    2015-01-01

    Node grouping is a common way of adding structure and information to networks that aids their interpretation. However, certain networks benefit from the grouping of links instead of nodes. Link communities, for example, are a form of link groups that describe high-quality overlapping node

  10. A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2013-01-01

    Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.

  11. Topological and homological properties of the orbit space of a compact linear Lie group with commutative connected component

    OpenAIRE

    Styrt, O. G.

    2016-01-01

    The problem in question is whether the quotient space of a compact linear group is a topological manifold and whether it is a homological manifold. In the paper, the case of an infinite group with commutative connected component is considered.

  12. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    Science.gov (United States)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  13. Advanced density matrix renormalization group method for nuclear structure calculations

    Czech Academy of Sciences Publication Activity Database

    Legeza, Ö.; Veis, Libor; Poves, A.; Dukelsky, J.

    2015-01-01

    Roč. 92, č. 5 (2015), 051303 ISSN 0556-2813 Institutional support: RVO:61388955 Keywords : INITIO QUANTUM- CHEMISTRY * GROUP ALGORITHM * SHELL-MODEL Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.146, year: 2015

  14. Generating Lie Point Symmetry Groups of (2+1)-Dimensional Broer-Kaup Equation via a Simple Direct Method

    International Nuclear Information System (INIS)

    Ma Hongcai

    2005-01-01

    Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.

  15. Progreso técnico: una aproximación desde la Teoría de Grupos de Transformaciones de Lie || Technical progress: an aproach from Lie Transformation Group Theory

    Directory of Open Access Journals (Sweden)

    Fedriani Martel, Eugenio M.

    2006-06-01

    Full Text Available En la presente comunicación explicamos algunas de las herramientas de la Geometría Diferencial y, en concreto, de la Teoría de Lie con las que se trabaja actualmente en Economía. Se indican las condiciones que se exigen a las funciones de producción y la definición de un tipo de progreso técnico denominado de tipo Lie, consistente en exigir las tres propiedades que han de verificar los grupos de Lie. También se expone el uso del operador de Lie en interpretaciones económicas y en la cuantificación del impacto del progreso técnico. Dicho operador permite dar una respuesta a la Controversia Solow-Stigler. Por último, se indican varias aplicaciones de la Teoría de Lie en los estudios económicos, que permiten abrir futuras líneas de investigación,de las que se apuntan algunas. De este modo, nuestro objetivo principal es mostrar el uso, actual y futuro, de la Teoría de Lie en el campo de la Economía.

  16. Introduction to compact (matrix) quantum groups and Banica ...

    Indian Academy of Sciences (India)

    Moritz Weber

    2017-11-27

    Nov 27, 2017 ... Building on this, we define Banica–Speicher quantum .... four vertices) are ... A compact Hausdorff space X gives rise to a commutative unitalC .... (a) Recall the construction of the group C ..... Having formulated the features of the Haar integration in 'quantum terms', ...... paper: When is the map in [30, Prop.

  17. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  18. Neutron to proton mass difference, parton distribution functions and baryon resonances from dynamics on the Lie group u(3)

    DEFF Research Database (Denmark)

    Trinhammer, Ole

    PiMinus invariant mass in B decays. We give a controversial prediction of the relative neutron to proton mass difference 0.138 % as originating in period doublings of certain parametric states. The group space dynamics communicates with real space via the exterior derivative which projects out quark and gluon...

  19. Invariants of generalized Lie algebras

    International Nuclear Information System (INIS)

    Agrawala, V.K.

    1981-01-01

    Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants

  20. Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The maximal number of elementary particles which could be expected to be found within a modestly extended energy scale of the standard model was found using various methods to be N = 69. In particular using E-infinity theory the present Author found the exact transfinite expectation value to be =α-bar o /2≅69 where α-bar o =137.082039325 is the exact inverse fine structure constant. In the present work we show among other things how to derive the exact integer value 69 from the exceptional Lie symmetry groups hierarchy. It is found that the relevant number is given by dim H = 69 where H is the maximal compact subspace of E 7(-5) so that N = dim H = 69 while dim E 7 = 133

  1. A Higgs at 125.1 GeV and baryon mass spectra derived from a Common U(3) Lie group framework

    DEFF Research Database (Denmark)

    Trinhammer, Ole; Bohr, Henrik; Jensen, Mogens O Stibius

    2015-01-01

    Baryons are described by a Hamiltonian on an intrinsic U(3) Lie group configuration space with electroweak degrees of freedom originating in specific Bloch wave factors. By opening the Bloch degrees of freedom pairwise via a U(2) Higgs mechanism, the strong and electroweak energy scales become...... related to yield the Higgs mass 125.085+/-0.017 GeV and the usual gauge boson masses. From the same Hamiltonian we derive both the relative neutron to proton mass ratio and the N and Delta mass spectra. All compare rather well with the experimental values. We predict neutral flavour baryon singlets...... to be sought for in negative pions scattering on protons or in photoproduction on neutrons and in invariant mass like Σ+c(2455)D- from various decays above the open charm threshold, e.g. at 4499, 4652 and 4723 MeV. The fundamental predictions are based on just one length scale and the fine structure coupling...

  2. Grupos de Lie

    OpenAIRE

    Rubio Martí, Vicente

    2016-01-01

    En el presente proyecto definimos lo que es un grupo de Lie, así como su respectiva álgebra de Lie canónica como aproximación lineal a dicho grupo de Lie. El proceso de linealización, que es hallar el algebra de Lie de un grupo de Lie dado, tiene su

  3. The Visual Matrix Method: Imagery and Affect in a Group-Based Research Setting

    Directory of Open Access Journals (Sweden)

    Lynn Froggett

    2015-07-01

    Full Text Available The visual matrix is a method for researching shared experience, stimulated by sensory material relevant to a research question. It is led by imagery, visualization and affect, which in the matrix take precedence over discourse. The method enables the symbolization of imaginative and emotional material, which might not otherwise be articulated and allows "unthought" dimensions of experience to emerge into consciousness in a participatory setting. We describe the process of the matrix with reference to the study "Public Art and Civic Engagement" (FROGGETT, MANLEY, ROY, PRIOR & DOHERTY, 2014 in which it was developed and tested. Subsequently, examples of its use in other contexts are provided. Both the matrix and post-matrix discussions are described, as is the interpretive process that follows. Theoretical sources are highlighted: its origins in social dreaming; the atemporal, associative nature of the thinking during and after the matrix which we describe through the Deleuzian idea of the rhizome; and the hermeneutic analysis which draws from object relations theory and the Lorenzerian tradition of scenic understanding. The matrix has been conceptualized as a "scenic rhizome" to account for its distinctive quality and hybrid origins in research practice. The scenic rhizome operates as a "third" between participants and the "objects" of contemplation. We suggest that some of the drawbacks of other group-based methods are avoided in the visual matrix—namely the tendency for inter-personal dynamics to dominate the event. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs150369

  4. Compatible Lie Bialgebras

    International Nuclear Information System (INIS)

    Wu Ming-Zhong; Bai Cheng-Ming

    2015-01-01

    A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)

  5. Lie-algebra approach to symmetry breaking

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1981-01-01

    A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian

  6. The derivation of the conventional basis for the classical Lie algebra generators

    International Nuclear Information System (INIS)

    Karadayi, H.R.

    1982-01-01

    The explicit construction of the classical Lie algebra generators in the conventional Gell-Mann basis is derived for all irreducible unitary representations of all classical groups. The main framework is based on a description of the simple roots of the classical Lie algebras such that the inter-relations implied by the Cartan matrix of the group among these simple roots are explicit within this description. (author)

  7. On low rank classical groups in string theory, gauge theory and matrix models

    International Nuclear Information System (INIS)

    Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun

    2004-01-01

    We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature

  8. Automorphic Lie algebras with dihedral symmetry

    International Nuclear Information System (INIS)

    Knibbeler, V; Lombardo, S; A Sanders, J

    2014-01-01

    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  9. Income Distribution across Ethnic Groups in Malaysia : Results from a New Social Accounting Matrix

    NARCIS (Netherlands)

    Saari, M. Yusof; Dietzenbacher, Erik; Los, Bart

    A new social accounting matrix is constructed for Malaysia for the year 2000 to analyze sources of income inequality among ethnic groups in Malaysia. The analysis reveals that income inequality can be decomposed into the interaction of: (i) hourly wages; (ii) working hours per week; and (iii) number

  10. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  11. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....

  12. Application of AHP-Ansoff Matrix Analysis in Business Diversification: The case of Evergrande Group

    Directory of Open Access Journals (Sweden)

    Yin Nan

    2016-01-01

    Full Text Available A new method of enterprise strategic research, the AHP—Ansoff Matrix analysis method, is put forward in this paper for the first time and applied in the enterprise practices. By using this research method, the development strategy of enterprise diversification is analyzed scientifically and reasonably with Evergrande group as the example. And finally, main procedures of the method are summarized.

  13. Application of AHP-Ansoff Matrix Analysis in Business Diversification: The case of Evergrande Group

    OpenAIRE

    Yin Nan

    2016-01-01

    A new method of enterprise strategic research, the AHP—Ansoff Matrix analysis method, is put forward in this paper for the first time and applied in the enterprise practices. By using this research method, the development strategy of enterprise diversification is analyzed scientifically and reasonably with Evergrande group as the example. And finally, main procedures of the method are summarized.

  14. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Kesteren, A.C. van; Bussmann, C.J.M.; Zeeland, A.A. van; Natarajan, A.T.

    1984-01-01

    The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimer-specific endonuclease V of bacteriophage T 4 . The results suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts the authors observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in regions of the genome. (Auth.)

  15. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  16. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    Science.gov (United States)

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  17. Structured approaches to large-scale systems: Variational integrators for interconnected Lagrange-Dirac systems and structured model reduction on Lie groups

    Science.gov (United States)

    Parks, Helen Frances

    to extend POD to structured settings. In particular, we consider systems evolving on Lie groups and make use of canonical coordinates in the reduction process. We see considerable improvement in the accuracy of the reduced model over the usual structure-agnostic POD approach.

  18. On lying and deceiving.

    OpenAIRE

    Bakhurst, D

    1992-01-01

    This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrue...

  19. Extending the range of real time density matrix renormalization group simulations

    Science.gov (United States)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  20. Lie-Algebras. Pt. 1

    International Nuclear Information System (INIS)

    Baeuerle, G.G.A.; Kerf, E.A. de

    1990-01-01

    The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs

  1. Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group

    International Nuclear Information System (INIS)

    Muender, W; Weichselbaum, A; Holzner, A; Delft, Jan von; Henley, C L

    2010-01-01

    A useful concept for finding numerically the dominant correlations of a given ground state in an interacting quantum lattice system in an unbiased way is the correlation density matrix (CDM). For two disjoint, separated clusters, it is defined to be the density matrix of their union minus the direct product of their individual density matrices and contains all the correlations between the two clusters. We show how to extract from the CDM a survey of the relative strengths of the system's correlations in different symmetry sectors and the nature of their decay with distance (power law or exponential), as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. To achieve this goal, we introduce a new method of analysing the CDM, termed the dominant operator basis (DOB) method, which identifies in an unbiased fashion a small set of operators for each cluster that serve as a basis for the dominant correlations of the system. We illustrate this method by analysing the CDM for a spinless extended Hubbard model that features a competition between charge density correlations and pairing correlations, and show that the DOB method successfully identifies their relative strengths and dominant correlators. To calculate the ground state of this model, we use the density matrix renormalization group, formulated in terms of a variational matrix product state (MPS) approach within which subsequent determination of the CDM is very straightforward. In an extended appendix, we give a detailed tutorial introduction to our variational MPS approach for ground state calculations for one-dimensional quantum chain models. We present in detail how MPSs overcome the problem of large Hilbert space dimensions in these models and describe all the techniques needed for handling them in practice.

  2. Density matrix renormalization group for a highly degenerate quantum system: Sliding environment block approach

    Science.gov (United States)

    Schmitteckert, Peter

    2018-04-01

    We present an infinite lattice density matrix renormalization group sweeping procedure which can be used as a replacement for the standard infinite lattice blocking schemes. Although the scheme is generally applicable to any system, its main advantages are the correct representation of commensurability issues and the treatment of degenerate systems. As an example we apply the method to a spin chain featuring a highly degenerate ground-state space where the new sweeping scheme provides an increase in performance as well as accuracy by many orders of magnitude compared to a recently published work.

  3. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  4. The ease of lying

    NARCIS (Netherlands)

    Verschuere, B.; Spruyt, A.; Meijer, E.H.; Otgaar, H.

    2011-01-01

    Brain imaging studies suggest that truth telling constitutes the default of the human brain and that lying involves intentional suppression of the predominant truth response. By manipulating the truth proportion in the Sheffield lie test, we investigated whether the dominance of the truth response

  5. LIE n-RACKS

    OpenAIRE

    Biyogmam, Guy Roger

    2011-01-01

    In this paper, we introduce the category of Lie $n$-racks and generalize several results known on racks. In particular, we show that the tangent space of a Lie $n$-Rack at the neutral element has a Leibniz $n$-algebra structure. We also define a cohomology theory of $n$-racks..

  6. Verbal lie detection

    NARCIS (Netherlands)

    Vrij, Aldert; Taylor, Paul J.; Picornell, Isabel; Oxburgh, Gavin; Myklebust, Trond; Grant, Tim; Milne, Rebecca

    2015-01-01

    In this chapter, we discuss verbal lie detection and will argue that speech content can be revealing about deception. Starting with a section discussing the, in our view, myth that non-verbal behaviour would be more revealing about deception than speech, we then provide an overview of verbal lie

  7. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion—advection equation with variable coefficients

    International Nuclear Information System (INIS)

    Kumar, Vikas; Gupta, R. K.; Jiwari, Ram

    2014-01-01

    In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions

  8. Medicine, lies and deceptions.

    Science.gov (United States)

    Benn, P

    2001-04-01

    This article offers a qualified defence of the view that there is a moral difference between telling lies to one's patients, and deceiving them without lying. However, I take issue with certain arguments offered by Jennifer Jackson in support of the same conclusion. In particular, I challenge her claim that to deny that there is such a moral difference makes sense only within a utilitarian framework, and I cast doubt on the aptness of some of her examples of non-lying deception. But I argue that lies have a greater tendency to damage trust than does non-lying deception, and suggest that since many doctors do believe there is a moral boundary between the two types of deception, encouraging them to violate that boundary may have adverse general effects on their moral sensibilities.

  9. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  10. Quartic trace identity for exceptional Lie algebras

    International Nuclear Information System (INIS)

    Okubo, S.

    1979-01-01

    Let X be a representation matrix of generic element x of a simple Lie algebra in generic irreducible representation ]lambda] of the Lie algebra. Then, for all exceptional Lie algebras as well as A 1 and A 2 , we can prove the validity of a quartic trace identity Tr(X 4 ) =K (lambda)[Tr(X 2 )] 2 , where the constant K (lambda) depends only upon the irreducible representation ]lambda], and its explicit form is calculated. Some applications of second and fourth order indices have also been discussed

  11. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  12. The density matrix renormalization group method. Application to the EPP model of a cyclic polyene chain

    International Nuclear Information System (INIS)

    Fano, G.; Ortolani, F.; Ziosi, L.

    1997-10-01

    The density matrix renormalization group (DMRG) method introduced by White for the study of strongly interacting electron systems is reviewed; the method is variational and considers a system of localized electrons as the union of two adjacent fragments A,B. A density matrix ρ is introduced, whose eigenvectors corresponding to the largest eigenvalues are the most significant, the most probable states of A in the presence of B; these states are retained, while states corresponding to small eigenvalues of ρ are neglected. It is conjectured that the decreasing behaviour of the eigenvalues is gaussian. The DMRG method is tested on the Pariser-Parr-Pople Hamiltonian of a cyclic polyene (CH) N up to N = 34. A Hilbert space of dimension 5. x 10 18 is explored. The ground state energy is 10 -3 eV within the full Cl value in the case N = 18. The DMRG method compares favourably also with coupled cluster approximations. The unrestricted Hartree-Fock solution (which presents spin density waves) is briefly reviewed, and a comparison is made with the DMRG energy values. Finally, the spin-spin and density-density correlation functions are computed; the results suggest that the antiferromagnetic order of the exact solution does not extend up to large distances but exists locally. No charge density waves are present. (author)

  13. Ground reaction force analysed with correlation coefficient matrix in group of stroke patients.

    Science.gov (United States)

    Szczerbik, Ewa; Krawczyk, Maciej; Syczewska, Małgorzata

    2014-01-01

    Stroke is the third cause of death in contemporary society and causes many disorders. Clinical scales, ground reaction force (GRF) and objective gait analysis are used for assessment of patient's rehabilitation progress during treatment. The goal of this paper is to assess whether signal correlation coefficient matrix applied to GRF can be used for evaluation of the status of post-stroke patients. A group of patients underwent clinical assessment and instrumented gait analysis simultaneously three times. The difference between components of patient's GRF (vertical, fore/aft, med/lat) and normal ones (reference GRF of healthy subjects) was calculated as correlation coefficient. Patients were divided into two groups ("worse" and "better") based on the clinical functional scale tests done at the beginning of rehabilitation process. The results obtained by these two groups were compared using statistical analysis. An increase of median value of correlation coefficient is observed in all components of GRF, but only in non-paretic leg. Analysis of GRF signal can be helpful in assessment of post-stroke patients during rehabilitation. Improvement in stroke patients was observed in non-paretic leg of the "worse" group. GRF analysis should not be the only tool for objective validation of patient's improvement, but could be used as additional source of information.

  14. On lying and deceiving.

    Science.gov (United States)

    Bakhurst, D

    1992-06-01

    This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrues the nature of moral obligation. Against Jackson, it is argued that both lying and intentional deception are wrong where they infringe a patient's right to autonomy or his/her right to be treated with dignity. These rights represent 'deontological constraints' on action, defining what we must not do whatever the functional value of the consequences. Medical ethics must recognise such constraints if it is to contribute to the moral integrity of medical practice.

  15. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  16. On lying and deceiving.

    Science.gov (United States)

    Bakhurst, D

    1992-01-01

    This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrues the nature of moral obligation. Against Jackson, it is argued that both lying and intentional deception are wrong where they infringe a patient's right to autonomy or his/her right to be treated with dignity. These rights represent 'deontological constraints' on action, defining what we must not do whatever the functional value of the consequences. Medical ethics must recognise such constraints if it is to contribute to the moral integrity of medical practice. PMID:1619626

  17. Ground states of linear rotor chains via the density matrix renormalization group

    Science.gov (United States)

    Iouchtchenko, Dmitri; Roy, Pierre-Nicholas

    2018-04-01

    In recent years, experimental techniques have enabled the creation of ultracold optical lattices of molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low temperature has a transition between ordered and disordered phases. We use the density matrix renormalization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two methods and present some first steps toward rotational spectra of such molecular assemblies using DMRG. The present work showcases the power of DMRG in this new context of interacting molecular rotors and opens the door to the study of fundamental questions regarding criticality in systems with continuous degrees of freedom.

  18. Quantum phase transition by employing trace distance along with the density matrix renormalization group

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2015-01-01

    We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs

  19. Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study

    International Nuclear Information System (INIS)

    Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu

    1999-04-01

    Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)

  20. Perspectives in Lie theory

    CERN Document Server

    Carnovale, Giovanna; Caselli, Fabrizio; Concini, Corrado; Sole, Alberto

    2017-01-01

    Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.

  1. On generalized Melvin solution for the Lie algebra E6

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Ivashchuk, V.D.

    2017-01-01

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H s (z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H s (z), s = 1,.., 6, for the Lie algebra E 6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q s , s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E 6 -polynomials at large z are governed by the integer-valued matrix ν = A -1 (I + P), where A -1 is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z 2 -group of symmetry of the Dynkin diagram. The 2-form fluxes Φ s , s = 1,.., 6, are calculated. (orig.)

  2. On the Lie groups with the commutation relations of the type [Hsub(i), Hsub(j)]=rsub(ij)Hsub(i)(i

    International Nuclear Information System (INIS)

    Lebedenko, V.M.

    1976-01-01

    The class of PR-groups, i.e., the class of all connected and simply-connected groups of the type mentioned in the title, has been described. A number of properties has been studied and the linear realizations of arbitrary PR-groups have been considered. All the PR-groups are shown to be exponential. It follows from this fact a simple sufficient condition of applicability of the Kirillov orbit method to the construction of the harmonic analysis on concrete groups. Examples of the PR-groups are given which have been already used in theoretical physics

  3. Quantum Statistical Properties of the Codirectional Kerr Nonlinear Coupler in Terms of su (2 ) Lie Group in Interaction with a Two-level Atom

    Science.gov (United States)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2017-08-01

    The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.

  4. Graded-Lie-algebra cohomology and supergravity

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.; Regge, T.

    1980-01-01

    Detailed explanations of the cohomology invoked in the group-manifold approach to supergravity is given. The Chevalley cohomology theory of Lie algebras is extended to graded Lie algebras. The scheme of geometrical theories is enlarged so to include cosmological terms and higher powers of the curvature. (author)

  5. From simplicial Lie algebras and hypercrossed complexes to differential graded Lie algebras via 1-jets

    OpenAIRE

    Jurco, Branislav

    2011-01-01

    Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, which is simply connected in each simplicial level. We use the 1-jet of the classifying space of G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The res...

  6. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  7. Phase transition for a uniformly frustrated 19-vertex model by use of the density matrix renormalization group

    International Nuclear Information System (INIS)

    Honda, Yasushi; Horiguchi, Tsuyoshi

    2001-01-01

    We investigate a uniformly frustrated 19-vertex model with an anisotropy parameter η by use of the density matrix renormalization group for the transfer matrix for 0.6≤η≤1.3. The scaling dimension x is calculated from eigenvalues of the transfer matrix for several values η. The finite-size scaling analyses with a logarithmic correction are carried out in order to determine transition temperatures. It is found that there are two kinds of phase transitions, although there is a possibility of a single transition. This result is not compatible with the result for the uniformly frustrated XY model

  8. Lying in neuropsychology.

    Science.gov (United States)

    Seron, X

    2014-10-01

    The issue of lying occurs in neuropsychology especially when examinations are conducted in a forensic context. When a subject intentionally either presents non-existent deficits or exaggerates their severity to obtain financial or material compensation, this behaviour is termed malingering. Malingering is discussed in the general framework of lying in psychology, and the different procedures used by neuropsychologists to evidence a lack of collaboration at examination are briefly presented and discussed. When a lack of collaboration is observed, specific emphasis is placed on the difficulty in unambiguously establishing that this results from the patient's voluntary decision. Copyright © 2014. Published by Elsevier SAS.

  9. Multiplication: From Thales to Lie1

    Indian Academy of Sciences (India)

    Addition. To describe the geometric constructions of addition, as ..... general, we could apply the implicit function theorem of calculus to solve locally the defining ... and whose multiplication and inverse are analytic maps, is called a Lie group.

  10. Monotone matrix transformations defined by the group inverse and simultaneous diagonalizability

    International Nuclear Information System (INIS)

    Bogdanov, I I; Guterman, A E

    2007-01-01

    Bijective linear transformations of the matrix algebra over an arbitrary field that preserve simultaneous diagonalizability are characterized. This result is used for the characterization of bijective linear monotone transformations . Bibliography: 28 titles.

  11. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  12. Lie symmetries and superintegrability

    International Nuclear Information System (INIS)

    Nucci, M C; Post, S

    2012-01-01

    We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.

  13. Classification and identification of Lie algebras

    CERN Document Server

    Snobl, Libor

    2014-01-01

    The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...

  14. Notes on quantum groups

    International Nuclear Information System (INIS)

    Pressley, A.; Chari, V.; Tata Inst. of Fundamental Research, Bombay

    1990-01-01

    The authors presents an introduction to quantum groups defined as a deformation of the universal enveloping algebra of a Lie algebra. After the description of Hopf algebras with some examples the approach of Drinfel'd and Jimbo is described, where the quantization of a Lie algebra represents a Hopf algebra, defined over the algebra of formal power series in an indetermined h. The authors show that this approach arises from a r-matrix, which satisfies the classical Yang-Baxter equation. As example quantum sl 2 is considered. Furthermore the approaches of Manin and Woroniwicz and the R-matrix approach are described. (HSI)

  15. Lied Transplant Center

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Department of Energy has prepared an Environmental Assessment (DOE/EA-1143) evaluating the construction, equipping and operation of the proposed Lied Transplant Center at the University of Nebraska Medical Center in Omaha, Nebraska. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Statement in not required.

  16. Lagrangian submanifolds and dynamics on Lie algebroids

    International Nuclear Information System (INIS)

    Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo

    2005-01-01

    In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)

  17. Lie Quasi-Bialgebras and Cohomology of Lie algebra

    International Nuclear Information System (INIS)

    Bangoura, Momo

    2010-05-01

    Lie quasi-bialgebras are natural generalisations of Lie bialgebras introduced by Drinfeld. To any Lie quasi-bialgebra structure of finite-dimensional (G, μ, γ, φ), corresponds one Lie algebra structure on D = G + G*, called the double of the given Lie quasi-bialgebra. We show that there exist on ΛG, the exterior algebra of G, a D-module structure and we establish an isomorphism of D-modules between ΛD and End(ΛG), D acting on ΛD by the adjoint action. (author) [fr

  18. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  19. Lying relies on the truth

    NARCIS (Netherlands)

    Debey, E.; De Houwer, J.; Verschuere, B.

    2014-01-01

    Cognitive models of deception focus on the conflict-inducing nature of the truth activation during lying. Here we tested the counterintuitive hypothesis that the truth can also serve a functional role in the act of lying. More specifically, we examined whether the construction of a lie can involve a

  20. Purposes and Effects of Lying.

    Science.gov (United States)

    Hample, Dale

    Three exploratory studies were aimed at describing the purposes of lies and the consequences of lying. Data were collected through a partly open-ended questionnaire, a content analysis of several tape-recorded interviews, and a large-scale survey. The results showed that two of every three lies were told for selfish reasons, while three of every…

  1. Global calculation of PWR reactor core using the two group energy solution by the response matrix method

    International Nuclear Information System (INIS)

    Conti, C.F.S.; Watson, F.V.

    1991-01-01

    A computational code to solve a two energy group neutron diffusion problem has been developed base d on the Response Matrix Method. That method solves the global problem of PWR core, without using the cross sections homogenization process, thus it is equivalent to a pontwise core calculation. The present version of the code calculates the response matrices by the first order perturbative method and considers developments on arbitrary order Fourier series for the boundary fluxes and interior fluxes. (author)

  2. Lie-superalgebraical aspects of quantum statistics

    International Nuclear Information System (INIS)

    Palev, T.D.

    1978-01-01

    The Lie-superalgebraical properties of the ordinary quantum statistics are discussed with the aim of possible generalization in quantum theory and in theoretical physics. It is indicated that the algebra generated by n pairs of Fermi or paraFermi operators is isomorphic to the classical simple Lie algebra Bsub(n) of the SO(2n+1) orthogonal group, whereas n pairs of Bose or paraBose operators generate the simple orthosympletic superalgebra B(O,n). The transition to infinite number of creation and annihilation operators (n → infinity) does not change a superalgebraic structure. Hence, ordinary Bose and Fermi quantization can be considered as quantization over definite irreducible representations of two simple Lie superalgebras. The idea is given of how one can introduce creation and annihilation operators that satisfy the second quantization postulates and generate other simple Lie superalgebras

  3. Systematically evaluating the impact of diagnosis-related groups (DRGs) on health care delivery: a matrix of ethical implications.

    Science.gov (United States)

    Fourie, Carina; Biller-Andorno, Nikola; Wild, Verina

    2014-04-01

    Swiss hospitals were required to implement a prospective payment system for reimbursement using a diagnosis-related groups (DRGs) classification system by the beginning of 2012. Reforms to a health care system should be assessed for their impact, including their impact on ethically relevant factors. Over a number of years and in a number of countries, questions have been raised in the literature about the ethical implications of the implementation of DRGs. However, despite this, researchers have not attempted to identify the major ethical issues associated with DRGs systematically. To address this gap in the literature, we have developed a matrix for identifying the ethical implications of the implementation of DRGs. It was developed using a literature review, and empirical studies on DRGs, as well as a review and analysis of existing ethics frameworks. The matrix consists of the ethically relevant parameters of health care systems on which DRGs are likely to have an impact; the ethical values underlying these parameters; and examples of specific research questions associated with DRGs to illustrate how the matrix can be applied. While the matrix has been developed in light of the Swiss health care reform, it could be used as a basis for identifying the ethical implications of DRG-based systems worldwide and for highlighting the ethical implications of other kinds of provider payment systems (PPS). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Exponentiation and deformations of Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1982-01-01

    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  5. Politicians lie, so do I.

    Science.gov (United States)

    Celse, Jérémy; Chang, Kirk

    2017-11-30

    This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liars) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (including general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e., bigger lies) and frequency (i.e., lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights into organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior.

  6. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  7. Response matrix method for neutron transport in reactor lattices using group symmetry properties

    International Nuclear Information System (INIS)

    Mund, E.H.

    1991-01-01

    This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions

  8. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities.

    Science.gov (United States)

    Thakur, Ravi; Mishra, Durga Prasad

    2016-12-01

    Matricellular proteins (MCPs) are the non-structural extracellular matrix (ECM) proteins with various regulatory functions. MCPs are critical regulators of ECM homeostasis and are often found dysregulated in various malignancies. They interact with various proteins like ECM structural proteins, integrins, growth factor receptors and growth factors to modulate their availability and activity. Cancer-supporting MCPs are known to induce proliferation, migration and invasion of cancer cells. MCPs also support cancer stem (like) cell growth and induce a drug-resistant state. Apart from their direct effects on cancer cells, they play key roles in angiogenesis, immunomodulation, stromal cell infiltration, stromal proliferation and matrix remodeling. High expression of various MCPs belonging to the tenascin, CCN and SIBLING families is often associated with aggressive tumors and poor patient prognosis. Due to their differential expression and distinct functional role, these MCPs are perceived as attractive therapeutic targets in cancer. Studies on preclinical models have indicated that targeting tumor-supportive MCPs could be a potent avenue for developing anti-cancer therapies. The MCP receptors, like integrins and some associated growth factor receptors, are already being targeted using pharmacological inhibitors and neutralizing antibodies. Neutralizing antibodies against CCNs, tenascins and SIBLINGs have shown promising results in preclinical cancer models, suggesting an opportunity to develop anti-MCP therapies to target cancer. Peptides derived from anti-cancer MCPs could also serve as therapeutic entities. In the present review, in continuation with the expanding horizon of MCP functions and disease association, we focus on (i) their unique domain arrangement, (ii) their association with cancer hallmarks and (iii) available and possible therapeutic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Few group collapsing of covariance matrix data based on a conservation principle

    International Nuclear Information System (INIS)

    Hiruta, H.; Palmiotti, G.; Salvatores, M.; Arcilla, R. Jr.; Oblozinsky, P.; McKnight, R.D.

    2008-01-01

    A new algorithm for a rigorous collapsing of covariance data is proposed, derived, implemented, and tested. The method is based on a conservation principle that allows preserving at a broad energy group structure the uncertainty calculated in a fine group energy structure for a specific integral parameter, using as weights the associated sensitivity coefficients

  10. Nonflexible Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1978-01-01

    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  11. Motivation and Consequences of Lying. A Qualitative Analysis of Everyday Lying

    Directory of Open Access Journals (Sweden)

    Beata Arcimowicz

    2015-09-01

    Full Text Available This article presents findings of qualitative analysis of semi-structured interviews with a group of "frequent liars" and another of "rare liars" who provided their subjective perspectives on the phenomenon of lying. Participants in this study previously had maintained a diary of their social interactions and lies over the course of one week, which allowed to assign them to one of the two groups: frequent or rare liars. Thematic analysis of the material followed by elements of theory formulation resulted in an extended lying typology that includes not only the target of the lie (the liar vs. other but also the motivation (protection vs. bringing benefits. We offer an analysis of what prevents from telling the truth, i.e. penalties, relationship losses, distress of the lied-to, and anticipated lack of criticism for telling the truth. We also focus on understanding moderatorsof consequences of lying (significance of the area of life, the type of lie and capacity to understand the liar that can be useful in future studies. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1503318

  12. Lie families: theory and applications

    International Nuclear Information System (INIS)

    Carinena, Jose F; Grabowski, Janusz; De Lucas, Javier

    2010-01-01

    We analyze the families of non-autonomous systems of first-order ordinary differential equations admitting a common time-dependent superposition rule, i.e. a time-dependent map expressing any solution of each of these systems in terms of a generic set of particular solutions of the system and some constants. We next study the relations of these families, called Lie families, with the theory of Lie and quasi-Lie systems and apply our theory to provide common time-dependent superposition rules for certain Lie families.

  13. Lying in business : Insights from Hanna Arendt's 'Lying in Politics'

    NARCIS (Netherlands)

    Eenkhoorn, P.; Graafland, J.J.

    2011-01-01

    The political philosopher Hannah Arendt develops several arguments regarding why truthfulness cannot be counted among the political virtues. This article shows that similar arguments apply to lying in business. Based on Hannah Arendt's theory, we distinguish five reasons why lying is a structural

  14. Testosterone administration reduces lying in men.

    Directory of Open Access Journals (Sweden)

    Matthias Wibral

    Full Text Available Lying is a pervasive phenomenon with important social and economic implications. However, despite substantial interest in the prevalence and determinants of lying, little is known about its biological foundations. Here we study a potential hormonal influence, focusing on the steroid hormone testosterone, which has been shown to play an important role in social behavior. In a double-blind placebo-controlled study, 91 healthy men (24.32±2.73 years received a transdermal administration of 50 mg of testosterone (n=46 or a placebo (n=45. Subsequently, subjects participated in a simple task, in which their payoff depended on the self-reported outcome of a die-roll. Subjects could increase their payoff by lying without fear of being caught. Our results show that testosterone administration substantially decreases lying in men. Self-serving lying occurred in both groups, however, reported payoffs were significantly lower in the testosterone group (p<0.01. Our results contribute to the recent debate on the effect of testosterone on prosocial behavior and its underlying channels.

  15. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    Science.gov (United States)

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  16. Participants' evaluation of a group-based organisational assessment tool in Danish general practice: the Maturity Matrix.

    Science.gov (United States)

    Buch, Martin Sandberg; Edwards, Adrian; Eriksson, Tina

    2009-01-01

    The Maturity Matrix is a group-based formative self-evaluation tool aimed at assessing the degree of organisational development in general practice and providing a starting point for local quality improvement. Earlier studies of the Maturity Matrix have shown that participants find the method a useful way of assessing their practice's organisational development. However, little is known about participants' views on the resulting efforts to implement intended changes. To explore users' perspectives on the Maturity Matrix method, the facilitation process, and drivers and barriers for implementation of intended changes. Observation of two facilitated practice meetings, 17 semi-structured interviews with participating general practitioners (GPs) or their staff, and mapping of reasons for continuing or quitting the project. General practices in Denmark Main outcomes: Successful change was associated with: a clearly identified anchor person within the practice, a shared and regular meeting structure, and an external facilitator who provides support and counselling during the implementation process. Failure to implement change was associated with: a high patient-related workload, staff or GP turnover (that seemed to affect small practices more), no clearly identified anchor person or anchor persons who did not do anything, no continuous support from an external facilitator, and no formal commitment to working with agreed changes. Future attempts to improve the impact of the Maturity Matrix, and similar tools for quality improvement, could include: (a) attention to matters of variation caused by practice size, (b) systematic counselling on barriers to implementation and support to structure the change processes, (c) a commitment from participants that goes beyond participation in two-yearly assessments, and (d) an anchor person for each identified goal who takes on the responsibility for improvement in practice.

  17. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  18. A corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model

    Energy Technology Data Exchange (ETDEWEB)

    Foster, D P; Pinettes, C [Laboratoire de Physique Theorique et Modelisation (CNRS UMR 8089), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac 95031, Cergy-Pontoise Cedex (France)

    2003-10-17

    A recently introduced extension of the corner transfer matrix renormalization group method useful for the study of self-avoiding walk-type models is presented in detail and applied to a class of interacting self-avoiding walks due to Bloete and Nienhuis. This model displays two different types of collapse transition depending on model parameters. One is the standard {theta}-point transition. The other is found to give rise to a first-order collapse transition despite being known to be in other respects critical.

  19. Generating matrix elements of the hamiltonian of the algebraic version of resonating group method on intrinsic wave functions with various oscillator lengths

    International Nuclear Information System (INIS)

    Badalov, S.A.; Filippov, G.F.

    1986-01-01

    The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known

  20. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  1. Gruppi, anelli di Lie e teoria della coomologia

    CERN Document Server

    Zappa, G

    2011-01-01

    This book includes: R. Baer: Complementation in finite gropus; M. Lazard: Groupes, anneaux de Lie et probleme de Burnside; J. Tits: Sur les groupes algebriques afffines; Theoremes fondamentaux de structure; and, Classification des groupes semisimples et geometries associees.

  2. Lying to patients with dementia: Attitudes versus behaviours in nurses.

    Science.gov (United States)

    Cantone, Daniela; Attena, Francesco; Cerrone, Sabrina; Fabozzi, Antonio; Rossiello, Riccardo; Spagnoli, Laura; Pelullo, Concetta Paola

    2017-01-01

    Using lies, in dementia care, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. In this article, we report results about the attitude and the behaviour of nurses towards the use of lies to patients with dementia. An epidemiological cross-sectional study was conducted between September 2016 and February 2017 in 12 elderly residential facilities and in the geriatric, psychiatric and neurological wards of six specialised hospitals of Italy's Campania Region. In all, 106 nurses compiled an attitude questionnaire (A) where the main question was 'Do you think it is ethically acceptable to use lies to patients with dementia?', instead 106 nurses compiled a behaviour questionnaire (B), where the main question was 'Have you ever used lies to patients with dementia?' Ethical considerations: Using lies in dementia care, although topic ethically still controversial, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. Only a small percentage of the interviewed nurses stated that they never used lies/that it is never acceptable to use lies (behaviour 10.4% and attitude 12.3%; p = 0.66). The situation in which nurses were more oriented to use lies was 'to prevent or reduce aggressive behaviors'. Indeed, only the 6.7% in the attitude group and 3.8% in the behaviour group were against using lies. On the contrary, the case in which the nurses were less oriented to use lies was 'to avoid wasting time giving explanations', in this situation were against using lies the 51.0% of the behaviour group and the 44.6% of the attitude group. Our results, according to other studies, support the hypothesis of a low propensity of nurses to ethical reflection about use of lies. In our country, the implementation of guidelines about a correct use of lie in the relationship between health operators and patients would be desirable.

  3. Deformations of classical Lie algebras with homogeneous root system in characteristic two. I

    International Nuclear Information System (INIS)

    Chebochko, N G

    2005-01-01

    Spaces of local deformations of classical Lie algebras with a homogeneous root system over a field K of characteristic 2 are studied. By a classical Lie algebra over a field K we mean the Lie algebra of a simple algebraic Lie group or its quotient algebra by the centre. The description of deformations of Lie algebras is interesting in connection with the classification of the simple Lie algebras.

  4. The BCG (Boston Consulting Group) matrix for management of periodic publications

    OpenAIRE

    Serrano Gallardo, Mª del Pilar; Arroyo Gordo, Mª Pilar; Giménez Maroto, Ana Mª

    2005-01-01

    El marketing documental se ha de encargar de satisfacer las necesidades informativas de los usuarios de forma rentable para ellos y para el centro; para ello se ha de partir de un conjunto de herramientas técnicas que se conocen como el Marketing - Mix, y que abarcan el Producto, el Precio, la Distribución y la Comunicación. Dentro de las herramientas destinadas al producto se encuentra la matriz BCG (Boston Consulting Group), que está orientada a gestión, sobre la base de la situación del pr...

  5. Transverse lie in labor: A study from Kaduna, Northern Nigeria ...

    African Journals Online (AJOL)

    Results: During the period there were 16633 deliveries and 30 women with transversely lying fetuses, giving an incidence of 1 in 554 deliveries. Forty percent of the cases were neglected transverse lies. The para 4 and above group had the highest incidence of 2.69/1000. Northern minorities ethnic group had the highest ...

  6. The principle of the indistinguishability of identical particles and the Lie algebraic approach to the field quantisation

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1980-01-01

    The density matrix, rather than the wavefunction describing the system of a fixed number of non-relativistic identical particles, is subject to the second quantisation. Here the bilinear operators which move a particle from a given state to another appear and satisfy the Lie algebraic relations of the unitary group SU(rho) when the dimension rho→infinity. The drawing into consideration of the system with a variable number of particles implies the extension of this algebra into one of the simple Lie algebras of classical (orthogonal, symplectic or unitary) groups in the even-dimensional spaces. These Lie algebras correspond to the para-Fermi-, para-Bose- and para-uniquantisation of fields, respectively. (author)

  7. Invariants of triangular Lie algebras

    International Nuclear Information System (INIS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-01-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  8. Wess-Zumino-Novikov-Witten models based on Lie superalgebras

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1994-04-01

    The affine current algebra for Lie superalgebras is examined. The bilinear invariant forms of the Lie superalgebra can be either degenerate or non-degenerate. We give the conditions for a Virasoro construction, in which the currents are primary fields of weight one, to exist. In certain cases, the Virasoro central charge is an integer equal to the super dimension of the group supermanifold. A Wess-Zumino-Novikov-Witten action based on these Lie superalgebras is also found. (orig.)

  9. Classification of simple flexible Lie-admissible algebras

    International Nuclear Information System (INIS)

    Okubo, S.; Myung, H.C.

    1979-01-01

    Let A be a finite-dimensional flexible Lie-admissible algebra over the complex field such that A - is a simple Lie algebra. It is shown that either A is itself a Lie algebra isomorphic to A - or A - is a Lie algebra of type A/sub n/ (n greater than or equal to 2). In the latter case, A is isomorphic to the algebra defined on the space of (n + 1) x (n + 1) traceless matrices with multiplication given by x * y = μxy + (1 - μ)yx - (1/(n + 100 Tr (xy) E where μ is a fixed scalar, xy denotes the matrix operators in Lie algebras which has been studied in theoretical physics. We also discuss a broader class of Lie algebras over arbitrary field of characteristic not equal to 2, called quasi-classical, which includes semisimple as well as reductive Lie algebras. For this class of Lie algebras, we can introduce a multiplication which makes the adjoint operator space into an associative algebra. When L is a Lie algebra with nondegenerate killing form, it is shown that the adjoint operator algebra of L in the adjoint representation becomes a commutative associative algebra with unit element and its dimension is 1 or 2 if L is simple over the complex field. This is related to the known result that a Lie algebra of type A/sub n/ (n greater than or equal to 2) alone has a nonzero completely symmetric adjoint operator in the adjoint representation while all other algebras have none. Finally, Lie-admissible algebras associated with bilinear form are investigated

  10. Group-theoretical deduction of a dyadic Tamm-Dancoff equation by using a matrix-valued generator coordinate

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Morita, Hiroyuki; Ohnishi, Hiromasa

    2004-01-01

    The traditional Tamm-Dancoff (TD) method is one of the standard procedures for solving the Schroedinger equation of fermion many-body systems. However, it meets a serious difficulty when an instability occurs in the symmetry-adapted ground state of the independent particle approximation (IPA) and when the stable IPA ground state becomes of broken symmetry. If one uses the stable but broken symmetry IPA ground state as the starting approximation, TD wave functions also become of broken symmetry. On the contrary, if we start from a symmetry-adapted but unstable wave function, the convergence of the TD expansion becomes bad. Thus, the requirements of symmetry and rapid convergence are not in general compatible in the conventional TD expansion of the systems with strong collective correlations. Along the same line as Fukutome's, we give a group-theoretical deduction of a U(n) dyadic TD equation by using a matrix-valued generator coordinate

  11. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    Science.gov (United States)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  12. On generalized Melvin solution for the Lie algebra E{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bolokhov, S.V. [Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation); Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation)

    2017-10-15

    A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H{sub s}(z), s = 1,.., 6, for the Lie algebra E{sub 6} are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q{sub s}, s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E{sub 6}-polynomials at large z are governed by the integer-valued matrix ν = A{sup -1}(I + P), where A{sup -1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z{sub 2}-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ{sup s}, s = 1,.., 6, are calculated. (orig.)

  13. "Lie to me"-Oxytocin impairs lie detection between sexes.

    Science.gov (United States)

    Pfundmair, Michaela; Erk, Wiebke; Reinelt, Annika

    2017-10-01

    The hormone oxytocin modulates various aspects of social behaviors and even seems to lead to a tendency for gullibility. The aim of the current study was to investigate the effect of oxytocin on lie detection. We hypothesized that people under oxytocin would be particularly susceptible to lies told by people of the opposite sex. After administration of oxytocin or a placebo, male and female participants were asked to judge the veracity of statements from same- vs. other-sex actors who either lied or told the truth. Results showed that oxytocin decreased the ability of both male and female participants to correctly classify other-sex statements as truths or lies compared to placebo. This effect was based on a lower ability to detect lies and not a stronger bias to regard truth statements as false. Revealing a new effect of oxytocin, the findings may support assumptions about the hormone working as a catalyst for social adaption. Copyright © 2017. Published by Elsevier Ltd.

  14. Bases in Lie and quantum algebras

    International Nuclear Information System (INIS)

    Ballesteros, A; Celeghini, E; Olmo, M A del

    2008-01-01

    Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).

  15. Lectures on Lie algebras and their representations: 1

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1988-05-01

    The paper is based on sixteen lectures given by the author in April-June 1988 at the International Centre for Theoretical Physics, Trieste. It covers the basic material on the structure, classification and representations of Lie algebras G associated with a (generalized) Cartan matrix, or Kac-Moody algebras for short. 16 refs, tabs

  16. Theoretical description of high-lying two-electrons states

    International Nuclear Information System (INIS)

    Greene, C.H.; Cavagnero, M.; Sadeghpour, H.R.

    1993-01-01

    Within the past two years, experiments on high-lying doubly-excited states in He and H- have shown spectra at energies near excited hydrogenic thresholds having principal quantum numbers in the range N=5--9. While they display some nontrivial complexities, the spectra are tremendously simpler than might be anticipated on the basis of independent electron models, in that only a small fraction of the total number of anticipated resonances are observed experimentally. Moreover, for principal quantum number N that are not too high, specifically N - , the resonance positions are described accurately by adiabatic calculations using hyperspherical coordinates and can be parametrized by a remarkably simple two-electron Rydberg formula. The observed propensity for excitation of only a small subset of the possible resonance states has been codified by several groups into approximate selection rules based on alternative (but apparently equivalent) classification schemes. Comparatively few attempts have been made at quantitative tests of the validity of these rules. The present review describes recent efforts to quantify their accuracy and limitations using R-matrix and quantum defect techniques, and Smith's delay-time matrix. Prospensity rules for exciting different degrees of freedom are found to differ greatly in their degree of validity

  17. Transitive Lie algebras of vector fields: an overview

    NARCIS (Netherlands)

    Draisma, J.

    2011-01-01

    This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late 19th century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in 20th-century research on

  18. Counting Semisimple Orbits of Finite Lie Algebras by Genus

    OpenAIRE

    Fulman, Jason

    1999-01-01

    The adjoint action of a finite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of split semisimple orbits of a given genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of card shuffling.

  19. Élie Cartan (1869-1951)

    CERN Document Server

    Akivis, M A

    2011-01-01

    This book describes the life and achievements of the great French mathematician, Elie Cartan. Here readers will find detailed descriptions of Cartan's discoveries in Lie groups and algebras, associative algebras, differential equations, and differential geometry, as well of later developments stemming from his ideas. There is also a biographical sketch of Cartan's life. A monumental tribute to a towering figure in the history of mathematics, this book will appeal to mathematicians and historians alike.

  20. Chern-Simons theory, 2d Yang-Mills, and Lie algebra wanderers

    International Nuclear Information System (INIS)

    Haro, Sebastian de

    2005-01-01

    We work out the relation between Chern-Simons, 2d Yang-Mills on the cylinder, and Brownian motion. We show that for the unitary, orthogonal and symplectic groups, various observables in Chern-Simons theory on S 3 and lens spaces are exactly given by counting the number of paths of a Brownian particle wandering in the fundamental Weyl chamber of the corresponding Lie algebra. We construct a fermionic formulation of Chern-Simons on S 3 which allows us to identify the Brownian particles as B-model branes moving on a noncommutative two-sphere, and construct 1- and 2-matrix models to compute Brownian motion ensemble averages

  1. Isomorphism of Intransitive Linear Lie Equations

    Directory of Open Access Journals (Sweden)

    Jose Miguel Martins Veloso

    2009-11-01

    Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

  2. Cartan Connections and Lie Algebroids

    Directory of Open Access Journals (Sweden)

    Michael Crampin

    2009-06-01

    Full Text Available This paper is a study of the relationship between two constructions associated with Cartan geometries, both of which involve Lie algebroids: the Cartan algebroid, due to [Blaom A.D., Trans. Amer. Math. Soc. 358 (2006, 3651–3671], and tractor calculus [Cap A., Gover A.R., Trans. Amer. Math. Soc. 354 (2001, 1511–1548].

  3. High performance computing of density matrix renormalization group method for 2-dimensional model. Parallelization strategy toward peta computing

    International Nuclear Information System (INIS)

    Yamada, Susumu; Igarashi, Ryo; Machida, Masahiko; Imamura, Toshiyuki; Okumura, Masahiko; Onishi, Hiroaki

    2010-01-01

    We parallelize the density matrix renormalization group (DMRG) method, which is a ground-state solver for one-dimensional quantum lattice systems. The parallelization allows us to extend the applicable range of the DMRG to n-leg ladders i.e., quasi two-dimension cases. Such an extension is regarded to bring about several breakthroughs in e.g., quantum-physics, chemistry, and nano-engineering. However, the straightforward parallelization requires all-to-all communications between all processes which are unsuitable for multi-core systems, which is a mainstream of current parallel computers. Therefore, we optimize the all-to-all communications by the following two steps. The first one is the elimination of the communications between all processes by only rearranging data distribution with the communication data amount kept. The second one is the avoidance of the communication conflict by rescheduling the calculation and the communication. We evaluate the performance of the DMRG method on multi-core supercomputers and confirm that our two-steps tuning is quite effective. (author)

  4. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    Science.gov (United States)

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  5. Efficient density matrix renormalization group algorithm to study Y junctions with integer and half-integer spin

    KAUST Repository

    Kumar, Manoranjan

    2016-02-03

    An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.

  6. Efficient density matrix renormalization group algorithm to study Y junctions with integer and half-integer spin

    KAUST Repository

    Kumar, Manoranjan; Parvej, Aslam; Thomas, Simil; Ramasesha, S.; Soos, Z. G.

    2016-01-01

    An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.

  7. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G

    DEFF Research Database (Denmark)

    Salgård Jensen, Christian; Dam-Nielsen, Casper; Arpi, Magnus

    2015-01-01

    BACKGROUND: The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying...

  8. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  9. An optimized formulation for Deprit-type Lie transformations of Taylor maps for symplectic systems

    International Nuclear Information System (INIS)

    Shi, Jicong

    1993-01-01

    An optimized iterative formulation is presented for directly transforming a Taylor map of a symplectic system into a Deprit-type Lie transformation, which is a composition of a linear transfer matrix and a single Lie transformation, to an arbitrary order

  10. Particle-like structure of Lie algebras

    Science.gov (United States)

    Vinogradov, A. M.

    2017-07-01

    If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

  11. Reductive Lie-admissible algebras applied to H-spaces and connections

    International Nuclear Information System (INIS)

    Sagle, A.A.

    1982-01-01

    An algebra A with multiplication xy is Lie-admissible if the vector space A with new multiplication [x,y] = xy-yx is a Lie algebra; we denote this Lie algebra by A - . Thus, an associative algebra is Lie-admissible but a Cayley algebra is not Lie-admissible. In this paper we show how Lie-admissible algebras arise from Lie groups and their application to differential geometry on Lie groups via the following theorem. Let A be an n-dimensional Lie-admissible algebra over the reals. Let G be a Lie group with multiplication function μ and with Lie algebra g which is isomorphic to A - . Then there exiss a corrdinate system at the identify e in G which represents μ by a function F:gxg→g defined locally at the origin, such that the second derivative, F 2 , at the origin defines on the vector space g the structure of a nonassociative algebra (g, F 2 ). Furthermore this algebra is isomorphic to A and (g, F 2 ) - is isomorphic to A - . Thus roughly, any Lie-admissible algebra is isomorphic to an algebra obtained from a Lie algebra via a change of coordinates in the Lie group. Lie algebras arise by using canonical coordinates and the Campbell-Hausdorff formula. Applications of this show that any G-invariant psuedo-Riemannian connection on G is completely determined by a suitable Lie-admissible algebra. These results extend to H-spaces, reductive Lie-admissible algebras and connections on homogeneous H-spaces. Thus, alternative and other non-Lie-admissible algebras can be utilized

  12. Comment on ‘Series expansions from the corner transfer matrix renormalization group method: the hard-squares model’

    International Nuclear Information System (INIS)

    Jensen, Iwan

    2012-01-01

    Earlier this year Chan extended the low-density series for the hard-squares partition function κ(z) to 92 terms. Here we analyse this extended series focusing on the behaviour at the dominant singularity z d which lies on the negative fugacity axis. We find that the series has a confluent singularity of order at least 2 at z d with exponents θ = 0.833 33(2) and θ′ = 1.6676(3). We thus confirm that the exponent θ has the exact value 5/6 as observed by Dhar. (comment)

  13. A cohomological characterization of Leibniz central extensions of Lie algebras

    International Nuclear Information System (INIS)

    Hu Naihong; Pei Yufeng; Liu Dong

    2006-12-01

    Motivated by Pirashvili's spectral sequences on a Leibniz algebra, some notions such as invariant symmetric bilinear forms, dual space derivations and the Cartan-Koszul homomorphism are connected together to give a description of the second Leibniz cohomology groups with trivial coefficients of Lie algebras (as Leibniz objects), which leads to a concise approach to determining one-dimensional Leibniz central extensions of Lie algebras. As applications, we contain the discussions for some interesting classes of infinite-dimensional Lie algebras. In particular, our results include the cohomological version of Gao's main Theorem for Kac-Moody algebras and answer a question. (author)

  14. Sophus Lie une pensée audacieuse

    CERN Document Server

    Stubhaug, Arild

    2006-01-01

    Sophus Lie (1842-1899) compte parmi les plus grandes figures norvgiennes de la science. La notorit que lui valent ses travaux n'a rien envier celle de son illustre compatriote Niels Henrik Abel. Groupes et alg bres de Lie ont acquis droit de cit dans maints domaines. Dans cette biographie dtaille, l'crivain Arild Stubhaug, puisant dans la volumineuse correspondance de Lie, dcrit l'homme et la socit norvgienne dans la seconde moiti du XIXe si cle. Le lecteur peut ainsi suivre son enfance dans un presbyt re nich au fond d'un fjord, dcouvrir les rformes de l'enseignement, voyager en Europe, frque

  15. Filiform Lie algebras of order 3

    International Nuclear Information System (INIS)

    Navarro, R. M.

    2014-01-01

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases

  16. Filiform Lie algebras of order 3

    Science.gov (United States)

    Navarro, R. M.

    2014-04-01

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.

  17. A Lie based 4-dimensional higher Chern-Simons theory

    Science.gov (United States)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  18. Some quantum Lie algebras of type Dn positive

    International Nuclear Information System (INIS)

    Bautista, Cesar; Juarez-Ramirez, Maria Araceli

    2003-01-01

    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true

  19. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  20. Initiatives: The Escher Dilemma; Lowering the Bar or Helium Pole; Phillippe le Basquette (Fill the Basket); Concentration Point; Who Done It?/the Lie Game; A Missing Piece; Mindfulness Meditation; Untying Knots: Bending on Teamwork; Triangle Tag for Church Groups.

    Science.gov (United States)

    Butler, Steve; Gass, Mike; Schoel, Jim; Murphy, Morgan; Murray, Mark; White, Will; Loggers, Otto; Renaker, Paul

    1999-01-01

    Describes nine group problem-solving and communication initiatives used in adventure- and experiential-education settings. Includes target group, group size, time and space requirements, activity level, props, instructions, and tips for post-activity group reflection and processing. Activities emphasize teamwork, communication skills, and a…

  1. Universal R-matrix for quantized (super) algebras

    International Nuclear Information System (INIS)

    Khoroshkin, S.M.; Tolstoj, V.N.

    1991-01-01

    For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs

  2. Particle-like structure of coaxial Lie algebras

    Science.gov (United States)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  3. Infinite-dimensional Lie algebras in 4D conformal quantum field theory

    International Nuclear Information System (INIS)

    Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan

    2008-01-01

    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively

  4. Lying in the Name of the Collective Good: A Developmental Study

    Science.gov (United States)

    Fu, Genyue; Evans, Angela D.; Wang, Lingfeng; Lee, Kang

    2008-01-01

    The present study examined the developmental origin of "blue lies", a pervasive form of lying in the adult world that is told purportedly to benefit a collective. Seven, 9-, and 11-year-old Chinese children were surreptitiously placed in a real-life situation where they decided whether to lie to conceal their group's cheating behavior. Children…

  5. Lie algebroids in derived differential topology

    NARCIS (Netherlands)

    Nuiten, J.J.

    2018-01-01

    A classical principle in deformation theory asserts that any formal deformation problem is controlled by a differential graded Lie algebra. This thesis studies a generalization of this principle to Lie algebroids, and uses this to examine the interactions between the theory of Lie algebroids and the

  6. The Centroid of a Lie Triple Algebra

    Directory of Open Access Journals (Sweden)

    Xiaohong Liu

    2013-01-01

    Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.

  7. The First Honest Book about Lies.

    Science.gov (United States)

    Kincher, Jonni; Espeland, Pamela, Ed.

    Readers learn how to discern the truth from lies through a series of activities, games, and experiments. This book invites young students to look at lies in a fair and balanced way. Different types of lies are examined and the purposes they serve and discussed. Problem solving activities are given. The book is organized in nine chapters,…

  8. Algebraic manipulation of the states associated with the U(5)containsO(5)containsO(3) chain of groups: Orthonormalization and matrix elements

    International Nuclear Information System (INIS)

    Yannouleas, C.; Pacheco, J.M.

    1989-01-01

    A collection of procedures able to perform algebraic manipulations for the orthonormalization and for the calculation of matrix elements between the states associated with the U(5)containsO(5)containsO(3) chain of groups is presented. These procedures combine both the exact- and the bigfloat-arithmetic modes and thus return arbitrarily accurate results; this is particulary relevant to the Gram-Schmidt orthonormalization, where strong cancellations usually pose serious problems in all floating-point implementations. (orig.)

  9. Quantum Heisenberg groups and Sklyanin algebras

    International Nuclear Information System (INIS)

    Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.

    1993-05-01

    We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs

  10. Automated decoding of facial expressions reveals marked differences in children when telling antisocial versus prosocial lies.

    Science.gov (United States)

    Zanette, Sarah; Gao, Xiaoqing; Brunet, Megan; Bartlett, Marian Stewart; Lee, Kang

    2016-10-01

    The current study used computer vision technology to examine the nonverbal facial expressions of children (6-11years old) telling antisocial and prosocial lies. Children in the antisocial lying group completed a temptation resistance paradigm where they were asked not to peek at a gift being wrapped for them. All children peeked at the gift and subsequently lied about their behavior. Children in the prosocial lying group were given an undesirable gift and asked if they liked it. All children lied about liking the gift. Nonverbal behavior was analyzed using the Computer Expression Recognition Toolbox (CERT), which employs the Facial Action Coding System (FACS), to automatically code children's facial expressions while lying. Using CERT, children's facial expressions during antisocial and prosocial lying were accurately and reliably differentiated significantly above chance-level accuracy. The basic expressions of emotion that distinguished antisocial lies from prosocial lies were joy and contempt. Children expressed joy more in prosocial lying than in antisocial lying. Girls showed more joy and less contempt compared with boys when they told prosocial lies. Boys showed more contempt when they told prosocial lies than when they told antisocial lies. The key action units (AUs) that differentiate children's antisocial and prosocial lies are blink/eye closure, lip pucker, and lip raise on the right side. Together, these findings indicate that children's facial expressions differ while telling antisocial versus prosocial lies. The reliability of CERT in detecting such differences in facial expression suggests the viability of using computer vision technology in deception research. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. On Deformations and Contractions of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Marc de Montigny

    2006-05-01

    Full Text Available In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.

  12. Quantum Lie theory a multilinear approach

    CERN Document Server

    Kharchenko, Vladislav

    2015-01-01

    This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.

  13. Computations in finite-dimensional Lie algebras

    Directory of Open Access Journals (Sweden)

    A. M. Cohen

    1997-12-01

    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  14. Adinkras from ordered quartets of BC4 Coxeter group elements and regarding another Gadget’s 1,358,954,496 matrix elements

    Science.gov (United States)

    Gates, S. James; Kang, Lucas; Kessler, David S.; Korotkikh, Vadim

    2018-04-01

    A Gadget, more precisely a scalar Gadget, is defined as a mathematical calculation acting over a domain of one or more adinkra graphs and whose range is a real number. A 2010 work on the subject of automorphisms of adinkra graphs, implied the existence of multiple numbers of Gadgets depending on the number of colors under consideration. For four colors, this number is two. In this work, we verify the existence of a second such Gadget and calculate (both analytically and via explicit computer-enabled algorithms) its 1,358,954,496 matrix elements over 36,864 minimal valise adinkras related to the Coxeter Group BC4.

  15. Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study.

    Science.gov (United States)

    Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi

    2018-01-11

    We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

  16. Influence of matrix metalloproteinase gene polymorphisms in healthy North Indians compared to variations in other ethnic groups worldwide.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama Devi

    2009-01-01

    Matrix metalloproteinases have a range of biological functions, including the liberation of cytokines and membrane-bound receptors, with roles in promotion of tumor invasion and angiogenesis. Several polymorphisms in MMPs have been implicated in the development of cancer as well as other diseases. Since their frequency distributions in the general North Indian population is not known the present study was conducted with the focus on MMP-1(-519) Aandgt; G, MMP-1(-1607) 1Gandgt; 2G, and MMP-7(-181) Aandgt; G gene polymorphisms. PCR-based analysis was conducted for 200 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of MMP-1(-519) Aandgt; G were 71.2% A; MMP-1(-1607) 1Gandgt; 2G 48.2% 1G; MMP-7(-181) Aandgt; G 60.7% A. The variant allele frequencies were 29% A in MMP-1(-519) Aandgt; G; 52% 2G in MMP-1(-1607) 1Gandgt; 2G; and 39.3% G in MMP-7(-181) Aandgt; G respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity globally. Our results suggest that frequency in these MMP genes exhibit distinctive patterns in India that could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk when exposed to environmental carcinogens. More emphasis is needed on evaluating polymorphisms, alone or in combination, as modifiers of risk from relevant environmental/lifestyle exposures.

  17. Chern-Simons matrix models and unoriented strings

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Yasnov, Vadim

    2004-01-01

    For matrix models with measure on the Lie algebra of SO/Sp, the sub-leading free energy is given by F 1 (S) ±{1/4}({δF 0 (S)}/{δS}). Motivated by the fact that this relationship does not hold for Chern-Simons theory on S 3 , we calculate the sub-leading free energy in the matrix model for this theory, which is a Gaussian matrix model with Haar measure on the group SO/Sp. We derive a quantum loop equation for this matrix model and then find that F 1 is an integral of the leading order resolvent over the spectral curve. We explicitly calculate this integral for quadratic potential and find agreement with previous studies of SO/Sp Chern-Simons theory. (author)

  18. Ethyl group as matrix modifier and inducer of ordered domains in hybrid xerogels synthesised in acidic media using ethyltriethoxysilane (ETEOS) and tetraethoxysilane (TEOS) as precursors

    International Nuclear Information System (INIS)

    Rios, Xabier; Moriones, Paula; Echeverría, Jesús C.; Luquin, Asunción; Laguna, Mariano; Garrido, Julián J.

    2013-01-01

    Hybrid silica xerogels favourably combine the properties of organic and inorganic components in one material; consequently these materials are useful for multiple applications. The versatility and mild synthetic conditions provided by the sol-gel process are ideal for the synthesis of hybrid materials. The specific aims of this study were to synthesise hybrid xerogels in acidic media using tetraethoxysilane (TEOS) and ethyltriethoxysilane (ETEOS) as silica precursors, and to assess the role of the ethyl group as a matrix modifier and inducer of ordered domains in xerogels. All xerogels were synthesised at pH 4.5, at 60 °C, with 1:4.75:5.5 TEOS:EtOH:H 2 O molar ratio. Gelation time exponentially increased with the ETEOS molar ratio. Incorporation of the ethyl groups into the structure of xerogels reduced cross-linking, increased the average siloxane bond length, and promoted the formation of ordered domains. As a result, a transition from Q n to T n signals detected in the 29 Si NMR spectra, the Si–O structural band in the FTIR spectra shifted to lower wavelength, and a new peak in the XRD pattern at 2θ < 10° appeared in the XRD patterns. Mass spectroscopy detected fragments with high numbers of silicon atoms and a polymeric distribution. - Graphical abstract: Display Omitted - Highlights: • Hybrid xerogels were synthesised for ETEOS/TEOS mixtures up to 80% ETEOS. • The gelification time exponentially increased with ETEOS content. • FTIR, XRD and MAS NMR demonstrated the presence of ethyl groups into xerogels. • For ETEOS contents ≤30%, ethyl group acted as matrix modifier. • For ETEOS contents ≥30%, ethyl groups induced the formation of ordered domains

  19. Cartan calculus on quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''

  20. Testosterone Administration Reduces Lying in Men

    NARCIS (Netherlands)

    Wibral, M.; Dohmen, T.J.; Klingmüller, Dietrich; Weber, Bernd; Falk, Armin

    2012-01-01

    Lying is a pervasive phenomenon with important social and economic implications. However, despite substantial interest in the prevalence and determinants of lying, little is known about its biological foundations. Here we study a potential hormonal influence, focusing on the steroid hormone

  1. Lie symmetries for systems of evolution equations

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  2. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  3. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    International Nuclear Information System (INIS)

    Yu Zhang; Zhang Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings

  4. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  5. Computing nilpotent quotients in finitely presented Lie rings

    Directory of Open Access Journals (Sweden)

    Csaba Schneider

    1997-12-01

    Full Text Available A nilpotent quotient algorithm for finitely presented Lie rings over Z (and Q is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed by generators. Using that presentation the word problem is decidable in L. Provided that the Lie ring L is graded, it is possible to determine the canonical presentation for a lower central factor of L. Complexity is studied and it is shown that optimising the presentation is NP-hard. Computational details are provided with examples, timing and some structure theorems obtained from computations. Implementation in C and GAP interface are available.

  6. KNOWLEDGE HUB: SPIRAL MATRIX THINKING AS A COMMUNICATION TECHNOLOGY FOR INDIVIDUAL AND GROUP LEARNING IN ONE DRIVE AND WORD ONLINE

    Directory of Open Access Journals (Sweden)

    Наталья Валерьевна Комиссарова

    2017-12-01

    Full Text Available The article represents the modification of the Knowledge Hub communicative technique of teaching English and other disciplines based on the OneDrive\\Word-online cloud service. Specific options for the organization of group work and individual activities are considered. The article highlights the advantage and the efficiency of teaching and learning by the BYOD (Bring Your Own Device mode. The paper includes examples of organizing of mass support of the study of the course of English for Business and Entrepreneurship (MOOC-Coursera and of information technology of the Humanities program in the computer class and relying on BYOD mobile Internet access of students.

  7. In-vessel core degradation code validation matrix update 1996-1999. Report by an OECD/NEA group of experts

    International Nuclear Information System (INIS)

    2001-02-01

    In 1991 the Committee on the Safety of Nuclear Installations (CSNI) issued a State-of-the-Art Report (SOAR) on In-Vessel Core Degradation in Light Water Reactor (LWR) Severe Accidents. Based on the recommendations of this report a Validation Matrix for severe accident modelling codes was produced. Experiments performed up to the end of 1993 were considered for this validation matrix. To include recent experiments and to enlarge the scope, an update was formally inaugurated in January 1999 by the Task Group on Degraded Core Cooling, a sub-group of Principal Working Group 2 (PWG-2) on Coolant System Behaviour, and a selection of writing group members was commissioned. The present report documents the results of this study. The objective of the Validation Matrix is to define a basic set of experiments, for which comparison of the measured and calculated parameters forms a basis for establishing the accuracy of test predictions, covering the full range of in-vessel core degradation phenomena expected in light water reactor severe accident transients. The emphasis is on integral experiments, where interactions amongst key phenomena as well as the phenomena themselves are explored; however separate-effects experiments are also considered especially where these extend the parameter ranges to cover those expected in postulated LWR severe accident transients. As well as covering PWR and BWR designs of Western origin, the scope of the review has been extended to Eastern European (VVER) types. Similarly, the coverage of phenomena has been extended, starting as before from the initial heat-up but now proceeding through the in-core stage to include introduction of melt into the lower plenum and further to core coolability and retention to the lower plenum, with possible external cooling. Items of a purely thermal hydraulic nature involving no core degradation are excluded, having been covered in other validation matrix studies. Concerning fission product behaviour, the effect

  8. Vertex ring-indexed Lie algebras

    International Nuclear Information System (INIS)

    Fairlie, David; Zachos, Cosmas

    2005-01-01

    Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers

  9. Representations of some quantum tori Lie subalgebras

    International Nuclear Information System (INIS)

    Jiang, Jingjing; Wang, Song

    2013-01-01

    In this paper, we define the q-analog Virasoro-like Lie subalgebras in x ∞ =a ∞ (b ∞ , c ∞ , d ∞ ). The embedding formulas into x ∞ are introduced. Irreducible highest weight representations of A(tilde sign) q , B(tilde sign) q , and C(tilde sign) q -series of the q-analog Virasoro-like Lie algebras in terms of vertex operators are constructed. We also construct the polynomial representations of the A(tilde sign) q , B(tilde sign) q , C(tilde sign) q , and D(tilde sign) q -series of the q-analog Virasoro-like Lie algebras.

  10. Lie-Nambu and Lie-Poisson structures in linear and nonlinear quantum mechanics

    International Nuclear Information System (INIS)

    Czachor, M.

    1996-01-01

    Space of density matrices in quantum mechanics can be regarded as a Poisson manifold with the dynamics given by certain Lie-Poisson bracket corresponding to an infinite dimensional Lie algebra. The metric structure associated with this Lie algebra is given by a metric tensor which is not equivalent to the Cartan-Killing metric. The Lie-Poisson bracket can be written in a form involving a generalized (Lie-)Nambu bracket. This bracket can be used to generate a generalized, nonlinear and completely integrable dynamics of density matrices. (author)

  11. When is a lie acceptable? Work and private life lying acceptance depends on its beneficiary.

    Science.gov (United States)

    Cantarero, Katarzyna; Szarota, Piotr; Stamkou, Eftychia; Navas, Marisol; Dominguez Espinosa, Alejandra Del Carmen

    2018-01-01

    In this article we show that when analyzing attitude towards lying in a cross-cultural setting, both the beneficiary of the lie (self vs other) and the context (private life vs. professional domain) should be considered. In a study conducted in Estonia, Ireland, Mexico, The Netherlands, Poland, Spain, and Sweden (N = 1345), in which participants evaluated stories presenting various types of lies, we found usefulness of relying on the dimensions. Results showed that in the joint sample the most acceptable were other-oriented lies concerning private life, then other-oriented lies in the professional domain, followed by egoistic lies in the professional domain; and the least acceptance was shown for egoistic lies regarding one's private life. We found a negative correlation between acceptance of a behavior and the evaluation of its deceitfulness.

  12. Freestall maintenance: effects on lying behavior of dairy cattle.

    Science.gov (United States)

    Drissler, M; Gaworski, M; Tucker, C B; Weary, D M

    2005-07-01

    In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).

  13. New examples of continuum graded Lie algebras

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  14. Elaboration of a computer code for the solution of a two-dimensional two-energy group diffusion problem using the matrix response method

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1980-12-01

    An analytical procedure to solve the neutron diffusion equation in two dimensions and two energy groups was developed. The response matrix method was used coupled with an expansion of the neutron flux in finite Fourier series. A computer code 'MRF2D' was elaborated to implement the above mentioned procedure for PWR reactor core calculations. Different core symmetry options are allowed by the code, which is also flexible enough to allow for improvements by means of algorithm optimization. The code performance was compared with a corner mesh finite difference code named TVEDIM by using a International Atomic Energy Agency (IAEA) standard problem. Computer processing time 12,7% smaller is required by the MRF2D code to reach the same precision on criticality eigenvalue. (Author) [pt

  15. Lie n-algebras of BPS charges

    Energy Technology Data Exchange (ETDEWEB)

    Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)

    2017-03-16

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  16. Cross-Cultural Differences in Children's Choices, Categorizations, and Evaluations of Truths and Lies

    Science.gov (United States)

    Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Leyman, Gail; Lee, Kang

    2007-01-01

    This study examined cross-cultural differences and similarities in children's moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an…

  17. Casimir elements of epsilon Lie algebras

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)

  18. Lying in Business : Insights from Hannah Arendt’s ‘Lying in Politics’

    NARCIS (Netherlands)

    Eenkhoorn, P.; Graafland, J.J.

    2010-01-01

    The famous political philosopher Hannah Arendt develops several arguments why truthfulness cannot be counted among the political virtues. This article shows that similar arguments apply to lying in business. Based on Hannah Arendt’s theory, we distinguish five reasons why lying is a structural

  19. Teaching the Truth about Lies to Psychology Students: The Speed Lying Task

    Science.gov (United States)

    Pearson, Matthew R.; Richardson, Thomas A.

    2013-01-01

    To teach the importance of deception in everyday social life, an in-class activity called the "Speed Lying Task" was given in an introductory social psychology class. In class, two major research findings were replicated: Individuals detected deception at levels no better than expected by chance and lie detection confidence was unrelated…

  20. Discrete finite nilpotent Lie analogs: New models for unified gauge field theory

    International Nuclear Information System (INIS)

    Kornacker, K.

    1978-01-01

    To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors

  1. La Matriz BCG (Boston Consulting Group para la Gestión de Publicaciones Periádicas The BCG (Boston Consulting Group matrix for management of periodic publications

    Directory of Open Access Journals (Sweden)

    Mª del Pilar Serrano Gallardo

    2005-11-01

    Full Text Available El marketing documental se ha de encargar de satisfacer las necesidades informativas de los usuarios de forma rentable para ellos y para el centro; para ello se ha de partir de un conjunto de herramientas técnicas que se conocen como el Marketing - Mix, y que abarcan el Producto, el Precio, la Distribución y la Comunicación. Dentro de las herramientas destinadas al producto se encuentra la matriz BCG (Boston Consulting Group, que está orientada a gestión, sobre la base de la situación del producto en el mercado. El objetivo del presente artículo es proponer una matriz BCG para la gestión de una publicación periódica enfermera en nuestro mercado.La matriz BCG se construye con dos variables: el Crecimiento del Mercado y la Tasa Relativa del Mercado, las cuales se han operacionalizado como Media de Crecimiento Anual en el número de suscripciones de tres revistas enfermeras (Rol de Enfermería, Metas de Enfermería y Nursing durante el último quinquenio y Media de Tirada Actual de las tres publicaciones. Se han utilizado datos ofrecidos por la Oficina para el Control de la Difusión (OJD. La matriz BCG puede constituirse como herramienta básica en la gestión de publicaciones, dado que tras determinar la situación del producto, se pueden establecer estrategias que ayuden o favorezcan el mejor posicionamiento posible del producto en el mercado.Documentary marketing has to address the information needs of the users in a manner that is cost-effective not only for them but also for the institution. To do this, a set of technical tools, known as Marketing- Mix, need to be used. These tools include the Product, Price, Distribution and Communication. Within the set of tools used for the Product, we find the BCG matrix (Boston Consulting Group, a tool aimed at the management of the product on the basis of where it is positioned in the market. The objective of this paper is to propose a BCG matrix for the management of a nursing periodic

  2. Growth of some varieties of Lie superalgebras

    International Nuclear Information System (INIS)

    Zaicev, M V; Mishchenko, S P

    2007-01-01

    We study numerical characteristics of varieties of Lie superalgebras and, in particular, the growth of codimensions. An example of an insoluble variety of almost polynomial growth is constructed. We prove that the exponent of this variety is equal to three and calculate the growth exponents for two earlier known soluble varieties

  3. Lie Algebras for Constructing Nonlinear Integrable Couplings

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2011-01-01

    Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)

  4. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  5. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  6. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  7. Differential geometry on Hopf algebras and quantum groups

    International Nuclear Information System (INIS)

    Watts, P.

    1994-01-01

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

  8. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    Science.gov (United States)

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  9. Density matrix renormalization group simulations of SU(N ) Heisenberg chains using standard Young tableaus: Fundamental representation and comparison with a finite-size Bethe ansatz

    Science.gov (United States)

    Nataf, Pierre; Mila, Frédéric

    2018-04-01

    We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.

  10. Noether and Lie symmetries for charged perfect fluids

    International Nuclear Information System (INIS)

    Kweyama, M C; Govinder, K S; Maharaj, S D

    2011-01-01

    We study the underlying nonlinear partial differential equation that governs the behaviour of spherically symmetric charged fluids in general relativity. We investigate the conditions for the equation to admit a first integral or be reduced to quadratures using symmetry methods for differential equations. A general Noether first integral is found. We also undertake a comprehensive group analysis of the underlying equation using Lie point symmetries. The existence of a Lie symmetry is subject to solving an integro-differential equation in general; we investigate the conditions under which it can be reduced to quadratures. Earlier results for uncharged fluids and particular first integrals for charged matter are regained as special cases of our treatment.

  11. Normalization in Lie algebras via mould calculus and applications

    Science.gov (United States)

    Paul, Thierry; Sauzin, David

    2017-11-01

    We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.

  12. On the exceptional generalised Lie derivative for d≥7

    International Nuclear Information System (INIS)

    Rosabal, J.A.

    2015-01-01

    In this work we revisit the E_8×ℝ"+ generalised Lie derivative encoding the algebra of diffeomorphisms and gauge transformations of compactifications of M-theory on eight-dimensional manifolds, by extending certain features of the E_7×ℝ"+ one. Compared to its E_d×ℝ"+, d≤7 counterparts, a new term is needed for consistency. However, we find that no compensating parameters need to be introduced, but rather that the new term can be written in terms of the ordinary generalised gauge parameters by means of a connection. This implies that no further degrees of freedom, beyond those of the field content of the E_8 group, are needed to have a well defined theory. We discuss the implications of the structure of the E_8×ℝ"+ generalised transformation on the construction of the d=8 generalised geometry. Finally, we suggest how to lift the generalised Lie derivative to eleven dimensions.

  13. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G.

    Science.gov (United States)

    Jensen, Christian Salgård; Dam-Nielsen, Casper; Arpi, Magnus

    2015-08-01

    The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying results, with an identification rate from below 50% to 100%. Large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G isolated from blood cultures between January 1, 2007 and May 1, 2012 were included in the study. Isolates were identified to the species level using a combination of phenotypic characteristics and 16s rRNA sequencing. The isolates were subjected to MALDI-ToF analysis. We used a two-stage approach starting with the direct method. If no valid result was obtained we proceeded to an extraction protocol. Scores above 2 were considered valid identification at the species level. A total of 97 Streptococcus pyogenes, 133 Streptococcus dysgalactiae, and 2 Streptococcus canis isolates were tested; 94%, 66%, and 100% of S. pyogenes, S. dysgalactiae, and S. canis, respectively, were correctly identified by MALDI-ToF. In most instances when the isolates were not identified by MALDI-ToF this was because MALDI-ToF was unable to differentiate between S. pyogenes and S. dysgalactiae. By removing two S. pyogenes reference spectra from the MALDI-ToF database the proportion of correctly identified isolates increased to 96% overall. MALDI-ToF is a promising method for discriminating between S. dysgalactiae, S. canis, and S. equi, although more strains need to be tested to clarify this.

  14. The Effect of Telling Lies on Belief in the Truth

    Directory of Open Access Journals (Sweden)

    Danielle Polage

    2017-11-01

    Full Text Available The current study looks at the effect of telling lies, in contrast to simply planning lies, on participants’ belief in the truth. Participants planned and told a lie, planned to tell a lie but didn’t tell it, told an unplanned lie, or neither planned nor told a lie (control about events that did not actually happen to them. Participants attempted to convince researchers that all of the stories told were true. Results show that telling a lie plays a more important role in inflating belief scores than simply preparing the script of a lie. Cognitive dissonance may lead to motivated forgetting of information that does not align with the lie. This research suggests that telling lies may lead to confusion as to the veracity of the lie leading to inflated belief scores.

  15. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  16. Poisson-Lie T-plurality

    International Nuclear Information System (INIS)

    Unge, Rikard von

    2002-01-01

    We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)

  17. Does a point lie inside a polygon

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1988-01-01

    A superficially simple problem in computational geometry is that of determining whether a query point P lies in the interior of a polygon if it lies in the polygon's plane. Answering this question is often required when tracking particles in a Monte Carlo program; it is asked frequently and an efficient algorithm is crucial. Littlefield has recently rediscovered Shimrat's algorithm, while in separate works, Wooff, Preparata and Shamos and Mehlhorn, as well as Yamaguchi, give other algorithms. A practical algorithm answering this question when the polygon's plane is skewed in space is not immediately evident from most of these methods. Additionally, all but one fails when two sides extend to infinity (open polygons). In this paper the author review the above methods and present a new, efficient algorithm, valid for all convex polygons, open or closed, and topologically connected in n-dimensional space (n ≥ 2)

  18. On split Lie triple systems II

    Indian Academy of Sciences (India)

    the proof is complete. Acknowledgements. The first author was supported by the PCI of the UCA 'Teorıa de Lie y Teorıa de Espacios de Banach', by the PAI with project numbers FQM-298, FQM-3737, FQM-2467, by the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with fondos ...

  19. Simple Lie algebras and Dynkin diagrams

    International Nuclear Information System (INIS)

    Buccella, F.

    1983-01-01

    The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras

  20. Unitary representations of basic classical Lie superalgebras

    International Nuclear Information System (INIS)

    Gould, M.D.; Zhang, R.B.

    1990-01-01

    We have obtained all the finite-dimensional unitary irreps of gl(mvertical stroken) and C(n), which also exhaust such irreps of all the basic classical Lie superalgebras. The lowest weights of such irreps are worked out explicitly. It is also shown that the contravariant and covariant tensor irreps of gl(mvertical stroken) are unitary irreps of type (1) and type (2) respectively, explaining the applicability of the Young diagram method to these two types of tensor irreps. (orig.)

  1. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    Science.gov (United States)

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  2. Facilitating organisational development using a group-based formative assessment and benchmarking method: design and implementation of the International Family Practice Maturity Matrix.

    Science.gov (United States)

    Elwyn, Glyn; Bekkers, Marie-Jet; Tapp, Laura; Edwards, Adrian; Newcombe, Robert; Eriksson, Tina; Braspenning, Jozé; Kuch, Christine; Adzic, Zlata Ozvacic; Ayankogbe, Olayinka; Cvetko, Tatjana; In 't Veld, Kees; Karotsis, Antonis; Kersnik, Janko; Lefebvre, Luc; Mecini, Ilir; Petricek, Goranka; Pisco, Luis; Thesen, Janecke; Turón, José María; van Rossen, Edward; Grol, Richard

    2010-12-01

    Well-organised practices deliver higher-quality care. Yet there has been very little effort so far to help primary care organisations achieve higher levels of team performance and to help them identify and prioritise areas where quality improvement efforts should be concentrated. No attempt at all has been made to achieve a method which would be capable of providing comparisons--and the stimulus for further improvement--at an international level. The development of the International Family Practice Maturity Matrix took place in three phases: (1) selection and refinement of organisational dimensions; (2) development of incremental scales based on a recognised theoretical framework; and (3) testing the feasibility of the approach on an international basis, including generation of an automated web-based benchmarking system. This work has demonstrated the feasibility of developing an organisational assessment tool for primary care organisations that is sufficiently generic to cross international borders and is applicable across a diverse range of health settings, from state-organised systems to insurer-based health economies. It proved possible to introduce this assessment method in 11 countries in Europe and one in Africa, and to generate comparison benchmarks based on the data collected. The evaluation of the assessment process was uniformly positive with the view that the approach efficiently enables the identification of priorities for organisational development and quality improvement at the same time as motivating change by virtue of the group dynamics. We are not aware of any other organisational assessment method for primary care which has been 'born international,' and that has involved attention to theory, dimension selection and item refinement. The principal aims were to achieve an organisational assessment which gains added value by using interaction, engagement comparative benchmarks: aims which have been achieved. The next step is to achieve wider

  3. Preschoolers' Understanding of Lies and Innocent and Negligent Mistakes.

    Science.gov (United States)

    Siegal, Michael; Peterson, Candida C.

    1998-01-01

    Examined preschoolers' ability to distinguish innocent and negligent mistakes from lies. Found that, when asked to identify a mistake or lie about a food's contact with contaminants and identify a bystander's reaction, children distinguished mistakes from lies; they could also discriminate between lies and both negligent mistakes that generate…

  4. Legitimate lies : The relationship between omission, commission, and cheating

    NARCIS (Netherlands)

    Pittarello, Andrea; Rubaltelli, Enrico; Motro, Daphna

    Across four experiments, we show that when people can serve their self-interest, they are more likely to refrain from reporting the truth ( lie of omission) than actively lie ( lie of commission). We developed a novel online "Heads or Tails" task in which participants can lie to win a monetary

  5. A survey on stability and rigidity results for Lie algebras

    NARCIS (Netherlands)

    Crainic, Marius; Schätz, Florian; Struchiner, Ivan

    2014-01-01

    We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).

  6. Cross-Cultural Differences in Children’s Choices, Categorizations, and Evaluations of Truths and Lies

    Science.gov (United States)

    Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Heyman, Gail; Lee, Kang

    2008-01-01

    This study examined cross-cultural differences and similarities in children’s moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an individual or vice versa. Participants chose to lie or to tell the truth as if they were the character (Experiments 1 and 2) and categorized and evaluated the story characters’ truthful and untruthful statements (Experiments 3 and 4). Most children in both cultures labeled lies as lies and truths as truths. The major cultural differences lay in choices and moral evaluations. Chinese children chose lying to help a collective but harm an individual, and they rated it less negatively than lying with opposite consequences. Chinese children rated truth telling to help an individual but harm a group less positively than the alternative. Canadian children did the opposite. These findings suggest that cross-cultural differences in emphasis on groups versus individuals affect children’s choices and moral judgments about truth and deception. PMID:17352539

  7. Lie algebra of conformal Killing–Yano forms

    International Nuclear Information System (INIS)

    Ertem, Ümit

    2016-01-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)

  8. Internally connected graphs and the Kashiwara-Vergne Lie algebra

    Science.gov (United States)

    Felder, Matteo

    2018-02-01

    It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1 , thus giving a way to interpolate between these two Lie algebras.

  9. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  10. 873rd Meeting of the American Mathematical Society on Lie Algebras, Cohomology and New Applications to Quantum Mechanics

    CERN Document Server

    Olver, Peter J; the American Mathematical Society on Lie Algebras, Cohomology and New Applications to Quantum Mechanics

    1994-01-01

    This volume is devoted to a range of important new ideas arising in the applications of Lie groups and Lie algebras to Schrödinger operators and associated quantum mechanical systems. In these applications, the group does not appear as a standard symmetry group, but rather as a "hidden" symmetry group whose representation theory can still be employed to analyze at least part of the spectrum of the operator. In light of the rapid developments in this subject, a Special Session was organized at the AMS meeting at Southwest Missouri State University in March 1992 in order to bring together, perhaps for the first time, mathematicians and physicists working in closely related areas. The contributions to this volume cover Lie group methods, Lie algebras and Lie algebra cohomology, representation theory, orthogonal polynomials, q-series, conformal field theory, quantum groups, scattering theory, classical invariant theory, and other topics. This volume, which contains a good balance of research and survey papers, p...

  11. The Relative Lie Algebra Cohomology of the Weil Representation

    Science.gov (United States)

    Ralston, Jacob

    We study the relative Lie algebra cohomology of so(p,q) with values in the Weil representation piof the dual pair Sp(2k, R) x O(p,q ). Using the Fock model defined in Chapter 2, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has E0 term, the associated graded complex, isomorphic to a Koszul complex, see Section 3.4. It is immediate that the construction of the spectral sequence of Chapter 3 can be applied to any reductive subalgebra g ⊂ sp(2k(p + q), R). By the Weil representation of O( p,|q), we mean the twist of the Weil representation of the two-fold cover O(pq)[special character omitted] by a suitable character. We do this to make the center of O(pq)[special character omitted] act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition 4.10.2. In case the symplectic group is large relative to the orthogonal group (k ≥ pq), the E 0 term is isomorphic to a Koszul complex defined by a regular sequence, see 3.4. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case k BMR], this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.

  12. Advances in geometry and Lie algebras from supergravity

    CERN Document Server

    Frè, Pietro Giuseppe

    2018-01-01

    This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject. .

  13. Vector fields and nilpotent Lie algebras

    Science.gov (United States)

    Grayson, Matthew; Grossman, Robert

    1987-01-01

    An infinite-dimensional family of flows E is described with the property that the associated dynamical system: x(t) = E(x(t)), where x(0) is a member of the set R to the Nth power, is explicitly integrable in closed form. These flows E are of the form E = E1 + E2, where E1 and E2 are the generators of a nilpotent Lie algebra, which is either free, or satisfies some relations at a point. These flows can then be used to approximate the flows of more general types of dynamical systems.

  14. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2011-01-01

    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  15. Effects of bedding quality on lying behavior of dairy cows.

    Science.gov (United States)

    Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M

    2007-12-01

    Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.

  16. Validation matrix for the assessment of thermal-hydraulic codes for VVER LOCA and transients. A report by the OECD support group on the VVER thermal-hydraulic code validation matrix

    International Nuclear Information System (INIS)

    2001-06-01

    This report deals with an internationally agreed experimental test facility matrix for the validation of best estimate thermal-hydraulic computer codes applied for the analysis of VVER reactor primary systems in accident and transient conditions. Firstly, the main physical phenomena that occur during the considered accidents are identified, test types are specified, and test facilities that supplement the CSNI CCVMs and are suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. The construction of VVER Thermal-Hydraulic Code Validation Matrix follows the logic of the CSNI Code Validation Matrices (CCVM). Similar to the CCVM it is an attempt to collect together in a systematic way the best sets of available test data for VVER specific code validation, assessment and improvement, including quantitative assessment of uncertainties in the modelling of phenomena by the codes. In addition to this objective, it is an attempt to record information which has been generated in countries operating VVER reactors over the last 20 years so that it is more accessible to present and future workers in that field than would otherwise be the case. (authors)

  17. Some quantum Lie algebras of type D{sub n} positive

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Cesar [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico); Juarez-Ramirez, Maria Araceli [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico)

    2003-03-07

    A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D{sub n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D{sub n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.

  18. A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients

    OpenAIRE

    Casas Pérez, Fernando; Chiralt Monleon, Cristina

    2014-01-01

    A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...

  19. On Lie point symmetry of classical Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Maharana, Karmadeva

    2001-06-01

    We perform the group analysis of Witten's equations of motion for a particle moving in the presence of a magnetic monopole, and also when constrained to move on the surface of a sphere, which is the classical example of Wess-Zumino-Witten model. We also consider variations of this model. Our analysis gives the generators of the corresponding Lie point symmetries. The Lie symmetry corresponding to Kepler's third law is obtained in two related examples. (author)

  20. Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion

    International Nuclear Information System (INIS)

    Zhang Mei-Ling; Wang Xiao-Xiao; Xie Yin-Li; Jia Li-Qun; Sun Xian-Ting

    2011-01-01

    Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results. (general)

  1. The lie-algebraic structures and integrability of differential and differential-difference nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.

    2007-05-01

    The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)

  2. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows.

    Science.gov (United States)

    Kaufman, E I; LeBlanc, S J; McBride, B W; Duffield, T F; DeVries, T J

    2016-09-01

    The objective of this study was to characterize the association of lying behavior and subclinical ketosis (SCK) in transition dairy cows. A total of 339 dairy cows (107 primiparous and 232 multiparous) on 4 commercial dairy farms were monitored for lying behavior and SCK from 14d before calving until 28 d after calving. Lying time, frequency of lying bouts, and average lying bout length were measured using automated data loggers 24h/d. Cows were tested for SCK 1×/wk by taking a blood sample and analyzing for β-hydroxybutyrate; cows with β-hydroxybutyrate ≥1.2mmol/L postpartum were considered to have SCK. Cases of retained placenta, metritis, milk fever, or mastitis during the study period were recorded and cows were categorized into 1 of 4 groups: healthy (HLT) cows had no SCK or any other health problem (n=139); cows treated for at least 1 health issue other than SCK (n=50); SCK (HYK) cows with no other health problems during transition (n=97); or subclinically ketotic plus (HYK+) cows that had SCK and 1 or more other health problems (n=53). Daily lying time was summarized by week and comparisons were made between HLT, HYK, and HYK+, respectively. We found no difference among health categories in lying time, bout frequency, or bout length fromwk -2 towk +4 relative to calving for first-lactation cows. Differences in lying time for multiparous cows were seen inwk +1, when HYK+ cows spent 92±24.0 min/d more time lying down than HLT cows, and duringwk +3 and +4 when HYK cows spent 44±16.7 and 41±18.9 min/d, respectively, more time lying down than HLT cows. Increased odds of HYK+ were found to be associated with higher parity, longer dry period, and greater stall stocking density inwk -1 and longer lying time duringwk +1. When comparing HYK to HLT cows, the same variables were associated with odds of SCK; however, lying time was not retained in the final model. These results suggest that monitoring lying time may contribute to identifying multiparous cows

  3. Orbit Classification of Qutrit via the Gram Matrix

    International Nuclear Information System (INIS)

    Tay, B. A.; Zainuddin, Hishamuddin

    2008-01-01

    We classify the orbits generated by unitary transformation on the density matrices of the three-state quantum systems (qutrits) via the Gram matrix. The Gram matrix is a real symmetric matrix formed from the Hilbert–Schmidt scalar products of the vectors lying in the tangent space to the orbits. The rank of the Gram matrix determines the dimensions of the orbits, which fall into three classes for qutrits. (general)

  4. On Quantum Lie Nilpotency of Order 2

    Directory of Open Access Journals (Sweden)

    E. A. Kireeva

    2016-01-01

    Full Text Available The paper investigates the free algebras of varieties of associative algebras modulo identities of quantum Lie nilpotency of order 1 and 2. Let q be an invertible element of the ground field K (or of its extension. The element[x,y]q = xy-qyxof the free associative algebra is called a quantum commutator. We consider the algebras modulo identities                                                           [x,y]q = 0                                             (1and                                                      [[x,y]q ,z]q = 0.                                       (2It is natural to consider the aforementioned algebras as the quantum analogs of commutative algebras and algebras of Lie nilpotency of order 2. The free algebras of the varieties of associative algebras modulo the identity of Lie nilpotency of order 2, that is the identity[[x,y] ,z] =0,where [x,y]=xy-yx is a Lie commutator, are of great interest in the theory of algebras with polynomial identities, since it was proved by A.V.Grishin for algebras over fields of characteristic 2, and V.V.Shchigolev for algebras over fields of characteristic p>2, that these algebras contain non-finitely generated T-spaces.We prove in the paper that the algebras modulo identities (1 and (2 are nilpotent in the usual sense and calculate precisely the nilpotency order of these algebras. More precisely, we prove that the free algebra of the variety of associative algebras modulo identity (1 is nilpotent of order 2 if q ≠ ± 1, and nilpotent of order 3 if q = - 1 and the characteristic of K is not equal to 2. It is also proved that the free algebra of the variety of associative algebras modulo identity (2 is nilpotent of order 3 if q3 ≠ 1, q ≠ ± 1, nilpotent of order 4 if q3 = 1, q ≠ 1, and nilpotent of

  5. A generalization of the Lie derivative

    International Nuclear Information System (INIS)

    Dolan, P.

    1984-01-01

    If X=xisup(i)deltasub(i) and Y=etasup(i)deltasub(i) are vector fields then it is well-known that the Lie derivative Poundsub(X)Y equivalent to [X,Y] (xisup(s)deltasub(s) etasup(s)deltasub(s)xisup(i))deltasub(i) is also a vector field under general coordinate transformations. A generalization of this result, due to previous workers, allows a definition of Poundsub(F)G, where F,G are arbitrary contravariant tensor fields. The formulae are linear in the first partial derivatives of F and G. An application to the theory of Killing-Yano tensor fields on Riemannian manifolds is given. (author)

  6. Effect of high lying states on the ground and few low lying excited O+ energy levels of some closed-shell nuclei

    International Nuclear Information System (INIS)

    Ayoub, N.Y.

    1980-02-01

    The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)

  7. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  8. Report of study group 8.3 ''environmental management and reporting''; Rapport du groupe d'etude 8.3 ''la gestion et l'evaluation des problemes lies a l'environnement''

    Energy Technology Data Exchange (ETDEWEB)

    Riva, A.

    2000-07-01

    This report details the work undertaken by the Study Group 8.3 during the triennium 1997-2000 on environmental management and reporting through the use of results of inquiries and the analysis of published documents. For environmental management it presents a review of standards, guidelines, documents and practices for industrial sectors. The results of a survey on the application of environmental management systems within the gas industry are presented with information on their structure and on the organisation adopted for the implementation. The gas industry has been gaining experience in environmental reporting in recent years. The contents recommended for environmental reports by international guidelines are presented. A review of several reports published by gas industries lead to identify the most relevant contents that can be used by gas companies as reference in preparing environmental reports. Challenges and benefits for the adoption of environmental management systems and the publication of environmental reports are evaluated and recommendations for the gas industry are given. Case studies on experiences of the gas industry in developing environmental management systems are described. (author)

  9. Biderivations of finite dimensional complex simple Lie algebras

    OpenAIRE

    Tang, Xiaomin

    2016-01-01

    In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.

  10. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  11. The geometry of lie algebras and broken SO(6) symmetries

    International Nuclear Information System (INIS)

    Lawrence, T.R.

    2001-10-01

    Non-linear realisations of the groups SU(2), SO(1,4) and SO(2,4) are analysed, described by the coset spaces SU(2)/U(1), SO(1,4)/SO(1,3) and SO(2,4)/SO(1,3) x SO(1,1). The Lie algebras of certain special unitary and special orthogonal groups are studied and their projection operators are determined in order to facilitate the above analyses, in particular that of SO(2,4)/SO(l,3) x SO(1,1). The analysis consists of determining the transformation properties of the Goldstone bosons, constructing the most general possible Lagrangian for the realisations and finding the metric of the coset space. (author)

  12. Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions

    Science.gov (United States)

    Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara

    2012-01-01

    This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…

  13. Lie n-derivations on 7 -subspace lattice algebras

    Indian Academy of Sciences (India)

    all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...

  14. Dimension of the c-nilpotent multiplier of Lie algebras

    Indian Academy of Sciences (India)

    Abstract. The purpose of this paper is to derive some inequalities for dimension of the c-nilpotent multiplier of finite dimensional Lie algebras and their factor Lie algebras. We further obtain an inequality between dimensions of c-nilpotent multiplier of Lie algebra L and tensor product of a central ideal by its abelianized factor ...

  15. Lie detection based on nonverbal expressions - study of the Czech Republic Police employees

    Directory of Open Access Journals (Sweden)

    Hedvika Boukalová

    2014-12-01

    Full Text Available Lie detection based on nonverbal behavior is not a standard method, it is an intuitive process, applied by lay persons, but also professionals. Some of the major sources (e.g. widespread Interrogation Manual by F. Inbau et al., 2004 offer clear recommendations about the nonverbal behavior of liars to investigators of serious crime. These findings are not supported by the research, moreover they can lead to lowering the ability to detect lie (Blair, Kooi 2004. Another topic is mapping the skills of professionals (police officers, members of the secret services and non-specialists to detect lies by nonverbal signs. Across the studies (with few exceptions a low performance in the task of detecting lies by nonverbal expressions (Ekman P., 1996; Vrij, 2004 and others is found. The levels of success are usually around the level of chance. The potential reasons for such results are analyzed (e.g. Blair, Kooi, 2004. However a group of psychologists led by P. Ekman and M. O'Sullivan (O'Sullivan, 2007 managed to find in their years lasting research a group of people whose ability to detect lies is well above the population average. This group is diverse in terms of age, interests and professions, all of them come from the USA. There were certain common features found in this group and also a focus on similar phenomena in the detection of lying. The main goal and research question is to find out: what is the success rate of differentiation between lies and truths in this specific professional group of Czech population, is it the same or different from the results reported in the context of available resources. The research will focus on the ability of respondents to determine the truth or deceit on the basis of non-verbal and paraverbal expressions of observed subjects, with focus on specific professional groups - mainly police workers. We assume, that the police officers are frequently in the contact with people, who are not willing to reveal critical

  16. Using Lie Symmetry Analysis to Solve a Problem That Models Mass Transfer from a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    W. Sinkala

    2012-01-01

    Full Text Available We use Lie symmetry analysis to solve a boundary value problem that arises in chemical engineering, namely, mass transfer during the contact of a solid slab with an overhead flowing fluid. This problem was earlier tackled using Adomian decomposition method (Fatoorehchi and Abolghasemi 2011, leading to the Adomian series form of solution. It turns out that the application of Lie group analysis yields an elegant form of the solution. After introducing the governing mathematical model and some preliminaries of Lie symmetry analysis, we compute the Lie point symmetries admitted by the governing equation and use these to construct the desired solution as an invariant solution.

  17. Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system

    International Nuclear Information System (INIS)

    Cherniha, Roman; Davydovych, Vasyl’

    2013-01-01

    Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)

  18. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; LIU Wei

    2002-01-01

    In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.

  19. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIUGuang-Zhou; LIUWei

    2002-01-01

    In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.

  20. Polygraph lie detection on real events in a laboratory setting.

    Science.gov (United States)

    Bradley, M T; Cullen, M C

    1993-06-01

    This laboratory study dealt with real-life intense emotional events. Subjects generated embarrassing stories from their experience, then submitted to polygraph testing and, by lying, denied their stories and, by telling the truth, denied a randomly assigned story. Money was given as an incentive to be judged innocent on each story. An interrogator, blind to the stories, used Control Question Tests and found subjects more deceptive when lying than when truthful. Stories interacted with order such that lying on the second story was more easily detected than lying on the first. Embarrassing stories provide an alternative to the use of mock crimes to study lie detection in the laboratory.

  1. Internally connected graphs and the Kashiwara-Vergne Lie algebra

    OpenAIRE

    Felder, Matteo

    2016-01-01

    It is conjectured that the Kashiwara-Vergne Lie algebra $\\widehat{\\mathfrak{krv}}_2$ is isomorphic to the direct sum of the Grothendieck-Teichm\\"uller Lie algebra $\\mathfrak{grt}_1$ and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of $\\widehat{\\mathfrak{krv}}_2$ whose intersection is $\\mathfrak{grt}_1$, thus giving a way to interpolate between these two Lie algebras.

  2. Devious Lies: Adventures in Freelance Science Outreach

    Science.gov (United States)

    Fatland, D. R.

    2003-12-01

    Observations are given from two freelance science outreach projects undertaken by the author: Tutoring at-risk secondary students and teaching astronomy to 5th-7th graders in a camp retreat environment. Two recurring thematic challenges in these experiences are considered: First the 'Misperception Problem', the institutionalized chasm between the process of doing science and K-12 science education (wherein science is often portrayed as something distant and inaccessible, while ironically children are necessarily excellent scientists). And second the 'Engagement Problem', engaging a student's attention and energy by matching teaching material and--more importantly--teaching techniques to the student's state of development. The objective of this work is twofold: To learn how to address these two challenges and to empower the students in a manner independent of the scientific content of any particular subject. An underlying hypothesis is that confidence to problem solve (a desirable life-skill) can be made more accessible through a combination of problem solving by the student and seeing how others have solved seemingly impossible problems. This hypothesis (or agenda) compels an emphasis on critical thinking and raises the dilemma of reconciling non-directed teaching with very pointed conclusions about the verity of pseudo-science and ideas prevalent about science in popular culture. An interesting pedagogical found-object in this regard is the useful 'devious lie' which can encourage a student to question the assumption that the teacher (and by extension any professed expert) has the right answers.

  3. Quantum integrable systems related to lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1983-01-01

    Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)

  4. Moving Picture, Lying Image: Unreliable Cinematic Narratives

    Directory of Open Access Journals (Sweden)

    Csönge Tamás

    2015-08-01

    Full Text Available By coining the term “unreliable narrator” Wayne Booth hypothesized another agent in his model besides the author, the implicit author, to explain the double coding of narratives where a distorted view of reality and the exposure of this distortion are presented simultaneously. The article deals with the applicability of the concept in visual narratives. Since unreliability is traditionally considered to be intertwined with first person narratives, it works through subjective mediators. According to scholarly literature on the subject, the narrator has to be strongly characterized, or in other words, anthropomorphized. In the case of film, the main problem is that the narrator is either missing or the narration cannot be attributed entirely to them. There is a medial rupture where the apparatus mediates the story instead of a character’s oral or written discourse. The present paper focuses on some important but overlooked questions about the nature of cinematic storytelling through a re-examination of |the lying flashback in Alfred Hitchcock's Stage Fright. Can a character-narrator control the images the viewer sees? How can the filmic image still be unreliable without having an anthropomorphic narrator? How useful is the term focalization when we are dealing with embedded character-narratives in film?

  5. Tensor operators in R-matrix approach

    International Nuclear Information System (INIS)

    Bytsko, A.G.; Rossijskaya Akademiya Nauk, St. Petersburg

    1995-12-01

    The definitions and some properties (e.g. the Wigner-Eckart theorem, the fusion procedure) of covariant and contravariant q-tensor operators for quasitriangular quantum Lie algebras are formulated in the R-matrix language. The case of U q (sl(n)) (in particular, for n=2) is discussed in more detail. (orig.)

  6. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not

    Directory of Open Access Journals (Sweden)

    Katarzyna Cantarero

    2017-06-01

    Full Text Available Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 (N = 79, we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one’s back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 (N = 88, which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  7. White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not.

    Science.gov (United States)

    Cantarero, Katarzyna; Parzuchowski, Michal; Dukala, Karolina

    2017-01-01

    Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 ( N = 79), we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one's back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 ( N = 88), which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.

  8. A matrix S for all simple current extensions

    International Nuclear Information System (INIS)

    Fuchs, J.; Schellekens, A.N.; Schweigert, C.

    1996-01-01

    A formula is presented for the modular transformation matrix S for any simple current extension of the chiral algebra of a conformal field theory. This provides in particular an algorithm for resolving arbitrary simple current fixed points, in such a way that the matrix S we obtain is unitary and symmetric and furnishes a modular group representation. The formalism works in principle for any conformal field theory. A crucial ingredient is a set of matrices S ab J , where J is a simple current and a and b are fixed points of J. We expect that these input matrices realize the modular group for the torus one-point functions of the simple currents. In the case of WZW-models these matrices can be identified with the S-matrices of the orbit Lie algebras that were introduced recently. As a special case of our conjecture we obtain the modular matrix S for WZW-theories based on group manifolds that are not simply connected, as well as for most coset models. (orig.)

  9. An analogue of Wagner's theorem for decompositions of matrix algebras

    International Nuclear Information System (INIS)

    Ivanov, D N

    2004-01-01

    Wagner's celebrated theorem states that a finite affine plane whose collineation group is transitive on lines is a translation plane. The notion of an orthogonal decomposition (OD) of a classically semisimple associative algebra introduced by the author allows one to draw an analogy between finite affine planes of order n and ODs of the matrix algebra M n (C) into a sum of subalgebras conjugate to the diagonal subalgebra. These ODs are called WP-decompositions and are equivalent to the well-known ODs of simple Lie algebras of type A n-1 into a sum of Cartan subalgebras. In this paper we give a detailed and improved proof of the analogue of Wagner's theorem for WP-decompositions of the matrix algebra of odd non-square order an outline of which was earlier published in a short note in 'Russian Math. Surveys' in 1994. In addition, in the framework of the theory of ODs of associative algebras, based on the method of idempotent bases, we obtain an elementary proof of the well-known Kostrikin-Tiep theorem on irreducible ODs of Lie algebras of type A n-1 in the case where n is a prime-power.

  10. A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method.

    Science.gov (United States)

    Nasirahmadi, A; Hensel, O; Edwards, S A; Sturm, B

    2017-01-01

    Machine vision-based monitoring of pig lying behaviour is a fast and non-intrusive approach that could be used to improve animal health and welfare. Four pens with 22 pigs in each were selected at a commercial pig farm and monitored for 15 days using top view cameras. Three thermal categories were selected relative to room setpoint temperature. An image processing technique based on Delaunay triangulation (DT) was utilized. Different lying patterns (close, normal and far) were defined regarding the perimeter of each DT triangle and the percentages of each lying pattern were obtained in each thermal category. A method using a multilayer perceptron (MLP) neural network, to automatically classify group lying behaviour of pigs into three thermal categories, was developed and tested for its feasibility. The DT features (mean value of perimeters, maximum and minimum length of sides of triangles) were calculated as inputs for the MLP classifier. The network was trained, validated and tested and the results revealed that MLP could classify lying features into the three thermal categories with high overall accuracy (95.6%). The technique indicates that a combination of image processing, MLP classification and mathematical modelling can be used as a precise method for quantifying pig lying behaviour in welfare investigations.

  11. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  12. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  13. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  14. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    Cary, J.R.

    1978-06-01

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  15. Lie-Hamilton systems on curved spaces: a geometrical approach

    Science.gov (United States)

    Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz

    2017-12-01

    A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.

  16. Diagram Techniques in Group Theory

    Science.gov (United States)

    Stedman, Geoffrey E.

    2009-09-01

    Preface; 1. Elementary examples; 2. Angular momentum coupling diagram techniques; 3. Extension to compact simple phase groups; 4. Symmetric and unitary groups; 5. Lie groups and Lie algebras; 6. Polarisation dependence of multiphoton processes; 7. Quantum field theoretic diagram techniques for atomic systems; 8. Applications; Appendix; References; Indexes.

  17. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  18. Expansion of the Lie algebra and its applications

    International Nuclear Information System (INIS)

    Guo Fukui; Zhang Yufeng

    2006-01-01

    We take the Lie algebra A1 as an example to illustrate a detail approach for expanding a finite dimensional Lie algebra into a higher-dimensional one. By making use of the late and its resulting loop algebra, a few linear isospectral problems with multi-component potential functions are established. It follows from them that some new integrable hierarchies of soliton equations are worked out. In addition, various Lie algebras may be constructed for which the integrable couplings of soliton equations are obtained by employing the expanding technique of the the Lie algebras

  19. 3-Lie bialgebras (Lb,Cd and (Lb,Ce

    Directory of Open Access Journals (Sweden)

    Bai Ruipu

    2016-05-01

    Full Text Available Four dimensional $3$-Lie coalgebras with two-dimensional derived algebras, and four-dimensional $3$-Lie bialgebras of type $(L_b, C_c$ are classified. It is proved that there exist three classes of four dimensional $3$-Lie coalgebras with two-dimensional derived algebra which are $(L, C_{c_i}$, $i=1, 2, 3$ (Lemma 3.1, and ten classes of four dimensional $3$-Lie bialgebras of type $(L_b, C_c$ (Theorem 3.2.

  20. Ethical Matrix Manual

    NARCIS (Netherlands)

    Mepham, B.; Kaiser, M.; Thorstensen, E.; Tomkins, S.; Millar, K.

    2006-01-01

    The ethical matrix is a conceptual tool designed to help decision-makers (as individuals or working in groups) reach sound judgements or decisions about the ethical acceptability and/or optimal regulatory controls for existing or prospective technologies in the field of food and agriculture.

  1. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  2. Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.

    2007-01-01

    Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves

  3. Lie-Telling Behavior in Children with Autism and Its Relation to False-Belief Understanding

    Science.gov (United States)

    Talwar, Victoria; Zwaigenbaum, Lonnie; Goulden, Keith J.; Manji, Shazeen; Loomes, Carly; Rasmussen, Carmen

    2012-01-01

    Children's lie-telling behavior and its relation to false-belief understanding was examined in children with autism spectrum disorders (ASD; n = 26) and a comparison group of typically developing children (n = 27). Participants were assessed using a temptation resistance paradigm, in which children were told not to peek at a forbidden toy while…

  4. Description of a class of superstring compactifications related to semi-simple Lie algebras

    International Nuclear Information System (INIS)

    Markushevich, D.I.; Ol'shanetskij, M.A.; Perelomov, A.M.

    1986-01-01

    A class of vacuum configurations in the superstring theory obtained by compactification of physical dimensions from ten to four is constructed. The compactification scheme involves taking quotients of tori of semisimple Lie algebras by finite symmetry group actions. The complete list of such configurations arising from actions by a Coxeter transformation is given. Some topological invariants having physical interpretations are calculated

  5. Closure of the gauge algebra, generalized Lie equations and Feynman rules

    International Nuclear Information System (INIS)

    Batalin, I.A.

    1984-01-01

    A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)

  6. The eyes don't have it: lie detection and Neuro-Linguistic Programming.

    Directory of Open Access Journals (Sweden)

    Richard Wiseman

    Full Text Available Proponents of Neuro-Linguistic Programming (NLP claim that certain eye-movements are reliable indicators of lying. According to this notion, a person looking up to their right suggests a lie whereas looking up to their left is indicative of truth telling. Despite widespread belief in this claim, no previous research has examined its validity. In Study 1 the eye movements of participants who were lying or telling the truth were coded, but did not match the NLP patterning. In Study 2 one group of participants were told about the NLP eye-movement hypothesis whilst a second control group were not. Both groups then undertook a lie detection test. No significant differences emerged between the two groups. Study 3 involved coding the eye movements of both liars and truth tellers taking part in high profile press conferences. Once again, no significant differences were discovered. Taken together the results of the three studies fail to support the claims of NLP. The theoretical and practical implications of these findings are discussed.

  7. How (not) to Lie with Benefit-Cost Analysis

    OpenAIRE

    Scott Farrow

    2013-01-01

    Benefit-cost analysis is seen by some as a controversial activity in which the analyst can significantly bias the results. This note highlights some of the ways that analysts can "lie" in a benefit-cost analysis but more importantly, provides guidance on how not to lie and how to better inform public decisionmakers.

  8. Lie and Noether symmetries of systems of complex ordinary ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Abstract. The Lie and Noether point symmetry analyses of a kth-order system of m complex ordi- nary differential equations (ODEs) with m dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like opera- tors.

  9. Lie Algebroids in Classical Mechanics and Optimal Control

    Directory of Open Access Journals (Sweden)

    Eduardo Martínez

    2007-03-01

    Full Text Available We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

  10. Young children will lie to prevent a moral transgression.

    Science.gov (United States)

    Harvey, Teresa; Davoodi, Telli; Blake, Peter R

    2018-01-01

    Children believe that it is wrong to tell lies, yet they are willing to lie prosocially to adhere to social norms and to protect a listener's feelings. However, it is not clear whether children will lie instrumentally to intervene on behalf of a third party when a moral transgression is likely to occur. In three studies (N=270), we investigated the conditions under which 5- to 8-year-olds would tell an "interventional lie" in order to misdirect one child who was seeking another child in a park. In Study 1, older children lied more when the seeker intended to steal a toy from another child than when the seeker intended to give cookies to the child. In Study 2, the transgression (stealing) was held constant, but harm to the victim was either emphasized or deemphasized. Children at all ages were more likely to lie to prevent the theft when harm was emphasized. In Study 3, harm to the victim was held constant and the act of taking was described as either theft or a positive action. Children at all ages were more likely to lie when the transgression was emphasized. We conclude that by 5years of age, children are capable of lying to prevent a moral transgression but that this is most likely to occur when both the transgression and the harm to the victim are salient. Published by Elsevier Inc.

  11. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  12. Children's Lies and Their Detection: Implications for Child Witness Testimony

    Science.gov (United States)

    Talwar, Victoria; Crossman, Angela M.

    2012-01-01

    The veracity of child witness testimony is central to the justice system where there are serious consequences for the child, the accused, and society. Thus, it is important to examine how children's lie-telling abilities develop and the factors that can influence their truthfulness. The current review examines children's lie-telling ability in…

  13. Internal deformation of Lie algebroids and symplectic realizations

    Energy Technology Data Exchange (ETDEWEB)

    Carinena, Jose F [Departamento de Fisica Teorica, Universidad de Zara-goza, 50009 Zaragoza (Spain); Costa, Joana M Nunes da [Departamento de Matematica, Universidade de Coimbra, 3001-454 Coimbra (Portugal); Santos, PatrIcia [Departamento de Fisica e Matematica, Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra (Portugal)

    2006-06-02

    Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom.

  14. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  15. Internal deformation of Lie algebroids and symplectic realizations

    International Nuclear Information System (INIS)

    Carinena, Jose F; Costa, Joana M Nunes da; Santos, PatrIcia

    2006-01-01

    Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom

  16. THE MANAGEMENT OF TRANSVERSE LIE IN LABOUR*

    African Journals Online (AJOL)

    1971-05-01

    May 1, 1971 ... 410. 1:138. 'Paper presented at the Congress of the South African Society of Obste· tricians and ... Internal Version and Breech Extraction. This group ... considered suitable for external version because of the absence of liquor ...

  17. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations

    Science.gov (United States)

    Morozov, Oleg I.

    2018-06-01

    The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.

  18. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  19. Conformal and Lie superalgebras motivated from free fermionic fields

    International Nuclear Information System (INIS)

    Ma, Shukchuen

    2003-01-01

    In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure

  20. Three-body hadronic structure of low-lying 1/2+ Σ and Λ resonances

    International Nuclear Information System (INIS)

    Martinez Torres, A.; Khemchandani, K.P.; Oset, E.

    2008-01-01

    We discuss the dynamical generation of some low-lying 1/2 + Σ's and Λ's in two-meson one-baryon systems. These systems have been constructed by adding a pion in the S-wave to the anti KN pair and its coupled channels, where the 1/2 - Λ(1405)-resonance gets dynamically generated. We solve Faddeev equations in the coupled-channel approach to calculate the T-matrix for these systems as a function of the total energy and the invariant mass of one of the meson-baryon pairs. This squared T-matrix shows peaks at the energies very close to the masses of the strangeness -1,1/2 + resonances listed in the particle data book. (orig.)

  1. When is a lie more of a lie? Moral judgment mediates the relationship between perceived benefits of others and lie-labeling

    Directory of Open Access Journals (Sweden)

    Cantarero Katarzyna

    2017-06-01

    Full Text Available Lay perceptions of lying are argued to consist of a lie prototype. The latter was found to entail the intention to deceive, belief in falsity and falsity (Coleman & Kay, 1981. We proposed and found that the perceptions of the benefits of others are also an important factor that influences the extent, to which an act of intentional misleading someone to foster a false belief is labeled as a lie. Drawing from the intuitionist model of moral judgments (Haidt, 2001 we assumed that moral judgment of the behaviour would mediate the relationship. In Study 1 we analyzed data coming from a crosscultural project and found that perceived intention to benefit others was negatively related to lie labeling and that this relationship was mediated by the moral judgment of that act. In Study 2 we found that manipulating the benefits of others influenced the extent, to which an act of intentional misleading in order to foster a false belief is labeled as a lie and that, again, this relationship is mediated by the moral judgment of that act.

  2. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  3. Should non-disclosures be considered as morally equivalent to lies within the doctor-patient relationship?

    Science.gov (United States)

    Cox, Caitriona L; Fritz, Zoe

    2016-10-01

    In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's 'Test of Publicity' to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Dangerous narratives: politics, lies, and ghost stories

    Directory of Open Access Journals (Sweden)

    Louise Katz

    2011-03-01

    Full Text Available Narratives that resonate in the cultural imagination inform the ways in which we apprehend the world. This paper considers how certain images and stories that have been valorised over time, bleed into reality and become socially and politically affective. The identity of an entire people, for example, can be rendered down so that those social groups come to seem more spectral than human, through either misrecognition or a lack of acknowledgment. This idea will be discussed through two examples: one provided by traditional anti-Semitism, in which the Jew is viewed as a vampiristic agent of decay; and another in which the Arab presence becomes ‘spectralised’ in contemporary Israel/Palestine. We will look at the development of narratives that create these images, and also consider the liminal zone wherein those images have their source, because it is through imagination and storytelling that we continually create and recreate the realities we must then inhabit.

  5. Higher order Lie-Baecklund symmetries of evolution equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.

    1983-10-01

    We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)

  6. Recoupling Lie algebra and universal ω-algebra

    International Nuclear Information System (INIS)

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  7. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  8. A program for constructing finitely presented Lie algebras and superalgebras

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kornyak, V.V.

    1997-01-01

    The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)

  9. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  10. Valued Graphs and the Representation Theory of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Joel Lemay

    2012-07-01

    Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.

  11. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  12. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  13. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  14. Algebras of functions on compact quantum groups, Schubert cells and quantum tori

    International Nuclear Information System (INIS)

    Levendorskij, S.; Soibelman, Ya.

    1991-01-01

    The structure of Poisson Lie groups on a simple compact group are parametrized by pairs (a, u), where aelement ofR, uelement ofΛ 2 f R , and f R is a real Cartan subalgebra of complexification of Lie algebra of the group in question. In the present article the description of the symplectic leaves for all pairs (a, u) is given. Also, the corresponding quantized algebras of functions are constructed and their irreducible representations are described. In the course of investigation Schubert cells and quantum tori appear. At the end of the article the quantum analog of the Weyl group is constructed and some of its applications, among them the formula for the universal R-matrix, are given. (orig.)

  15. BTZ black hole from Poisson–Lie T-dualizable sigma models with spectators

    Directory of Open Access Journals (Sweden)

    A. Eghbali

    2017-09-01

    Full Text Available The non-Abelian T-dualization of the BTZ black hole is discussed in detail by using the Poisson–Lie T-duality in the presence of spectators. We explicitly construct a dual pair of sigma models related by Poisson–Lie symmetry. The original model is built on a 2+1-dimensional manifold M≈O×G, where G as a two-dimensional real non-Abelian Lie group acts freely on M, while O is the orbit of G in M. The findings of our study show that the original model indeed is canonically equivalent to the SL(2,R Wess–Zumino–Witten (WZW model for a given value of the background parameters. Moreover, by a convenient coordinate transformation we show that this model describes a string propagating in a spacetime with the BTZ black hole metric in such a way that a new family of the solutions to low energy string theory with the BTZ black hole vacuum metric, constant dilaton field and a new torsion potential is found. The dual model is built on a 2+1-dimensional target manifold M˜ with two-dimensional real Abelian Lie group G˜ acting freely on it. We further show that the dual model yields a three-dimensional charged black string for which the mass M and axion charge Q per unit length are calculated. After that, the structure and asymptotic nature of the dual space–time including the horizon and singularity are determined.

  16. Unicorns or Tiger Woods: are lie detection experts myths or rarities? A response to on lie detection "wizards" by Bond and Uysal.

    Science.gov (United States)

    O'Sullivan, Maureen

    2007-02-01

    Bond and Uysal (this issue) complain that expert lie detectors identified by O'Sullivan and Ekman (2004) are statistical flukes. They ignore one class of experts we have identified and misrepresent the procedures we use to identify the others. They also question the psychometric validity of the measures and protocol used. Many of their points are addressed in the chapter they criticize. The fruitfulness of the O'Sullivan-Ekman protocol is illustrated with respect to improved identification of expert lie detectors, as well as a replicated pattern of errors made by experts from different professional groups. The statistical arguments offered confuse the theoretical use of the binomial with the empirical use of the normal distribution. Data are provided that may clarify this distinction.

  17. Two Kinds of New Lie Algebras for Producing Integrable Couplings

    International Nuclear Information System (INIS)

    Yan Qingyou; Qi Jianxun

    2006-01-01

    Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.

  18. Homotopy Lie superalgebra in Yang-Mills theory

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2007-01-01

    The Yang-Mills equations are formulated in the form of generalized Maurer-Cartan equations, such that the corresponding algebraic operations are shown to satisfy the defining relations of homotopy Lie superalgebra

  19. Analytic transfer maps for Lie algebraic design codes

    International Nuclear Information System (INIS)

    van Zeijts, J.; Neri, F.; Dragt, A.J.

    1990-01-01

    Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system

  20. Auxiliary representations of Lie algebras and the BRST constructions

    International Nuclear Information System (INIS)

    Burdik, C.; Pashnev, A.I.; Tsulaya, M.M.

    2000-01-01

    The method of construction of auxiliary representations for a given Lie algebra is discussed in the framework of the BRST approach. The corresponding BRST charge turns out to be nonhermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proved for any Lie algebra

  1. On a Lie-isotopic theory of gravity

    International Nuclear Information System (INIS)

    Gasperini, M.

    1984-01-01

    Starting from the isotopic lifting of the Poincare algebra, a Lie-isotopic theory of gravity is formulated, its physical interpretation is given in terms of a generalized principle of equivalence, and it is shown that a local Lorentz-isotopic symmetry motivates the introduction of a generalized metric-affine geometrical structure. Finally, possible applications of a Lie-isotopic theory to the problem of unifying gravity with internal symmetries, in four and more than four dimensions, are discussed

  2. Towards a structure theory for Lie-admissible algebras

    International Nuclear Information System (INIS)

    Wene, G.P.

    1981-01-01

    The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras

  3. From Rota-Baxter algebras to pre-Lie algebras

    International Nuclear Information System (INIS)

    An Huihui; Ba, Chengming

    2008-01-01

    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  4. On the low-lying states of TiC

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1984-01-01

    The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.

  5. Trigonometric solutions of triangle equations. Simple Lie superalgebras

    International Nuclear Information System (INIS)

    Bazhanov, V.V.; Shadrikov, A.G.

    1988-01-01

    Trigonometric solutions of the graded triangle equation are constructed for the fundamental representations of all simple (nonexceptional) Lie superalgebras with nondegenerate metric. In Sec. 1, we introduce the concept of Z 2 graded spaces and give the basic definitions. In Sec. 2, we determine fundamental representations of the Lie superalgebras sl(mn) and osp(2rs) and give explicit realizations of the Coxeter automorphisms. In secs. 3 and 4, we give the trigonometric solutions of the graded triangle equation (quantum R matrices)

  6. Recognition of Streptococcus pseudoporcinus Colonization in Women as a Consequence of Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Group B Streptococcus Identification.

    Science.gov (United States)

    Suwantarat, Nuntra; Grundy, Maureen; Rubin, Mayer; Harris, Renee; Miller, Jo-Anne; Romagnoli, Mark; Hanlon, Ann; Tekle, Tsigereda; Ellis, Brandon C; Witter, Frank R; Carroll, Karen C

    2015-12-01

    During a 14-month period of using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for group B streptococcus (GBS) identification, we recovered 32 (1%) Streptococcus pseudoporcinus isolates from 3,276 GBS screening cultures from female genital sources (25 isolates from pregnant women and 7 from nonpregnant women). An additional two S. pseudoporcinus isolates were identified from a urine culture and a posthysterectomy wound culture. These isolates were found to cross-react with three different GBS antigen agglutination kits, PathoDx (Remel) (93%), Prolex (Pro-Lab Diagnostics) (38%), and Streptex (Remel) (53%). New approaches to bacterial identification in routine clinical microbiology laboratories may affect the prevalence of S. pseudoporcinus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    International Nuclear Information System (INIS)

    Ammar, F; Makhlouf, A; Silvestrov, S

    2010-01-01

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  8. Lie construction affects information storage under high memory load condition.

    Directory of Open Access Journals (Sweden)

    Yuqiu Liu

    Full Text Available Previous studies indicate that lying consumes cognitive resources, especially working memory (WM resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA, a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  9. Lie construction affects information storage under high memory load condition.

    Science.gov (United States)

    Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan

    2017-01-01

    Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  10. Effects of side lying on lung function in older individuals.

    Science.gov (United States)

    Manning, F; Dean, E; Ross, J; Abboud, R T

    1999-05-01

    Body positioning exerts a strong effect on pulmonary function, but its effect on other components of the oxygen transport pathway are less well understood, especially the effects of side-lying positions. This study investigated the interrelationships between side-lying positions and indexes of lung function such as spirometry, alveolar diffusing capacity, and inhomogeneity of ventilation in older individuals. Nineteen nonsmoking subjects (mean age=62.8 years, SD=6.8, range=50-74) with no history of cardiac or pulmonary disease were tested over 2 sessions. The test positions were sitting and left side lying in one session and sitting and right side lying in the other session. In each of the positions, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), single-breath pulmonary diffusing capacity (DLCO/VA), and the slope of phase III (DN2%/L) of the single-breath nitrogen washout test to determine inhomogeneity of ventilation were measured. Compared with measurements obtained in the sitting position, FVC and FEV1 were decreased equally in the side-lying positions, but no change was observed in DLCO/VA or DN2%/L. Side-lying positions resulted in decreases in FVC and FEV1, which is consistent with the well-documented effects of the supine position. These findings further support the need for prescriptive rather than routine body positioning of patients with risks of cardiopulmonary compromise and the need to use upright positions in which lung volumes and capacities are maximized.

  11. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  12. Discovery of Novel, Highly Potent, and Selective Matrix Metalloproteinase (MMP)-13 Inhibitors with a 1,2,4-Triazol-3-yl Moiety as a Zinc Binding Group Using a Structure-Based Design Approach.

    Science.gov (United States)

    Nara, Hiroshi; Kaieda, Akira; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni

    2017-01-26

    On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC 50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.

  13. Complex quantum groups

    International Nuclear Information System (INIS)

    Drabant, B.; Schlieker, M.

    1993-01-01

    The complex quantum groups are constructed. They are q-deformations of the real Lie groups which are obtained as the complex groups corresponding to the Lie algebras of type A n-1 , B n , C n . Following the ideas of Faddeev, Reshetikhin and Takhtajan Hopf algebras of regular functionals U R for these complexified quantum groups are constructed. One has thus in particular found a construction scheme for the q-Lorentz algebra to be identified as U(sl q (2,C). (orig.)

  14. The normal holonomy group

    International Nuclear Information System (INIS)

    Olmos, C.

    1990-05-01

    The restricted holonomy group of a Riemannian manifold is a compact Lie group and its representation on the tangent space is a product of irreducible representations and a trivial one. Each one of the non-trivial factors is either an orthogonal representation of a connected compact Lie group which acts transitively on the unit sphere or it is the isotropy representation of a single Riemannian symmetric space of rank ≥ 2. We prove that, all these properties are also true for the representation on the normal space of the restricted normal holonomy group of any submanifold of a space of constant curvature. 4 refs

  15. Correlated random-phase approximation from densities and in-medium matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, Richard; Roth, Robert [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The random-phase approximation (RPA) as well as the second RPA (SRPA) are established tools for the study of collective excitations in nuclei. Addressing the well known lack of correlations, we derived a universal framework for a fully correlated RPA based on the use of one- and two-body densities. We apply densities from coupled cluster theory and investigate the impact of correlations. As an alternative approach to correlations we use matrix elements transformed via in-medium similarity renormalization group (IM-SRG) in combination with RPA and SRPA. We find that within SRPA the use of IM-SRG matrix elements leads to the disappearance of instabilities of low-lying states. For the calculations we use normal-ordered two- plus three-body interactions derived from chiral effective field theory. We apply different Hamiltonians to a number of doubly-magic nuclei and calculate electric transition strengths.

  16. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  17. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  18. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    Science.gov (United States)

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  19. Deceit and dishonesty as practice: the comfort of lying.

    Science.gov (United States)

    Carter, Melody

    2016-07-01

    Lying and deceit are instruments of power, used by social actors in the pursuit of their practices as they seek to maintain social order. All social actors, nurses included, have deceit and dishonesty within their repertoire of practice. Much of this is benign, well intentioned and a function of being sociable and necessary in the pursuit of social order in the healthcare environment. Lying and deceit from a sociological point of view, is a reflection of the different modes of domination that exist within a social space. French philosopher Pierre Bourdieu theorized about the way that symbolic power works within social space. The social structures and the agency of individual actors moving within it are interrelated and interdependent. Bourdieu's ideas will be used to theorize about real clinical experiences where acts of deceit can be identified and a case example will be presented. Nurses are actors in the social space of clinical care, and their world is complex, challenging, and often fraught with the contradictory demands and choices that reflect and influence their behaviours. An exploration of lying and deceit in nursing as an instrument in the modes of domination that persist enables us to challenge some of the assumptions that are made about the motives that cause or tempt nurses to lie as well as to understand the way on which they are sometimes lied to, according to the acts of domination that exist in the field. Lying or acting dishonestly is a powerful act that is intent on retaining stability and social order and could be seen to be a justification of lying and deceit. However, we need to pause and consider, in whose interests are we striving to create social order? Is it in the end about the comfort of patients or for the comfort of professionals? © 2016 John Wiley & Sons Ltd.

  20. On numerical characteristics of subvarieties for three varieties of Lie algebras

    International Nuclear Information System (INIS)

    Petrogradskii, V M

    1999-01-01

    Let V be a variety of Lie algebras. For each n we consider the dimension of the space of multilinear elements in n distinct letters of a free algebra of this variety. This gives rise to the codimension sequence c n (V). To study the exponential growth one defines the exponent of the variety. The variety of Lie algebras with nilpotent derived subalgebra N s A is known to have Exp(N s A)=s. Over a field of characteristic zero the exponent of every subvariety V subset of N s A is known to be an integer. We shall prove that this is true over any field. Unlike associative algebras, for varieties of Lie algebras it is typical to have superexponential growth for the codimension sequence. Earlier the author introduced a scale for measuring this growth. The following extreme property is established for two varieties AN 2 and A 3 . Any subvariety in each of them cannot be 'just slightly smaller' in terms of this scale. That is, either a subvariety lies at the same point of the scale as the variety itself, or it is situated substantially lower on the scale. These results are also established over an arbitrary field and without using the representation theory of symmetric groups

  1. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving {mathfrak {su}}(2,2)

    Science.gov (United States)

    Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.

    2014-09-01

    Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.

  2. Group-theoretical method in the many-beam theory of electron diffraction

    International Nuclear Information System (INIS)

    Kogiso, Motokazu; Takahashi, Hidewo.

    1977-01-01

    A group-theoretical method is developed for the many-beam dynamical theory of the symmetric Laue case. When the incident wave is directed so that the Laue point lies on a symmetric position in the reciprocal lattice, the dispersion matrix in the fundamental equation can be reduced to a block diagonal form. The transformation matrix is composed of column vectors belonging to irreducible representations of the group of the incident wave vector. Without performing reduction, the reduced form of the dispersion matrix is determined from characters of representations. Practical application is made to the case of symmorphic crystals, where general reduced forms and all solvable examples are given in terms of some geometrical factors of reciprocal lattice arrangements. (auth.)

  3. On squares of representations of compact Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de [Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany); Zimborás, Zoltán, E-mail: zimboras@gmail.com [Department of Computer Science, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2015-08-15

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.

  4. Ombud’s Corner: a world without lies?

    CERN Multimedia

    Sudeshna Datta-Cockerill

    2016-01-01

    Can a world without lies exist? Are there different types of lies, some more acceptable than others, or is that just an excuse that we use to justify ourselves? What consequences do lies have in the working environment?    If we look in the dictionary for the definition of “lie”, we find: “A lie is a false statement made with deliberate intent to deceive”. This simple definition turns out to be very useful when we feel stuck in intricate conflict situations where we suspect lies to have played a role. Examples may include supervisors presenting a situation in different ways to different colleagues; colleagues withholding information that could be useful to others; reports given in a non-accurate way; and rumours that spread around but cannot be verified. Peter was very keen to lead a particular project. He spoke to his supervisor Philippe who told him that he had in fact already proposed him to the board. When he did not get the job, Peter shared h...

  5. On squares of representations of compact Lie algebras

    International Nuclear Information System (INIS)

    Zeier, Robert; Zimborás, Zoltán

    2015-01-01

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems

  6. The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations

    Science.gov (United States)

    1993-09-01

    shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of

  7. Spectroscopic characterization of matrix isolated transient species

    Science.gov (United States)

    Lue, Christopher J.

    Part I describes the electronic spectra of various actinide containing compounds isolated in solid Ar using laser induced fluorescence (LIF) spectroscopy. The IR spectra for many of the same molecules were also recorded to aid in the identification of the fluorescing species in the LIF spectra. LIF spectra of UO2 isolated in solid Ar were recorded to investigate the interactions between actinide compounds and the rare gas matrix host. At the time of the experiments, it had been proposed that for UO2 and CUO, the interactions between the actinide containing molecule and Ar were strong enough to reorder the low-lying electronic states of the molecule. The experiments presented here showed no evidence of a reordering of low-lying electronic states based on comparison of the matrix spectra with theoretical predictions and gas phase spectra. An attempt to observe fluorescence from higher order uranium oxides was undertaken. A matrix was made by ablating U metal in a 1.0% O2/Ar mixture. UO3 was a probable molecule formed in the experiment. And, while absorptions belonging to UO3 were observed in IR spectra, LIF from the same matrix provided evidence that another molecule was fluorescing. Two different vibrational frequencies observed in the U-O symmetric stretching region were indicative of at least two low-lying electronic states in fluorescing molecule. UO3 is a closed shell molecule, and it is unlikely that it has any low-lying electronic states. Instead, the fluorescence was attributed to the open shell species (UO2)+(O2) -. LIF and IR spectra of thermally vaporized UCl4 isolated in solid Ar were recorded. UCl4 contains U(IV), which is the most stable oxidation state other than U(VI). Before these experiments, no fluorescence had been recorded that could be attributed to UCl4. Based on the observed vibrational frequencies in the fluorescence bands and the lifetime of the fluorescence, it was determine that there was at least two different fluorescing species. The

  8. Canonical realizations of the Lie algebra sp(2n,R)

    International Nuclear Information System (INIS)

    Havlicek, M.; Lassner, W.

    1975-01-01

    The generators of the Lie algebra of the symplectic group sp(2n,R) are, rezcurently, realied by means of polynomials in the quantum canonical variables qsub(i) and psub(i), i=1,...,d(2n-d);d=1,...,n. These realisations are skew-hermitean, the Casimir operators are realised by constant multiples of identity element and they depend on d free real parameters

  9. Special functions and the theory of group representations

    CERN Document Server

    Vilenkin, N Ja

    1968-01-01

    A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions.

  10. The BRST complex and the cohomology of compact lie algebras

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1990-02-01

    The authors construct the BRST and anti-BRST operator for a compact Lie algebra which is a direct sum of abelian and simple ideals. Two different inner products are defined on the ghost space and the hermiticity propeties of the ghost and BRST operators with respect to these inner products are discussed. A decomposition theorem for ghost states is derived and the cohomology of the BRST complex is shown to reduce to the standard Lie-algebra cohomology. The authors show that the cohomology classes of the Lie algebra are given by all invariant anti-symmetric tensors and explain how thse can be obtained as zero-modes of an invariant operator in the representation space of the ghosts. Explicit examples are given. (author) 24 refs

  11. The low-lying collective multipole response of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Prill, Sarah; Vielmetter, Vera; Weinert, Michael; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2016-07-01

    We present experimental results on the low-lying multipole response, which were obtained with the recently established DSA-method in Cologne. Nuclear level lifetimes in the sub-ps regime are extracted by means of centroid-shifts utilizing the (p,p{sup '}γ) reaction at the 10 MV FN-Tandem accelerator in Cologne. The scattered protons are coincidently detected with the deexciting γ rays using the SONIC rate at HORUS detector array, which allows for a precise determination of the reaction kinematics. In addition to the pioneering results on octupole and hexadecapole mixed-symmetry states of {sup 96}Ru, this contribution will feature new results on low-lying quadrupole-octupole coupled states and on the low-lying E2 strength of {sup 112,114}Sn, which was recently discussed to be generated due to a quadrupole-type oscillation of the neutron skin against the isospin-saturated core.

  12. Discussions About Lying With An Ethical Reasoning Robot

    DEFF Research Database (Denmark)

    Lindner, Felix; Wächter, Laura; Bentzen, Martin Mose

    2017-01-01

    The conversational ethical reasoning robot Immanuel is presented. Immanuel is capable of defending multiple ethical views on morally delicate situations. A study was conducted to evaluate the acceptance of Immanuel. The participants had a conversation with the robot on whether lying is permissibile...... in a given situation. The robot first signaled uncertainty about whether lying is right or wrong in the situation, then disagreed with the participant’s view, and finally asked for justification. The results indicate that participants with a higher tendency to utilitarian judgments are initially more certain...... about their view as compared to participants with a higher tendency to deontological judgments. These differences vanish at the end of the dialogue. Lying is defended and argued against by both utilitarian and deontologically oriented participants. The diversity of the reported arguments gives an idea...

  13. Homotopy Lie algebras associated with a proto-bialgebra

    International Nuclear Information System (INIS)

    Bangoura, Momo

    2003-10-01

    Motivated by the search for examples of homotopy Lie algebras, to any Lie proto-bialgebra structure on a finite-dimensional vector space F, we associate two homotopy Lie algebra structures defined on the suspension of the exterior algebra of F and that of its dual F*, respectively, with a 0-ary map corresponding to the image of the empty set. In these algebras, all n-ary brackets for n ≥ 4 vanish. More generally, to any element of odd degree in Λ(F*+F), we associate a set of n-ary skew-symmetric mappings on the suspension of ΛF (resp. Λ F*), which satisfy the generalized Jacobi identities if the given element is of square zero. (author)

  14. Prospects of functional Magnetic Resonance Imaging as lie detector

    Directory of Open Access Journals (Sweden)

    Elena eRusconi

    2013-09-01

    Full Text Available Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies as the savior of scientifically verifiable lie detection in the courtroom (Gerard, 2008: 5; however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.

  15. Canonical representations of the Lie superalgebra osp(1,4)

    International Nuclear Information System (INIS)

    Blank, J.; Havlicek, M.; Lassner, W.; Bednar, M.

    1981-06-01

    The method for constructing infinite dimensional representations of Lie superalgebras proposed by the authors recently is applied to the superalgebra osp(1,4). Explicit formulae for its generators in terms of two or three pairs of operators fulfilling the canonical commutation relations, at most one pair of operators fulfilling the canonical anticommutation relations and at most one real parameter are obtained. The generators of the Lie subalgebra sp(4,IR) contains osp(1,4) are represented skew-symmetrically and both Casimir operators are equal to multiples of the unity operator. (author)

  16. The Jordan structure of lie and Kac-Moody algebras

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.

    1989-01-01

    A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)

  17. Lie algebra in quantum physics by means of computer algebra

    OpenAIRE

    Kikuchi, Ichio; Kikuchi, Akihito

    2017-01-01

    This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...

  18. Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach

    Science.gov (United States)

    Ray, S. Saha

    2018-04-01

    In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.

  19. Still Misinterpreting Lie Scales: Reply to Feldman’s Rejoinder

    NARCIS (Netherlands)

    de Vries, R.E.; Hilbig, B.E.; Zettler, I.; Dunlop, P.D.; Holtrop, D.J.; Kibeom, Lee; Ashton, M.C.

    2018-01-01

    Despite convincing counterevidence, misinterpretation of so-called Impression Management, Social Desirability, or Lie scales in low-stakes settings seems to persist. In this reply to an ongoing discussion with Feldman and colleagues (De Vries et al., 2017; Feldman, in press; Feldman et al., 2017),

  20. The Lie algebra of the N=2-string

    International Nuclear Information System (INIS)

    Kugel, K.

    2006-01-01

    The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)