WorldWideScience

Sample records for matrix inversion techniques

  1. A conditioning technique for matrix inversion for Wilson fermions

    International Nuclear Information System (INIS)

    DeGrand, T.A.

    1988-01-01

    I report a simple technique for conditioning conjugate gradient or conjugate residue matrix inversion as applied to the lattice gauge theory problem of computing the propagator of Wilson fermions. One form of the technique provides about a factor of three speedup over an unconditioned algorithm while running at the same speed as an unconditioned algorithm. I illustrate the method as it is applied to a conjugate residue algorithm. (orig.)

  2. An Innovative Approach to Balancing Chemical-Reaction Equations: A Simplified Matrix-Inversion Technique for Determining The Matrix Null Space

    OpenAIRE

    Thorne, Lawrence R.

    2011-01-01

    I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then...

  3. Inverse Interval Matrix: A Survey

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří; Farhadsefat, R.

    2011-01-01

    Roč. 22, - (2011), s. 704-719 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * inverse interval matrix * NP-hardness * enclosure * unit midpoint * inverse sign stability * nonnegative invertibility * absolute value equation * algorithm Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol22_pp704-719.pdf

  4. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  5. Comparison of the FFT/matrix inversion and system matrix techniques for higher-order probe correction in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2011-01-01

    correction of general high-order probes, including non-symmetric dual-polarized antennas with independent ports. The investigation was carried out by processing with each technique the same measurement data for a challenging case with an antenna under test significantly offset from the center of rotation...

  6. Point-source inversion techniques

    Science.gov (United States)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  7. Inverse Operation of Four-dimensional Vector Matrix

    OpenAIRE

    H J Bao; A J Sang; H X Chen

    2011-01-01

    This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.

  8. Revising the retrieval technique of a long-term stratospheric HNO{sub 3} data set. From a constrained matrix inversion to the optimal estimation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, I.; Muscari, G. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); De Zafra, R.L. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2011-07-01

    The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O{sub 3}, HNO{sub 3}, CO and N{sub 2}O at polar and mid-latitudes. Its HNO{sub 3} data set shed light on HNO{sub 3} annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO{sub 3} data sets from 1993 South Pole observations to date, in order to produce HNO{sub 3} version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100{+-}20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1{sigma} uncertainty on HNO{sub 3} v2 mixing ratio vertical profiles depends on altitude and is estimated at {proportional_to}15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO{sub 3} vertical profiles

  9. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Science.gov (United States)

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  10. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  11. Refractive index inversion based on Mueller matrix method

    Science.gov (United States)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  12. Inverse Raman effect: applications and detection techniques

    International Nuclear Information System (INIS)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented

  13. Inverse Raman effect: applications and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  14. Mini-lecture course: Introduction into hierarchical matrix technique

    KAUST Repository

    Litvinenko, Alexander

    2017-12-14

    The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations (mesh points). The H-matrix technique allows us to work with general class of matrices (not only structured or Toeplits or sparse). H-matrices can keep the H-matrix data format during linear algebra operations (inverse, update, Schur complement).

  15. A study of block algorithms for fermion matrix inversion

    International Nuclear Information System (INIS)

    Henty, D.

    1990-01-01

    We compare the convergence properties of Lanczos and Conjugate Gradient algorithms applied to the calculation of columns of the inverse fermion matrix for Kogut-Susskind and Wilson fermions in lattice QCD. When several columns of the inverse are required simultaneously, a block version of the Lanczos algorithm is most efficient at small mass, being over 5 times faster than the single algorithms. The block algorithm is also less susceptible to critical slowing down. (orig.)

  16. Connection between Dirac and matrix Schroedinger inverse-scattering transforms

    International Nuclear Information System (INIS)

    Jaulent, M.; Leon, J.J.P.

    1978-01-01

    The connection between two applications of the inverse scattering method for solving nonlinear equations is established. The inverse method associated with the massive Dirac system (D) : (iσ 3 d/dx - i q 3 σ 1 - q 1 σ 2 + mσ 2 )Y = epsilonY is rediscovered from the inverse method associated with the 2 x 2 matrix Schroedinger equation (S) : Ysub(xx) + (k 2 -Q)Y = 0. Here Q obeys a nonlinear constraint equivalent to a linear constraint on the reflection coefficient for (S). (author)

  17. Trimming and procrastination as inversion techniques

    Science.gov (United States)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  18. Recursive Matrix Inverse Update On An Optical Processor

    Science.gov (United States)

    Casasent, David P.; Baranoski, Edward J.

    1988-02-01

    A high accuracy optical linear algebraic processor (OLAP) using the digital multiplication by analog convolution (DMAC) algorithm is described for use in an efficient matrix inverse update algorithm with speed and accuracy advantages. The solution of the parameters in the algorithm are addressed and the advantages of optical over digital linear algebraic processors are advanced.

  19. Analog fault diagnosis by inverse problem technique

    KAUST Repository

    Ahmed, Rania F.

    2011-12-01

    A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.

  20. AMDLIBF, IBM 360 Subroutine Library, Eigenvalues, Eigenvectors, Matrix Inversion

    International Nuclear Information System (INIS)

    Wang, Jesse Y.

    1980-01-01

    Description of problem or function: AMDLIBF is a subset of the IBM 360 Subroutine Library at the Applied Mathematics Division at Argonne. This subset includes library category F: Identification/Description: F152S F SYMINV: Invert sym. matrices, solve lin. systems; F154S A DOTP: Double plus precision accum. inner prod.; F156S F RAYCOR: Rayleigh corrections for eigenvalues; F161S F XTRADP: A fast extended precision inner product; F162S A XTRADP: Inner product of two DP real vectors; F202S F1 EIGEN: Eigen-system for real symmetric matrix; F203S F: Driver for F202S; F248S F RITZIT: Largest eigenvalue and vec. real sym. matrix; F261S F EIGINV: Inverse eigenvalue problem; F313S F CQZHES: Reduce cmplx matrices to upper Hess and tri; F314S F CQZVAL: Reduce complex matrix to upper Hess. form; F315S F CQZVEC: Eigenvectors of cmplx upper triang. syst.; F316S F CGG: Driver for complex general Eigen-problem; F402S F MATINV: Matrix inversion and sol. of linear eqns.; F403S F: Driver for F402S; F452S F CHOLLU,CHOLEQ: Sym. decomp. of pos. def. band matrices; F453S F MATINC: Inversion of complex matrices; F454S F CROUT: Solution of simultaneous linear equations; F455S F CROUTC: Sol. of simultaneous complex linear eqns.; F456S F1 DIAG: Integer preserving Gaussian elimination

  1. Explicit Inverse of an Interval Matrix with Unit Midpoint

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2011-01-01

    Roč. 22, - (2011), s. 138-150 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval matrix * unit midpoint * inverse interval matrix * regularity Subject RIV: BA - General Mathematics Impact factor: 0.808, year: 2010 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol22_pp138-150.pdf

  2. Inverse mass matrix via the method of localized lagrange multipliers

    Czech Academy of Sciences Publication Activity Database

    González, José A.; Kolman, Radek; Cho, S.S.; Felippa, C.A.; Park, K.C.

    2018-01-01

    Roč. 113, č. 2 (2018), s. 277-295 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR GA17-22615S Institutional support: RVO:61388998 Keywords : explicit time integration * inverse mass matrix * localized Lagrange multipliers * partitioned analysis Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 https://onlinelibrary.wiley.com/doi/10.1002/nme.5613

  3. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Makoto Yoshida

    2009-01-01

    Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  4. Interferogram analysis using the Abel inversion technique

    International Nuclear Information System (INIS)

    Yusof Munajat; Mohamad Kadim Suaidi

    2000-01-01

    High speed and high resolution optical detection system were used to capture the image of acoustic waves propagation. The freeze image in the form of interferogram was analysed to calculate the transient pressure profile of the acoustic waves. The interferogram analysis was based on the fringe shift and the application of the Abel inversion technique. An easier approach was made by mean of using MathCAD program as a tool in the programming; yet powerful enough to make such calculation, plotting and transfer of file. (Author)

  5. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    Science.gov (United States)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  6. A recursive algorithm for computing the inverse of the Vandermonde matrix

    Directory of Open Access Journals (Sweden)

    Youness Aliyari Ghassabeh

    2016-12-01

    Full Text Available The inverse of a Vandermonde matrix has been used for signal processing, polynomial interpolation, curve fitting, wireless communication, and system identification. In this paper, we propose a novel fast recursive algorithm to compute the inverse of a Vandermonde matrix. The algorithm computes the inverse of a higher order Vandermonde matrix using the available lower order inverse matrix with a computational cost of $ O(n^2 $. The proposed algorithm is given in a matrix form, which makes it appropriate for hardware implementation. The running time of the proposed algorithm to find the inverse of a Vandermonde matrix using a lower order Vandermonde matrix is compared with the running time of the matrix inversion function implemented in MATLAB.

  7. A method to compute the inverse of a complex n-block tridiagonal quasi-hermitian matrix

    International Nuclear Information System (INIS)

    Godfrin, Elena

    1990-01-01

    This paper presents a method to compute the inverse of a complex n-block tridiagonal quasi-hermitian matrix using adequate partitions of the complete matrix. This type of matrix is very usual in quantum mechanics and, more specifically, in solid state physics (e.g., interfaces and superlattices), when the tight-binding approximation is used. The efficiency of the method is analyzed comparing the required CPU time and work-area for different usual techniques. (Author)

  8. A fast algorithm for sparse matrix computations related to inversion

    International Nuclear Information System (INIS)

    Li, S.; Wu, W.; Darve, E.

    2013-01-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G r and G for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors

  9. A fast algorithm for sparse matrix computations related to inversion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: lisong@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Wu, W. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Packard Building, Room 268, Stanford, CA 94305 (United States); Darve, E. [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Room 209, Stanford, CA 94305 (United States)

    2013-06-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G{sup r} and G{sup <} for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round

  10. Analytical techniques for instrument design - matrix methods

    International Nuclear Information System (INIS)

    Robinson, R.A.

    1997-01-01

    We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from (Δk I ,Δk F to ΔE, ΔQ ampersand 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg's Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question

  11. Analytical techniques for instrument design - Matrix methods

    International Nuclear Information System (INIS)

    Robinson, R.A.

    1997-01-01

    The authors take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalization to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, they discuss a toolbox of matrix manipulations that can be performed on the 6-dimensional Cooper-Nathans matrix. They show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. They will argue that a generalized program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. They also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question

  12. An Improved TA-SVM Method Without Matrix Inversion and Its Fast Implementation for Nonstationary Datasets.

    Science.gov (United States)

    Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong

    2015-09-01

    Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.

  13. Mini-lecture course: Introduction into hierarchical matrix technique

    KAUST Repository

    Litvinenko, Alexander

    2017-01-01

    allows us to work with general class of matrices (not only structured or Toeplits or sparse). H-matrices can keep the H-matrix data format during linear algebra operations (inverse, update, Schur complement).

  14. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  15. Hierarchical probing for estimating the trace of the matrix inverse on toroidal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, Andreas [College of William and Mary, Williamsburg, VA; Laeuchli, Jesse [College of William and Mary, Williamsburg, VA; Orginos, Kostas [College of William and Mary, Williamsburg, VA; Jefferson Lab

    2013-10-01

    The standard approach for computing the trace of the inverse of a very large, sparse matrix $A$ is to view the trace as the mean value of matrix quadratures, and use the Monte Carlo algorithm to estimate it. This approach is heavily used in our motivating application of Lattice QCD. Often, the elements of $A^{-1}$ display certain decay properties away from the non zero structure of $A$, but random vectors cannot exploit this induced structure of $A^{-1}$. Probing is a technique that, given a sparsity pattern of $A$, discovers elements of $A$ through matrix-vector multiplications with specially designed vectors. In the case of $A^{-1}$, the pattern is obtained by distance-$k$ coloring of the graph of $A$. For sufficiently large $k$, the method produces accurate trace estimates but the cost of producing the colorings becomes prohibitively expensive. More importantly, it is difficult to search for an optimal $k$ value, since none of the work for prior choices of $k$ can be reused.

  16. Matrix theory from generalized inverses to Jordan form

    CERN Document Server

    Piziak, Robert

    2007-01-01

    Each chapter ends with a list of references for further reading. Undoubtedly, these will be useful for anyone who wishes to pursue the topics deeper. … the book has many MATLAB examples and problems presented at appropriate places. … the book will become a widely used classroom text for a second course on linear algebra. It can be used profitably by graduate and advanced level undergraduate students. It can also serve as an intermediate course for more advanced texts in matrix theory. This is a lucidly written book by two authors who have made many contributions to linear and multilinear algebra.-K.C. Sivakumar, IMAGE, No. 47, Fall 2011Always mathematically constructive, this book helps readers delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.-L'enseignement Mathématique, January-June 2007, Vol. 53, No. 1-2.

  17. Optimal control of large space structures via generalized inverse matrix

    Science.gov (United States)

    Nguyen, Charles C.; Fang, Xiaowen

    1987-01-01

    Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.

  18. Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations

    OpenAIRE

    Soleimani, Farahnaz; Stanimirovi´c, Predrag; Soleymani, Fazlollah

    2015-01-01

    An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the ...

  19. Identity of the conjugate gradient and Lanczos algorithms for matrix inversion in lattice fermion calculations

    International Nuclear Information System (INIS)

    Burkitt, A.N.; Irving, A.C.

    1988-01-01

    Two of the methods that are widely used in lattice gauge theory calculations requiring inversion of the fermion matrix are the Lanczos and the conjugate gradient algorithms. Those algorithms are already known to be closely related. In fact for matrix inversion, in exact arithmetic, they give identical results at each iteration and are just alternative formulations of a single algorithm. This equivalence survives rounding errors. We give the identities between the coefficients of the two formulations, enabling many of the best features of them to be combined. (orig.)

  20. Syrio. A program for the calculation of the inverse of a matrix

    International Nuclear Information System (INIS)

    Garcia de Viedma Alonso, L.

    1963-01-01

    SYRIO is a code for the inversion of a non-singular square matrix whose order is not higher than 40 for the UNIVAC-UCT (SS-90). The treatment stands from the inversion formula of sherman and Morrison, and following the Herbert S. Wilf's method for special matrices, generalize the procedure to any kind of non-singular square matrices. the limitation of the matrix order is not inherent of the program itself but imposed by the storage capacity of the computer for which it was coded. (Author)

  1. High performance matrix inversion based on LU factorization for multicore architectures

    KAUST Repository

    Dongarra, Jack

    2011-01-01

    The goal of this paper is to present an efficient implementation of an explicit matrix inversion of general square matrices on multicore computer architecture. The inversion procedure is split into four steps: 1) computing the LU factorization, 2) inverting the upper triangular U factor, 3) solving a linear system, whose solution yields inverse of the original matrix and 4) applying backward column pivoting on the inverted matrix. Using a tile data layout, which represents the matrix in the system memory with an optimized cache-aware format, the computation of the four steps is decomposed into computational tasks. A directed acyclic graph is generated on the fly which represents the program data flow. Its nodes represent tasks and edges the data dependencies between them. Previous implementations of matrix inversions, available in the state-of-the-art numerical libraries, are suffer from unnecessary synchronization points, which are non-existent in our implementation in order to fully exploit the parallelism of the underlying hardware. Our algorithmic approach allows to remove these bottlenecks and to execute the tasks with loose synchronization. A runtime environment system called QUARK is necessary to dynamically schedule our numerical kernels on the available processing units. The reported results from our LU-based matrix inversion implementation significantly outperform the state-of-the-art numerical libraries such as LAPACK (5x), MKL (5x) and ScaLAPACK (2.5x) on a contemporary AMD platform with four sockets and the total of 48 cores for a matrix of size 24000. A power consumption analysis shows that our high performance implementation is also energy efficient and substantially consumes less power than its competitors. © 2011 ACM.

  2. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    Science.gov (United States)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  3. Calculation of total number of disintegrations after intake of radioactive nuclides using the pseudo inverse matrix

    International Nuclear Information System (INIS)

    Noh, Si Wan; Sol, Jeong; Lee, Jai Ki; Lee, Jong Il; Kim, Jang Lyul

    2012-01-01

    Calculation of total number of disintegrations after intake of radioactive nuclides is indispensable to calculate a dose coefficient which means committed effective dose per unit activity (Sv/Bq). In order to calculate the total number of disintegrations analytically, Birch all's algorithm has been commonly used. As described below, an inverse matrix should be calculated in the algorithm. As biokinetic models have been complicated, however, the inverse matrix does not exist sometime and the total number of disintegrations cannot be calculated. Thus, a numerical method has been applied to DCAL code used to calculate dose coefficients in ICRP publication and IMBA code. In this study, however, we applied the pseudo inverse matrix to solve the problem that the inverse matrix does not exist for. In order to validate our method, the method was applied to two examples and the results were compared to the tabulated data in ICRP publication. MATLAB 2012a was used to calculate the total number of disintegrations and exp m and p inv MATLAB built in functions were employed

  4. High performance matrix inversion based on LU factorization for multicore architectures

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2011-01-01

    on the available processing units. The reported results from our LU-based matrix inversion implementation significantly outperform the state-of-the-art numerical libraries such as LAPACK (5x), MKL (5x) and ScaLAPACK (2.5x) on a contemporary AMD platform with four

  5. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    Science.gov (United States)

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  6. Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements

    International Nuclear Information System (INIS)

    Eberspaecher, M.; Amos, K.; Apagyi, B.

    1999-12-01

    The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed

  7. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  8. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  9. Solution of the nonlinear inverse scattering problem by T-matrix completion. I. Theory.

    Science.gov (United States)

    Levinson, Howard W; Markel, Vadim A

    2016-10-01

    We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between V and the T matrix of the problem. Here it is important to realize that not every T corresponds to a diagonal V and we, therefore, relax the usual condition of strict diagonality (locality) of V. An iterative algorithm is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318 (2016)10.1103/PhysRevE.94.043318]. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.

  10. Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach.

    Science.gov (United States)

    Smart, Jonathan J; Punt, André E; White, William T; Simpfendorfer, Colin A

    2018-01-18

    Leslie matrix models are an important analysis tool in conservation biology that are applied to a diversity of taxa. The standard approach estimates the finite rate of population growth (λ) from a set of vital rates. In some instances, an estimate of λ is available, but the vital rates are poorly understood and can be solved for using an inverse matrix approach. However, these approaches are rarely attempted due to prerequisites of information on the structure of age or stage classes. This study addressed this issue by using a combination of Monte Carlo simulations and the sample-importance-resampling (SIR) algorithm to solve the inverse matrix problem without data on population structure. This approach was applied to the grey reef shark (Carcharhinus amblyrhynchos) from the Great Barrier Reef (GBR) in Australia to determine the demography of this population. Additionally, these outputs were applied to another heavily fished population from Papua New Guinea (PNG) that requires estimates of λ for fisheries management. The SIR analysis determined that natural mortality (M) and total mortality (Z) based on indirect methods have previously been overestimated for C. amblyrhynchos, leading to an underestimated λ. The updated Z distributions determined using SIR provided λ estimates that matched an empirical λ for the GBR population and corrected obvious error in the demographic parameters for the PNG population. This approach provides opportunity for the inverse matrix approach to be applied more broadly to situations where information on population structure is lacking. © 2018 by the Ecological Society of America.

  11. Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations

    Directory of Open Access Journals (Sweden)

    Farahnaz Soleimani

    2015-11-01

    Full Text Available An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the effectiveness of our approach is confirmed on the basis of the theoretical point of view, some numerical comparisons in balancing chemical equations, as well as on randomly-generated matrices are furnished.

  12. SQUIDs and inverse problem techniques in nondestructive evaluation of metals

    CERN Document Server

    Bruno, A C

    2001-01-01

    Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.

  13. Correction of failure in antenna array using matrix pencil technique

    International Nuclear Information System (INIS)

    Khan, SU; Rahim, MKA

    2017-01-01

    In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique (MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix (HM) and execute the singular value decomposition (SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls. (paper)

  14. General factorization relations and consistency conditions in the sudden approximation via infinite matrix inversion

    International Nuclear Information System (INIS)

    Chan, C.K.; Hoffman, D.K.; Evans, J.W.

    1985-01-01

    Local, i.e., multiplicative, operators satisfy well-known linear factorization relations wherein matrix elements (between states associated with a complete set of wave functions) can be obtained as a linear combination of those out of the ground state (the input data). Analytic derivation of factorization relations for general state input data results in singular integral expressions for the coefficients, which can, however, be regularized using consistency conditions between matrix elements out of a single (nonground) state. Similar results hold for suitable ''symmetry class'' averaged matrix elements where the symmetry class projection operators are ''complete.'' In several cases where the wave functions or projection operators incorporate orthogonal polynomial dependence, we show that the ground state factorization relations have a simplified structure allowing an alternative derivation of the general factorization relations via an infinite matrix inversion procedure. This form is shown to have some advantages over previous versions. In addition, this matrix inversion procedure obtains all consistency conditions (which is not always the case from regularization of singular integrals)

  15. A Structure-dependent matrix representation of manipulator kinematics and its inverse solution

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-03-01

    In this paper, derivation of kinematic equations for a six-link manipulator is presented using the homogeneous transformation (A i -matrix) based on Denavit-Hartenberg method, and additionally a solution procedure of its inverse problem is outlined. In order to examine the validity of a system of equations, solutions were compared with the exact ones of the inverse kinematics (for the same type of a manipulator) expressed in arbitrarily given co-ordinate systems. Through complete agreement of joint solutions between the two, the present purpose was accomplished. As shown in this paper, an explicit description between adjacent links will give a possible clue to a systematic treatment of the inverse problem for a class of manipulators. (author)

  16. Integrated intensities in inverse time-of-flight technique

    International Nuclear Information System (INIS)

    Dorner, Bruno

    2006-01-01

    In traditional data analysis a model function, convoluted with the resolution, is fitted to the measured data. In case that integrated intensities of signals are of main interest, one can use an approach which does not require a model function for the signal nor detailed knowledge of the resolution. For inverse TOF technique, this approach consists of two steps: (i) Normalisation of the measured spectrum with the help of a monitor, with 1/k sensitivity, which is positioned in front of the sample. This means at the same time a conversion of the data from time of flight to energy transfer. (ii) A Jacobian [I. Waller, P.O. Froeman, Ark. Phys. 4 (1952) 183] transforms data collected at constant scattering angle into data as if measured at constant momentum transfer Q. This Jacobian works correctly for signals which have a constant width at different Q along the trajectory of constant scattering angle. The approach has been tested on spectra of Compton scattering with neutrons, having epithermal energies, obtained on the inverse TOF spectrometer VESUVIO/ISIS. In this case the width of the signal is increasing proportional to Q and in consequence the application of the Jacobian leads to integrated intensities slightly too high. The resulting integrated intensities agree very well with results derived in the traditional way. Thus this completely different approach confirms the observation that signals from recoil by H-atoms at large momentum transfers are weaker than expected

  17. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    Science.gov (United States)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  18. A matrix-inversion method for gamma-source mapping from gamma-count data - 59082

    International Nuclear Information System (INIS)

    Bull, Richard K.; Adsley, Ian; Burgess, Claire

    2012-01-01

    Gamma ray counting is often used to survey the distribution of active waste material in various locations. Ideally the output from such surveys would be a map of the activity of the waste. In this paper a simple matrix-inversion method is presented. This allows an array of gamma-count data to be converted to an array of source activities. For each survey area the response matrix is computed using the gamma-shielding code Microshield [1]. This matrix links the activity array to the count array. The activity array is then obtained via matrix inversion. The method was tested on artificially-created arrays of count-data onto which statistical noise had been added. The method was able to reproduce, quite faithfully, the original activity distribution used to generate the dataset. The method has been applied to a number of practical cases, including the distribution of activated objects in a hot cell and to activated Nimonic springs amongst fuel-element debris in vaults at a nuclear plant. (authors)

  19. Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization

    KAUST Repository

    Gower, Robert M.; Hanzely, Filip; Richtarik, Peter; Stich, Sebastian

    2018-01-01

    We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite

  20. Analysis of smart beams with piezoelectric elements using impedance matrix and inverse Laplace transform

    International Nuclear Information System (INIS)

    Li, Guo-Qing; Miao, Xing-Yuan; Hu, Yuan-Tai; Wang, Ji

    2013-01-01

    A comprehensive study on smart beams with piezoelectric elements using an impedance matrix and the inverse Laplace transform is presented. Based on the authors’ previous work, the dynamics of some elements in beam-like smart structures are represented by impedance matrix equations, including a piezoelectric stack, a piezoelectric bimorph, an elastic straight beam or a circular curved beam. A further transform is applied to the impedance matrix to obtain a set of implicit transfer function matrices. Apart from the analytical solutions to the matrices of smart beams, one computation procedure is proposed to obtained the impedance matrices and transfer function matrices using FEA. By these means the dynamic solution of the elements in the frequency domain is transformed to that in Laplacian s-domain and then inversely transformed to time domain. The connections between the elements and boundary conditions of the smart structures are investigated in detail, and one integrated system equation is finally obtained using the symbolic operation of TF matrices. A procedure is proposed for dynamic analysis and control analysis of the smart beam system using mode superposition and a numerical inverse Laplace transform. The first example is given to demonstrate building transfer function associated impedance matrices using both FEA and analytical solutions. The second example is to verify the ability of control analysis using a suspended beam with PZT patches under close-loop control. The third example is designed for dynamic analysis of beams with a piezoelectric stack and a piezoelectric bimorph under various excitations. The last example of one smart beam with a PPF controller shows the applicability to the control analysis of complex systems using the proposed method. All results show good agreement with the other results in the previous literature. The advantages of the proposed methods are also discussed at the end of this paper. (paper)

  1. S-matrix to potential inversion of low-energy. alpha. - sup 12 C phase shifts

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S.G.; Mackintosh, R.S. (Open Univ., Milton Keynes (UK). Dept. of Physics)

    1990-10-22

    The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for {alpha}-{sup 12}C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect. (orig.).

  2. S-Matrix to potential inversion of low-energy α-12C phase shifts

    Science.gov (United States)

    Cooper, S. G.; Mackintosh, R. S.

    1990-10-01

    The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.

  3. Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms

    International Nuclear Information System (INIS)

    Burkitt, A.N.; Irving, A.C.

    1990-01-01

    The Lanczos and conjugate gradient algorithms are widely used in lattice QCD calculations. The previously known close relationship between the two methods is explored and two commonly used implementations are shown to give identically the same results at each iteration, in exact arithmetic, for matrix inversion. The identities between the coefficients of the two algorithms are given, and many of the features of the two algorithms can now be combined. The effects of finite arithmetic are investigated and the particular Lanczos formulation is found to be most stable with respect to rounding errors. (orig.)

  4. IMPACT OF MATRIX INVERSION ON THE COMPLEXITY OF THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    M. Sybis

    2016-04-01

    Full Text Available Purpose. The development of a wide construction market and a desire to design innovative architectural building constructions has resulted in the need to create complex numerical models of objects having increasingly higher computational complexity. The purpose of this work is to show that choosing a proper method for solving the set of equations can improve the calculation time (reduce the complexity by a few levels of magnitude. Methodology. The article presents an analysis of the impact of matrix inversion algorithm on the deflection calculation in the beam, using the finite element method (FEM. Based on the literature analysis, common methods of calculating set of equations were determined. From the found solutions the Gaussian elimination, LU and Cholesky decomposition methods have been implemented to determine the effect of the matrix inversion algorithm used for solving the equations set on the number of computational operations performed. In addition, each of the implemented method has been further optimized thereby reducing the number of necessary arithmetic operations. Findings. These optimizations have been performed on the use of certain properties of the matrix, such as symmetry or significant number of zero elements in the matrix. The results of the analysis are presented for the division of the beam to 5, 50, 100 and 200 nodes, for which the deflection has been calculated. Originality. The main achievement of this work is that it shows the impact of the used methodology on the complexity of solving the problem (or equivalently, time needed to obtain results. Practical value. The difference between the best (the less complex and the worst (the most complex is in the row of few orders of magnitude. This result shows that choosing wrong methodology may enlarge time needed to perform calculation significantly.

  5. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Science.gov (United States)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T.

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  6. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Devon J. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Page McAdams, H. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Department of Biomedical Engineering, Department of Physics, and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS

  7. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H Page; Dobbins, James T

    2013-02-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently

  8. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  9. Matrix-Inversion-Free Compressed Sensing With Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals.

    Science.gov (United States)

    Cheng, Yih-Chun; Tsai, Pei-Yun; Huang, Ming-Hao

    2016-05-19

    Low-complexity compressed sensing (CS) techniques for monitoring electrocardiogram (ECG) signals in wireless body sensor network (WBSN) are presented. The prior probability of ECG sparsity in the wavelet domain is first exploited. Then, variable orthogonal multi-matching pursuit (vOMMP) algorithm that consists of two phases is proposed. In the first phase, orthogonal matching pursuit (OMP) algorithm is adopted to effectively augment the support set with reliable indices and in the second phase, the orthogonal multi-matching pursuit (OMMP) is employed to rescue the missing indices. The reconstruction performance is thus enhanced with the prior information and the vOMMP algorithm. Furthermore, the computation-intensive pseudo-inverse operation is simplified by the matrix-inversion-free (MIF) technique based on QR decomposition. The vOMMP-MIF CS decoder is then implemented in 90 nm CMOS technology. The QR decomposition is accomplished by two systolic arrays working in parallel. The implementation supports three settings for obtaining 40, 44, and 48 coefficients in the sparse vector. From the measurement result, the power consumption is 11.7 mW at 0.9 V and 12 MHz. Compared to prior chip implementations, our design shows good hardware efficiency and is suitable for low-energy applications.

  10. Study of a new glass matrix by the thermoluminescence technique

    International Nuclear Information System (INIS)

    Ferreira, Pamela Z.; Vedovato, Uly P.; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P.; Carrera, Betzabel N.S.; Watanabe, Shigueo

    2015-01-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li 2 CO 3 .10Al 2 O 3 .20BaO.50B 2 O 3 (mol%), irradiated with different doses in a 60 Co source. The glow curves and the dose-response curve were obtained for radiation doses between 50 Gy and 900 Gy. The results showed that this new glass matrix presents potential use in high-dose dosimetry. (author)

  11. Reconstruction of sound speed profile through natural generalized inverse technique

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Murty, C.S.

    An acoustic model has been developed for reconstruction of vertical sound speed in a near stable or stratified ocean. Generalized inverse method is utilised in the model development. Numerical experiments have been carried out to account...

  12. Inversions

    Science.gov (United States)

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  13. A genetic meta-algorithm-assisted inversion approach: hydrogeological study for the determination of volumetric rock properties and matrix and fluid parameters in unsaturated formations

    Science.gov (United States)

    Szabó, Norbert Péter

    2018-03-01

    An evolutionary inversion approach is suggested for the interpretation of nuclear and resistivity logs measured by direct-push tools in shallow unsaturated sediments. The efficiency of formation evaluation is improved by estimating simultaneously (1) the petrophysical properties that vary rapidly along a drill hole with depth and (2) the zone parameters that can be treated as constant, in one inversion procedure. In the workflow, the fractional volumes of water, air, matrix and clay are estimated in adjacent depths by linearized inversion, whereas the clay and matrix properties are updated using a float-encoded genetic meta-algorithm. The proposed inversion method provides an objective estimate of the zone parameters that appear in the tool response equations applied to solve the forward problem, which can significantly increase the reliability of the petrophysical model as opposed to setting these parameters arbitrarily. The global optimization meta-algorithm not only assures the best fit between the measured and calculated data but also gives a reliable solution, practically independent of the initial model, as laboratory data are unnecessary in the inversion procedure. The feasibility test uses engineering geophysical sounding logs observed in an unsaturated loessy-sandy formation in Hungary. The multi-borehole extension of the inversion technique is developed to determine the petrophysical properties and their estimation errors along a profile of drill holes. The genetic meta-algorithmic inversion method is recommended for hydrogeophysical logging applications of various kinds to automatically extract the volumetric ratios of rock and fluid constituents as well as the most important zone parameters in a reliable inversion procedure.

  14. A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Pontil, Massimiliano

    2014-01-01

    We consider the estimation of the Brain Electrical Sources (BES) matrix from noisy electroencephalographic (EEG) measurements, commonly named as the EEG inverse problem. We propose a new method to induce neurophysiological meaningful solutions, which takes into account the smoothness, structured...... sparsity, and low rank of the BES matrix. The method is based on the factorization of the BES matrix as a product of a sparse coding matrix and a dense latent source matrix. The structured sparse-low-rank structure is enforced by minimizing a regularized functional that includes the ℓ21-norm of the coding...... matrix and the squared Frobenius norm of the latent source matrix. We develop an alternating optimization algorithm to solve the resulting nonsmooth-nonconvex minimization problem. We analyze the convergence of the optimization procedure, and we compare, under different synthetic scenarios...

  15. Relevance vector machine technique for the inverse scattering problem

    International Nuclear Information System (INIS)

    Wang Fang-Fang; Zhang Ye-Rong

    2012-01-01

    A novel method based on the relevance vector machine (RVM) for the inverse scattering problem is presented in this paper. The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered. The nonlinearity is embodied in the relation between the scattered field and the target property, which can be obtained through the RVM training process. Besides, rather than utilizing regularization, the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output. Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy, convergence, robustness, generalization, and improved performance in terms of sparse property in comparison with the support vector machine (SVM) based approach. (general)

  16. Renormalized nonlinear sensitivity kernel and inverse thin-slab propagator in T-matrix formalism for wave-equation tomography

    International Nuclear Information System (INIS)

    Wu, Ru-Shan; Wang, Benfeng; Hu, Chunhua

    2015-01-01

    We derived the renormalized nonlinear sensitivity operator and the related inverse thin-slab propagator (ITSP) for nonlinear tomographic waveform inversion based on the theory of nonlinear partial derivative operator and its De Wolf approximation. The inverse propagator is based on a renormalization procedure to the forward and inverse transition matrix scattering series. The ITSP eliminates the divergence of the inverse Born series for strong perturbations by stepwise partial summation (renormalization). Numerical tests showed that the inverse Born T-series starts to diverge at moderate perturbation (20% for the given model of Gaussian ball with a radius of 5 wavelength), while the ITSP has no divergence problem for any strong perturbations (up to 100% perturbation for test model). In addition, the ITSP is a non-iterative, marching algorithm with only one sweep, and therefore very efficient in comparison with the iterative inversion based on the inverse-Born scattering series. This convergence and efficiency improvement has potential applications to the iterative procedure of waveform inversion. (paper)

  17. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  18. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  19. Development of high-energy resolution inverse photoemission technique

    International Nuclear Information System (INIS)

    Asakura, D.; Fujii, Y.; Mizokawa, T.

    2005-01-01

    We developed a new inverse photoemission (IPES) machine based on a new idea to improve the energy resolution: off-plane Eagle mounting of the optical system in combination with dispersion matching between incoming electron and outgoing photon. In order to achieve dispersion matching, we have employed a parallel plate electron source and have investigated whether the electron beam is obtained as expected. In this paper, we present the principle and design of the new IPES method and report the current status of the high-energy resolution IPES machine

  20. Solving Inverse Kinematics – A New Approach to the Extended Jacobian Technique

    Directory of Open Access Journals (Sweden)

    M. Šoch

    2005-01-01

    Full Text Available This paper presents a brief summary of current numerical algorithms for solving the Inverse Kinematics problem. Then a new approach based on the Extended Jacobian technique is compared with the current Jacobian Inversion method. The presented method is intended for use in the field of computer graphics for animation of articulated structures. 

  1. SKILLS-BASED ECLECTIC TECHNIQUES MATRIX FOR ELT MICROTEACHINGS

    Directory of Open Access Journals (Sweden)

    İskender Hakkı Sarıgöz

    2016-10-01

    Full Text Available Foreign language teaching undergoes constant changes due to the methodological improvement. This progress may be examined in two parts. They are the methods era and the post-methods era. It is not pragmatic today to propose a particular language teaching method and its techniques for all purposes. The holistic inflexibility of mid-century methods has long gone. In the present day, constructivist foreign language teaching trends attempt to see the learner as a whole person and an individual who may be different from the other students in many respects. At the same time, the individual differences should not keep the learners away from group harmony. For this reason, current teacher training programs require eclectic teaching matrixes for unit design considering the mixed ability student groups. These matrixes can be prepared in a multidimensional fashion because there are many functional techniques in different methods and other new techniques to be created by instructors freely in accordance with the teaching aims. The hypothesis in this argument is that the collection of foreign language teaching techniques compiled in ELT microteachings for a particular group of learners has to be arranged eclectically in order to update the teaching process. Nevertheless, designing a teaching format of this sort is a demanding and highly criticized task. This study briefly argues eclecticism in language-skills based methodological struggle from the perspective of ELT teacher education.

  2. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun; Joshi, Sunnie; Walton, Jay R.

    2012-01-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a

  3. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  4. Efficient computation of the inverse of gametic relationship matrix for a marked QTL

    Directory of Open Access Journals (Sweden)

    Iwaisaki Hiroaki

    2006-04-01

    Full Text Available Abstract Best linear unbiased prediction of genetic merits for a marked quantitative trait locus (QTL using mixed model methodology includes the inverse of conditional gametic relationship matrix (G-1 for a marked QTL. When accounting for inbreeding, the conditional gametic relationships between two parents of individuals for a marked QTL are necessary to build G-1 directly. Up to now, the tabular method and its adaptations have been used to compute these relationships. In the present paper, an indirect method was implemented at the gametic level to compute these few relationships. Simulation results showed that the indirect method can perform faster with significantly less storage requirements than adaptation of the tabular method. The efficiency of the indirect method was mainly due to the use of the sparseness of G-1. The indirect method can also be applied to construct an approximate G-1 for populations with incomplete marker data, providing approximate probabilities of descent for QTL alleles for individuals with incomplete marker data.

  5. Decoherence in quantum lossy systems: superoperator and matrix techniques

    Science.gov (United States)

    Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel

    2017-06-01

    Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

  6. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  7. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  8. A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options

    NARCIS (Netherlands)

    Ortiz-Gracia, Luis; Oosterlee, C.W.

    2016-01-01

    In the search for robust, accurate, and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon wavelets inverse Fourier technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of sharp quantitative error

  9. A highly efficient Shannon wavelet inverse Fourier technique for pricing European options

    NARCIS (Netherlands)

    L. Ortiz Gracia (Luis); C.W. Oosterlee (Cornelis)

    2016-01-01

    htmlabstractIn the search for robust, accurate, and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon wavelets inverse Fourier technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of

  10. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    International Nuclear Information System (INIS)

    Dobbines, J.T. III.

    1990-01-01

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P

  11. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    Science.gov (United States)

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  12. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    Science.gov (United States)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  13. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry

    International Nuclear Information System (INIS)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.

    2016-10-01

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  14. Combined rock-physical modelling and seismic inversion techniques for characterisation of stacked sandstone reservoir

    NARCIS (Netherlands)

    Justiniano, A.; Jaya, Y.; Diephuis, G.; Veenhof, R.; Pringle, T.

    2015-01-01

    The objective of the study is to characterise the Triassic massive stacked sandstone deposits of the Main Buntsandstein Subgroup at Block Q16 located in the West Netherlands Basin. The characterisation was carried out through combining rock-physics modelling and seismic inversion techniques. The

  15. Evaluation of inverse modeling techniques for pinpointing water leakages at building constructions

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2015-01-01

    The location and nature of the moisture leakages are sometimes difficult to detect. Moreover, the relation between observed inside surface moisture patterns and where the moisture enters the construction is often not clear. The objective of this paper is to investigate inverse modeling techniques as

  16. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    Science.gov (United States)

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  17. Retrieving the correlation matrix from a truncated PCA solution : The inverse principal component problem

    NARCIS (Netherlands)

    ten Berge, Jos M.F.; Kiers, Henk A.L.

    When r Principal Components are available for k variables, the correlation matrix is approximated in the least squares sense by the loading matrix times its transpose. The approximation is generally not perfect unless r = k. In the present paper it is shown that, when r is at or above the Ledermann

  18. Improved parallel solution techniques for the integral transport matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)

    2011-07-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  19. Improved parallel solution techniques for the integral transport matrix method

    International Nuclear Information System (INIS)

    Zerr, R. Joseph; Azmy, Yousry Y.

    2011-01-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  20. 2-variable Laguerre matrix polynomials and Lie-algebraic techniques

    International Nuclear Information System (INIS)

    Khan, Subuhi; Hassan, Nader Ali Makboul

    2010-01-01

    The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.

  1. Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization

    KAUST Repository

    Gower, Robert M.

    2018-02-12

    We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices in such a way that all iterates (approximate solutions) generated by the algorithm are positive definite matrices themselves. This opens the way for many applications in the field of optimization and machine learning. As an application of our general theory, we develop the {\\\\em first accelerated (deterministic and stochastic) quasi-Newton updates}. Our updates lead to provably more aggressive approximations of the inverse Hessian, and lead to speed-ups over classical non-accelerated rules in numerical experiments. Experiments with empirical risk minimization show that our rules can accelerate training of machine learning models.

  2. Retrieval of the projected potential by inversion from the scattering matrix in electron-crystal scattering

    International Nuclear Information System (INIS)

    Allen, L.J.; Spargo, A.E.C.; Leeb, H.

    1998-01-01

    The retrieval of a unique crystal potential from the scattering matrix S in high energy transmission electron diffraction is discussed. It is shown that, in general, data taken at a single orientation are not sufficient to determine all the elements of S. Additional measurements with tilted incident beam are required for the determination of the whole S-matrix. An algorithm for the extraction of the crystal potential from the S-matrix measured at a single energy and thickness is presented. The limiting case of thin crystals is discussed. Several examples with simulated data are considered

  3. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  4. Monotone matrix transformations defined by the group inverse and simultaneous diagonalizability

    International Nuclear Information System (INIS)

    Bogdanov, I I; Guterman, A E

    2007-01-01

    Bijective linear transformations of the matrix algebra over an arbitrary field that preserve simultaneous diagonalizability are characterized. This result is used for the characterization of bijective linear monotone transformations . Bibliography: 28 titles.

  5. Using an Equity/Performance Matrix to Address Salary Compression/Inversion and Performance Pay Issues

    Science.gov (United States)

    Richardson, Peter; Thomas, Steven

    2013-01-01

    Pay compression and inversion are significant problems for many organizations and are often severe in schools of business in particular. At the same time, there is more insistence on showing accountability and paying employees based on performance. The authors explain and show a detailed example of how to use a Compensation Equity/ Performance…

  6. Hierarchical matrix techniques for the solution of elliptic equations

    KAUST Repository

    Chá vez, Gustavo; Turkiyyah, George; Yokota, Rio; Keyes, David E.

    2014-01-01

    Hierarchical matrix approximations are a promising tool for approximating low-rank matrices given the compactness of their representation and the economy of the operations between them. Integral and differential operators have been the major

  7. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun

    2012-07-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a nonlinear isotropic cylindrical hyperelastic body. A boundary value problem is formulated for the response of the arterial wall within a specific class of quasistatic deformations reflective of the response due to imposed blood pressure. Subsequently, a boundary value problem is developed via an asymptotic construction modeling intravascular ultrasound interrogation which generates small amplitude, high frequency time harmonic vibrations superimposed on the static finite deformation. This leads to a system of second order ordinary Sturm-Liouville boundary value problems that are then employed to reconstruct the shear modulus through a nonlinear inverse spectral technique. Numerical examples are demonstrated to show the viability of the method. © 2012 Elsevier Ltd. All rights reserved.

  8. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  9. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  10. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  11. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  12. A robust spatial filtering technique for multisource localization and geoacoustic inversion.

    Science.gov (United States)

    Stotts, S A

    2005-07-01

    Geoacoustic inversion and source localization using beamformed data from a ship of opportunity has been demonstrated with a bottom-mounted array. An alternative approach, which lies within a class referred to as spatial filtering, transforms element level data into beam data, applies a bearing filter, and transforms back to element level data prior to performing inversions. Automation of this filtering approach is facilitated for broadband applications by restricting the inverse transform to the degrees of freedom of the array, i.e., the effective number of elements, for frequencies near or below the design frequency. A procedure is described for nonuniformly spaced elements that guarantees filter stability well above the design frequency. Monitoring energy conservation with respect to filter output confirms filter stability. Filter performance with both uniformly spaced and nonuniformly spaced array elements is discussed. Vertical (range and depth) and horizontal (range and bearing) ambiguity surfaces are constructed to examine filter performance. Examples that demonstrate this filtering technique with both synthetic data and real data are presented along with comparisons to inversion results using beamformed data. Examinations of cost functions calculated within a simulated annealing algorithm reveal the efficacy of the approach.

  13. Utility of natural generalised inverse technique in the interpretation of dyke structures

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.M.M.; Murty, T.V.R.; Rao, P.R.; Lakshminarayana, S.; Subrahmanyam, A.S.; Murthy, K.S.R.

    environs along the central west coast of India: analysis using EOF, J. Geophys.Res.,91(1986) 8523 -8526. 9 Marquardt D W, An algorithm for least-squares estimation of non-linear parameters, J. Soc. Indust. Appl. Math, 11 (1963) 431-441. INDIAN J. MAR... technique in reconstruction of gravity anomalies due to a fault, Indian J. Pure. Appl. Math., 34 (2003) 31-47. 16 Ramana Murty T V, Somayajulu Y K & Murty C S, Reconstruction of sound speed profile through natural generalised inverse technique, Indian J...

  14. Inverse kinetics technique for reactor shutdown measurement: an experimental assessment. [AGR

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T. A.; McDonald, D.

    1975-09-15

    It is proposed to use the Inverse Kinetics Technique to measure the subcritical reactivity as a function of time during the testing of the nitrogen injection systems on AGRs. A description is given of an experimental assessment of the technique by investigating known transients created by control rod movements on a small experimental reactor, (2m high, 1m radius). Spatial effects were observed close to the moving rods but otherwise derived reactivities were independent of detector position and agreed well with the existing calibrations. This prompted the suggestion that data from installed reactor instrumentation could be used to calibrate CAGR control rods.

  15. Cheese Matrix Microstructure Studied by Advanced Microscopic Techniques

    Czech Academy of Sciences Publication Activity Database

    Burdiková, Z.; Hickey, C.; Auty, M. A. E.; Pala, J.; Švindrych, Z.; Steinmetz, I.; Krzyžánek, Vladislav; Hrubanová, Kamila; Sheehan, J. J.

    2014-01-01

    Roč. 20, S3 (2014), s. 1336-1337 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : cheese matrix * cryo-SEM * confocal laser scanning microscopy Subject RIV: EA - Cell Biology Impact factor: 1.877, year: 2014

  16. Determining the metallicity of the solar envelope using seismic inversion techniques

    Science.gov (United States)

    Buldgen, G.; Salmon, S. J. A. J.; Noels, A.; Scuflaire, R.; Dupret, M. A.; Reese, D. R.

    2017-11-01

    The solar metallicity issue is a long-lasting problem of astrophysics, impacting multiple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists attempted providing a seismic determination of the metallicity in the solar convective envelope. However, the puzzle remains since two independent groups provided two radically different values for this crucial astrophysical parameter. We aim at providing an independent seismic measurement of the solar metallicity in the convective envelope. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014.

  17. Hierarchical matrix techniques for the solution of elliptic equations

    KAUST Repository

    Chávez, Gustavo

    2014-05-04

    Hierarchical matrix approximations are a promising tool for approximating low-rank matrices given the compactness of their representation and the economy of the operations between them. Integral and differential operators have been the major applications of this technology, but they can be applied into other areas where low-rank properties exist. Such is the case of the Block Cyclic Reduction algorithm, which is used as a direct solver for the constant-coefficient Poisson quation. We explore the variable-coefficient case, also using Block Cyclic reduction, with the addition of Hierarchical Matrices to represent matrix blocks, hence improving the otherwise O(N2) algorithm, into an efficient O(N) algorithm.

  18. Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

    Directory of Open Access Journals (Sweden)

    J. S. de Villiers

    2014-10-01

    Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.

  19. Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation

    Science.gov (United States)

    Bonin, Jennifer; Chambers, Don

    2013-07-01

    The low spatial resolution of GRACE causes leakage, where signals in one location spread out into nearby regions. Because of this leakage, using simple techniques such as basin averages may result in an incorrect estimate of the true mass change in a region. A fairly simple least squares inversion technique can be used to more specifically localize mass changes into a pre-determined set of basins of uniform internal mass distribution. However, the accuracy of these higher resolution basin mass amplitudes has not been determined, nor is it known how the distribution of the chosen basins affects the results. We use a simple `truth' model over Greenland as an example case, to estimate the uncertainties of this inversion method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We determine that an appropriate level of smoothing (300-400 km) and process noise (0.30 cm2 of water) gets the best results. The trends of the Greenland internal basins and Iceland can be reasonably estimated with this method, with average systematic errors of 3.5 cm yr-1 per basin. The largest mass losses found from GRACE RL04 occur in the coastal northwest (-19.9 and -33.0 cm yr-1) and southeast (-24.2 and -27.9 cm yr-1), with small mass gains (+1.4 to +7.7 cm yr-1) found across the northern interior. Acceleration of mass change is measurable at the 95 per cent confidence level in four northwestern basins, but not elsewhere in Greenland. Due to an insufficiently detailed distribution of basins across internal Canada, the trend estimates of Baffin and Ellesmere Islands are expected to be incorrect due to systematic errors caused by the inversion technique.

  20. Algorithm for polarimetry data inversion, consistent with other measuring techniques in tokamak plasma

    International Nuclear Information System (INIS)

    Kravtsov, Y.A.; Kravtsov, Y.A.; Chrzanowski, J.; Mazon, D.

    2011-01-01

    New procedure for plasma polarimetry data inversion is suggested, which fits two parameter knowledge-based plasma model to the measured parameters (azimuthal and ellipticity angles) of the polarization ellipse. The knowledge-based model is supposed to use the magnetic field and electron density profiles, obtained from magnetic measurements and LIDAR data on the Thomson scattering. In distinction to traditional polarimetry, polarization evolution along the ray is determined on the basis of angular variables technique (AVT). The paper contains a few examples of numerical solutions of these equations, which are applicable in conditions, when Faraday and Cotton-Mouton effects are simultaneously strong. (authors)

  1. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  2. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  3. Application of a numerical Laplace transform inversion technique to a problem in reactor dynamics

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    A newly developed numerical technique for the Laplace transform inversion is applied to a classical time-dependent problem of reactor physics. The dynamic behaviour of a multiplying system has been analyzed through a continuous slowing down model, taking into account a finite slowing down time, the presence of several groups of neutron precursors and simplifying the spatial analysis using the space asymptotic approximation. The results presented, show complete agreement with analytical ones previously obtained and allow a deeper understanding of the model features. (author)

  4. Syrio. A program for the calculation of the inverse of a matrix; Syrio. Programa para el calculo de la inversa de una matriz

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Viedma Alonso, L.

    1963-07-01

    SYRIO is a code for the inversion of a non-singular square matrix whose order is not higher than 40 for the UNIVAC-UCT (SS-90). The treatment stands from the inversion formula of sherman and Morrison, and following the Herbert S. Wilf's method for special matrices, generalize the procedure to any kind of non-singular square matrices. the limitation of the matrix order is not inherent of the program itself but imposed by the storage capacity of the computer for which it was coded. (Author)

  5. Syrio. A program for the calculation of the inverse of a matrix; Syrio. Programa para el calculo de la inversa de una matriz

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Viedma Alonso, L.

    1963-07-01

    SYRIO is a code for the inversion of a non-singular square matrix whose order is not higher than 40 for the UNIVAC-UCT (SS-90). The treatment stands from the inversion formula of sherman and Morrison, and following the Herbert S. Wilf's method for special matrices, generalize the procedure to any kind of non-singular square matrices. the limitation of the matrix order is not inherent of the program itself but imposed by the storage capacity of the computer for which it was coded. (Author)

  6. Undesirable effects of covariance matrix techniques for error analysis

    International Nuclear Information System (INIS)

    Seibert, D.

    1994-01-01

    Regression with χ 2 constructed from covariance matrices should not be used for some combinations of covariance matrices and fitting functions. Using the technique for unsuitable combinations can amplify systematic errors. This amplification is uncontrolled, and can produce arbitrarily inaccurate results that might not be ruled out by a χ 2 test. In addition, this technique can give incorrect (artificially small) errors for fit parameters. I give a test for this instability and a more robust (but computationally more intensive) method for fitting correlated data

  7. Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique

    International Nuclear Information System (INIS)

    Arnold, Alexander; Bruhns, Otto T; Reichling, Stefan; Mosler, Joern

    2010-01-01

    This paper is concerned with an efficient implementation suitable for the elastography inverse problem. More precisely, the novel algorithm allows us to compute the unknown stiffness distribution in soft tissue by means of the measured displacement field by considerably reducing the numerical cost compared to previous approaches. This is realized by combining and further elaborating variational mesh adaption with a clustering technique similar to those known from digital image compression. Within the variational mesh adaption, the underlying finite element discretization is only locally refined if this leads to a considerable improvement of the numerical solution. Additionally, the numerical complexity is reduced by the aforementioned clustering technique, in which the parameters describing the stiffness of the respective soft tissue are sorted according to a predefined number of intervals. By doing so, the number of unknowns associated with the elastography inverse problem can be chosen explicitly. A positive side effect of this method is the reduction of artificial noise in the data (smoothing of the solution). The performance and the rate of convergence of the resulting numerical formulation are critically analyzed by numerical examples.

  8. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  9. Inversion of Love wave phase velocity using smoothness-constrained least-squares technique; Heikatsuka seiyakutsuki saisho jijoho ni yoru love ha iso sokudo no inversion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, S [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)

    1996-10-01

    Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.

  10. Source-jerk analysis using a semi-explicit inverse kinetic technique

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Pederson, R.A.

    1985-01-01

    A method is proposed for measuring the effective reproduction factor, k, in subcritical systems. The method uses the transient response of a subcritical system to the sudden removal of an extraneous neutron source (i.e., a source jerk). The response is analyzed using an inverse kinetic technique that least-squares fits the exact analytical solution corresponding to a source-jerk transient as derived from the point-reactor model. It has been found that the technique can provide an accurate means of measuring k in systems that are close to critical (i.e., 0.95 < k < 1.0). As a system becomes more subcritical (i.e., k << 1.0) spatial effects can introduce significant biases depending on the source and detector positions. However, methods are available that can correct for these biases and, hence, can allow measuring subcriticality in systems with k as low as 0.5. 12 refs., 3 figs

  11. Source-jerk analysis using a semi-explicit inverse kinetic technique

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Pederson, R.A.

    1985-01-01

    A method is proposed for measuring the effective reproduction factor, k, in subcritical systems. The method uses the transient responses of a subcritical system to the sudden removal of an extraneous neutron source (i.e., a source jerk). The response is analyzed using an inverse kinetic technique that least-squares fits the exact analytical solution corresponding to a source-jerk transient as derived from the point-reactor model. It has been found that the technique can provide an accurate means of measuring k in systems that are close to critical (i.e., 0.95 < k < 1.0). As a system becomes more subcritical (i.e., k << 1.0) spatial effects can introduce significant biases depending on the source and detector positions. However, methods are available that can correct for these biases and, hence, can allow measuring subcriticality in systems with k as low as 0.5

  12. Solving eigenvalue response matrix equations with nonlinear techniques

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2014-01-01

    Highlights: • High performance solvers were applied within ERMM for the first time. • Accelerated fixed-point methods were developed that reduce computational times by 2–3. • A nonlinear, Newton-based ERMM led to similar improvement and more robustness. • A 3-D, SN-based ERMM shows how ERMM can apply fine-mesh methods to full-core analysis. - Abstract: This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov–Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton’s method was found to provide nearly the same performance with improved robustness

  13. The modified inverse hockey stick technique for adjuvant irradiation after mastectomy

    International Nuclear Information System (INIS)

    Kukolowicz, P.; Selerski, B.; Kuszewski, T.; Wieczorek, A.

    2004-01-01

    To present the technique of irradiation of post-mastectomy patients used in the Holycross Cancer Centre in Kielce.The paper presents a detailed description of the technique which is referred to as the 'modified inverse hockey stick technique (MIHS)'. The dosimetric characteristic of dose distribution for the MIHS technique is presented basing on dose distributions calculated for 40 patients. The measurements used to evaluate dose distribution included standard deviation of the dose in the Planning Target Volume (PTV) and the percentage of the PTV volume receiving a dose larger than 110% and smaller than 90%; the lung volume received at least 20 Gy (LV20) and the heart volume received at least 30 Gy (HV30). The distribution of the electron beam energy is also presented. The standard deviation of the dose in the PTV was approx. 10% in a majority of patients. About 12% of the PTV volume received a dose more than 10% smaller than intended and about 10% of the PTV volume received a dose more than 10% greater than intended. For patients irradiated on the left side of the chest wall the LV20 was always lesser than 25% and for patients irradiated on the right side of the chest wall - always less than 35%, except for one patient, in whom it reached 37%. The HV30 was always below 8%. The MIHS technique is a safe and reliable modality. The main advantages of the technique include very convenient and easily repeated positioning of the patient and small doses applied to the organs at risk. The individually calculated bolus plays an important role in diminishing the dose to the lung and heart. The disadvantages of the technique include poor dose homogeneity within the PTV and long matching lines of the electron and photon beams. (author)

  14. Inverse Optimization and Forecasting Techniques Applied to Decision-making in Electricity Markets

    DEFF Research Database (Denmark)

    Saez Gallego, Javier

    patterns that the load traditionally exhibited. On the other hand, this thesis is motivated by the decision-making processes of market players. In response to these challenges, this thesis provides mathematical models for decision-making under uncertainty in electricity markets. Demand-side bidding refers......This thesis deals with the development of new mathematical models that support the decision-making processes of market players. It addresses the problems of demand-side bidding, price-responsive load forecasting and reserve determination. From a methodological point of view, we investigate a novel...... approach to model the response of aggregate price-responsive load as a constrained optimization model, whose parameters are estimated from data by using inverse optimization techniques. The problems tackled in this dissertation are motivated, on one hand, by the increasing penetration of renewable energy...

  15. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  16. Acellular dermal matrix based nipple reconstruction: A modified technique

    Directory of Open Access Journals (Sweden)

    Raghavan Vidya

    2017-09-01

    Full Text Available Nipple areolar reconstruction (NAR has evolved with the advancement in breast reconstruction and can improve self-esteem and, consequently, patient satisfaction. Although a variety of reconstruction techniques have been described in the literature varying from nipple sharing, local flaps to alloplastic and allograft augmentation, over time, loss of nipple projection remains a major problem. Acellular dermal matrices (ADM have revolutionised breast reconstruction more recently. We discuss the use of ADM to act as a base plate and strut to give support to the base and offer nipple bulk and projection in a primary procedure of NAR with a local clover shaped dermal flap in 5 breasts (4 patients. We used 5-point Likert scales (1 = highly unsatisfied, 5 = highly satisfied to assess patient satisfaction. Median age was 46 years (range: 38–55 years. Nipple projection of 8 mm, 7 mm, and 7 mms were achieved in the unilateral cases and 6 mm in the bilateral case over a median 18 month period. All patients reported at least a 4 on the Likert scale. We had no post-operative complications. It seems that nipple areolar reconstruction [NAR] using ADM can achieve nipple projection which is considered aesthetically pleasing for patients.

  17. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    Science.gov (United States)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  18. Inverse Function: Pre-Service Teachers' Techniques and Meanings

    Science.gov (United States)

    Paoletti, Teo; Stevens, Irma E.; Hobson, Natalie L. F.; Moore, Kevin C.; LaForest, Kevin R.

    2018-01-01

    Researchers have argued teachers and students are not developing connected meanings for function inverse, thus calling for a closer examination of teachers' and students' inverse function meanings. Responding to this call, we characterize 25 pre-service teachers' inverse function meanings as inferred from our analysis of clinical interviews. After…

  19. Objective mapping of observed sub-surface mesoscale cold core eddy in the Bay of Bengal by stochastic inverse technique with tomographically simulated travel times

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; Sridevi, B.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.; Murthy, K.S.R.

    of Bengal during south-west monsoon season and explore possibility to reconstruct the acoustic profile of the eddy by Stochastic Inverse Technique. A simulation experiment on forward and inverse problems for observed sound velocity perturbation field has...

  20. Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique

    International Nuclear Information System (INIS)

    Feng Yi-Fu; Zhang Qing-Ling; Feng De-Zhi

    2012-01-01

    The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches

  1. Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning

    International Nuclear Information System (INIS)

    Stieler, Florian; Yan, Hui; Lohr, Frank; Wenz, Frederik; Yin, Fang-Fang

    2009-01-01

    Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT) is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI) guided system was developed and examined. The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS). Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be 'translated' to a set of 'if-then rules' for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS), was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints). The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02%) and membership functions (3.9%), thus suggesting that the 'behavior' of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. The study demonstrated a feasible way

  2. Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning

    Directory of Open Access Journals (Sweden)

    Wenz Frederik

    2009-09-01

    Full Text Available Abstract Background Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI guided system was developed and examined. Methods The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS. Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be "translated" to a set of "if-then rules" for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS, was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints. The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Results Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02% and membership functions (3.9%, thus suggesting that the "behavior" of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. Conclusion The

  3. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  4. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    Science.gov (United States)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  5. Using an inverse modelling approach to evaluate the water retention in a simple water harvesting technique

    Directory of Open Access Journals (Sweden)

    K. Verbist

    2009-10-01

    Full Text Available In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat independently. The tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a

  6. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques

    International Nuclear Information System (INIS)

    Kimura, Kuniko; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2013-01-01

    Recently, some papers reported successful imaging of subsurface features using atomic force microscopy (AFM). Some theoretical studies have also been presented, however the imaging mechanisms are not fully understood yet. In the preceeding papers, imaging of deeply buried nanometer-scale features has been successful only if they were buried in a soft matrix. In this paper, subsurface features (Au nanoparticles) buried in a soft polymer matrix were visualized. To elucidate the imaging mechanisms, various AFM techniques; heterodyne force microscopy, ultrasonic atomic force microscopy (UAFM), 2nd-harmonic UAFM and force modulation microscopy (FMM) were employed. The particles buried under 960 nm from the surface were successfully visualized which has never been achieved. The results elucidated that it is important for subsurface imaging to choose a cantilever with a suitable stiffness range for a matrix. In case of using the most suitable cantilever, the nanoparticles were visualized using every technique shown above except for FMM. The experimental results suggest that the subsurface features buried in a soft matrix with a depth of at least 1 µm can affect the local viscoelasticity (mainly viscosity) detected as the variation of the amplitude and phase of the tip oscillation on the surface. This phenomenon presumably makes it possible to visualize such deeply buried nanometer-scale features in a soft matrix. - Highlights: • We visualized subsurface features buried in soft matrix, and investigated its imaging mechanism. • AFM techniques; UAFM, FMM, HFM and 2nd-harmonic UAFM were applied to elucidate the mechanism. • Au nanoparticles buried under 960 nm from surface were visualized, which has never been achieved. • Imaging at contact resonance using a cantilever of suitable stiffness is important. • Subsurface features in a soft matrix affect surface viscoelasticity, which are detected by AFM

  7. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    Science.gov (United States)

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  8. Inverse kinematics technique for the study of fission-fragment isotopic yields at GANIL energies

    International Nuclear Information System (INIS)

    Delaune, O.

    2012-01-01

    The characteristics of the fission-products distributions result of dynamical and quantum properties of the deformation process of the fissioning nucleus. These distributions have also an interest for the conception of new nuclear power plants or for the transmutation of the nuclear wastes. Up to now, our understanding of the nuclear fission remains restricted because of experimental limitations. In particular, yields of the heavy fission products are difficult to get with precision. In this work, an innovative experimental technique is presented. It is based on the use of inverse kinematics coupled to the use of a spectrometer, in which a 238 U beam at 6 or 24 A MeV impinges on light targets. Several actinides, from 238 U to 250 Cf, are produced by transfer or fusion reactions, with an excitation energy ranges from ten to few hundreds MeV depending on the reaction and the beam energy. The fission fragments of these actinides are detected by the VAMOS spectrometer or the LISE separator. The isotopic yields of fission products are completely measured for different fissioning systems. The neutron excess of the fragments is used to characterise the isotopic distributions. Its evolution with excitation energy gives important insights on the mechanisms of the compound-nucleus formation and its deexcitation. Neutron excess is also used to determine the multiplicity of neutrons evaporated by the fragments. The role of the proton and neutron shell effects into the formation of fission fragments is also discussed. (author) [fr

  9. Local distortion techniques and unitarity of the S-matrix for the 2-body problem

    International Nuclear Information System (INIS)

    Babbitt, D.; Balslev, E.

    1976-01-01

    The two-body S-matrix for an interaction with exponential decay at infinity is defined in a time-independent way and its unitarity is proved directly by local distortion techniques. Complete sets of incoming and outgoing states or delicate resolvent estimates are not needed for the proof

  10. Comparison Between 2-D and 3-D Stiffness Matrix Model Simulation of Sasw Inversion for Pavement Structure

    Directory of Open Access Journals (Sweden)

    Sri Atmaja P. Rosidi

    2007-01-01

    Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.

  11. Objective quantification of perturbations produced with a piecewise PV inversion technique

    Directory of Open Access Journals (Sweden)

    L. Fita

    2007-11-01

    Full Text Available PV inversion techniques have been widely used in numerical studies of severe weather cases. These techniques can be applied as a way to study the sensitivity of the responsible meteorological system to changes in the initial conditions of the simulations. Dynamical effects of a collection of atmospheric features involved in the evolution of the system can be isolated. However, aspects, such as the definition of the atmospheric features or the amount of change in the initial conditions, are largely case-dependent and/or subjectively defined. An objective way to calculate the modification of the initial fields is proposed to alleviate this problem. The perturbations are quantified as the mean absolute variations of the total energy between the original and modified fields, and an unique energy variation value is fixed for all the perturbations derived from different PV anomalies. Thus, PV features of different dimensions and characteristics introduce the same net modification of the initial conditions from an energetic point of view. The devised quantification method is applied to study the high impact weather case of 9–11 November 2001 in the Western Mediterranean basin, when a deep and strong cyclone was formed. On the Balearic Islands 4 people died, and sustained winds of 30 ms−1 and precipitation higher than 200 mm/24 h were recorded. Moreover, 700 people died in Algiers during the first phase of the event. The sensitivities to perturbations in the initial conditions of a deep upper level trough, the anticyclonic system related to the North Atlantic high and the surface thermal anomaly related to the baroclinicity of the environment are determined. Results reveal a high influence of the upper level trough and the surface thermal anomaly and a minor role of the North Atlantic high during the genesis of the cyclone.

  12. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    surface and pore walls of PS-b-P4VP block copolymer membranes and then investigated the biocidal activity of the silver nanoparticles grown membranes. Finally, a novel photoresponsive nanostructured triblock copolymer membranes were developed by phase inversion technique. In addition, the photoresponsive behavior on irradiation with light and their membrane flux and retention properties were studied.

  13. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  14. Comparative evaluation of entero-anastomosis by inversion techniques with different suturing materials in bovine [Water buffalo

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S. C.P.; Khan, A. A.; Dass, L. L.; Sahay, P. N.; Jha, G. J.

    1985-07-01

    Single layer end-to-end inverted and everted techniques of entero-anastomosis were evaluated in sixteen male buffalo calves using silk and catgut sutures. All the animals of everting group showed areas of adhesion grossly, whereas it was only in three animals of inverting group. Histological evidences revealed a more uniform healing pattern in inversion group and radiography suggested comparatively greater degree of stenosis, but without functional impairment of intestinal lumen, than everting anastomosis. Connective tissue proliferation and mononuclear cell infiltrations were very minimal with silk suture whereas these were pronounced with catgut, irrespective of anastomotic technique. Thus inversion technique of anastomosis accomplished by single layer suturing with silk thread was ideal for enteroanastomosis in cattle.

  15. The application of neural network techniques to magnetic and optical inverse problems

    International Nuclear Information System (INIS)

    Jones, H.V.

    2000-12-01

    The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and

  16. Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix

    Science.gov (United States)

    Chew, Peter A; Bader, Brett W

    2012-10-16

    A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

  17. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    Energy Technology Data Exchange (ETDEWEB)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G., E-mail: akosovichev@solar.stanford.edu [Stanford University, HEPL, Stanford, CA 94305 (United States)

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  18. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-01-01

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  19. Study of a new glass matrix by thermoluminescent technique for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Carvalho, Gabriel S. Marchiori de; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica; Linda, V.E. Caldas [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.30BaO.40B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses of 10, 50, 100, 200 e 700 Gy. The results showed that this new glass matrix has potential use in high-dose dosimetry. (author)

  20. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    Science.gov (United States)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  1. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    Science.gov (United States)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  2. Identifying Isotropic Events using an Improved Regional Moment Tensor Inversion Technique

    Energy Technology Data Exchange (ETDEWEB)

    Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Ford, Sean R. [Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walter, William R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  3. Source Identification in Structural Acoustics with an Inverse Frequency Response Function Technique

    NARCIS (Netherlands)

    Visser, Rene

    2002-01-01

    Inverse source identification based on acoustic measurements is essential for the investigation and understanding of sound fields generated by structural vibrations of various devices and machinery. Acoustic pressure measurements performed on a grid in the nearfield of a surface can be used to

  4. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique.

    Science.gov (United States)

    Xu, Yong; Li, Dan; Yin, Zongqi; He, Aijuan; Lin, Miaomiao; Jiang, Gening; Song, Xiao; Hu, Xuefei; Liu, Yi; Wang, Jinpeng; Wang, Xiaoyun; Duan, Liang; Zhou, Guangdong

    2017-08-01

    Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage. Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the

  5. Inverse Kinematics of a Serial Robot

    Directory of Open Access Journals (Sweden)

    Amici Cinzia

    2016-01-01

    Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.

  6. Consolidation of titanium matrix composites to maximum density by different hot pressing techniques

    International Nuclear Information System (INIS)

    Montealegre Melendez, I.; Neubauer, E.; Danninger, H.

    2010-01-01

    In this present work, TiMMCs were manufactured through conventional and inductive hot pressing techniques. The starting materials were two titanium based powders as metal matrices, and two types of reinforcements, carbon nanofibres and nano-micro-boron particles. After several manufacturing runs with varying parameters, especially, optimized hot pressing parameters, the titanium compacts were characterized. Density and hardness measurements, chemical analyses and microstructural studies were conducted. The two objectives of this work were achieved. On one hand the influence, in the properties of TiMMCs, of the starting materials as matrix powder and reinforcements was determined. Higher content of impurities from the starting materials affected the hardness and the microstructure of the composites, independently of the manufacturing process. On another hand, the study of variations of the manufacturing process as temperature of consolidation and soaking time was reported. Higher densification was obtained at higher consolidation temperature; however, reaction between the matrix and the carbonaceous reinforcement was detected.

  7. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  8. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    Science.gov (United States)

    2011-09-01

    2005). We implemented a method to increase the usefulness of gravity data by filtering the Bouguer anomaly map. Though commonly applied 40 km 30 35...remove the long-wavelength components from the Bouguer gravity map we follow Tessema and Antoine (2004), who use an upward continuation method and...inversion of group velocities and gravity. (a) Top: Group velocities from a representative cell in the model. Bottom: Filtered Bouguer anomalies. (b

  9. Linearized inversion of two components seismic data; Inversion linearisee de donnees sismiques a deux composantes

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, D.

    1997-05-22

    The aim of the dissertation is the linearized inversion of multicomponent seismic data for 3D elastic horizontally stratified media, using Born approximation. A Jacobian matrix is constructed; it will be used to model seismic data from elastic parameters. The inversion technique, relying on single value decomposition (SVD) of the Jacobian matrix, is described. Next, the resolution of inverted elastic parameters is quantitatively studies. A first use of the technique is shown in the frame of an evaluation of a sea bottom acquisition (synthetic data). Finally, a real data set acquired with conventional marine technique is inverted. (author) 70 refs.

  10. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    Science.gov (United States)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  11. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  12. Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-04-01

    A surface plasmon resonance (SPR)-enhanced method is proposed for measuring the circular dichroism (CD), circular birefringence (CB), and degree of polarization (DOP) of turbid media using a Stokes–Mueller matrix polarimetry technique. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method enables the CD and CB properties to be measured with a resolution of 10 ? 4 refractive index unit (RIU) and 10 ? 5 ?? RIU , respectively, for refractive indices in the range of 1.3 to 1.4. The practical feasibility of the proposed method is demonstrated by detecting the CB/CD/DOP properties of glucose–chlorophyllin compound samples containing polystyrene microspheres. It is shown that the extracted CB value decreases linearly with the glucose concentration, while the extracted CD value increases linearly with the chlorophyllin concentration. However, the DOP is insensitive to both the glucose concentration and the chlorophyllin concentration. Consequently, the potential of the proposed SPR-enhanced Stokes–Mueller matrix polarimetry method for high-resolution CB/CD/DOP detection is confirmed. Notably, in contrast to conventional SPR techniques designed to detect relative refractive index changes, the SPR technique proposed in the present study allows absolute measurements of the optical properties (CB/CD/DOP) to be obtained.

  13. Inversion of calcite twin data for paleostress (1) : improved Etchecopar technique tested on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Daniel, Jean-Marc; Schueller, Sylvie

    2015-04-01

    Inversion of calcite twin data are known to be a powerful tool to reconstruct the past-state of stress in carbonate rocks of the crust, especially in fold-and-thrust belts and sedimentary basins. This is of key importance to constrain results of geomechanical modelling. Without proposing a new inversion scheme, this contribution reports some recent improvements of the most efficient stress inversion technique to date (Etchecopar, 1984) that allows to reconstruct the 5 parameters of the deviatoric paleostress tensors (principal stress orientations and differential stress magnitudes) from monophase and polyphase twin data sets. The improvements consist in the search of the possible tensors that account for the twin data (twinned and untwinned planes) and the aid to the user to define the best stress tensor solution, among others. We perform a systematic exploration of an hypersphere in 4 dimensions by varying different parameters, Euler's angles and the stress ratio. We first record all tensors with a minimum penalization function accounting for 20% of the twinned planes. We then define clusters of tensors following a dissimilarity criterion based on the stress distance between the 4 parameters of the reduced stress tensors and a degree of disjunction of the related sets of twinned planes. The percentage of twinned data to be explained by each tensor is then progressively increased and tested using the standard Etchecopar procedure until the best solution that explains the maximum number of twinned planes and the whole set of untwinned planes is reached. This new inversion procedure is tested on monophase and polyphase numerically-generated as well as natural calcite twin data in order to more accurately define the ability of the technique to separate more or less similar deviatoric stress tensors applied in sequence on the samples, to test the impact of strain hardening through the change of the critical resolved shear stress for twinning as well as to evaluate the

  14. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  15. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  16. Immobilization of Mo(IV) complex in hybrid matrix obtained via sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C.; Sousa, A.M.; Freire, C.; Neves, I.C.; Fonseca, A.M.; Silva, C.J.R

    2003-10-06

    A molybdenum(IV) complex, trans-bis-[1,2-bis(diphenylphosphino)ethane]-fluoro-(diazopropano) -molybdenum tetraphenylborate, [MoF(DIAZO)(dppe){sub 2}][BPh{sub 4}], was prepared and immobilized in a hybrid matrix synthesized by the sol-gel process. The host matrix, designated as U(500), is an organic-inorganic network material, classed as ureasil, that combines a reticulated siliceous backbone linked by short polyether-based segments. Urea bridges make the link between these two components, and the polymerization of silicate substituted terminal groups generates the inorganic network. The free Mo(IV) complex and all new materials were characterized by spectroscopic techniques (FT-IR and UV-Vis) and thermal analysis (DSC). The ionic conductivity of the resulting material was also studied. The results indicate that immobilized Mo(IV) complex has kept its solid-state structure, although there is evidence of inter-molecular interactions between the Mo(IV) complex and some groups/atoms of the hybrid host matrix.

  17. Note of non-destructive detection of voids by a high frequency inversion technique

    International Nuclear Information System (INIS)

    Cohen, J.K.; Bleistein, N.

    1978-01-01

    An inverse method for nondestructive detection of scatterers of high contrast, such as voids or strongly reflecting inclusions, is described. The phase and range normalized far field scattering amplitude is shown to be directly proportional to the Fourier transform of the characteristic function of the scatterer. The characteristic function is equal to unity inside the region occupied by the scatterer and is zero outside. Thus, knowledge of this function provides a description of the scatterer. The method is applied to flaws in a sphere

  18. 128Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics

    International Nuclear Information System (INIS)

    Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.

    2008-01-01

    The lifetimes of the lowest collective yrast and non-yrast states in 128 Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in 128 Xe were populated using a 128 Xe beam impinging on a nat Fe target with E( 128 Xe)≅525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated γ-spectra were measured at different plunger distances

  19. 128Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics

    Science.gov (United States)

    Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.

    2008-05-01

    The lifetimes of the lowest collective yrast and non-yrast states in 128Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in 128Xe were populated using a 128Xe beam impinging on a natFe target with E(128Xe)~525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated γ-spectra were measured at different plunger distances.

  20. Inverse photoemission

    International Nuclear Information System (INIS)

    Namatame, Hirofumi; Taniguchi, Masaki

    1994-01-01

    Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)

  1. Non-contrast MRA using an inflow-enhanced, inversion recovery SSFP technique in pediatric abdominal imaging

    International Nuclear Information System (INIS)

    Serai, Suraj; Towbin, Alexander J.; Podberesky, Daniel J.

    2012-01-01

    Abdominal contrast-enhanced MR angiography (CE-MRA) is routinely performed in children. CE-MRA is challenging in children because of patient motion, difficulty in obtaining intravenous access, and the inability of young patients to perform a breath-hold during imaging. The combination of pediatric-specific difficulties in imaging and the safety concerns regarding the risk of gadolinium-based contrast agents in patients with impaired renal function has renewed interest in the use of non-contrast (NC) MRA techniques. At our institution, we have optimized 3-D NC-MRA techniques for abdominal imaging. The purpose of this work is to demonstrate the utility of an inflow-enhanced, inversion recovery balanced steady-state free precession-based (b-SSFP) NC-MRA technique. (orig.)

  2. Identifying sources of atmospheric fine particles in Havana City using Positive Matrix Factorization technique

    International Nuclear Information System (INIS)

    Pinnera, I.; Perez, G.; Ramos, M.; Guibert, R.; Aldape, F.; Flores M, J.; Martinez, M.; Molina, E.; Fernandez, A.

    2011-01-01

    In previous study a set of samples of fine and coarse airborne particulate matter collected in a urban area of Havana City were analyzed by Particle-Induced X-ray Emission (PIXE) technique. The concentrations of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently determined in both particle sizes. The analytical database provided by PIXE was statistically analyzed in order to determine the local pollution sources. The Positive Matrix Factorization (PMF) technique was applied to fine particle data in order to identify possible pollution sources. These sources were further verified by enrichment factor (EF) calculation. A general discussion about these results is presented in this work. (Author)

  3. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    Science.gov (United States)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  4. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Peinemann, Klaus-Viktor

    2016-01-01

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  5. Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Razani, A.

    2000-01-01

    A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360 deg C, 180 deg C, and 90 deg C sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360 deg C, 180 deg C, and 90 deg C cases, respectively

  6. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  7. Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Qi Hong

    2015-01-01

    Full Text Available The particle size distribution (PSD plays an important role in environmental pollution detection and human health protection, such as fog, haze and soot. In this study, the Attractive and Repulsive Particle Swarm Optimization (ARPSO algorithm and the basic PSO were applied to retrieve the PSD. The spectral extinction technique coupled with the Anomalous Diffraction Approximation (ADA and the Lambert-Beer Law were employed to investigate the retrieval of the PSD. Three commonly used monomodal PSDs, i.e. the Rosin-Rammer (R-R distribution, the normal (N-N distribution, the logarithmic normal (L-N distribution were studied in the dependent model. Then, an optimal wavelengths selection algorithm was proposed. To study the accuracy and robustness of the inverse results, some characteristic parameters were employed. The research revealed that the ARPSO showed more accurate and faster convergence rate than the basic PSO, even with random measurement error. Moreover, the investigation also demonstrated that the inverse results of four incident laser wavelengths showed more accurate and robust than those of two wavelengths. The research also found that if increasing the interval of the selected incident laser wavelengths, inverse results would show more accurate, even in the presence of random error.

  8. Cost minimisation analysis of using acellular dermal matrix (Strattice™) for breast reconstruction compared with standard techniques.

    Science.gov (United States)

    Johnson, R K; Wright, C K; Gandhi, A; Charny, M C; Barr, L

    2013-03-01

    We performed a cost analysis (using UK 2011/12 NHS tariffs as a proxy for cost) comparing immediate breast reconstruction using the new one-stage technique of acellular dermal matrix (Strattice™) with implant versus the standard alternative techniques of tissue expander (TE)/implant as a two-stage procedure and latissimus dorsi (LD) flap reconstruction. Clinical report data were collected for operative time, length of stay, outpatient procedures, and number of elective and emergency admissions in our first consecutive 24 patients undergoing one-stage Strattice reconstruction. Total cost to the NHS based on tariff, assuming top-up payments to cover Strattice acquisition costs, was assessed and compared to the two historical control groups matched on key variables. Eleven patients having unilateral Strattice reconstruction were compared to 10 having TE/implant reconstruction and 10 having LD flap and implant reconstruction. Thirteen patients having bilateral Strattice reconstruction were compared to 12 having bilateral TE/implant reconstruction. Total costs were: unilateral Strattice, £3685; unilateral TE, £4985; unilateral LD and implant, £6321; bilateral TE, £5478; and bilateral Strattice, £6771. The cost analysis shows a financial advantage of using acellular dermal matrix (Strattice) in unilateral breast reconstruction versus alternative procedures. The reimbursement system in England (Payment by Results) is based on disease-related groups similar to that of many countries across Europe and tariffs are based on reported hospital costs, making this analysis of relevance in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-11-01

    A recently developed time-domain multiscale waveform tomography (MWT) method is applied to synthetic and field marine data. Although the MWT method was already applied to synthetic data, the synthetic data application leads to a development of a hybrid method between waveform tomography and the salt flooding technique commonly use in subsalt imaging. This hybrid method can overcome a convergence problem encountered by inversion with a traveltime velocity tomogram and successfully provides an accurate and highly resolved velocity tomogram for the 2D SEG/EAGE salt model. In the application of MWT to the field data, the inversion process is carried out using a multiscale method with a dynamic early-arrival muting window to mitigate the local minima problem of waveform tomography and elastic effects. With the modified MWT method, reasonably accurate results as verified by comparison of migration images and common image gathers were obtained. The hybrid method with the salt flooding technique is not used in this field data example because there is no salt in the subsurface according to our interpretation. However, we believe it is applicable to field data applications. © 2010 Society of Exploration Geophysicists.

  10. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    Science.gov (United States)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  11. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. II; Line Mixing Effects in the V1 Band of NH3

    Science.gov (United States)

    Boulet, C.; Ma, Q.

    2016-01-01

    Line mixing effects have been calculated in the ?1 parallel band of self-broadened NH3. The theoretical approach is an extension of a semi-classical model to symmetric-top molecules with inversion symmetry developed in the companion paper [Q. Ma and C. Boulet, J. Chem. Phys. 144, 224303 (2016)]. This model takes into account line coupling effects and hence enables the calculation of the entire relaxation matrix. A detailed analysis of the various coupling mechanisms is carried out for Q and R inversion doublets. The model has been applied to the calculation of the shape of the Q branch and of some R manifolds for which an obvious signature of line mixing effects has been experimentally demonstrated. Comparisons with measurements show that the present formalism leads to an accurate prediction of the available experimental line shapes. Discrepancies between the experimental and theoretical sets of first order mixing parameters are discussed as well as some extensions of both theory and experiment.

  12. An Extended-Tag-Induced Matrix Factorization Technique for Recommender Systems

    Directory of Open Access Journals (Sweden)

    Huirui Han

    2018-06-01

    Full Text Available Social tag information has been used by recommender systems to handle the problem of data sparsity. Recently, the relationships between users/items and tags are considered by most tag-induced recommendation methods. However, sparse tag information is challenging to most existing methods. In this paper, we propose an Extended-Tag-Induced Matrix Factorization technique for recommender systems, which exploits correlations among tags derived by co-occurrence of tags to improve the performance of recommender systems, even in the case of sparse tag information. The proposed method integrates coupled similarity between tags, which is calculated by the co-occurrences of tags in the same items, to extend each item’s tags. Finally, item similarity based on extended tags is utilized as an item relationship regularization term to constrain the process of matrix factorization. MovieLens dataset and Book-Crossing dataset are adopted to evaluate the performance of the proposed algorithm. The results of experiments show that the proposed method can alleviate the impact of tag sparsity and improve the performance of recommender systems.

  13. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron

  14. Formulation and evaluation of sustained release matrix tablet of rabeprazole using wet granulation technique

    Directory of Open Access Journals (Sweden)

    Ruqaiyah Khan

    2014-01-01

    Full Text Available Introduction: Rabeprazole, a member of substituted benzimidazoles, inhibits the final step in gastric acid secretions. This drug claims to cause fastest acid separation (due to higher pKa, and more rapidly converts to the active species to aid gastric mucin synthesis. The most significant pharmacological action of Rabeprazole is dose dependent suppression of gastric acid secretion; without anticholinergic or H2-blocking action. It completely abolishes the hydrochloric acid secretion as it is powerful inhibitor of gastric acid. Rabeprazole is acid labile and hence commonly formulated as an enteric coated tablet. The absorption of rabeprazole occurs rapidly as soon as tablet leaves the stomach. Aim: In the present study an attempt was made to formulate and evaluate Rabeprazole sustained release matrix tablet using wet granulation technique incorporating various polymers like HPMC-E15, Carbopol934, and sodium carboxymethyl cellulose (CMC. Materials and Methods: The Formulated tablets were evaluated for different physicochemical properties like rheological properties, weight variation, thickness, hardness, % friability, in vitro release studies and drug content. Results: Studies revealed that all the physicochemical parameters comply with the official standards. The in vitro release studies exhibits the release up to 90%, over a prolonged period of time which confirms the extended release profile of formulation, having better bioavailability as well as decreased dosing frequency with reduced doses. Conclusion: The sustained release matrix tablets of rabiprazole shown better bioavailability, efficacy and potency, when compared with official standards.

  15. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    Science.gov (United States)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  16. Sample preparation technique for transmission electron microscopy anodized Al-Li-SiC metal matrix composite

    International Nuclear Information System (INIS)

    Shahid, M.; Thomson, G.E.

    1997-01-01

    Along with improved mechanical properties, metal matrix composites (MMC) have a disadvantage of enhanced corrosion susceptibility in aggressive environments. Recent studies on corrosion behaviour of an Al-alloy 8090/SiC MMC, revealed considerably high corrosion rates of the MMC in near neutral solutions containing chloride ions. Anodizing is one of the potential surface treatment for the MMC to provide protective coating against corrosion. The surface and cross section of the anodized MMC can easily be observed using scanning electron microscope. The anodizing behaviour of the MMC can be understood further if the anodized cross section in examined under transmission electron microscope (TEM). However, it is relatively difficult to prepare small (3 mm diameter) electron transparent specimens of the MMC supporting an anodic film. In the present study a technique has been developed for preparing thin electron transparent specimens of the anodized MMC. This technique employed conventional ion beam thinning process but the preparation of small discs was a problem. A MMMC consisting of Al-alloy 8090 with 20 % (by weight) SiC particulate with an average size of 5 Mu m, was anodized and observed in TEM after preparing the samples using the above mentioned techniques. (author)

  17. Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

    CERN Document Server

    Abazov, Victor Mukhamedovich

    2016-08-18

    We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

  18. Production of candidate natural matrix reference materials for micro-analytical techniques

    International Nuclear Information System (INIS)

    Zeisler, R.; Fajgelj, A.; Zeiller, E.

    2002-01-01

    Homogeneity is considered to be the most vital prerequisite for a certified reference material (CRM); more stringent requirements exist for the analysis of small subsamples. Many of the natural matrix CRMs are prepared from bulk samples by grinding and milling them to a certain particle size, which is expected to provide a more homogenous material; however recommended sample sizes for biological and environmental reference materials are found to be more than 100 mg. Since the milling of materials is costly and has some drawbacks, natural materials that already occur as small particles such as air particulate matter, certain sediments, and cellular biological materials may form the basis of the required reference materials. The nature of these materials, i.e. naturally occurring particles, may provide ideal model reference material. We describe here the production of the materials and preliminary tests, the evaluation for the micro-analytical techniques

  19. On an asymptotic technique of solution of the inverse problem of helioseismology

    International Nuclear Information System (INIS)

    Brodskij, M.A.; Vorontsov, S.V.

    1987-01-01

    The technique for the solution of the universe problem for the solar 5-min. oscillations is proposed, which provides an independent determination of the second speed as a function of depth in solar interior and the frequency dependence of the effective phase shift for the reflection of the trapped acoustic waves from the outer layers. The preliminary numerical results are presented

  20. Inversion kinematics at deep-seated gravity slope deformations revealed by trenching techniques

    OpenAIRE

    Pasquaré Mariotto, Federico; Tibaldi, Alessandro

    2016-01-01

    We compare data from three deep-seated gravitational slope deformations (DSGSDs) where palaeoseismological techniques were applied in artificial trenches. At all trenches, located in metamorphic rocks of the Italian Alps, there is evidence of extensional deformation given by normal movements along slip planes dipping downhill or uphill, and/or fissures, as expected in gravitational failure. However, we document and illustrate – with the aid of trenching – evidenc...

  1. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    International Nuclear Information System (INIS)

    Ha, Taeyoung; Shin, Changsoo

    2007-01-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data

  2. Ultrasound evaluation of normal and abnormal fetuses: comparison of conventional, tissue harmonic, and pulse- inversion harmonic imaging techniques

    International Nuclear Information System (INIS)

    Ryu, Jeong Ah; Kim, Bohyun; Kim, Sooah; Yang, Soon Ha; Choi, Moon Hae; Ahn, Hyeong Sik

    2003-01-01

    To determine the usefulness of tissue harmonic imaging (THI) and pulse-inversion harmonic imaging (PIHI) in the evaluation of normal and abnormal fetuses. Forty-one pregnant women who bore a total of 31 normal and ten abnormal fetuses underwent conventional ultrasonography (CUS), and then THI and PIHI. US images of six organ systems, namely the brain, spine, heart, abdomen, extremities and face were compared between the three techniques in terms of overall conspicuity and the definition of borders and internal structures. For the brain, heart, abdomen and face, overall conspicuity at THI and PIHI was significantly better than at CUS (p < 0.05). There was, though, no significant difference between THI and PIHI. Affected organs in abnormal fetuses were more clearly depicted at THI and PIHI than at CUS. Both THI and PIHI appear to be superior to CUS for the evaluation of normal or abnormal structures, particularly the brain, heart, abdomen and face

  3. Calibration technique and study on metrological characteristics of a high-voltage inverse square-law function generator

    International Nuclear Information System (INIS)

    Popov, V.P.; Semenov, A.L.

    1987-01-01

    The calibration technique is described, and the metrological characteristics of a high-voltage generator of the inverse-quadratic function (HGF), being a functional unit of the diagnostic system of an electrodynamic analyser of a ionic component of a laser plasma, is analysed. The results of HGF testing in the range of time constants of the τ=(5-25)μs function are given. Analysis of metrologic and experimental characteristics shows, that HGF with automatic calibration has quite high accurate parameters. The high accuracy of function generation is provided with the possibility of calibration and adjustment conduction under experimental working conditions. Increase of the generated pulse amplitude to several tens of kilovelts is possible. Besides, the possibility of timely function adjustment to the necessary parameter (τ) increases essentially the HGF functional possibilities

  4. Mass spectrometry imaging of illicit drugs in latent fingerprints by matrix-free and matrix-assisted desorption/ionization techniques.

    Science.gov (United States)

    Skriba, Anton; Havlicek, Vladimir

    2018-02-01

    Compared with classical matrix-assisted laser-desorption ionization mass spectrometry (MALDI), the matrix free-based strategies generate a cleaner background, without significant noise or interference coming from an applied matrix, which is beneficial for the analysis of small molecules, such as drugs of abuse. In this work, we probed the detection efficiency of methamphetamine, heroin and cocaine in nanostructure-assisted laser desorption-ionization (NALDI) and desorption electrospray ionization and compared the sensitivity of these two matrix-free tools with a standard MALDI mass spectrometry experiment. In a typical mass spectrometry imaging (MSI) setup, papillary line latent fingerprints were recorded as a mixture a common skin fatty acid or interfering cosmetics with a drug. In a separate experiment, all drugs (1 µL of 1 μM standard solution) were detected by all three ionization techniques on a target. In the case of cocaine and heroin, NALDI mass spectrometry was the most sensitive and revealed signals even from 0.1 μM solution. The drug/drug contaminant (fatty acid or cosmetics) MSI approach could be used by law enforcement personnel to confirm drug abusers of having come into contact with the suspected drug by use of fingerprint scans at time of apprehension which can aid in reducing the work of lab officials.

  5. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  6. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  7. COST Action TU1208 - Working Group 3 - Electromagnetic modelling, inversion, imaging and data-processing techniques for Ground Penetrating Radar

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos

    2017-04-01

    opportunity of testing and validating, against reliable data, their electromagnetic-modelling, inversion, imaging and processing algorithms. One of the most interesting dataset comes from the IFSTTAR Geophysical Test Site, in Nantes (France): this is an open-air laboratory including a large and deep area, filled with various materials arranged in horizontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field. Data were collected by using nine different GPR systems and at different frequencies ranging from 200 MHz to 1 GHz. Moreover, some sections of this test site were modelled by using gprMax and the commercial software CST Microwave Studio. Hence, both experimental and synthetic data are available. Further interesting datasets were collected on roads, bridges, concrete cells, columns - and more. (v) WG3 contributed to the TU1208 Education Pack, an open educational package conceived to teach GPR in University courses. (vi) WG3 was very active in offering training activities. The following courses were successfully organised: Training School (TS) "Microwave Imaging and Diagnostics" (in cooperation with the European School of Antennas; 1st edition: Madonna di Campiglio, Italy, March 2014, 2nd edition: Taormina, Italy, October 2016); TS "Numerical modelling of Ground Penetrating Radar using gprMax" (Thessaloniki, Greece, November 2015); TS "Electromagnetic Modelling Techniques for Ground Penetrating Radar" (Split, Croatia, November 2016). Moreover, WG3 organized a workshop on "Electromagnetic modelling with the Finite-Difference Time-Domain technique" (Nantes, France, February 2014) and a workshop on "Electromagnetic modelling and inversion techniques for GPR" (Davos, Switzerland, April 2016) within the 2016 European Conference on Antennas and Propagation (EuCAP). Acknowledgement: The Authors are deeply grateful to COST (European COoperation in Science and

  8. TH-C-12A-06: Feasibility of a MLC-Based Inversely Optimized Multi-Field Grid Therapy Technique

    Energy Technology Data Exchange (ETDEWEB)

    Jin, J [Georgia Regents University, Augusta, GA (Georgia); Zhao, B; Huang, Y; Kim, J; Qin, Y; Wen, N; Ryu, S; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Purpose: Grid therapy (GT), which generates highly spatially modulated dose distributions, can deliver single- or hypo-fractionated radiotherapy for large tumors without causing significant toxicities. GT may be applied in combination with immunotherapy, in light of recent preclinical data of synergetic interaction between radiotherapy and immunotherapy. However, conventional GT uses only one field, which does not have the advantage of multi-fields in 3D conformal-RT or IMRT. We have proposed a novel MLC-based, inverse-planned multi-field 3D GT technique. This study aims to test its deliverability and dosimetric accuracy. Methods: A lattice of small spheres was created as the boost volume within a large target. A simultaneous boost IMRT plan with 8-Gy to the target and 20-Gy to the boost volume was generated in the Eclipse treatment planning system (AAA v10) with a HD120 MLC. Nine beams were used, and the gantry and couch angles were selected so that the spheres were perfectly aligned in every beams eye view. The plan was mapped to a phantom with dose scaled. EBT3 films were calibrated and used to measure the delivered dose. Results: The IMRT plan generated a highly spatially modulated dose distribution in the target. D95%, D50%, D5% for the spheres and the targets in Gy were 18.5, 20.0, 21.4 and 7.9, 9.8, 16.1, respectively. D50% for a 1cm ring 1cm outside the target was 2.9-Gy. Film dosimetry showed good agreement between calculated and delivered dose, with an overall gamma passing rate of 99.6% (3%/1mm). The point dose differences for different spheres varied from 1–6%. Conclusion: We have demonstrated the deliverability and dose calculation accuracy of the MLC-based inversely optimized multi-field GT technique, which achieved a brachytherapy-like dose distribution. Single-fraction high dose can be delivered to the spheres in a large target with minimal dose to the surrounding normal tissue.

  9. Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate γ-ray irradiated murine cells

    International Nuclear Information System (INIS)

    Sugihara, Takashi; Tanaka, Kimio; Oghiso, Yoichi; Murano, Hayato

    2008-01-01

    Based on the results of previous microarray analyses of murine NIH3T3/PG13Luc cells irradiated with continuous low-dose-rate (LDR) γ-ray or end-high-dose-rate-irradiations (end-HDR) at the end of the LDR-irradiation period, the inverse dose-rate-effects on gene expression levels were observed. To compare differences of the effects between LDR-irradiation and HDR-irradiation, HDR-irradiations at 2 different times, one (ini-HDR) at the same time at the start of LDR-irradiation and the other (end-HDR), were performed. The up-regulated genes were classified into two types, in which one was up-regulated in LDR-, ini-HDR-, and end-HDR irradiation such as Cdkn1a and Ccng1, which were reported as p53-dependent genes, and the other was up-regulated in LDR- and ini-HDR irradiations such as pro-collagen TypeIa2/Colla2, TenascinC/Tnc, and Fibulin5/Fbln5, which were reported as extra-cellular matrix-related (ECM) genes. The time dependent gene expression patterns in LDR-irradiation were also classified into two types, in which one was an early response such as in Cdkn1a and Ccng1 and the other was a delayed response such as the ECM genes which have no linearity to total dose. The protein expression pattern of Cdkn1a increased dose dependently in LDR- and end-HDR-irradiations, but those of p53Ser15/18 and MDM2 in LDR-irradiations were different from end-HDR-irradiations. Furthermore, the gene expression levels of the ECM genes in embryonic fibroblasts from p53-deficient mice were not increased by LDR- and end-HDR-irradiation, so the delayed expressions of the ECM genes seem to be regulated by p53. Consequently, the inverse dose-rate-effects on the expression levels of the ECM genes in LDR- and end-HDR-irradiations may be explained from different time responses by p53 status. (author)

  10. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  11. Investigation of Dynamic Properties of Water-Saturated Sand by the Results of the Inverse Experiment Technique

    Science.gov (United States)

    Bragov, A. M.; Balandin, Vl. V.; Kotov, V. L.; Balandin, Vl. Vl.

    2018-04-01

    We present new experimental results on the investigation of the dynamic properties of sand soil on the basis of the inverse experiment technique using a measuring rod with a flat front-end face. A limited applicability has been shown of the method using the procedure for correcting the shape of the deformation pulse due to dispersion during its propagation in the measuring rod. Estimates of the pulse maximum have been obtained and the results of comparison of numerical calculations with experimental data are given. The sufficient accuracy in determining the drag force during the quasi-stationary stage of penetration has been established. The parameters of dynamic compressibility and resistance to shear of water-saturated sand have been determined in the course of the experimental-theoretical analysis of the maximum values of the drag force and its values at the quasi-stationary stage of penetration. It has been shown that with almost complete water saturation of sand its shear properties are reduced but remain significant in the practically important range of penetration rates.

  12. Magnetic resonance imaging of lipoma and liposarcoma: potential of short tau inversion recovery as a technique of fat suppression

    International Nuclear Information System (INIS)

    Pang, A.K.K.; Hughes, T.

    2000-01-01

    The present limited retrospective study was performed to assess MR imaging of lipomatous tumours of the musculoskeletal system and to evaluate the potential of the T2 short tau inversion-recovery (STIR) technique for differentiating lipomas from liposarcomas. Magnetic resonance imaging of 12 patients with lipomatous tumours of the musculoskeletal system (eight benign lipomas, three well differentiated liposarcomas and one myxoid liposarcoma) were reviewed. Benign lipomas were usually superficial and showed homogeneity on T1- and T2-weighted spin echo sequences. Full suppression at T2-STIR was readily demonstrated. In contrast the liposarcomas in the present series were all deep-seated. Two well-differentiated liposarcomas showed homogeneity at long and short relaxation time (TR) but failed to show complete suppression at T2-STIR. One case of well-differentiated liposarcoma (dedifferentiated liposarcoma) and one of myxoid liposarcoma showed mild and moderate heterogeneity at T1 and T2, respectively and posed no difficulty in being diagnosed correctly. In conclusion, short and long TR in combination with T2 STIR show promise in differentiating benign from malignant lipomatous tumours of the musculoskeletal system, when taken in combination with the position of the tumour. Copyright (1999) Blackwell Science Pty Ltd

  13. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique

    Directory of Open Access Journals (Sweden)

    Siti Khadijah Hubadillah

    2016-06-01

    Full Text Available In this study, low cost ceramic supports were prepared from kaolin via phase inversion technique with two kaolin particle sizes, which are 0.04–0.6 μm (denoted as type A and 10–15 μm (denoted as type B, at different kaolin contents ranging from 14 to 39 wt.%, sintered at 1200 °C. The effect of kaolin particle sizes as well as kaolin contents on membrane structure, pore size distribution, porosity, mechanical strength, surface roughness and gas permeation of the support were investigated. The support was prepared using kaolin type A induced asymmetric structure by combining macroporous voids and sponge-like structure in the support with pore size of 0.38 μm and 1.05 μm, respectively, and exhibited ideal porosity (27.7%, great mechanical strength (98.9 MPa and excellent gas permeation. Preliminary study shows that the kaolin ceramic support in this work is potential to gas separation application at lower cost.

  14. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  15. Qualitative performance comparison of reactivity estimation between the extended Kalman filter technique and the inverse point kinetic method

    International Nuclear Information System (INIS)

    Shimazu, Y.; Rooijen, W.F.G. van

    2014-01-01

    Highlights: • Estimation of the reactivity of nuclear reactor based on neutron flux measurements. • Comparison of the traditional method, and the new approach based on Extended Kalman Filtering (EKF). • Estimation accuracy depends on filter parameters, the selection of which is described in this paper. • The EKF algorithm is preferred if the signal to noise ratio is low (low flux situation). • The accuracy of the EKF depends on the ratio of the filter coefficients. - Abstract: The Extended Kalman Filtering (EKF) technique has been applied for estimation of subcriticality with a good noise filtering and accuracy. The Inverse Point Kinetic (IPK) method has also been widely used for reactivity estimation. The important parameters for the EKF estimation are the process noise covariance, and the measurement noise covariance. However the optimal selection is quite difficult. On the other hand, there is only one parameter in the IPK method, namely the time constant for the first order delay filter. Thus, the selection of this parameter is quite easy. Thus, it is required to give certain idea for the selection of which method should be selected and how to select the required parameters. From this point of view, a qualitative performance comparison is carried out

  16. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Machida, Eiji; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo

    2005-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six different eddy current probes are conducted and efficiencies were evaluated for the six probes for weld inspection. It is revealed that if suitable probes are applied, an Inconel weld does not cause large noise levels during eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches is performed using eddy current signals measured using the uniform eddy current probe that showed the best results among the six probes in this study. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds

  17. Microscopy and Chemical Inversing Techniques to Determine the Photonic Crystal Structure of Iridescent Beetle Scales in the Cerambycidae Family

    Science.gov (United States)

    Richey, Lauren; Gardner, John; Standing, Michael; Jorgensen, Matthew; Bartl, Michael

    2010-10-01

    Photonic crystals (PCs) are periodic structures that manipulate electromagnetic waves by defining allowed and forbidden frequency bands known as photonic band gaps. Despite production of PC structures operating at infrared wavelengths, visible counterparts are difficult to fabricate because periodicities must satisfy the diffraction criteria. As part of an ongoing search for naturally occurring PCs [1], a three-dimensional array of nanoscopic spheres in the iridescent scales of the Cerambycidae insects A. elegans and G. celestis has been found. Such arrays are similar to opal gemstones and self-assembled colloidal spheres which can be chemically inverted to create a lattice-like PC. Through a chemical replication process [2], scanning electron microscopy analysis, sequential focused ion beam slicing and three-dimensional modeling, we analyzed the structural arrangement of the nanoscopic spheres. The study of naturally occurring structures and their inversing techniques into PCs allows for diversity in optical PC fabrication. [1] J.W. Galusha et al., Phys. Rev. E 77 (2008) 050904. [2] J.W. Galusha et al., J. Mater. Chem. 20 (2010) 1277.

  18. Applicability of eddy current inversion techniques to the sizing of defects in Inconel welds of BWR internals

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Janousek, Ladislav; Rebican, Mihai; Chen, Zhenmao; Miya, Kenzo; Machida, Eiji

    2004-01-01

    This paper evaluates the applicability of eddy current inversion techniques to the sizing of defects in Inconel welds with rough surfaces. For this purpose, a plate Inconel weld specimen, which models the welding of a stub tube in a boiling water nuclear reactor, is fabricated, and artificial notches machined into the specimen. Eddy current inspections using six probes in weld inspection evaluated. It is revealed that if suitable probes are applied, an Inconel weld does not provide large noise signals in eddy current inspections even though the surface of the weld is rough. Finally, reconstruction of the notches are performed using eddy current signals measured with the use of the uniform eddy current probe that showed the best results among the six probes in the inspection. A simplified configuration is proposed in order to consider the complicated configuration of the welded specimen in numerical simulations. While reconstructed profiles of the notches are slightly larger than the true profiles, quite good agreements are obtained in spite of the simple approximation of the configuration, which reveals that eddy current testing would be an efficient non-destructive testing method for the sizing of defects in Inconel welds. (author)

  19. Demonstration of an efficient interpolation technique of inverse time and distance for Oceansat-2 wind measurements at 6-hourly intervals

    Directory of Open Access Journals (Sweden)

    J Swain

    2017-12-01

    Full Text Available Indian Space Research Organization had launched Oceansat-2 on 23 September 2009, and the scatterometer onboard was a space-borne sensor capable of providing ocean surface winds (both speed and direction over the globe for a mission life of 5 years. The observations of ocean surface winds from such a space-borne sensor are the potential source of data covering the global oceans and useful for driving the state-of-the-art numerical models for simulating ocean state if assimilated/blended with weather prediction model products. In this study, an efficient interpolation technique of inverse distance and time is demonstrated using the Oceansat-2 wind measurements alone for a selected month of June 2010 to generate gridded outputs. As the data are available only along the satellite tracks and there are obvious data gaps due to various other reasons, Oceansat-2 winds were subjected to spatio-temporal interpolation, and 6-hour global wind fields for the global oceans were generated over 1 × 1 degree grid resolution. Such interpolated wind fields can be used to drive the state-of-the-art numerical models to predict/hindcast ocean-state so as to experiment and test the utility/performance of satellite measurements alone in the absence of blended fields. The technique can be tested for other satellites, which provide wind speed as well as direction data. However, the accuracy of input winds is obviously expected to have a perceptible influence on the predicted ocean-state parameters. Here, some attempts are also made to compare the interpolated Oceansat-2 winds with available buoy measurements and it was found that they are reasonably in good agreement with a correlation coefficient of R  > 0.8 and mean deviation 1.04 m/s and 25° for wind speed and direction, respectively.

  20. Grid-Based Moment Tensor Inversion Technique by Using 3-D Green's Functions Database: A Demonstration of the 23 October 2004 Taipei Earthquake

    Directory of Open Access Journals (Sweden)

    Shiann-Jong Lee

    2010-01-01

    Full Text Available Moment tensor inversion is a routine procedure to obtain information on an earthquake source for moment magnitude and focal mechanism. However, the inversion quality is usually controlled by factors such as knowledge of an earthquake location and the suitability of a 1-D velocity model used. Here we present an improved method to invert the moment tensor solution for local earthquakes. The proposed method differs from routine centroid-moment-tensor inversion of the Broadband Array in Taiwan for Seismology in three aspects. First, the inversion is repeated in the neighborhood of an earthquake_?s hypocenter on a grid basis. Second, it utilizes Green_?s functions based on a true three-dimensional velocity model. And third, it incorporates most of the input waveforms from strong-motion records. The proposed grid-based moment tensor inversion is applied to a local earthquake that occurred near the Taipei basin on 23 October 2004 to demonstrate its effectiveness and superiority over methods used in previous studies. By using the grid-based moment tensor inversion technique and 3-D Green_?s functions, the earthquake source parameters, including earthquake location, moment magnitude and focal mechanism, are accurately found that are sufficiently consistent with regional ground motion observations up to a frequency of 1.0 Hz. This approach can obtain more precise source parameters for other earthquakes in or near a well-modeled basin and crustal structure.

  1. Measurement of the magnetic moment of the 2$^{+}$ state in neutron-rich radioactive $^{72,74}$Zn using the transient field technique in inverse kinematics

    CERN Multimedia

    Kruecken, R; Speidel, K; Voulot, D; Neyens, G; Gernhaeuser, R A; Fraile prieto, L M; Leske, J

    We propose to measure the sign and magnitude of the g-factors of the first 2$^{+}$ states in radioactive neutron-rich $^{72,74}$Zn applying the transient field (TF) technique in inverse kinematics. The result of this experiment will allow to probe the $\

  2. ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Keyes, David E.

    2016-01-01

    In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

  3. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors.

    NARCIS (Netherlands)

    Snoek, P.A.; Hoff, J.W. Von den

    2005-01-01

    The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is largely responsible for the remodeling of tissues. Deregulation of this balance is a characteristic of extensive tissue degradation in certain degenerative diseases. To

  4. ℋ-matrix techniques for approximating large covariance matrices and estimating its parameters

    KAUST Repository

    Litvinenko, Alexander

    2016-10-25

    In this work the task is to use the available measurements to estimate unknown hyper-parameters (variance, smoothness parameter and covariance length) of the covariance function. We do it by maximizing the joint log-likelihood function. This is a non-convex and non-linear problem. To overcome cubic complexity in linear algebra, we approximate the discretised covariance function in the hierarchical (ℋ-) matrix format. The ℋ-matrix format has a log-linear computational cost and storage O(knlogn), where rank k is a small integer. On each iteration step of the optimization procedure the covariance matrix itself, its determinant and its Cholesky decomposition are recomputed within ℋ-matrix format. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

  5. Multidimensional inversion

    International Nuclear Information System (INIS)

    Desesquelles, P.

    1997-01-01

    Computer Monte Carlo simulations occupy an increasingly important place between theory and experiment. This paper introduces a global protocol for the comparison of model simulations with experimental results. The correlated distributions of the model parameters are determined using an original recursive inversion procedure. Multivariate analysis techniques are used in order to optimally synthesize the experimental information with a minimum number of variables. This protocol is relevant in all fields if physics dealing with event generators and multi-parametric experiments. (authors)

  6. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.

    Science.gov (United States)

    Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I

    2017-01-01

    This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.

  7. Study of a new glass matrix by the thermoluminescence technique; Estudo de uma nova matriz vitrea pela tecnica de termoluminescencia

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Vedovato, Uly P.; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (INFIS/UFU), MG (Brazil). Instituto de Fisica; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.20BaO.50B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses between 50 Gy and 900 Gy. The results showed that this new glass matrix presents potential use in high-dose dosimetry. (author)

  8. Enhancement of the mechanical properties of an aluminum metal matrix nanocomposite by the hybridization technique

    Directory of Open Access Journals (Sweden)

    Kalidindi Sita Rama Raju

    2016-07-01

    Full Text Available A uniform distribution of nanoparticles in the matrix plays a prominent role in improving the composite strength. In the present investigation, two types of launching vehicles, such as aluminum powder (primary and CNTs (secondary, are considered to uniformly carry and launch ultra-fine nanoparticles (13 nm into molten metal. The use of a secondary launching vehicle is identified to promote strengthening compared to a regular primary vehicle, as indicated by the good distribution observed from electron micrographs. CNTs are responsible for hybridizing the composite and also assist strengthening by anchoring to the matrix through the destroyed outer-walls and their axial orientation with the matrix. These results help us in attaining a strength of 197 MPa and a hardness of 93 BHN, with a minimal loss in ductility for the H-3 sample.

  9. Comparison of three IMRT inverse planning techniques that allow for partial esophagus sparing in patients receiving thoracic radiation therapy for lung cancer

    International Nuclear Information System (INIS)

    Xiao Ying; Werner-Wasik, Maria; Michalski, D.; Houser, C.; Bednarz, G.; Curran, W.; Galvin, James

    2004-01-01

    The purpose of this study is to compare 3 intensity-modulated radiation therapy (IMRT) inverse treatment planning techniques as applied to locally-advanced lung cancer. This study evaluates whether sufficient radiotherapy (RT) dose is given for durable control of tumors while sparing a portion of the esophagus, and whether large number of segments and monitor units are required. We selected 5 cases of locally-advanced lung cancer with large central tumor, abutting the esophagus. To ensure that no more than half of the esophagus circumference at any level received the specified dose limit, it was divided into disk-like sections and dose limits were imposed on each. Two sets of dose objectives were specified for tumor and other critical structures for standard dose RT and for dose escalation RT. Plans were generated using an aperture-based inverse planning (ABIP) technique with the Cimmino algorithm for optimization. Beamlet-based inverse treatment planning was carried out with a commercial simulated annealing package (CORVUS) and with an in-house system that used the Cimmino projection algorithm (CIMM). For 3 of the 5 cases, results met all of the constraints from the 3 techniques for the 2 sets of dose objectives. The CORVUS system without delivery efficiency consideration required the most segments and monitor units. The CIMM system reduced the number while the ABIP techniques showed a further reduction, although for one of the cases, a solution was not readily obtained using the ABIP technique for dose escalation objectives

  10. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  11. A general X-ray fluorescence spectrometric technique based on simple corrections for matrix effects

    International Nuclear Information System (INIS)

    Kruidhof, H.

    1978-01-01

    The method reported, which is relatively simple and generally applicable for most materials, involves a combination of borax fusion with matrix effect corrections. The latter are done with algorithms, which are derived from the intensity formulae, together with empirical coefficients. (Auth.)

  12. A computational technique to identify the optimal stiffness matrix for a discrete nuclear fuel assembly model

    International Nuclear Information System (INIS)

    Park, Nam-Gyu; Kim, Kyoung-Joo; Kim, Kyoung-Hong; Suh, Jung-Min

    2013-01-01

    Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies

  13. Development of a focal-plane drift chamber for low-energetic pions and experimental determination of an inverse transfer matrix for the short-orbit spectrometer

    International Nuclear Information System (INIS)

    Ding, M.

    2004-10-01

    The three-spectrometer facility at the Mainz microtron MAMI was supplemented by an additional spectrometer, which is characterized by its short path-length and therefore is called Short Orbit Spectrometer (SOS). At nominal distance from target to SOS (66 cm) the particles to be detected cover a mean path-length between reaction point and detector of 165 cm. Thus for pion electroproduction close to threshold in comparison to the big spectrometers the surviving probability of charged pions with momentum 100 MeV/c raises from 15% to 73%. Consequently the systematic error (''myon contamination''), as for the proposed measurement of the weak form-factors G A (Q 2 ) and G P (Q 2 ), reduces significantly. The main subject of this thesis is the drift chamber for the SOS. Its small relative thickness (0.03% X 0 ), reducing multiple scattering, is optimized with regard to detecting low-energy pions. Due to the innovative character of the driftchamber geometry a dedicated software for track-reconstruction, efficiency-determination etc. had to be developed. A comfortable feature for calibrating the drift path-drift time-relation, represented by cubic splines, was implemented. The resolution of the track detector in the dispersive plane is 76 μaem for the spatial and 0.23 for the angular coordinate (most probable error) and, correspondingly, 110 μm and 0.29 in the non-dispersive plane. For backtracing the reaction quantities from the detector coordinates the inverse transfer-matrix of the spectrometer was determined. For this purpose electrons were scattered quasi-elastically from protons inside the 12 C-nucleus, thus defining the starting angles of the electrons by holes of a sieve collimator. The resulting experimental values for the angular resolution at the target amount to σ φ =1.3 mrad and σ θ =10.6 mrad resp. The momentum calibration of the SOS only can be achieved by quasi-elastic scattering (two-arm experiment). For this reason the contribution of the proton

  14. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Jianping Liu

    2016-01-01

    Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.

  15. Reduction of Under-Determined Linear Systems by Sparce Block Matrix Technique

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Poulsen, Peter Noe; Damkilde, Lars

    1996-01-01

    numerical stability of the aforementioned reduction. Moreover the coefficient matrix for the equilibrium equations is typically very sparse. The objective is to deal efficiently with the full pivoting reduction of sparse rectangular matrices using a dynamic storage scheme based on the block matrix concept.......Under-determined linear equation systems occur in different engineering applications. In structural engineering they typically appear when applying the force method. As an example one could mention limit load analysis based on The Lower Bound Theorem. In this application there is a set of under......-determined equilibrium equation restrictions in an LP-problem. A significant reduction of computer time spent on solving the LP-problem is achieved if the equilib rium equations are reduced before going into the optimization procedure. Experience has shown that for some structures one must apply full pivoting to ensure...

  16. Application of advanced light microscopic techniques to gain deeper insights into cheese matrix physico-chemistry

    Czech Academy of Sciences Publication Activity Database

    Burdikova, Z.; Svindrych, Z.; Hickey, C.; Wilkinson, M. G.; Auty, M. A. E.; Samek, Ota; Bernatová, Silvie; Krzyžánek, Vladislav; Periasamy, A.; Sheehan, J. J.

    2015-01-01

    Roč. 95, č. 5 (2015), s. 687-700 ISSN 1958-5586 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : confocal microscopy * cheese matrix * fluorescence lifetime * second harmonic generation * two-photon excitation * confocal Raman microscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.435, year: 2015

  17. Augmenting matrix factorization technique with the combination of tags and genres

    Science.gov (United States)

    Ma, Tinghuai; Suo, Xiafei; Zhou, Jinjuan; Tang, Meili; Guan, Donghai; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2016-11-01

    Recommender systems play an important role in our daily life and are becoming popular tools for users to find what they are really interested in. Matrix factorization methods, which are popular recommendation methods, have gained high attention these years. With the rapid growth of the Internet, lots of information has been created, like social network information, tags and so on. Along with these, a few matrix factorization approaches have been proposed which incorporate the personalized information of users or items. However, except for ratings, most of the matrix factorization models have utilized only one kind of information to understand users' interests. Considering the sparsity of information, in this paper, we try to investigate the combination of different information, like tags and genres, to reveal users' interests accurately. With regard to the generalization of genres, a constraint is added when genres are utilized to find users' similar ;soulmates;. In addition, item regularizer is also considered based on latent semantic indexing (LSI) method with the item tags. Our experiments are conducted on two real datasets: Movielens dataset and Douban dataset. The experimental results demonstrate that the combination of tags and genres is really helpful to reveal users' interests.

  18. Optimization-based human motion prediction using an inverse-inverse dynamics technique implemented in the AnyBody Modeling System

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark

    2012-01-01

    derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction...... on a physics model including dynamic effects and a high level of anatomical realism. First, a musculoskeletal model comprising several hundred muscles is built in AMS. The movement is then parameterized by means of time functions controlling selected degrees of freedom of the model. Subsequently......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...

  19. A comparative study on the property determination of metal matrix composites using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1997-01-01

    Ultrasonic and eddy current methods were developed for the quantitative determination of material properties in particulate reinforced metal matrix composites. The proposed techniques employed measurements of ultrasonic velocity and eddy current conductivity, together with theoretical models which relate the effective anisotropic properties of the composites to their microstructures. The approach was used for a wide range of SiC particulate reinforced Al matrix(SiC p /Al) composites to estimate the particulate volume fractions of the composites. The SiC p volume fraction was calculated by coupling the measured velocity and conductivity with their corresponding model predictions. Both methods were shown to be reliable in determining the reinforcement volume fractions. However, the ultrasonic method was found to be better than the eddy current method, since the electrical conductivity was sensitive to the presence of intermetallic compounds formed during processing stage.

  20. Matrix effect correction with internal flux monitor in radiation waste characterization with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, Rodolphe; Passard, Christian; Loridon, Joel; Perot, Bertrand; Batifol, Marc; Tarnec, Stephane-le; Guillaumin, Francois; Grassi, Gabriele; Strock, Pierre

    2013-06-01

    Radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant are measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). The purpose is to assay fissile material quantities present in radioactive waste packages. In the future, old hulls and nozzles containing Ion-Exchange Resin (IER) will be measured. IERs provide moderating properties to the matrix, not encountered during the current measurement. In this context, the Nuclear Measurement Laboratory (NML) of the CEA Cadarache has been asked by AREVA NC to explore the possibility of implementing a matrix effect correction method, based on internal monitor ( 3 He proportional counter) signal correlated to the matrix effect. In order to validate this method, a benchmark was performed with PROMETHEE 6 R and D measurement cell at the NML, with a similar cavity configuration to that of the industrial station. An experience design on two main factors regarding the matrix effect (absorbing and moderating ratios) has been studied. Considering the variation range of both factors for old waste measurement, 5 test matrices have been defined. They have been measured in PROMETHEE 6 and simulated using the particle transport code MCNP. Tests have been carried out experimentally using 235 U platelets. Results show that the experimental internal monitor is sensitive to the matrix but not to the fissile material presence and location. In addition, differences between experiment and model are satisfactory (<10%), in terms of prompt calibration coefficient (useful signal of fissile materials) and internal monitor signal, considering the complexity of the measurement method and numerical model, and the large range of moderator and absorption ratios. The relationship between the prompt calibration coefficient and the internal monitor signal observed in PROMETHEE 6, both for experience and model, can be fitted with a

  1. Matrix effect correction with internal flux monitor in radiation waste characterization with the differential die-away technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Loridon, J.; Perot, B.; Batifol, M.; Tarnec, S. le; Guillaumin, F.; Grassi, G.; Strock, P.

    2014-01-01

    Radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant are measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). The purpose is to assay fissile material quantities present in radioactive waste packages. In the future, old hulls and nozzles containing Ion-Exchange Resin (IER) will be measured. IERs provide moderating properties to the matrix, not encountered during the current measurement. In this context, the Nuclear Measurement Laboratory (NML) of the CEA Cadarache has been asked by AREVA NC to explore the possibility of implementing a matrix effect correction method, based on internal monitor ( 3 He proportional counter) signal correlated to the matrix effect. In order to validate this method, a benchmark was performed with PROMETHEE 6 R and D measurement cell at the NML, with a similar cavity configuration to that of the industrial station. An experimental design on two main factors regarding the matrix effect (absorbing and moderating ratios) has been studied. Considering the variation range of both factors for old waste measurement, 5 test matrices have been defined. They have been measured in PROMETHEE 6 and simulated using the particle transport code MCNP. Tests have been carried out experimentally using platelets. Results show that the experimental internal monitor is sensitive to the matrix but not to the fissile material presence and location. In addition, differences between experiment and model are satisfactory (≤10%), in terms of prompt calibration coefficient (useful signal of fissile materials) and internal monitor signal, considering the complexity of the measurement method and numerical model, and the large range of moderator and absorption ratios. The relationship between the prompt calibration coefficient and the internal monitor signal observed in PROMETHEE 6, both for experience and model, can be fitted with a similar

  2. Generalized inverses theory and computations

    CERN Document Server

    Wang, Guorong; Qiao, Sanzheng

    2018-01-01

    This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.

  3. Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows

    KAUST Repository

    Boonyasiriwat, Chaiwoot; Schuster, Gerard T.; Valasek, Paul A.; Cao, Weiping

    2010-01-01

    an accurate and highly resolved velocity tomogram for the 2D SEG/EAGE salt model. In the application of MWT to the field data, the inversion process is carried out using a multiscale method with a dynamic early-arrival muting window to mitigate the local

  4. Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR Technique in EIT: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-06-01

    Full Text Available A Block Matrix based Multiple Regularization (BMMR technique is proposed for improving conductivity image quality in EIT. The response matrix (JTJ has been partitioned into several sub-block matrices and the highest eigenvalue of each sub-block matrices has been chosen as regularization parameter for the nodes contained by that sub-block. Simulated boundary data are generated for circular domain with circular inhomogeneity and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR algorithm. Conductivity images are reconstructed with BMMR technique and the results are compared with the Single-step Tikhonov Regularization (STR and modified Levenberg-Marquardt Regularization (LMR methods. It is observed that the BMMR technique reduces the projection error and solution error and improves the conductivity reconstruction in EIT. Result show that the BMMR method also improves the image contrast and inhomogeneity conductivity profile and hence the reconstructed image quality is enhanced. ;doi:10.5617/jeb.170 J Electr Bioimp, vol. 2, pp. 33-47, 2011

  5. Diagrammatic technique for calculating matrix elements of collective operators in superradiance

    International Nuclear Information System (INIS)

    Lee, C.T.

    1975-01-01

    Adopting the so-called ''genealogical construction,'' one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) -atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-Schwendimann approach to the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field

  6. Comparison of ethylcellulose matrix characteristics prepared by solid dispersion technique or physical mixing

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadeghi

    2003-07-01

    Full Text Available The characteristics of ethylcellulose matrices prepared from solid dispersion systems were compared with those prepared from physical mixture of drug and polymer. Sodium diclofenac was used as a model drug and the effect of the drug:polymer ratio and the method of matrix production on tablet crushing strength, friability, drug release profile and drug release mechanism were evaluated. The results showed that increasing the polymer content in matrices increased the crushing strengths of tablets. However the friability of tablets was independent of polymer content. Drug release rate was greatly affected by the amount of polymer in the matrices and considerable decrease in release rate was observed by increasing the polymer content. It was also found that the type of mixture used for matrix production had great influence on the tablet crushing strength and drug release rate. Matrices prepared from physical mixtures of drug and polymer was harder than those prepared from solid dispersion systems, but their release rates were considerably faster. This phenomenon was attributed to the encapsulation of drug particles by polymer in matrices prepared from solid dispersion system which caused a great delay in diffusion of the drug through polymer and made diffusion as a rate retarding process in drug release mechanism.

  7. Photo double-ionization of helium: a new approach combining R matrix and semiclassical techniques in an hyperspherical framework

    International Nuclear Information System (INIS)

    Malegat, L.; Kazansky, A.; Selles, P.

    1999-01-01

    We introduce a new method for computing photo double ionization (PDI) cross sections for two electron atoms. It is formulated in terms of the hyperspherical radius R and relies upon a combination of R matrix techniques in the inner region R≤R 0 with a semiclassical approximation for the R motion in the outer region. We present a first application of this method to the PDI of He within a model of reduced dimensionality where r 1 =r 2 . It demonstrates the validity of our numerical scheme and provides a first quantitative estimate of the energy domain of validity of the Wannier mechanism. (orig.)

  8. Flexible body stability analysis of Space Shuttle ascent flight control system by using lambda matrix solution techniques

    Science.gov (United States)

    Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.

    1980-01-01

    A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.

  9. A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-Box Matrix

    OpenAIRE

    Subhranil Som; Soumasree Banerjee

    2014-01-01

    In this paper a symmetric key cryptographic algorithm named as “A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-box Matrix“ is proposed. Secret sharing is a technique by which any information can be break down into small pieces. The secret can be reconstructed only when a sufficient number of pieces of shares are combined together; individual shares are of no use on their own. Traditional secret sharing scheme possesses high computational ...

  10. Electromagnetic modelling, inversion and data-processing techniques for GPR: ongoing activities in Working Group 3 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis; van der Kruk, Jan

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 3 (WG3) 'EM methods for near-field scattering problems by buried structures; data processing techniques' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. WG3 is structured in four Projects. Project 3.1 deals with 'Electromagnetic modelling for GPR applications.' Project 3.2 is concerned with 'Inversion and imaging techniques for GPR applications.' The topic of Project 3.3 is the 'Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion.' Project 3.4 focuses on 'Advanced GPR data-processing algorithms.' Electromagnetic modeling tools that are being developed and improved include the Finite-Difference Time-Domain (FDTD) technique and the spectral domain Cylindrical-Wave Approach (CWA). One of the well-known freeware and versatile FDTD simulators is GprMax that enables an improved realistic representation of the soil/material hosting the sought structures and of the GPR antennas. Here, input/output tools are being developed to ease the definition of scenarios and the visualisation of numerical results. The CWA expresses the field scattered by subsurface two-dimensional targets with arbitrary cross-section as a sum of cylindrical waves. In this way, the interaction is taken into account of multiple scattered fields within the medium hosting the sought targets. Recently, the method has been extended to deal with through-the-wall scenarios. One of the

  11. Matrix Results and Techniques in Quantum Information Science and Related Topics

    Science.gov (United States)

    Pelejo, Diane Christine

    In this dissertation, we present several matrix-related problems and results motivated by quantum information theory. Some background material of quantum information science will be discussed in chapter 1, while chapter 7 gives a summary of results and concluding remarks. In chapter 2, we look at 2n x 2 n unitary matrices, which describe operations on a closed n-qubit system. We define a set of simple quantum gates, called controlled single qubit gates, and their associated operational cost. We then present a recurrence scheme to decompose a general 2n x 2n unitary matrix to the product of no more than 2n-12n-1 single qubit gates with small number of controls. In chapter 3, we address the problem of finding a specific element phi among a given set of quantum channels S that will produce the optimal value of a scalar function D(rho 1,phi(rho2)), on two fixed quantum states rho 1 and rho2. Some of the functions we considered for D(·,·) are the trace distance, quantum fidelity and quantum relative entropy. We discuss the optimal solution when S is the set of unitary quantum channels, the set of mixed unitary channels, the set of unital quantum channels, and the set of all quantum channels. In chapter 4, we focus on the spectral properties of qubit-qudit bipartite states with a maximally mixed qudit subsystem. More specifically, given positive numbers a1 ≥ ... ≥ a 2n ≥ 0, we want to determine if there exist a 2n x 2n density matrix rho having eigenvalues a1,..., a2n and satisfying tr 1(rho)=1/n In. This problem is a special case of the more general quantum marginal problem. We give the minimal necessary and sufficient conditions on a1,..., a2n for n ≤ 6 and state some observations on general values of n.. In chapter 5, we discuss the numerical method of alternating projections and illustrate its usefulness in: (a) constructing a quantum channel, if it exists, such that phi(rho(1))=sigma(1),...,phi(rho (k))=sigma(k) for given rho (1),...,rho(k) ∈ Dn and

  12. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Directory of Open Access Journals (Sweden)

    S. Ars

    2017-12-01

    Full Text Available This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping

  13. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    Science.gov (United States)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances

  14. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    Science.gov (United States)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  15. Homogeneous metal matrix composites produced by a modified stir-casting technique

    International Nuclear Information System (INIS)

    Kennedy, A.R.; McCartney, D.G.; Wood, J.V.

    1995-01-01

    Al-based metal matrix composites have been made by a novel liquid processing route which is not only cheap and versatile but produces composites with extremely uniform distributions of the reinforcing phase. Particles of TiB 2 , TiC and B 4 C have been spontaneously incorporated, that is without the use of external mechanical agitation, into Al and Al-alloy melts in volume fractions as high as 0.3. This has been achieved through the use of wetting agents which produce K-Al-F based slags on the melt surface. Spontaneous particle entry and the chemistry of the slag facilitate the generation of good distributions of the reinforcing phase in the solidified composite castings. Non-clustered, near homogeneous distributions have been achieved irrespective of the casting conditions and the volume fraction, type or size of the reinforcement. The majority of the reinforcement becomes engulfed into the solid metal grains during solidification rather than, what is more commonly the case, being pushed to the inter-granular regions. This intra-granular distribution of the reinforcement is likely to improve the mechanical properties of the material

  16. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    International Nuclear Information System (INIS)

    Hollstein, André; Fischer, Jürgen

    2012-01-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  17. A technique for lyopreservation of Clostridium ljungdahlii in a biocomposite matrix for CO absorption.

    Directory of Open Access Journals (Sweden)

    Mark J Schulte

    Full Text Available A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO mass transfer rate, that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H2O per gram of dry weight (gDW. CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. The present study successfully extends and implements the principles of dry-stabilization for preservation of strictly

  18. Acceleration techniques for the discrete ordinate method

    International Nuclear Information System (INIS)

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2013-01-01

    In this paper we analyze several acceleration techniques for the discrete ordinate method with matrix exponential and the small-angle modification of the radiative transfer equation. These techniques include the left eigenvectors matrix approach for computing the inverse of the right eigenvectors matrix, the telescoping technique, and the method of false discrete ordinate. The numerical simulations have shown that on average, the relative speedup of the left eigenvector matrix approach and the telescoping technique are of about 15% and 30%, respectively. -- Highlights: ► We presented the left eigenvector matrix approach. ► We analyzed the method of false discrete ordinate. ► The telescoping technique is applied for matrix operator method. ► Considered techniques accelerate the computations by 20% in average.

  19. Dual-energy digital mammography: Calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2003-01-01

    Breast cancer may manifest as microcalcifications in x-ray mammography. Small microcalcifications, essential to the early detection of breast cancer, are often obscured by overlapping tissue structures. Dual-energy imaging, where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Transmission measurements at two different kVp values were made on breast-tissue-equivalent materials under narrow-beam geometry using an indirect flat-panel mammographic imager. The imaging scenario consisted of variable aluminum thickness (to simulate calcifications) and variable glandular ratio (defined as the ratio of the glandular-tissue thickness to the total tissue thickness) for a fixed total tissue thickness--the clinical situation of microcalcification imaging with varying tissue composition under breast compression. The coefficients of the inverse-mapping functions used to determine material composition from dual-energy measurements were calculated by a least-squares analysis. The linear function poorly modeled both the aluminum thickness and the glandular ratio. The inverse-mapping functions were found to vary as analytic functions of second (conic) or third (cubic) order. By comparing the model predictions with the calibration values, the root-mean-square residuals for both the cubic and the conic functions were ∼50 μm for the aluminum thickness and ∼0.05 for the glandular ratio

  20. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions.

    Science.gov (United States)

    Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis

    2017-09-01

    In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.

  1. Optical characterization of porcine articular cartilage using a polarimetry technique with differential Mueller matrix formulism.

    Science.gov (United States)

    Chang, Ching-Min; Lo, Yu-Lung; Tran, Nghia-Khanh; Chang, Yu-Jen

    2018-03-20

    A method is proposed for characterizing the optical properties of articular cartilage sliced from a pig's thighbone using a Stokes-Mueller polarimetry technique. The principal axis angle, phase retardance, optical rotation angle, circular diattenuation, diattenuation axis angle, linear diattenuation, and depolarization index properties of the cartilage sample are all decoupled in the proposed analytical model. Consequently, the accuracy and robustness of the extracted results are improved. The glucose concentration, collagen distribution, and scattering properties of samples from various depths of the articular cartilage are systematically explored via an inspection of the related parameters. The results show that the glucose concentration and scattering effect are both enhanced in the superficial region of the cartilage. By contrast, the collagen density increases with an increasing sample depth.

  2. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand [CEA Cadarache DEN/Nuclear Measurement Laboratory, 13108 Saint-Paul lez Durance (France); Batifol, Marc; Vandamme, Jean-Christophe [Nuclear Measurement Team, AREVA NC, La Hague plant F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and {sup 235}U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  3. First Industrial Tests of a Matrix Monitor Correction for the Differential Die-away Technique of Historical Waste Drums

    International Nuclear Information System (INIS)

    Antoni, Rodolphe; Passard, Christian; Perot, Bertrand; Batifol, Marc; Vandamme, Jean-Christophe; Grassi, Gabriele

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located inside the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and 235 U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)

  4. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  5. EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations

    International Nuclear Information System (INIS)

    Garbow, Burton S.; Cline, A.K.; Meyering, J.

    1993-01-01

    : Driver subroutine for a nonsym. tridiag. matrix; SVD: Singular value decomposition of rectangular matrix; TINVIT: Find some vectors of sym. tridiag. matrix; TQLRAT: Find all values of sym. tridiag. matrix; TQL1: Find all values of sym. tridiag. matrix; TQL2: Find all values/vectors of sym. tridiag. matrix; TRBAK1: Back transform vectors of matrix formed by TRED1; TRBAK3: Back transform vectors of matrix formed by TRED3; TRED1: Reduce sym. matrix to sym. tridiag. matrix; TRED2: Reduce sym. matrix to sym. tridiag. matrix; TRED3: Reduce sym. packed matrix to sym. tridiag. matrix; TRIDIB: Find some values of sym. tridiag. matrix; TSTURM: Find some values/vectors of sym. tridiag. matrix. 2 - Method of solution: Almost all the algorithms used in EISPACK are based on similarity transformations. Similarity transformations based on orthogonal and unitary matrices are particularly attractive from a numerical point of view because they do not magnify any errors present in the input data or introduced during the computation. Most of the techniques employed are constructive realizations of variants of Schur's theorem, 'Any matrix can be triangularized by a unitary similarity transformation'. It is usually not possible to compute Schur's transformation with a finite number of rational arithmetic operations. Instead, the algorithms employ a potentially infinite sequence of similarity transformations in which the resultant matrix approaches an upper triangular matrix. The sequence is terminated when all of the sub-diagonal elements of the resulting matrix are less than the roundoff errors involved in the computation. The diagonal elements are then the desired approximations to the eigenvalues of the original matrix and the corresponding eigenvectors can be calculated. Special algorithms deal with symmetric matrices. QR, LR, QL, rational QR, bisection QZ, and inverse iteration methods are used

  6. Study of electron-molecule collisions via the finite-element method and R-matrix propagation technique: Model exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Gomez, P.

    1994-01-01

    We have applied the finite-element method to electron-molecule collisions. All the calculations are done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the static and polarization potential, has been used to represent the exchange effect. The method is applied to electron-H 2 scattering and the eigenphase sums and the cross sections obtained are in very good agreement with the corresponding results from the linear-algebraic approach. Finite-element calculations of the R matrix in the region where the static and exchange interactions are strong, however, has about one-half to one-fourth of the memory requirement of the linear-algebraic technique

  7. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  8. Radiation measurement and inverse analysis techniques applied on the determination of the apparent mass diffusion coefficient for diverse contaminants and soil samples

    International Nuclear Information System (INIS)

    Rey Silva, D.V.F.M.; Oliveira, A.P.; Macacini, J.F.; Da Silva, N.C.; Cipriani, M.; Quinelato, A.L.

    2005-01-01

    Full text of publication follows: The study of the dispersion of radioactive materials in soils and in engineering barriers plays an important role in the safety analysis of nuclear waste repositories. In order to proceed with such kind of study the involved physical properties must be determined with precision, including the apparent mass diffusion coefficient, which is defined as the ratio between the effective mass diffusion coefficient and the retardation factor. Many different experimental and estimation techniques are available on the literature for the identification of the diffusion coefficient and this work describes the implementation of that developed by Pereira et al [1]. This technique is based on non-intrusive radiation measurements and the experimental setup consists of a cylindrical column filled with compacted media saturated with water. A radioactive contaminant is mixed with a portion of the media and then placed in the bottom of the column. Therefore, the contaminant will diffuse through the uncontaminated media due to the concentration gradient. A radiation detector is used to measure the number of counts, which is associated to the contaminant concentration, at several positions along the column during the experiment. Such measurements are then used to estimate the apparent diffusion coefficient of the contaminant in the porous media by inverse analysis. The inverse problem of parameter estimation is solved with the Levenberg-Marquart Method of minimization of the least-square norm. The experiment was optimized with respect to the number of measurement locations, frequency of measurements and duration of the experiment through the analysis of the sensitivity coefficients and by using a D-optimum approach. This setup is suitable for studying a great number of combinations of diverse contaminants and porous media varying in composition and compacting, with considerable easiness and reliable results, and it was chosen because that is the

  9. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    Science.gov (United States)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  10. On the Duality of Forward and Inverse Light Transport.

    Science.gov (United States)

    Chandraker, Manmohan; Bai, Jiamin; Ng, Tian-Tsong; Ramamoorthi, Ravi

    2011-10-01

    Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, it can be shown that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large light transport matrix, which is impractical for realistic resolutions using standard techniques. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion--analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering--that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation, to display images free of global illumination artifacts in real-world environments.

  11. Study of 1D complex resistivity inversion using digital linear filter technique; Linear filter ho wo mochiita fukusohi teiko no gyakukaisekiho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, K; Shima, H [OYO Corp., Tokyo (Japan)

    1996-10-01

    This paper proposes a modeling method of one-dimensional complex resistivity using linear filter technique which has been extended to the complex resistivity. In addition, a numerical test of inversion was conducted using the monitoring results, to discuss the measured frequency band. Linear filter technique is a method by which theoretical potential can be calculated for stratified structures, and it is widely used for the one-dimensional analysis of dc electrical exploration. The modeling can be carried out only using values of complex resistivity without using values of potential. In this study, a bipolar method was employed as a configuration of electrodes. The numerical test of one-dimensional complex resistivity inversion was conducted using the formulated modeling. A three-layered structure model was used as a numerical model. A multi-layer structure with a thickness of 5 m was analyzed on the basis of apparent complex resistivity calculated from the model. From the results of numerical test, it was found that both the chargeability and the time constant agreed well with those of the original model. A trade-off was observed between the chargeability and the time constant at the stage of convergence. 3 refs., 9 figs., 1 tab.

  12. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1997 annual progress report

    International Nuclear Information System (INIS)

    Alumbaugh, D.L.

    1997-01-01

    'It is the objective of this proposed study to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This fundamentally new approach to site characterization and monitoring will provide detailed knowledge about hydrological properties, geological heterogeneity and the extent and movement of contamination. HHGIT combines electrical resistivity tomography (ERT) to geophysically sense a 3D volume, statistical information about fabric of geological formations, and sparse data on moisture and contaminant distributions. Combining these three types of information into a single inversion process will provide much better estimates of spatially varied hydraulic properties and three-dimensional contaminant distributions than could be obtained from interpreting the data types individually. Furthermore, HHGIT will be a geostatistically based estimation technique; the estimates represent conditional mean hydraulic property fields and contaminant distributions. Thus, this method will also quantify the uncertainty of the estimates as well as the estimates themselves. The knowledge of this uncertainty is necessary to determine the likelihood of success of remediation efforts and the risk posed by hazardous materials. Controlled field experiments will be conducted to provide critical data sets for evaluation of these methodologies, for better understanding of mechanisms controlling contaminant movement in the vadose zone, and for evaluation of the HHGIT method as a long term monitoring strategy.'

  13. Comparative Study of Modulation-Based Individual Inverter Techniques for Direct and Inverse by using Star-Connection Induction Motor in Extra Low Voltage Application

    Directory of Open Access Journals (Sweden)

    Ardhia Wishnuprakasa

    2016-12-01

    Full Text Available In this study, the IEEE 519 Standard as a basis benchmarking for voltage (THDV and current (THDI in draft performance. Comparative Study based onthree-techniques of 2-Level Converter (2LC by using a Star-Connection Induction Motor (Y-CIM in ExtraLow Voltage (ELV Configuration.For the detail explanation, a primary inverter as Direct-Inverterby PWMdirect (PWM degreesand asecondary inverter as Inverse-Inverterby PWMinverse(PWM + PI degrees. It tends a modified algorithm,for eachof SPWM in six rules, and FHIPWM in 5th harmonics Injectedin standard modulation as the purpose for the Open-Ends of Pre-Dual Inverter in Decoupled SPWM for twelve rules, and Decoupled FHIPWM in combination of 5th harmonics Injectedin combination of two-standard-modulation. Those techniques are the purpose of two-inverter combination, which namelythe Equal Direct-Inverse (EDI algorithmproduct of prototyping in similarities. The observation is restricted in voltage scope between Simulation by using Power Simulator (PSIMand Application by using Microcontroller ARM STM32F4 Discovery.

  14. 1D resistivity inversion technique in the mapping of igneous intrusives; A step to sustainable quarry development

    Directory of Open Access Journals (Sweden)

    M.A. Nwachukwu

    2017-01-01

    Full Text Available The use of trial pits as a first step in quarry site development causes land degradation and results in more failure than success for potential quarry investors in some parts of the world. In this paper, resistivity, depth and distance values derived from 26 Vertical Electric Soundings (VES and 2 profiling inversion sections were successfully used to evaluate a quarry site prior to development. The target rock Diabase (Dolerite was observed and it had a resistivity range of 3.0 × 104 –7. 8 × 106 Ω-m, and was clearly distinguishable from associated rocks with its bright red color code on the AGI 1D inversion software. This target rock was overlain by quartzite, indurate shale and mudstone as overburden materials. The quartzite, with its off-red colour, has a resistivity range of 2.0 × 103–2.9 × 105 Ω-m, while the indurate shale, with a yellowish-brown colour, showed resistivity values ranging from 6.1 × 102 – 2.8 × 105 Ω-m. Topsoil was clayey, with a resistivity range from 8 – 8.6 × 102u Ω-m and depths of 0.3–1.8 m, often weathered and replaced by associated rocks outcrops. The diabase rock, in the three prospective pits mapped, showed thicknesses of between 40 and 76 m across the site. The prospective pits were identified to accommodate an estimated 2,569,450 tonnes of diabase with an average quarry pit depth of 50 m. This figure was justified by physical observations made at a nearby quarry pit and from test holes. Communities were able to prepare a geophysical appraisal of the intrusive body in their domain for economic planning and sustainability of the natural resource.

  15. An Experimental Study of Structural Identification of Bridges Using the Kinetic Energy Optimization Technique and the Direct Matrix Updating Method

    Directory of Open Access Journals (Sweden)

    Gwanghee Heo

    2016-01-01

    Full Text Available This paper aims to develop an SI (structural identification technique using the KEOT and the DMUM to decide on optimal location of sensors and to update FE model, respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges (e.g., cable-stayed bridges and suspension bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, an SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the kinetic energy optimization technique (KEOT was utilized to determine the optimal measurement locations, while the direct matrix updating method (DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80% compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1% was derived from DMUM. Thus, the SI technique for cable-stayed bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.

  16. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    International Nuclear Information System (INIS)

    Hu, Chengyao; Huang, Pei

    2011-01-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  17. Study of electron-molecule collision via finite-element method and r-matrix propagation technique: Exact exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Perez, L.; Gomez, P.

    1995-01-01

    The authors have applied the finite-element method to electron-molecule collision with the exchange effect implemented rigorously. All the calculations are done in the body-frame within the fixed-nuclei approximation, where the exact treatment of exchange as a nonlocal effect results in a set of coupled integro-differential equations. The method is applied to e-H 2 and e-N 2 scatterings and the cross sections obtained are in very good agreement with the corresponding results the authors have generated from the linear-algebraic approach. This confirms the significant difference observed between their results generated by linear-algebraic method and the previously published e-N 2 cross sections. Their studies show that the finite-element method is clearly superior to the linear-algebraic approach in both memory usage and CPU time especially for large systems such as e-N 2 . The system coefficient matrix obtained from the finite-element method is often sparse and smaller in size by a factor of 12 to 16, compared to the linear-algebraic technique. Moreover, the CPU time required to obtain stable results with the finite-element method is significantly smaller than the linear-algebraic approach for one incident electron energy. The usage of computer resources in the finite-element method can even be reduced much further when (1) scattering calculations involving multiple electron energies are performed in one computer run and (2) exchange, which is a short range effect, is approximated by a sparse matrix. 17 refs., 7 figs., 5 tabs

  18. Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements

    Directory of Open Access Journals (Sweden)

    C. B. Alden

    2018-03-01

    Full Text Available Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m, integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB. The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model–data mismatch. It is also tested with field observations of (1 a non-leaking source location and (2 a source location where a controlled emission of 3.1  ×  10−5 kg s−1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests. The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability and measurement uncertainty of 5 ppb (1σ, when

  19. Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements

    Science.gov (United States)

    Alden, Caroline B.; Ghosh, Subhomoy; Coburn, Sean; Sweeney, Colm; Karion, Anna; Wright, Robert; Coddington, Ian; Rieker, Gregory B.; Prasad, Kuldeep

    2018-03-01

    Advances in natural gas extraction technology have led to increased activity in the production and transport sectors in the United States and, as a consequence, an increased need for reliable monitoring of methane leaks to the atmosphere. We present a statistical methodology in combination with an observing system for the detection and attribution of fugitive emissions of methane from distributed potential source location landscapes such as natural gas production sites. We measure long (> 500 m), integrated open-path concentrations of atmospheric methane using a dual frequency comb spectrometer and combine measurements with an atmospheric transport model to infer leak locations and strengths using a novel statistical method, the non-zero minimum bootstrap (NZMB). The new statistical method allows us to determine whether the empirical distribution of possible source strengths for a given location excludes zero. Using this information, we identify leaking source locations (i.e., natural gas wells) through rejection of the null hypothesis that the source is not leaking. The method is tested with a series of synthetic data inversions with varying measurement density and varying levels of model-data mismatch. It is also tested with field observations of (1) a non-leaking source location and (2) a source location where a controlled emission of 3.1 × 10-5 kg s-1 of methane gas is released over a period of several hours. This series of synthetic data tests and outdoor field observations using a controlled methane release demonstrates the viability of the approach for the detection and sizing of very small leaks of methane across large distances (4+ km2 in synthetic tests). The field tests demonstrate the ability to attribute small atmospheric enhancements of 17 ppb to the emitting source location against a background of combined atmospheric (e.g., background methane variability) and measurement uncertainty of 5 ppb (1σ), when measurements are averaged over 2 min. The

  20. A comparison of geostatistically based inverse techniques for use in performance assessment analysis at the Waste Isolation Pilot Plant Site: Results from Test Case No. 1

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Gallegos, D.P.

    1993-10-01

    The groundwater flow pathway in the Culebra Dolomite aquifer at the Waste Isolation Pilot Plant (WIPP) has been identified as a potentially important pathway for radionuclide migration to the accessible environment. Consequently, uncertainties in the models used to describe flow and transport in the Culebra need to be addressed. A ''Geostatistics Test Problem'' is being developed to evaluate a number of inverse techniques that may be used for flow calculations in the WIPP performance assessment (PA). The Test Problem is actually a series of test cases, each being developed as a highly complex synthetic data set; the intent is for the ensemble of these data sets to span the range of possible conceptual models of groundwater flow at the WIPP site. The Test Problem analysis approach is to use a comparison of the probabilistic groundwater travel time (GWTT) estimates produced by each technique as the basis for the evaluation. Participants are given observations of head and transmissivity (possibly including measurement error) or other information such as drawdowns from pumping wells, and are asked to develop stochastic models of groundwater flow for the synthetic system. Cumulative distribution functions (CDFs) of groundwater flow (computed via particle tracking) are constructed using the head and transmissivity data generated through the application of each technique; one semi-analytical method generates the CDFs of groundwater flow directly. This paper describes the results from Test Case No. 1

  1. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  2. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    International Nuclear Information System (INIS)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-01-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed

  3. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Energy Technology Data Exchange (ETDEWEB)

    Samani, Abbas [Department of Medical Biophysics/Electrical and Computer Engineering, University of Western Ontario, Medical Sciences Building, London, Ontario, N6A 5C1 (Canada); Zubovits, Judit [Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada); Plewes, Donald [Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 (Canada)

    2007-03-21

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  4. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples

    Science.gov (United States)

    Samani, Abbas; Zubovits, Judit; Plewes, Donald

    2007-03-01

    Understanding and quantifying the mechanical properties of breast tissues has been a subject of interest for the past two decades. This has been motivated in part by interest in modelling soft tissue response for surgery planning and virtual-reality-based surgical training. Interpreting elastography images for diagnostic purposes also requires a sound understanding of normal and pathological tissue mechanical properties. Reliable data on tissue elastic properties are very limited and those which are available tend to be inconsistent, in part as a result of measurement methodology. We have developed specialized techniques to measure tissue elasticity of breast normal tissues and tumour specimens and applied them to 169 fresh ex vivo breast tissue samples including fat and fibroglandular tissue as well as a range of benign and malignant breast tumour types. Results show that, under small deformation conditions, the elastic modulus of normal breast fat and fibroglandular tissues are similar while fibroadenomas were approximately twice the stiffness. Fibrocystic disease and malignant tumours exhibited a 3-6-fold increased stiffness with high-grade invasive ductal carcinoma exhibiting up to a 13-fold increase in stiffness compared to fibrogalndular tissue. A statistical analysis showed that differences between the elastic modulus of the majority of those tissues were statistically significant. Implications for the specificity advantages of elastography are reviewed.

  5. Parallel O(log n) algorithms for open- and closed-chain rigid multibody systems based on a new mass matrix factorization technique

    Science.gov (United States)

    Fijany, Amir

    1993-01-01

    In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.

  6. Preparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process

    Directory of Open Access Journals (Sweden)

    Seyyed Ghoreishi

    2017-09-01

    Full Text Available Objective(S: In this work, paclitaxel (PX, a promising anticancer drug, was loaded in the basil seed mucilage (BSM aerogels by implementation of supercritical carbon dioxide (SC-CO2 technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS, particle size distribution (PSD and drug loading efficiency (DLE. Methods: The employed SC-CO2 process in this research is the combination of phase inversion technique and gas antisolvent (GAS process. The effect of DMSO/water ratio (4 and 6 (v/v, pressure (10-20 MPa, CO2 addition rate (1–3 mL/min and ethanol concentration (5-10% were studied on MPS, PSD and DLE. Scanning electron microscopy (SEM and Zetasizer were used for particle analysis. DLE was investigated by utilizing the high-performance liquid chromatography (HPLC. Results: Nanoparticles of paclitaxel (MPS of 82–131 nm depending on process variables with narrow PSD were successfully loaded in BSM aerogel with DLE of 28–52%. Experimental results indicated that higher DMSO/water ratio, ethanol concentration, pressure and CO2 addition rate reduced MPS and DLE. Conclusions: A modified semi batch SC-CO2 process based on the combination of gas antisolvent process and phase inversion methods using DMSO as co-solvent and ethanol as a secondary solvent was developed for the loading of an anticancer drug, PX, in ocimum basilicum mucilage aerogel. The experimental results determined that the mean particle size, particle size distribution, and drug loading efficiency be controlled with operating conditions.

  7. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry; Herramienta en software para resolucion de problemas inversos mediante tecnicas de inteligencia artificial: una aplicacion en espectrometria neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, 98000 Zacatecas, Zac. (Mexico); Mendez, R. [CIEMAT, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Sousa L, M. A. [Comision Nacional de Energia Nuclear, Centro de Investigacion de Tecnologia Nuclear, Av. Pte. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  8. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    Science.gov (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  9. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  10. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  11. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  12. Development of the fabrication of ultra-low density ploy (4-methyl-1-pentene) (PMP) foams by thermal induced phase-inversion technique

    International Nuclear Information System (INIS)

    Zhang Lin; Wang Chaoyang; Luo Xuan; Du Kai; Tu Haiyan; Fan Hong; Luo Qing; Yuan Guanghui; Huang Lizhen

    2003-01-01

    By thermally induced phase-inversion technique, ploy (4-methyl-1-pentene) (PMP) foams are successfully prepared; the density and pore size are 3-80 mg/cm 3 and 1-20 μm respectively. Durene/naphthalene (60/40) is confirmed as the suitable solvent/nonsolvent binary system. The PMP's thermal properties are characterized by TG-DSC system. It is found that the foams thermal properties depend on the density. The thermal analysis method is utilized to measure the gelation of PMP in the binary solvent/nonsolvent system. The range of gelation temperature is preliminarily determined. The influence of mixture system composition and the cooling rate during the making of foams is discussed. TG-DSC is applied to determine the thermal properties of low-density PMP foams prepared in the laboratory. And the effect of density change on the thermal stability of foams are studied. The thermal analysis data play a great role in improving the foam quality. (authors)

  13. Development of a numerical experiment technique to solve inverse gamma-ray transport problems with application to nondestructive assay of nuclear waste barrels

    International Nuclear Information System (INIS)

    Chang, C.J.; Anghaie, S.

    1998-01-01

    A numerical experimental technique is presented to find an optimum solution to an undetermined inverse gamma-ray transport problem involving the nondestructive assay of radionuclide inventory in a nuclear waste drum. The method introduced is an optimization scheme based on performing a large number of numerical simulations that account for the counting statistics, the nonuniformity of source distribution, and the heterogeneous density of the self-absorbing medium inside the waste drum. The simulation model uses forward projection and backward reconstruction algorithms. The forward projection algorithm uses randomly selected source distribution and a first-flight kernel method to calculate external detector responses. The backward reconstruction algorithm uses the conjugate gradient with nonnegative constraint or the maximum likelihood expectation maximum method to reconstruct the source distribution based on calculated detector responses. Total source activity is determined by summing the reconstructed activity of each computational grid. By conducting 10,000 numerical simulations, the error bound and the associated confidence level for the prediction of total source activity are determined. The accuracy and reliability of the simulation model are verified by performing a series of experiments in a 208-ell waste barrel. Density heterogeneity is simulated by using different materials distributed in 37 egg-crate-type compartments simulating a vertical segment of the barrel. Four orthogonal detector positions are used to measure the emerging radiation field from the distributed source. Results of the performed experiments are in full agreement with the estimated error and the confidence level, which are predicted by the simulation model

  14. Saturation of superstorms and finite compressibility of the magnetosphere: Results of the magnetogram inversion technique and global PPMLR-MHD model

    Science.gov (United States)

    Mishin, V. V.; Mishin, V. M.; Karavaev, Yu.; Han, J. P.; Wang, C.

    2016-07-01

    We report on novel features of the saturation process of the polar cap magnetic flux and Poynting flux into the magnetosphere from the solar wind during three superstorms. In addition to the well-known effect of the interplanetary electric (Esw) and southward magnetic (interplanetary magnetic field (IMF) Bz) fields, we found that the saturation depends also on the solar wind ram pressure Pd. By means of the magnetogram inversion technique and a global MHD numerical model Piecewise Parabolic Method with a Lagrangian Remap, we explore the dependence of the magnetopause standoff distance on ram pressure and the southward IMF. Unlike earlier studies, in the considered superstorms both Pd and Bz achieve extreme values. As a result, we show that the compression rate of the dayside magnetosphere decreases with increasing Pd and the southward Bz, approaching very small values for extreme Pd ≥ 15 nPa and Bz ≤ -40 nT. This dependence suggests that finite compressibility of the magnetosphere controls saturation of superstorms.

  15. Influence of dispersing technique and irradiation on the structure of polyethylene in polypropylene matrix in a wide temperature range

    International Nuclear Information System (INIS)

    Antipov, E.M.; Kuptsov, S.A.; Kuz'min, N.N.; Pavlov, S.A.; AN SSSR, Moscow. Inst. Neftekhimicheskogo Sinteza)

    1988-01-01

    The structure of PE dispersed into PP matrix through solution or melt has been studied by X-ray analysis method. In oriented composition melting of HDPE after action of ionizing irradiation is accompanied by transition of some crystallites into pseudohexagonal modification. The fraction of transformed chains depends on the irradiation dose, dispersion method and conditions of orientation

  16. Minimal solution for inconsistent singular fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    M. Nikuie

    2013-10-01

    Full Text Available The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fuzzy matrix equations are investigated.

  17. Large-scale inverse model analyses employing fast randomized data reduction

    Science.gov (United States)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  18. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  19. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  20. Fast Component Pursuit for Large-Scale Inverse Covariance Estimation.

    Science.gov (United States)

    Han, Lei; Zhang, Yu; Zhang, Tong

    2016-08-01

    The maximum likelihood estimation (MLE) for the Gaussian graphical model, which is also known as the inverse covariance estimation problem, has gained increasing interest recently. Most existing works assume that inverse covariance estimators contain sparse structure and then construct models with the ℓ 1 regularization. In this paper, different from existing works, we study the inverse covariance estimation problem from another perspective by efficiently modeling the low-rank structure in the inverse covariance, which is assumed to be a combination of a low-rank part and a diagonal matrix. One motivation for this assumption is that the low-rank structure is common in many applications including the climate and financial analysis, and another one is that such assumption can reduce the computational complexity when computing its inverse. Specifically, we propose an efficient COmponent Pursuit (COP) method to obtain the low-rank part, where each component can be sparse. For optimization, the COP method greedily learns a rank-one component in each iteration by maximizing the log-likelihood. Moreover, the COP algorithm enjoys several appealing properties including the existence of an efficient solution in each iteration and the theoretical guarantee on the convergence of this greedy approach. Experiments on large-scale synthetic and real-world datasets including thousands of millions variables show that the COP method is faster than the state-of-the-art techniques for the inverse covariance estimation problem when achieving comparable log-likelihood on test data.

  1. Molecular study in children with hemophilia A in Colombia: analysis of Intron 1 and 22 inversion using long-distance PCR technique

    Directory of Open Access Journals (Sweden)

    María Fernanda Garcés

    2017-04-01

    Conclusions: Inversions of intron 22 and 1 were found in half of this group of patients. These results are reproducible and useful to identify the two most frequent mutations in severe hemophilia A patients.

  2. Determining the fracture resistance of fibre-reinforced glass matrix composites by means of the chevron-notch flexural technique

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A. R.; Kern, H.; Dlouhý, Ivo

    2001-01-01

    Roč. 308, 1/2 (2001), s. 111-117 ISSN 0921-5093 R&D Projects: GA ČR GV101/96/K264 Institutional research plan: CEZ:AV0Z2041904 Keywords : glass matrix composites * fracture toughness * chevron notch test Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.978, year: 2001

  3. STATIC ANALYSIS OF STRESSES INDIUCED BY MATRIX BAND IN ROOT CANAL TREATED SECOND PREMOLARS MOD CAVITIES BY FINITE ELEMENTH TECHNIQUE

    Directory of Open Access Journals (Sweden)

    K KHOSRAVI

    2000-09-01

    Full Text Available Introduction. The purpose of this study is measurement the stresses due to matrix bond and their effect on fracture or crock formation in teeth and finally modifying in treatment methods of tooth. Methods. We use a second premolar that was as similar as measurements of wheelers studies. Au mod cavity prepared with buccolingual width 3mm while the roof of pulp chamber has been removed and gingival floor was 1mm higher than CEJ. CTS was prepared in three dimention: crolan, sigital and axial and then tooth model was made based on Nisall program. The forces due to matrix band measured by strain guage and then, this force based on finite element method applied on the prepared model. Results: Inall cases, stresses observed in tensile and shear from tensile stresses was mainly in cervical one third of buccal cups and shear stress was surronded cervical area of the tooth like as circle. The greatest amount of forces were localized in gingival floor in mesial area and in the enamel with increasing the depth and sidth of cavity. The amount of this stresses increased especially in increasing of depth. With increasing the width and depth cuspal displacment was observed especially in colossal on third which localized in buccal cusp. Discussion. Matrix band stresses mainly are destructive and cause fractures or at least crack formation in tooth. So its preffered to use thinner band in shorter time as much as possible. using of anatomic bands were prefeved.

  4. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  5. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  6. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  7. Inverse Kinematics

    Directory of Open Access Journals (Sweden)

    Joel Sereno

    2010-01-01

    Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.

  8. Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques.

    Science.gov (United States)

    Bardsley, Katie; Wimpenny, Ian; Wechsler, Roni; Shachaf, Yonatan; Yang, Ying; El Haj, Alicia J

    2016-11-01

    Non-destructive protocols which can define a biomaterial's degradation and its associated ability to support proliferation and/or promote extracellular matrix deposition will be an essential in vitro tool. In this study we investigate fluorescently tagged biomaterials, with varying rates of degradation and their ability to support cell proliferation and osteogenic differentiation. Changes in fluorescence of the biomaterials and the release of fluorescent soluble by-products were confirmed as accurate methods to quantify degradation. It was demonstrated that increasing rates of the selected biomaterials' degradation led to a decrease in cell proliferation and concurrently an increase in osteogenic matrix production. A novel turnover index (TI), which directly describes the effect of degradation of a biomaterial on cell behaviour, was calculated. Lower TIs for proliferation and high TIs for osteogenic marker production were observed on faster degrading biomaterials, indicating that these biomaterials supported an upregulation of osteogenic markers. This TI was further validated using an ex vivo chick femur model, where the faster degrading biomaterial, fibrin, led to an increased TI for mineralisation within an epiphyseal defect. This in vitro tool, TI, for monitoring the effect of biomaterial degradation on extracellular matrix production may well act as predictor of the selected biomaterials' performance during in vivo studies. This paper outlines a novel metric, Turnover Index (TI), which can be utilised in tissue-engineering for the comparison of a range of biomaterials. The metric sets out to define the relationship between the rate of degradation of biomaterials with the rate of cell proliferation and ECM synthesis, ultimately allowing us to tailor material for set clinical requirements. We have discovered some novel comparative findings that cells cultured on biomaterials with increased rates of degradation have lower rates of proliferation but alternatively

  9. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  10. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  11. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance, (France); Grassi, G. [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ({sup 3}He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the {sup 239}Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and {sup 235}U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the

  12. First Industrial Tests of a Drum Monitor Matrix Correction for the Fissile Mass Measurement in Large Volume Historic Metallic Residues with the Differential Die-away Technique

    International Nuclear Information System (INIS)

    Antoni, R.; Passard, C.; Perot, B.; Batifol, M.; Vandamme, J.C.; Grassi, G.

    2015-01-01

    The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT. In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (NML) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor ( 3 He proportional counter inside the measurement cavity). A previous study performed with the NML R and D measurement cell PROMETHEE 6 has shown the feasibility of method, and the capability of MCNP simulations to correctly reproduce experimental data and to assess the performances of the proposed correction. A next step of the study has focused on the performance assessment of the method on the industrial station using numerical simulation. A correlation between the prompt calibration coefficient of the 239 Pu signal and the drum monitor signal was established using the MCNPX computer code and a fractional factorial experimental design composed of matrix parameters representative of the variation range of historical waste. Calculations have showed that the method allows the assay of the fissile mass with an uncertainty within a factor of 2, while the matrix effect without correction ranges on 2 decades. In this paper, we present and discuss the first experimental tests on the industrial ACC measurement system. A calculation vs. experiment benchmark has been achieved by performing dedicated calibration measurement with a representative drum and 235 U samples. The preliminary comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach

  13. A cut-&-paste strategy for the 3-D inversion of helicopter-borne electromagnetic data - I. 3-D inversion using the explicit Jacobian and a tensor-based formulation

    Science.gov (United States)

    Scheunert, M.; Ullmann, A.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.

    2016-06-01

    We present an inversion concept for helicopter-borne frequency-domain electromagnetic (HEM) data capable of reconstructing 3-D conductivity structures in the subsurface. Standard interpretation procedures often involve laterally constrained stitched 1-D inversion techniques to create pseudo-3-D models that are largely representative for smoothly varying conductivity distributions in the subsurface. Pronounced lateral conductivity changes may, however, produce significant artifacts that can lead to serious misinterpretation. Still, 3-D inversions of entire survey data sets are numerically very expensive. Our approach is therefore based on a cut-&-paste strategy whereupon the full 3-D inversion needs to be applied only to those parts of the survey where the 1-D inversion actually fails. The introduced 3-D Gauss-Newton inversion scheme exploits information given by a state-of-the-art (laterally constrained) 1-D inversion. For a typical HEM measurement, an explicit representation of the Jacobian matrix is inevitable which is caused by the unique transmitter-receiver relation. We introduce tensor quantities which facilitate the matrix assembly of the forward operator as well as the efficient calculation of the Jacobian. The finite difference forward operator incorporates the displacement currents because they may seriously affect the electromagnetic response at frequencies above 100. Finally, we deliver the proof of concept for the inversion using a synthetic data set with a noise level of up to 5%.

  14. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    Science.gov (United States)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  15. Determination of Nb in ZrO2 matrix using Wavelength Dispersive X-Ray Fluorescence (WDXRF) technique

    International Nuclear Information System (INIS)

    Jha, S.N.; Kapoor, S.K.; Malhotra, S.K.; Kaimal, R.; Kamat, M.J.; Sehra, J.C.

    1998-09-01

    A Wavelength Dispersive X-Ray Fluorescence (WDXRF) method is described for the estimation of niobium in ZrO 2 matrix in the concentration range of 0.5 to 35%. Analysis of Nb is desired during the reclamation of zirconium from Zr-2.5% Nb scrap. Zr-2.5% Nb is used in water cooled nuclear power reactors on account of high creep resistance and strength. For the reclamation of these metals from the scrap, chlorination is done to produce mixed chloride. The mixed chloride is treated to obtain individual chloride for eventually converting to respective metal. Analysis is required to ascertain purity of these metals reclaimed from the scrap. Primary x-rays from gold target x-ray tube were used to excite the K lines of Nb. A linear relation has been found between the intensity of Nb-Kα 1,2 line and concentration in the above range and the detection limit was 0.03% for 10 seconds counting time. (author)

  16. On the joint inversion of SGG and SST data from the GOCE mission

    Directory of Open Access Journals (Sweden)

    P. Ditmar

    2003-01-01

    Full Text Available The computation of spherical harmonic coefficients of the Earth’s gravity field from satellite-to-satellite tracking (SST data and satellite gravity gradiometry (SGG data is considered. As long as the functional model related to SST data contains nuisance parameters (e.g. unknown initial state vectors, assembling of the corresponding normal matrix must be supplied with the back-substitution operation, so that the nuisance parameters are excluded from consideration. The traditional back-substitution algorithm, however, may result in large round-off errors. Hence an alternative approach, back-substitution at the level of the design matrix, is implemented. Both a stand-alone inversion of either type of data and a joint inversion of both types are considered. The conclusion drawn is that the joint inversion results in a much better model of the Earth’s gravity field than a standalone inversion. Furthermore, two numerical techniques for solving the joint system of normal equations are compared: (i the Cholesky method based on an explicit computation of the normal matrix, and (ii the pre-conditioned conjugate gradient method (PCCG, for which an explicit computation of the entire normal matrix is not needed. The comparison shows that the PCCG method is much faster than the Cholesky method.Key words. Earth’s gravity field, GOCE, satellite-tosatellite tracking, satellite gravity gradiometry, backsubstitution

  17. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    Science.gov (United States)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  18. The Inverse of Banded Matrices

    Science.gov (United States)

    2013-01-01

    indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower

  19. Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Shang, Yingxin; Shao, Tiantian; Wen, Zhidan; Lv, Lili

    2017-08-01

    The spatial characteristics of fluorescent dissolved organic matter (FDOM) components in river waters in China were first examined by excitation-emission matrix spectra and fluorescence regional integration (FRI) with the data collected during September to November between 2013 and 2015. One tyrosine-like (R1), one tryptophan-like (R2), one fulvic-like (R3), one microbial protein-like (R4), and one humic-like (R5) components have been identified by FRI method. Principal component analysis (PCA) was conducted to assess variations in the five FDOM components (FRί (ί = 1, 2, 3, 4, and 5)) and the humification index for all 194 river water samples. The average fluorescence intensities of the five fluorescent components and the total fluorescence intensities FSUM differed under spatial variation among the seven major river basins (Songhua, Liao, Hai, Yellow and Huai, Yangtze, Pearl, and Inflow Rivers) in China. When all the river water samples were pooled together, the fulvic-like FR3 and the humic-like FR5 showed a strong positive linear relationship (R2 = 0.90, n = 194), indicating that the two allochthonous FDOM components R3 and R5 may originate from similar sources. There is a moderate strong positive correlation between the tryptophan-like FR2 and the microbial protein-like FR4 (R2 = 0.71, n = 194), suggesting that parts of two autochthonous FDOM components R2 and R4 are likely from some common sources. However, the total allochthonous substance FR(3+5) and the total autochthonous substances FR(1+2+4) exhibited a weak correlation (R2 = 0.40, n = 194). Significant positive linear relationships between FR3 (R2 = 0.69, n = 194), FR5 (R2 = 0.79, n = 194), and chromophoric DOM (CDOM) absorption coefficient a(254) were observed, which demonstrated that the CDOM absorption was dominated by the allochthonous FDOM components R3 and R5.

  20. Effect of consolidation techniques on the properties of Al matrix composite reinforced with nano Ni-coated SiC

    Science.gov (United States)

    Abolkassem, Shimaa A.; Elkady, Omayma A.; Elsayed, Ayman H.; Hussein, Walaa A.; Yehya, Hosam M.

    2018-06-01

    Al /Ni-SiC composite was prepared via powder metallurgy technique. SiC particles were coated with 10 wt% nano nickel by electroless deposition, then mixed by three percents (5, 10 and 15 wt%) with Al powder in a ball mill using 10:1 ball to powder ratio for 5 h. Three types of sintering techniques were used to prepare the composite. Uniaxial cold compacted samples were sintered in a vacuum furnace at 600 °C for 1 h. The second group was the vacuum sintered samples which were post-processed by hot isostatic press (HIP) at 600 °C for 1hr under the pressure of 190 MPa. The third group was the hot pressed samples that were consolidated at 550 °C under the uniaxial pressure of 840 MPa. The results showed that the hot pressed samples have the highest densification values (97-100%), followed by the HIP samples (94-98%), then come the vacuum sintered ones (92-96%). X-ray diffraction analysis (XRD) indicated the presence of Al and Al3Ni, which means that all SiC particles were encapsulated with nickel as short peaks for SiC were observed. Hardness results revealed that HIP samples have the highest hardness values. The magnetization properties were improved by increasing SiC/Ni percent, and HIP samples showed the highest magnetization parameter values.

  1. Group inverses of M-matrices and their applications

    CERN Document Server

    Kirkland, Stephen J

    2013-01-01

    Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f

  2. Testing joint inversion techniques of gravity data and cosmic ray muon flux at a well-characterized site for use in the detection of subsurface density structures beneath volcanoes.

    Science.gov (United States)

    Cosburn, K.; Roy, M.; Rowe, C. A.; Guardincerri, E.

    2017-12-01

    Obtaining accurate static and time-dependent shallow subsurface density structure beneath volcanic, hydrogeologic, and tectonic targets can help illuminate active processes of fluid flow and magma transport. A limitation of using surface gravity measurements for such imaging is that these observations are vastly underdetermined and non-unique. In order to hone in on a more accurate solution, other data sets are needed to provide constraints, typically seismic or borehole observations. The spatial resolution of these techniques, however, is relatively poor, and a novel solution to this problem in recent years has been to use attenuation of the cosmic ray muon flux, which provides an independent constraint on density. In this study we present a joint inversion of gravity and cosmic ray muon flux observations to infer the density structure of a target rock volume at a well-characterized site near Los Alamos, New Mexico, USA. We investigate the shallow structure of a mesa formed by the Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez volcano in New Mexico. Gravity measurements were made using a Lacoste and Romberg D meter on the surface of the mesa and inside a tunnel beneath the mesa. Muon flux measurements were also made at the mesa surface and at various points within the same tunnel using a muon detector having an acceptance region of 45 degrees from the vertical and a track resolution of several milliradians. We expect the combination of muon and gravity data to provide us with enhanced resolution as well as the ability to sense deeper structures in our region of interest. We use Bayesian joint inversion techniques on the gravity-muon dataset to test these ideas, building upon previous work using gravity inversion alone to resolve density structure in our study area. Both the regional geology and geometry of our study area is well-known and we assess the inferred density structure from our gravity-muon joint inversion within this known

  3. Intersections, ideals, and inversion

    International Nuclear Information System (INIS)

    Vasco, D.W.

    1998-01-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons

  4. Intersections, ideals, and inversion

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    1998-10-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.

  5. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  6. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  7. Determination of Methylmercury Traces in Biological Matrix: Chemical Extraction and Nuclear Quantification with the Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Soldati, A.L.

    2002-01-01

    Mercury is present in the environment as a result of the human and natural activities.The total amount of Hg present in the biosphere has been incremented three times since the industrial era, and now it is affecting in a global sense all the ecosystem.One of the main entrance of Hg in the human diet is the consumption of fish and other marine creatures.Most of the ingested Hg is mono methylmercury (MeHg), which is one of the most toxic forms in which this element could be found because it crosses membranes.Since the toxicity levels are low, the determination of concentrations of total Hg and Me Hg require very careful sampling, sample conditioning and analytical procedures to prevent either losses or contamination, or the degradation of the Hg species.In this work, we implemented a chemical Me Hg extraction procedure, using a ionic exchange resin, with three different types of fish tissue: muscle, liver and hepato pancreas.After Me Hg extraction, the determination and quantification was made by Instrumental Neutron Activation Analysis, by measuring the 197 Au, y el 203 Tl deexcitation s, created through the radioactive decay of the isotopes 197 Hg y 203 Hg.The influence of several parameters on the overall extraction process, such as velocity of passage through the ionic exchange column and the acid concentration used in the extraction was evaluated.Regarding the INAA determinations, a choice was made for the irradiation, decay and counting times, neutron and gamma doses, and the counting geometry The detection limit found for this technique (dry weight) is 140 pg MeHg/g. The Hg contents of the muscle samples were measured with the 279 keV emission of the product of the 202 Hg(n,g) 203 Hg reaction, with a recovery of (100 ± 13)%. Liver and Hepato pancreas samples were measured with the 77 keV gamma emission of the 197 Hg, checking this result with the 67 y 69 keV X emissions from the same isotope.The liver samples needed an extra vacuum filtering process during

  8. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal

    1989-01-01

    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  9. Inverse problem in nuclear physics

    International Nuclear Information System (INIS)

    Zakhariev, B.N.

    1976-01-01

    The method of reconstruction of interaction from the scattering data is formulated in the frame of the R-matrix theory in which the potential is determined by position of resonance Esub(lambda) and their reduced widths γ 2 lambda. In finite difference approximation for the Schroedinger equation this new approach allows to make the logics of the inverse problem IP more clear. A possibility of applications of IP formalism to various nuclear systems is discussed. (author)

  10. Land Use Changes Analysis for Kelantan Basin Using Spatial Matrix Technique “Patch Analyst” in Relation to Flood Disaster

    Directory of Open Access Journals (Sweden)

    Tuan Pah Rokiah Syed Hussain

    2011-09-01

    Full Text Available In the recent decade, there are many government efforts to develop rural area as a step to curb vast economic discrepancy status within community in the nation. This effort is in line with National Development Policy promoted by government shifting from New Economic Policy. Therefore, this study area also has impact done by development activities. The enormous economic developments have encourage growth in urbanization, tourism and recreation, public facilities, housing and so on. Furthermore, the area of cultivation land uses and foliages are becoming shrinking due to development growth, which is development needs to shift land use pattern hence denotes that human beings infuriate the environment to meet the life needs. In response to that, this research delves into the level of land use changes using the Geographic Information System (GIS and Spatial Analyst to determine the actual area or vicinity and what is the type of rigorous changes in land use. This issue can be seen all the way through the study outcome via spatial analysis technique adapted from Patch Density & Size Metrics (Mean Patch Size, Edge Metrics (Total Edge (TE, Edge Density (ED, Mean Perimeter-Area Ratio (Mpar and Shannons Diversity Index (SHDI. Results of the study show that, land use changes have occurred significantly in the study area for the period of 20 years, wher, all types of analysis verify that there is an increase in patch for every statistical test. The increase in patch is a picture of current land use changes, land use edge density and land use area in study area. Moreover, this study investigates the relationship between land use with rising flood disaster frequency and intensity variable which has always happened lately in Kelantan River Basin.

  11. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  12. The development of computational algorithms for manipulator inverse kinematics

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1989-10-01

    A solution technique of the inverse kinematics for multi-joint robot manipulators has been considered to be one of the most cumbersome treatment due to non-linearity properties inclusive of trigonometric functions. The most traditional approach is to use the Jacobian matrix on linearization assumptions. This iterative technique, however, is attended with numerical problems having significant influences on the solution characteristics such as initial guess dependence and singularities. Taking these facts into consideration, new approaches have been proposed from different standpoints, which are based on polynomial transformation of kinematic model, the minimization technique in mathematical programming, vector-geometrical concept, and the separation of joint variables associated with the optimization problem. In terms of computer simulations, each approach was identified to be a useful algorithm which leads to theoretically accurate solutions to complicated inverse problems. In this way, the short-term goal of our studies on manipulator inverse problem in the R and D project of remote handling technology was accomplished with success, and consequently the present report sums up the results of basic studies on this matter. (author)

  13. Activity measurements of the high-energy pure beta-emitters Sr-89 and Y-90 by the TDCR efficiency calculation technique

    CSIR Research Space (South Africa)

    Simpson, BRS

    2006-10-01

    Full Text Available rise to a set of linear algebraic equations that can be expressed in matrix form. The solution is given by a matrix inversion technique. This gives the values and uncertainties for the three coefficients N1, N2 and N3. Slide 11 © CSIR 2006...

  14. The development of the measurement technique of the control rod worth with the inverse kinetics method considering the influence of the steady neutron source

    International Nuclear Information System (INIS)

    Takeuchi, Mitsuo; Wada, Shigeru; Takahashi, Hiroyuki; Hayashi, Kazuhiko; Murayama, Yoji

    2000-09-01

    At the research reactor such as JRR-3M, the operation management is carried out in order to ensure safe operation, for example, the excess reactivity is measured regularly and confirmed that it satisfies a safety condition. The excess reactivity is calculated using control rod position in criticality and control rod worth measured by a positive period method (P.P method), the conventional inverse kinetic method (IK method) and so on. The neutron source, however, influences measurement results and brings in a measurement error. A new IK method considering the influence of the steady neutron sources is proposed and applied to the JRR-3M. This report shows that the proposed IK method measures control rod worth more precisely than a conventional IK method. (author)

  15. Fat suppression strategies in MR imaging of breast cancer at 3.0 T. Comparison of the two-point dixon technique and the frequency selective inversion method

    International Nuclear Information System (INIS)

    Kaneko Mikami, Wakako; Kazama, Toshiki; Sato, Hirotaka

    2013-01-01

    The purpose of this study was to compare two fat suppression methods in contrast-enhanced MR imaging of breast cancer at 3.0 T: the two-point Dixon method and the frequency selective inversion method. Forty female patients with breast cancer underwent contrast-enhanced three-dimensional T1-weighted MR imaging at 3.0 T. Both the two-point Dixon method and the frequency selective inversion method were applied. Quantitative analyses of the residual fat signal-to-noise ratio and the contrast noise ratio (CNR) of lesion-to-breast parenchyma, lesion-to-fat, and parenchyma-to-fat were performed. Qualitative analyses of the uniformity of fat suppression, image contrast, and the visibility of breast lesions and axillary metastatic adenopathy were performed. The signal-to-noise ratio was significantly lower in the two-point Dixon method (P<0.001). All CNR values were significantly higher in the two-point Dixon method (P<0.001 and P=0.001, respectively). According to qualitative analysis, both the uniformity of fat suppression and image contrast with the two-point Dixon method were significantly higher (P<0.001 and P=0.002, respectively). Visibility of breast lesions and metastatic adenopathy was significantly better in the two-point Dixon method (P<0.001 and P=0.03, respectively). The two-point Dixon method suppressed the fat signal more potently and improved contrast and visibility of the breast lesions and axillary adenopathy. (author)

  16. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    Science.gov (United States)

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to

  17. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    Science.gov (United States)

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  18. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...

  19. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  20. On the inversion of geodetic integrals defined over the sphere using 1-D FFT

    Science.gov (United States)

    García, R. V.; Alejo, C. A.

    2005-08-01

    An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.

  1. Laterally constrained inversion for CSAMT data interpretation

    Science.gov (United States)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  2. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    Science.gov (United States)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  3. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.

    Science.gov (United States)

    Vock, David M; Wolfson, Julian; Bandyopadhyay, Sunayan; Adomavicius, Gediminas; Johnson, Paul E; Vazquez-Benitez, Gabriela; O'Connor, Patrick J

    2016-06-01

    Models for predicting the probability of experiencing various health outcomes or adverse events over a certain time frame (e.g., having a heart attack in the next 5years) based on individual patient characteristics are important tools for managing patient care. Electronic health data (EHD) are appealing sources of training data because they provide access to large amounts of rich individual-level data from present-day patient populations. However, because EHD are derived by extracting information from administrative and clinical databases, some fraction of subjects will not be under observation for the entire time frame over which one wants to make predictions; this loss to follow-up is often due to disenrollment from the health system. For subjects without complete follow-up, whether or not they experienced the adverse event is unknown, and in statistical terms the event time is said to be right-censored. Most machine learning approaches to the problem have been relatively ad hoc; for example, common approaches for handling observations in which the event status is unknown include (1) discarding those observations, (2) treating them as non-events, (3) splitting those observations into two observations: one where the event occurs and one where the event does not. In this paper, we present a general-purpose approach to account for right-censored outcomes using inverse probability of censoring weighting (IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine learning algorithms used to mine big health care data including Bayesian networks, k-nearest neighbors, decision trees, and generalized additive models. We then show that our approach leads to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern healthcare system. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Motion-insensitive carotid intraplaque hemorrhage imaging using 3D inversion recovery preparation stack of stars (IR-prep SOS) technique.

    Science.gov (United States)

    Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott

    2017-02-01

    Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Environmental impact assessment of structural flood mitigation measures by a rapid impact assessment matrix (RIAM) technique: a case study in Metro Manila, Philippines.

    Science.gov (United States)

    Gilbuena, Romeo; Kawamura, Akira; Medina, Reynaldo; Amaguchi, Hideo; Nakagawa, Naoko; Bui, Duong Du

    2013-07-01

    In recent decades, the practice of environmental impact assessment (EIA) in the planning processes of infrastructure projects has created significant awareness on the benefits of environmentally sound and sustainable urban development around the world. In the highly urbanized megacities in the Philippines, like Metro Manila, high priority is given by the national government to structural flood mitigation measures (SFMM) due to the persistently high frequency of flood-related disasters, which are exacerbated by the on-going effects of climate change. EIA thus, should be carefully and effectively executed to maximize the potential benefits of the SFMM. The common practice of EIA in the Philippines is generally qualitative and lacks clear methodology in evaluating multi-criteria systems. Thus, this study proposes the use of the rapid impact assessment matrix (RIAM) technique to provide a method that would systematically and quantitatively evaluate the socio-economic and environmental impacts of planned SFMM in Metro Manila. The RIAM technique was slightly modified to fit the requirements of this study. The scale of impact was determined for each perceived impact, and based on the results, the planned SFMM for Metro Manila will likely bring significant benefits; however, significant negative impacts may also likely occur. The proposed modifications were found to be highly compatible with RIAM, and the results of the RIAM analysis provided a clear view of the impacts associated with the implementation of SFMM projects. This may prove to be valuable in the practice of EIA in the Philippines. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of a novel breast reconstruction technique using the Braxon® acellular dermal matrix: a new muscle-sparing breast reconstruction.

    Science.gov (United States)

    Berna, Giorgio; Cawthorn, Simon J; Papaccio, Guido; Balestrieri, Nicola

    2017-06-01

    Implant-based breast reconstruction is becoming increasingly popular because of the widespread adoption of acellular dermal matrix (ADM), which allows surgeons to obtain good aesthetic results with fewer operations. To develop more conservative surgical techniques, a retrospective, three-centre, proof-of-concept study was performed to study the effectiveness of a new, immediate, muscle-sparing breast reconstruction technique using the patented Braxon ® ADM, which enables subcutaneous positioning of the breast implant without detaching the pectoralis major. Ethics committee of the study coordinating centre approved medical record review on 19 women who underwent muscle-sparing breast reconstruction between November 2012 and January 2014. The first 10 implants were performed using 0.9-mm-thick porcine ADM, with preservatives. In the subsequent 15 implants, the product was changed to 0.6-mm-thick porcine dry ADM, without preservatives. Nineteen patients (25 implants) received six bilateral and 13 unilateral muscle-sparing breast reconstructions. For the first type of ADM used (0.9-mm-thick with preservatives), the rate of implant loss was 12% (n = 3) because of seroma (8%, n = 2) and infection (4%, n = 1). Minor complications, such as seroma (8%, n = 2), occurred when using the 0.6-mm-thick Braxon ® ADM and were treated by aspiration. Symmetrical and natural breasts with good shape, ptosis and softness to the touch were obtained. None of the patients reported experiencing pain. The preliminary results are encouraging from aesthetic and clinical viewpoints. Further studies are planned to evaluate long-term results. © 2014 Royal Australasian College of Surgeons.

  8. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    Science.gov (United States)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  9. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    International Nuclear Information System (INIS)

    Wu, Sheng-Jhih; Chu, Moody T

    2017-01-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)

  10. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  11. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  12. EDITORIAL: Inverse Problems in Engineering

    Science.gov (United States)

    West, Robert M.; Lesnic, Daniel

    2007-01-01

    Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.

  13. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  14. Low-temperature random matrix theory at the soft edge

    International Nuclear Information System (INIS)

    Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.

    2014-01-01

    “Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β → ∞. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-β random matrix theory

  15. A new approach to the inverse kinematics of a multi-joint robot manipulator using a minimization method

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1987-01-01

    This paper proposes a new approach to solve the inverse kinematics of a type of sixlink manipulator. Directing our attention to features of joint structures of the manipulator, the original problem is first formulated by a system of equations with four variables and solved by means of a minimization technique. The remaining two variables are determined from constrained conditions involved. This is the basic idea in the present approach. The results of computer simulation of the present algorithm showed that the accuracies of solutions and convergence speed are much higher and quite satisfactory for practical purposes, as compared with the linearization-iteration method based on the conventional inverse Jacobian matrix. (author)

  16. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  17. Full Waveform Inversion for Reservoir Characterization - A Synthetic Study

    KAUST Repository

    Zabihi Naeini, E.; Kamath, N.; Tsvankin, I.; Alkhalifah, Tariq Ali

    2017-01-01

    Most current reservoir-characterization workflows are based on classic amplitude-variation-with-offset (AVO) inversion techniques. Although these methods have generally served us well over the years, here we examine full-waveform inversion (FWI

  18. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  19. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Lizcano, D.; Martinez Q, E.; Fernandez, M.C.; Murillo, G.; Goldberg, V.; Skorodumov, B.B.; Rogachev, G.

    2003-01-01

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  20. The action characterization matrix: A link between HERA (Human Events Reference for ATHEANA) and ATHEANA (a technique for human error analysis)

    International Nuclear Information System (INIS)

    Hahn, H.A.

    1997-01-01

    The Technique for Human Error Analysis (ATHEANA) is a newly developed human reliability analysis (HRA) methodology that aims to facilitate better representation and integration of human performance into probabilistic risk assessment (PRA) modeling and quantification by analyzing risk-significant operating experience in the context of existing behavior science models. The fundamental premise of ATHEANA is that error-forcing contexts (EFCs), which refer to combinations of equipment/material conditions and performance shaping factors (PSFs), set up or create the conditions under which unsafe actions (UAs) can occur. ATHEANA is being developed in the context of nuclear power plant (NPP) PRAs, and much of the language used to describe the method and provide examples of its application are specific to that industry. Because ATHEANA relies heavily on the analysis of operational events that have already occurred as a mechanism for generating creative thinking about possible EFCs, a database, called the Human Events Reference for ATHEANA (HERA), has been developed to support the methodology. Los Alamos National Laboratory's (LANL) Human Factors Group has recently joined the ATHEANA project team; LANL is responsible for further developing the database structure and for analyzing additional exemplar operational events for entry into the database. The Action Characterization Matrix (ACM) is conceived as a bridge between the HERA database structure and ATHEANA. Specifically, the ACM allows each unsafe action or human failure event to be characterized according to its representation along each of six different dimensions: system status, initiator status, unsafe action mechanism, information processing stage, equipment/material conditions, and performance shaping factors. This report describes the development of the ACM and provides details on the structure and content of its dimensions

  1. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples.

    Science.gov (United States)

    Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan

    2017-09-15

    This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.

  2. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.

  3. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  4. Inverse plasma equilibria

    International Nuclear Information System (INIS)

    Hicks, H.R.; Dory, R.A.; Holmes, J.A.

    1983-01-01

    We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model

  5. Inverse photoemission of uranium oxides

    International Nuclear Information System (INIS)

    Roussel, P.; Morrall, P.; Tull, S.J.

    2009-01-01

    Understanding the itinerant-localised bonding role of the 5f electrons in the light actinides will afford an insight into their unusual physical and chemical properties. In recent years, the combination of core and valance band electron spectroscopies with theoretic modelling have already made significant progress in this area. However, information of the unoccupied density of states is still scarce. When compared to the forward photoemission techniques, measurements of the unoccupied states suffer from significantly less sensitivity and lower resolution. In this paper, we report on our experimental apparatus, which is designed to measure the inverse photoemission spectra of the light actinides. Inverse photoemission spectra of UO 2 and UO 2.2 along with the corresponding core and valance electron spectra are presented in this paper. UO 2 has been reported previously, although through its inclusion here it allows us to compare and contrast results from our experimental apparatus to the previous Bremsstrahlung Isochromat Spectroscopy and Inverse Photoemission Spectroscopy investigations

  6. Anisotropic magnetotelluric inversion using a mutual information constraint

    Science.gov (United States)

    Mandolesi, E.; Jones, A. G.

    2012-12-01

    In recent years, several authors pointed that the electrical conductivity of many subsurface structures cannot be described properly by a scalar field. With the development of field devices and techniques, data quality improved to the point that the anisotropy in conductivity of rocks (microscopic anisotropy) and tectonic structures (macroscopic anisotropy) cannot be neglected. Therefore a correct use of high quality data has to include electrical anisotropy and a correct interpretation of anisotropic data characterizes directly a non-negligible part of the subsurface. In this work we test an inversion routine that takes advantage of the classic Levenberg-Marquardt (LM) algorithm to invert magnetotelluric (MT) data generated from a bi-dimensional (2D) anisotropic domain. The LM method is routinely used in inverse problems due its performance and robustness. In non-linear inverse problems -such the MT problem- the LM method provides a spectacular compromise betwee quick and secure convergence at the price of the explicit computation and storage of the sensitivity matrix. Regularization in inverse MT problems has been used extensively, due to the necessity to constrain model space and to reduce the ill-posedness of the anisotropic MT problem, which makes MT inversions extremely challenging. In order to reduce non-uniqueness of the MT problem and to reach a model compatible with other different tomographic results from the same target region, we used a mutual information (MI) based constraint. MI is a basic quantity in information theory that can be used to define a metric between images, and it is routinely used in fields as computer vision, image registration and medical tomography, to cite some applications. We -thus- inverted for the model that best fits the anisotropic data and that is the closest -in a MI sense- to a tomographic model of the target area. The advantage of this technique is that the tomographic model of the studied region may be produced by any

  7. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....

  8. An inverse problem for evolution inclusions

    OpenAIRE

    Ton, Bui An

    2002-01-01

    An inverse problem, the determination of the shape and a convective coefficient on a part of the boundary from partial measurements of the solution, is studied using 2-person optimal control techniques.

  9. Development of a Java Package for Matrix Programming

    OpenAIRE

    Lim, Ngee-Peng; Ling, Maurice HT; Lim, Shawn YC; Choi, Ji-Hee; Teo, Henry BK

    2003-01-01

    We had assembled a Java package, known as MatrixPak, of four classes for the purpose of numerical matrix computation. The classes are matrix, matrix_operations, StrToMatrix, and MatrixToStr; all of which are inherited from java.lang.Object class. Class matrix defines a matrix as a two-dimensional array of float types, and contains the following mathematical methods: transpose, adjoint, determinant, inverse, minor and cofactor. Class matrix_operations contains the following mathematical method...

  10. Forward modeling. Route to electromagnetic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.

  11. An investigation on the solutions for the linear inverse problem in gamma ray tomography

    International Nuclear Information System (INIS)

    Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos

    2009-01-01

    This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)

  12. Angle-domain inverse scattering migration/inversion in isotropic media

    Science.gov (United States)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  13. The Transmuted Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2014-05-01

    Full Text Available A generalization of the generalized inverse Weibull distribution the so-called transmuted generalized inverse Weibull distribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM in order to generate a flexible family of probability distributions taking the generalized inverseWeibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expressions for the moments, quantiles, and moment generating function of the new distribution are derived. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the flexibility of the transmuted version versus the generalized inverse Weibull distribution.

  14. Stochastic Gabor reflectivity and acoustic impedance inversion

    Science.gov (United States)

    Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John

    2018-02-01

    To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time-frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also

  15. Search for the Standard Model Higgs Boson associated with a W Boson using Matrix Element Technique in the CDF detector at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Barbara Alvarez [Univ. of Oviedo (Spain)

    2010-05-01

    method used to estimate the background contribution. The Matrix Element method, that was successfully used in the single top discovery analysis and many other analyses within the CDF collaboration, is the multivariate technique used in this thesis to discriminate signal from background events. With this technique is possible to calculate a probability for an event to be classified as signal or background. These probabilities are then combined into a discriminant function called the Event Probability Discriminant, EPD, which increases the sensitivity of the WH process. This method is described in detail in Chapter 7. As no evidence for the signal has been found, the results obtained with this work are presented in Chapter 8 in terms of exclusion regions as a function of the mass of the Higgs boso, taking into account the full systematics. The conclusions of this work to obtain the PhD are presnted in Chapter 9.

  16. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  17. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    Science.gov (United States)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  18. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  19. Joint Inversion of Direct Current Resistivity and Seismic Refraction Data

    International Nuclear Information System (INIS)

    Kurt, B.B.

    2007-01-01

    In this study, I assumed the underground consist of horizontal layers. I developed one-dimensional (1D) Direct Current Resistivity (DCR) and seismic refraction inversion code using MATLAB package and attempt to find velocity, resistivity and depth of the layers. The code uses damped least square technique. The code can do inversion on DCR and seismic data either individually or jointly. I tested the joint inversion code on synthetic data. Eventually, I saw that the result of joint inversion is better than the result of individual inversions. The joint inversion found depth of models of each layer and, in addition, velocity and resistivity closer to real values

  20. INVERSE FILTERING TECHNIQUES IN SPEECH ANALYSIS

    African Journals Online (AJOL)

    Dr Obe

    domain or in the frequency domain. However their .... computer to speech analysis led to important elaborations ... tool for the estimation of formant trajectory (10), ... prediction Linear prediction In effect determines the filter .... Radio Res. Lab.

  1. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  2. Acute puerperal uterine inversion

    International Nuclear Information System (INIS)

    Hussain, M.; Liaquat, N.; Noorani, K.; Bhutta, S.Z; Jabeen, T.

    2004-01-01

    Objective: To determine the frequency, causes, clinical presentations, management and maternal mortality associated with acute puerperal inversion of the uterus. Materials and Methods: All the patients who developed acute puerperal inversion of the uterus either in or outside the JPMC were included in the study. Patients of chronic uterine inversion were not included in the present study. Abdominal and vaginal examination was done to confirm and classify inversion into first, second or third degrees. Results: 57036 deliveries and 36 acute uterine inversions occurred during the study period, so the frequency of uterine inversion was 1 in 1584 deliveries. Mismanagement of third stage of labour was responsible for uterine inversion in 75% of patients. Majority of the patients presented with shock, either hypovolemic (69%) or neurogenic (13%) in origin. Manual replacement of the uterus under general anaesthesia with 2% halothane was successfully done in 35 patients (97.5%). Abdominal hysterectomy was done in only one patient. There were three maternal deaths due to inversion. Conclusion: Proper education and training regarding placental delivery, diagnosis and management of uterine inversion must be imparted to the maternity care providers especially to traditional birth attendants and family physicians to prevent this potentially life-threatening condition. (author)

  3. Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

    OpenAIRE

    Samper Madrigal, María Dolores; Petrucci, R.; Sánchez Nacher, Lourdes; Balart Gimeno, Rafael Antonio; Kenny, J. M.

    2015-01-01

    The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3-aminopropyl)trimethoxysilane, [3-(2-aminoethylamino)propyl]-trimethoxysilane, trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength...

  4. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  6. Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.

    Science.gov (United States)

    Bohn, C. L.; Flynn, R. W.

    1978-01-01

    Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)

  7. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  8. Visualizing Matrix Multiplication

    Science.gov (United States)

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  9. 3rd Annual Workshop on Inverse Problem

    CERN Document Server

    2015-01-01

    This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.

  10. Introduction to the mathematics of inversion in remote sensing and indirect measurements

    CERN Document Server

    Twomey, S

    2013-01-01

    Developments in Geomathematics, 3: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements focuses on the application of the mathematics of inversion in remote sensing and indirect measurements, including vectors and matrices, eigenvalues and eigenvectors, and integral equations. The publication first examines simple problems involving inversion, theory of large linear systems, and physical and geometric aspects of vectors and matrices. Discussions focus on geometrical view of matrix operations, eigenvalues and eigenvectors, matrix products, inverse of a matrix, transposition and rules for product inversion, and algebraic elimination. The manuscript then tackles the algebraic and geometric aspects of functions and function space and linear inversion methods, as well as the algebraic and geometric nature of constrained linear inversion, least squares solution, approximation by sums of functions, and integral equations. The text examines information content of indirect sensing m...

  11. Inverse logarithmic potential problem

    CERN Document Server

    Cherednichenko, V G

    1996-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  12. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  13. Development of a polymeric matrix for composite material produced by the filament winding technique; Desenvolvimento de matriz polimerica visando a producao de material composito atraves da tecnica de enrolamento filamentar

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, Ledjane Lima; Ferreira, Marisilvia; Bastian, Fernando Luiz [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2005-07-01

    The study of the resin for composite materials to be produced by the filament winding technique is very important, since the good applicability of the technique is in part function of the characteristics of the resin. The objective of this work is the development of a polymeric matrix using vinyl ester resin for composite to be produced by the filament winding technique. Therefore, vinyl ester resin systems developed from Derakane 411-350 by varying the percentage of cure agent and activator. The system which presented the best behavior in tension (Yong's modulus 2,42 GPa, tensile strength = 47,67 MPa, elongation = 7,31 % and fracture toughness 2,67 J), adequate gel time and exothermic peak for the manufacture process was submitted to hygrothermal aging by immersion in water at 60 deg C for a maximum period of 64 days. (author)

  14. Vitamin A equivalency of beta-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect.

    NARCIS (Netherlands)

    Loo-Bouwman, C.A. Van; West, C.E.; Breemen, R.B. van; Zhu, D.; Siebelink, E.; Versloot, P.; Hulshof, P.J.; Lieshout, M. van; Russel, F.G.M.; Schaafsma, G.; Naber, A.H.J.

    2009-01-01

    Data on the vitamin A equivalency of beta-carotene in food are inconsistent. We quantified the vitamin A equivalency (microg) of beta-carotene in two diets using the dual-isotope dilution technique and the oral-faecal balance technique. A diet-controlled, cross-over intervention study was conducted

  15. Vitamin A equivalency of ß-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect

    NARCIS (Netherlands)

    Bouwman, C.A.; West, C.E.; Breemen, van R.B.; Zhu, D.; Siebelink, E.; Versloot, P.; Hulshof, P.J.M.; Lieshout, van M.; Russel, F.G.M.; Schaafsma, G.; Naber, T.H.J.

    2009-01-01

    Data on the vitamin A equivalency of ß-carotene in food are inconsistent. We quantified the vitamin A equivalency (¿g) of ß-carotene in two diets using the dual-isotope dilution technique and the oral¿faecal balance technique. A diet-controlled, cross-over intervention study was conducted in

  16. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  17. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  18. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  19. Bayesian inversion of refraction seismic traveltime data

    Science.gov (United States)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test

  20. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  1. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  2. Probabilistic inversion for chicken processing lines

    International Nuclear Information System (INIS)

    Cooke, Roger M.; Nauta, Maarten; Havelaar, Arie H.; Fels, Ine van der

    2006-01-01

    We discuss an application of probabilistic inversion techniques to a model of campylobacter transmission in chicken processing lines. Such techniques are indicated when we wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this case there are no measurements for estimating model parameters, and experts are typically unable to give a considered judgment. In such cases, experts are asked to quantify their uncertainty regarding variables which can be predicted by the model. The experts' distributions (after combination) are then pulled back onto the parameter space of the model, a process termed 'probabilistic inversion'. This study illustrates two such techniques, iterative proportional fitting (IPF) and PARmeter fitting for uncertain models (PARFUM). In addition, we illustrate how expert judgement on predicted observable quantities in combination with probabilistic inversion may be used for model validation and/or model criticism

  3. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain; Kammoun, Abla

    2017-01-01

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show

  4. Parallel halftoning technique using dot diffusion optimization

    Science.gov (United States)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  5. Inversion, error analysis, and validation of GPS/MET occultation data

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison

  6. Fiber-reinforced ceramic matrix composites processed by a hybrid technique based on chemical vapor infiltration, slurry impregnation and spark plasma sintering

    International Nuclear Information System (INIS)

    Magnant, J.; Pailler, R.; Le Petitcorps, Y.; Maille, L.; Guette, A.; Marthe, J.

    2013-01-01

    Fabrication of multidirectional continuous carbon and silicon carbide fiber reinforced ceramic matrix composites (CMC) by a new short time hybrid process was studied. This process is based, first, on the deposition of fiber interphase and coating by chemical vapor infiltration, next, on the introduction of silicon nitride powders into the fibrous preform by slurry impregnation and, finally, on the densification of the composite by liquid phase spark plasma sintering (LP-SPS). The homogeneous introduction of the ceramic charges into the multidirectional fiber pre-forms was realized by slurry impregnation from highly concentrated and well-dispersed aqueous colloid suspensions. The chemical degradation of the carbon fibers during the fabrication was prevented by adapting the sintering pressure cycle. The composites manufactured are dense. Microstructural analyses were conducted to explain the mechanical properties achieved. One main important result of this study is that LP-SPS can be used in some hybrid processes to densify fiber reinforced CMC. (authors)

  7. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  8. Inverse planning IMRT

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)

  9. Total-variation based velocity inversion with Bregmanized operator splitting algorithm

    Science.gov (United States)

    Zand, Toktam; Gholami, Ali

    2018-04-01

    Many problems in applied geophysics can be formulated as a linear inverse problem. The associated problems, however, are large-scale and ill-conditioned. Therefore, regularization techniques are needed to be employed for solving them and generating a stable and acceptable solution. We consider numerical methods for solving such problems in this paper. In order to tackle the ill-conditioning of the problem we use blockiness as a prior information of the subsurface parameters and formulate the problem as a constrained total variation (TV) regularization. The Bregmanized operator splitting (BOS) algorithm as a combination of the Bregman iteration and the proximal forward backward operator splitting method is developed to solve the arranged problem. Two main advantages of this new algorithm are that no matrix inversion is required and that a discrepancy stopping criterion is used to stop the iterations, which allow efficient solution of large-scale problems. The high performance of the proposed TV regularization method is demonstrated using two different experiments: 1) velocity inversion from (synthetic) seismic data which is based on Born approximation, 2) computing interval velocities from RMS velocities via Dix formula. Numerical examples are presented to verify the feasibility of the proposed method for high-resolution velocity inversion.

  10. Inverse modeling of emissions for local photooxidant pollution: Testing a new methodology with kriging constraints

    Directory of Open Access Journals (Sweden)

    I. Pison

    2006-07-01

    Full Text Available A new methodology for the inversion of anthropogenic emissions at a local scale is tested. The inversion constraints are provided by a kriging technique used in air quality forecast in the Paris area, which computes an analyzed concentration field from network measurements and the first-guess simulation of a CTM. The inverse developed here is based on the CHIMERE model and its adjoint to perform 4-D integration. The methodology is validated on synthetic cases inverting emission fluxes. It is shown that the information provided by the analyzed concentrations is sufficient to reach a mathematically acceptable solution to the optimization, even when little information is available in the measurements. As compared to the use of measurements alone or of measurements and a background matrix, the use of kriging leads to a more homogeneous distribution of the corrections, both in space and time. Moreover, it is then possible to double the accuracy of the inversion by performing two kriging-optimization cycles. Nevertheless, kriging analysis cannot compensate for a very important lack of information in the measurements.

  11. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    Science.gov (United States)

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  12. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  13. Inverse problem in hydrogeology

    Science.gov (United States)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    cas dans d'autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l'aquifère. Il est montré que les méthodes d'évaluation des paramètres actuels ne diffèrent pas si ce n'est dans les détails des calculs informatiques. Il est montré qu'il existe une large panoplie de techniques d'inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d'informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l'incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée. Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de enten dimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables alusuario, acomodamiento de variabilidad a través de geoestad

  14. On the quantum inverse scattering problem

    International Nuclear Information System (INIS)

    Maillet, J.M.; Terras, V.

    2000-01-01

    A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains

  15. Random matrix theory and fund of funds portfolio optimisation

    Science.gov (United States)

    Conlon, T.; Ruskin, H. J.; Crane, M.

    2007-08-01

    The proprietary nature of Hedge Fund investing means that it is common practise for managers to release minimal information about their returns. The construction of a fund of hedge funds portfolio requires a correlation matrix which often has to be estimated using a relatively small sample of monthly returns data which induces noise. In this paper, random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using hedge fund returns data. The analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the deviating eigenvectors are found to correspond to distinct groups of strategies that are applied by hedge fund managers. The inverse participation ratio is used to quantify the number of components that participate in each eigenvector. Finally, the correlation matrix is cleaned by separating the noisy part from the non-noisy part of C. This technique is found to greatly reduce the difference between the predicted and realised risk of a portfolio, leading to an improved risk profile for a fund of hedge funds.

  16. Partial inversion of elliptic operator to speed up computation of likelihood in Bayesian inference

    KAUST Repository

    Litvinenko, Alexander

    2017-08-09

    In this paper, we speed up the solution of inverse problems in Bayesian settings. By computing the likelihood, the most expensive part of the Bayesian formula, one compares the available measurement data with the simulated data. To get simulated data, repeated solution of the forward problem is required. This could be a great challenge. Often, the available measurement is a functional $F(u)$ of the solution $u$ or a small part of $u$. Typical examples of $F(u)$ are the solution in a point, solution on a coarser grid, in a small subdomain, the mean value in a subdomain. It is a waste of computational resources to evaluate, first, the whole solution and then compute a part of it. In this work, we compute the functional $F(u)$ direct, without computing the full inverse operator and without computing the whole solution $u$. The main ingredients of the developed approach are the hierarchical domain decomposition technique, the finite element method and the Schur complements. To speed up computations and to reduce the storage cost, we approximate the forward operator and the Schur complement in the hierarchical matrix format. Applying the hierarchical matrix technique, we reduced the computing cost to $\\\\mathcal{O}(k^2n \\\\log^2 n)$, where $k\\\\ll n$ and $n$ is the number of degrees of freedom. Up to the $\\\\H$-matrix accuracy, the computation of the functional $F(u)$ is exact. To reduce the computational resources further, we can approximate $F(u)$ on, for instance, multiple coarse meshes. The offered method is well suited for solving multiscale problems. A disadvantage of this method is the assumption that one has to have access to the discretisation and to the procedure of assembling the Galerkin matrix.

  17. Contributions to Large Covariance and Inverse Covariance Matrices Estimation

    OpenAIRE

    Kang, Xiaoning

    2016-01-01

    Estimation of covariance matrix and its inverse is of great importance in multivariate statistics with broad applications such as dimension reduction, portfolio optimization, linear discriminant analysis and gene expression analysis. However, accurate estimation of covariance or inverse covariance matrices is challenging due to the positive definiteness constraint and large number of parameters, especially in the high-dimensional cases. In this thesis, I develop several approaches for estimat...

  18. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    Science.gov (United States)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  19. Changes of Fe matrix lattice constant during liquid phase sintering of Fe-Cu-C compacts by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Mazli Mustapha; Abdul Kadir Masrom; Mohammad, M.; Meh, B.; Zawati Harun

    2002-01-01

    The dissolution of graphite and copper during sintering of PM steels prepared from iron, copper and graphite powder mixes were studied using X-Ray Diffraction method. This paper present the investigation carried out to study the changes of iron's lattice constant during liquid phase sintering of the compacts. The electrical conductivity measurement method was also used for determining the extent of carbon and copper dissolution and its influence on the formation of sintered compacts. In the experiment, the Fe-Cu-C powders were compacted into a pellets using hand press machine and were then sintered in a 5% H 2 + 95% N 2 gas atmosphere at different sintering temperature in the range of 400 degree C and 1200 degree C. The effect of sintering parameters on the mechanical properties of the sintered compacts was studied to find a correlation between mechanical behaviour, microstructure, and the resistivity in order to develop nondestructive testing method. It was observed that measurement of Fe matrix lattice constant and electrical conductivity of sintered compacts could be a viable method in studying all stages of sintering process. (Author)

  20. Fast convolutional sparse coding using matrix inversion lemma

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Šroubek, Filip

    2016-01-01

    Roč. 55, č. 1 (2016), s. 44-51 ISSN 1051-2004 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Convolutional sparse coding * Feature learning * Deconvolution networks * Shift-invariant sparse coding Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.337, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/sorel-0459332.pdf

  1. THE EFFECT OF VARIOUS PARAMETERS ON DRY SLIDING WEAR BEHAVIOR AND SUBSURFACE OF AGED HYBRID METAL MATRIX COMPOSITES USING TAGUCHI TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B.M. Viswanatha

    2017-06-01

    Full Text Available The effects of applied load, sliding speed and sliding distance on the dry sliding wear behavior of aged Al-SiCp-Gr composites were investigated. The specimen were fabricated by stir-casting technique. The pin-on-disc wear testing machine was used to investigate the wear rate by design of experiments based on L27 using Taguchi technique. Sliding distance was the most important variable that influenced the wear rate followed by sliding speed and applied load. The worn out surfaces were analyzed by SEM and EDS to study the subsurface mechanism of wear. The addition of reinforcements showed improved tribological behavior of the composite than base alloy.

  2. Embedded Lattice and Properties of Gram Matrix

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-03-01

    Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].

  3. The shifting zoom: new possibilities for inverse scattering on electrically large domains

    Science.gov (United States)

    Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien

    2017-04-01

    Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C

  4. Fuzzy logic guided inverse treatment planning

    International Nuclear Information System (INIS)

    Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho

    2003-01-01

    A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved

  5. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Science.gov (United States)

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  6. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Directory of Open Access Journals (Sweden)

    Ai Kaneko

    Full Text Available The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4 cells/mL (8.9×10(3 cells/cm2 without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm, greater cell viability (≥30% for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks.

  7. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  8. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  9. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp →ϕp

    Science.gov (United States)

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-05-01

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp →ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s ) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (ϕ →K+K-) and neutral- (ϕ →KS0KL0) KK ¯ decay modes of the ϕ. Further, for the charged mode, we differentiate between the cases where the final K- track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed ϕ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-modes, respectively. Possible effects from K+Λ* channels with pKK ¯ final states are discussed. These present results constitute the most precise and extensive ϕ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

  10. Inverse problems in the Bayesian framework

    International Nuclear Information System (INIS)

    Calvetti, Daniela; Somersalo, Erkki; Kaipio, Jari P

    2014-01-01

    The history of Bayesian methods dates back to the original works of Reverend Thomas Bayes and Pierre-Simon Laplace: the former laid down some of the basic principles on inverse probability in his classic article ‘An essay towards solving a problem in the doctrine of chances’ that was read posthumously in the Royal Society in 1763. Laplace, on the other hand, in his ‘Memoirs on inverse probability’ of 1774 developed the idea of updating beliefs and wrote down the celebrated Bayes’ formula in the form we know today. Although not identified yet as a framework for investigating inverse problems, Laplace used the formalism very much in the spirit it is used today in the context of inverse problems, e.g., in his study of the distribution of comets. With the evolution of computational tools, Bayesian methods have become increasingly popular in all fields of human knowledge in which conclusions need to be drawn based on incomplete and noisy data. Needless to say, inverse problems, almost by definition, fall into this category. Systematic work for developing a Bayesian inverse problem framework can arguably be traced back to the 1980s, (the original first edition being published by Elsevier in 1987), although articles on Bayesian methodology applied to inverse problems, in particular in geophysics, had appeared much earlier. Today, as testified by the articles in this special issue, the Bayesian methodology as a framework for considering inverse problems has gained a lot of popularity, and it has integrated very successfully with many traditional inverse problems ideas and techniques, providing novel ways to interpret and implement traditional procedures in numerical analysis, computational statistics, signal analysis and data assimilation. The range of applications where the Bayesian framework has been fundamental goes from geophysics, engineering and imaging to astronomy, life sciences and economy, and continues to grow. There is no question that Bayesian

  11. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  13. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....

  14. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  15. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  16. Information matrix estimation procedures for cognitive diagnostic models.

    Science.gov (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  17. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    Science.gov (United States)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  18. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  19. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  20. Improving Inversions of the Overlap Operator

    International Nuclear Information System (INIS)

    Krieg, S.; Cundy, N.; Eshof, J. van den; Frommer, A.; Lippert, Th.; Schaefer, K.

    2005-01-01

    We present relaxation and preconditioning techniques which accelerate the inversion of the overlap operator by a factor of four on small lattices, with larger gains as the lattice size increases. These improvements can be used in both propagator calculations and dynamical simulations

  1. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique

    International Nuclear Information System (INIS)

    Verstrynge, E; Wevers, M; Ghiassi, B; Lourenço, P B

    2016-01-01

    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection. (paper)

  2. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  3. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    Science.gov (United States)

    Yamamoto, Masahiro

    2003-06-01

    into the nature of inverse problems and the appropriate mode of thought, chapter 1 offers historical vignettes, most of which have played an essential role in the development of natural science. These vignettes cover the first successful application of `non-destructive testing' by Archimedes (page 4) via Newton's laws of motion up to literary tomography, and readers will be able to enjoy a wide overview of inverse problems. Therefore, as the author asks, the reader should not skip this chapter. This may not be hard to do, since the headings of the sections are quite intriguing (`Archimedes' Bath', `Another World', `Got the Time?', `Head Games', etc). The author embarks on the technical approach to inverse problems in chapter 2. He has elegantly designed each section with a guide specifying course level, objective, mathematical and scientifical background and appropriate technology (e.g. types of calculators required). The guides are designed such that teachers may be able to construct effective and attractive courses by themselves. The book is not intended to offer one rigidly determined course, but should be used flexibly and independently according to the situation. Moreover, every section closes with activities which can be chosen according to the students' interests and levels of ability. Some of these exercises do not have ready solutions, but require long-term study, so readers are not required to solve all of them. After chapter 5, which contains discrete inverse problems such as the algebraic reconstruction technique and the Backus - Gilbert method, there are answers and commentaries to the activities. Finally, scripts in MATLAB are attached, although they can also be downloaded from the author's web page (http://math.uc.edu/~groetsch/). This book is aimed at students but it will be very valuable to researchers wishing to retain a wide overview of inverse problems in the midst of busy research activities. A Japanese version was published in 2002.

  4. Noniterative MAP reconstruction using sparse matrix representations.

    Science.gov (United States)

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  5. Development of an in-situ synthesized multi-component reinforced Al–4.5%Cu–TiC metal matrix composite by FAS technique – Optimization of process parameters

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-03-01

    Full Text Available In the present investigation, an in-situ multi-component reinforced aluminium copper alloy based metal matrix composite was fabricated by the flux assisted synthesis (FAS technique. It was found from the optical microscopy analysis that TiC particles are formed in the composite. Further the present research investigates the feasibility and dry machining characteristics of Al–4.5%Cu/5TiC metal matrix composite in CNC milling machine using uncoated solid carbide end mill cutter. The effect of the machining parameters such as feed, cutting speed, depth of cut on the response parameters such as cutting force and COM is determined by using analysis of variance (ANOVA. From the analysis it was found that cutting speed and depth of cut played a major role in affecting cutting force. Multi output optimization of the process was carried out by the application of the Taguchi method with fuzzy logic, and the confirmatory test has revealed the accuracy of the developed model. For predicting the response parameters, regression equations were developed and verified with a number of test cases and it was observed that the percentage error for both responses is less than ±3%, which indicates there is a close agreement between the predicted and the measured results.

  6. Inverse scattering with supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc

    2004-01-01

    The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering

  7. Representations for the generalized Drazin inverse of the sum in a Banach algebra and its application for some operator matrices.

    Science.gov (United States)

    Liu, Xiaoji; Qin, Xiaolan

    2015-01-01

    We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix.

  8. Poster — Thur Eve — 03: Application of the non-negative matrix factorization technique to [{sup 11}C]-DTBZ dynamic PET data for the early detection of Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Chang [CancerCare Manitoba, Winnipeg, MB (Canada); Jans, Hans; McEwan, Sandy; Riauka, Terence [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Cross Cancer Institute, Alberta Health Services, Edmonton, AB (Canada); Martin, Wayne; Wieler, Marguerite [Division of Neurology, University of Alberta, Edmonton, AB (Canada)

    2014-08-15

    In this work, a class of non-negative matrix factorization (NMF) technique known as alternating non-negative least squares, combined with the projected gradient method, is used to analyze twenty-five [{sup 11}C]-DTBZ dynamic PET/CT brain data. For each subject, a two-factor model is assumed and two factors representing the striatum (factor 1) and the non-striatum (factor 2) tissues are extracted using the proposed NMF technique and commercially available factor analysis software “Pixies”. The extracted factor 1 and 2 curves represent the binding site of the radiotracer and describe the uptake and clearance of the radiotracer by soft tissues in the brain, respectively. The proposed NMF technique uses prior information about the dynamic data to obtain sample time-activity curves representing the striatum and the non-striatum tissues. These curves are then used for “warm” starting the optimization. Factor solutions from the two methods are compared graphically and quantitatively. In healthy subjects, radiotracer uptake by factors 1 and 2 are approximately 35–40% and 60–65%, respectively. The solutions are also used to develop a factor-based metric for the detection of early, untreated Parkinson's disease. The metric stratifies healthy subjects from suspected Parkinson's patients (based on the graphical method). The analysis shows that both techniques produce comparable results with similar computational time. The “semi-automatic” approach used by the NMF technique allows clinicians to manually set a starting condition for “warm” starting the optimization in order to facilitate control and efficient interaction with the data.

  9. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  10. Inverse transient thermoelastic deformations in thin circular plates

    Indian Academy of Sciences (India)

    Bessel's functions with the help of the integral transform technique. Thermoelastic deformations are discussed with the help of temperature and are illustrated numer- ically. Keywords. Inverse transient; thermoelastic deformation. 1. Introduction. The inverse thermoelastic problem consists of determination of the temperature, ...

  11. Level set methods for inverse scattering—some recent developments

    International Nuclear Information System (INIS)

    Dorn, Oliver; Lesselier, Dominique

    2009-01-01

    We give an update on recent techniques which use a level set representation of shapes for solving inverse scattering problems, completing in that matter the exposition made in (Dorn and Lesselier 2006 Inverse Problems 22 R67) and (Dorn and Lesselier 2007 Deformable Models (New York: Springer) pp 61–90), and bringing it closer to the current state of the art

  12. A comparative study on full diagonalization of Hessian matrix and Gradient-only technique to trace out reaction path in doped noble gas clusters using stochastic optimization

    International Nuclear Information System (INIS)

    Biring, Shyamal Kumar; Chaudhury, Pinaki

    2012-01-01

    Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.

  13. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  14. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  15. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  16. Some New Algebraic and Topological Properties of the Minkowski Inverse in the Minkowski Space

    Directory of Open Access Journals (Sweden)

    Hanifa Zekraoui

    2013-01-01

    Full Text Available We introduce some new algebraic and topological properties of the Minkowski inverse A⊕ of an arbitrary matrix A∈Mm,n (including singular and rectangular in a Minkowski space μ. Furthermore, we show that the Minkowski inverse A⊕ in a Minkowski space and the Moore-Penrose inverse A+ in a Hilbert space are different in many properties such as the existence, continuity, norm, and SVD. New conditions of the Minkowski inverse are also given. These conditions are related to the existence, continuity, and reverse order law. Finally, a new representation of the Minkowski inverse A⊕ is also derived.

  17. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  18. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  19. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    Science.gov (United States)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint

  20. Electrochemically driven emulsion inversion

    Science.gov (United States)

    Johans, Christoffer; Kontturi, Kyösti

    2007-09-01

    It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.

  1. Data quality for the inverse lsing problem

    International Nuclear Information System (INIS)

    Decelle, Aurélien; Ricci-Tersenghi, Federico; Zhang, Pan

    2016-01-01

    There are many methods proposed for inferring parameters of the Ising model from given data, that is a set of configurations generated according to the model itself. However little attention has been paid until now to the data, e.g. how the data is generated, whether the inference error using one set of data could be smaller than using another set of data, etc. In this paper we discuss the data quality problem in the inverse Ising problem, using as a benchmark the kinetic Ising model. We quantify the quality of data using effective rank of the correlation matrix, and show that data gathered in a out-of-equilibrium regime has a better quality than data gathered in equilibrium for coupling reconstruction. We also propose a matrix-perturbation based method for tuning the quality of given data and for removing bad-quality (i.e. redundant) configurations from data. (paper)

  2. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  3. Reactivity in inverse micelles

    International Nuclear Information System (INIS)

    Brochette, Pascal

    1987-01-01

    This research thesis reports the study of the use of micro-emulsions of water in oil as reaction support. Only the 'inverse micelles' domain of the ternary mixing (water/AOT/isooctane) has been studied. The main addressed issues have been: the micro-emulsion disturbance in presence of reactants, the determination of reactant distribution and the resulting kinetic theory, the effect of the interface on electron transfer reactions, and finally protein solubilization [fr

  4. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  5. Astrophysical techniques

    CERN Document Server

    Kitchin, CR

    2013-01-01

    DetectorsOptical DetectionRadio and Microwave DetectionX-Ray and Gamma-Ray DetectionCosmic Ray DetectorsNeutrino DetectorsGravitational Radiation Dark Matter and Dark Energy Detection ImagingThe Inverse ProblemPhotographyElectronic ImagingScanningInterferometrySpeckle InterferometryOccultationsRadarElectronic ImagesPhotometryPhotometryPhotometersSpectroscopySpectroscopy SpectroscopesOther TechniquesAstrometryPolarimetrySolar StudiesMagnetometryComputers and The Internet.

  6. Inverse transition radiation

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.

    1997-01-01

    A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics

  7. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.

    Science.gov (United States)

    Johnston, P R; Walker, S J; Hyttinen, J A; Kilpatrick, D

    1994-04-01

    The inverse problem of electrocardiography, the computation of epicardial potentials from body surface potentials, is influenced by the desired resolution on the epicardium, the number of recording points on the body surface, and the method of limiting the inversion process. To examine the role of these variables in the computation of the inverse transform, Tikhonov's zero-order regularization and singular value decomposition (SVD) have been used to invert the forward transfer matrix. The inverses have been compared in a data-independent manner using the resolution and the noise amplification as endpoints. Sets of 32, 50, 192, and 384 leads were chosen as sets of body surface data, and 26, 50, 74, and 98 regions were chosen to represent the epicardium. The resolution and noise were both improved by using a greater number of electrodes on the body surface. When 60% of the singular values are retained, the results show a trade-off between noise and resolution, with typical maximal epicardial noise levels of less than 0.5% of maximum epicardial potentials for 26 epicardial regions, 2.5% for 50 epicardial regions, 7.5% for 74 epicardial regions, and 50% for 98 epicardial regions. As the number of epicardial regions is increased, the regularization technique effectively fixes the noise amplification but markedly decreases the resolution, whereas SVD results in an increase in noise and a moderate decrease in resolution. Overall the regularization technique performs slightly better than SVD in the noise-resolution relationship. There is a region at the posterior of the heart that was poorly resolved regardless of the number of regions chosen. The variance of the resolution was such as to suggest the use of variable-size epicardial regions based on the resolution.

  8. A solution to the inverse problem in ocean acoustics

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.; Sastry, J.S.

    stratified ocean, considering the range independent nature of the medium, geophysical inverse techniques are employed to reconstruct the sound speed profile. The reconstructed profile for a six layer ocean, with five energetic modes, is in good agreement...

  9. Data-Driven Model Order Reduction for Bayesian Inverse Problems

    KAUST Repository

    Cui, Tiangang; Youssef, Marzouk; Willcox, Karen

    2014-01-01

    One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce

  10. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  11. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  12. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    Science.gov (United States)

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.

  13. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  14. Alternating minimisation for glottal inverse filtering

    International Nuclear Information System (INIS)

    Bleyer, Ismael Rodrigo; Lybeck, Lasse; Auvinen, Harri; Siltanen, Samuli; Airaksinen, Manu; Alku, Paavo

    2017-01-01

    A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency ( F 0). The results show the competitive performance of the new method: With high F 0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude. (paper)

  15. Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

    Directory of Open Access Journals (Sweden)

    Abolfazl Asadian

    2014-06-01

    Full Text Available The helicopter-borne electromagnetic (HEM frequency-domain exploration method is an airborne electromagnetic (AEM technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise and efficient technique provided by a forward modelling algorithm. The exact calculation of the sensitivity matrix or Jacobian is also of the utmost importance. As such, the main objective of this study is to design an efficient algorithm for the forward modelling of HEM frequency-domain data for the configuration of horizontal coplanar (HCP coils using fast Hankel transforms (FHTs. An attempt is also made to use an analytical approach to derive the required equations for the Jacobian matrix. To achieve these goals, an elaborated algorithm for the simultaneous calculation of the forward computation and sensitivity matrix is provided. Finally, using two synthetic models, the accuracy of the calculations of the proposed algorithm is verified. A comparison indicates that the obtained results of forward modelling are highly consistent with those reported in Simon et al. (2009 for a four-layer model. Furthermore, the comparison of the results for the sensitivity matrix for a two-layer model with those obtained from software is being used by the BGR Centre in Germany, showing that the proposed algorithm enjoys a high degree of accuracy in calculating this matrix.

  16. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction

    International Nuclear Information System (INIS)

    Yang, C L; Wei, H Y; Soleimani, M; Adler, A

    2013-01-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current–voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results. (paper)

  17. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.

    Science.gov (United States)

    Yang, C L; Wei, H Y; Adler, A; Soleimani, M

    2013-06-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.

  18. Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Živković, Ivan S; Wei, Yimin

    2015-10-01

    In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.

  19. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhou [Wisconsin Univ., Madison (USA). Dept. of Mathematics

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.).

  20. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    International Nuclear Information System (INIS)

    Zhou Xin

    1990-01-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.)

  1. Preconditioner-free Wiener filtering with a dense noise matrix

    Science.gov (United States)

    Huffenberger, Kevin M.

    2018-05-01

    This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.

  2. Introduction to Schroedinger inverse scattering

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  3. Two-dimensional inversion of MT (magnetotelluric) data; MT ho no nijigen inversion kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Okuno, M; Ushijima, K; Mizunaga, H [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-05-27

    A program has been developed to conduct inversion analysis of two-dimensional model using MT data, accurately. For the developed program, finite element method (FEM) was applied to the section of sequential analysis. A method in which Jacobian matrix is calculated only one first time and is inversely analyzed by fixing this during the repetition, and a method in which Jacobian matrix is corrected at each repetition of inversion analysis, were compared mutually. As a result of the numerical simulation, it was revealed that the Jacobian correction method provided more stable convergence for the simple 2D model, and that the calculation time is almost same as that of the Jacobian fixation method. To confirm the applicability of this program to actually measured data, results obtained from this program were compared with those from the Schlumberger method analysis by using MT data obtained in the Hatchobara geothermal area. Consequently, it was demonstrated that the both are well coincided mutually. 17 refs., 7 figs.

  4. Green's matrix for a second-order self-adjoint matrix differential operator

    International Nuclear Information System (INIS)

    Sisman, Tahsin Cagri; Tekin, Bayram

    2010-01-01

    A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.

  5. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  6. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  7. The R-matrix theory

    International Nuclear Information System (INIS)

    Descouvemont, P; Baye, D

    2010-01-01

    The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.

  8. Development of a new modeling technique of 3D S-wave velocity structure for strong ground motion evaluation - Integration of various geophysical and geological data using joint inversion

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro

    2014-01-01

    A restricted stripe-like zone suffered major damage due to the 1995 Hyogo-ken Nanbu earthquake, and ground motion of the south side of the Kashiwazaki NPP site was much greater than that of the north side in the 2007 Niigata-ken Chuetsu-oki earthquake. One reason for these phenomena is thought to be the focusing effect due to irregularly shaped sedimentary basins (e.g., basin-edge structure, fold structure, etc.) This indicates that precise evaluation of S-wave velocity structure is important. A calculation program that was developed to make S-wave velocity models using the joint inversion method was presented. This program unifies various geophysical and geological data and can make a complex structure model for evaluating strong ground motion with high precision. (author)

  9. Inverse Faraday Effect Revisited

    Science.gov (United States)

    Mendonça, J. T.; Ali, S.; Davies, J. R.

    2010-11-01

    The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).

  10. Recurrent Neural Network for Computing the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin

    2015-11-01

    This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.

  11. Inverse vs. forward breast IMRT planning

    International Nuclear Information System (INIS)

    Mihai, Alina; Rakovitch, Eileen; Sixel, Katharina; Woo, Tony; Cardoso, Marlene; Bell, Chris; Ruschin, Mark; Pignol, Jean-Philippe

    2005-01-01

    Breast intensity-modulated radiation therapy (IMRT) improves dose distribution homogeneity within the whole breast. Previous publications report the use of inverse or forward dose optimization algorithms. Because the inverse technique is not widely available in commercial treatment planning systems, it is important to compare the 2 algorithms. The goal of this work is to compare them on a prospective cohort of 30 patients. Dose distributions were evaluated on differential dose-volume histograms using the volumes receiving more than 105% (V 105 ) and 110% (V 110 ) of the prescribed dose, and on the maximum dose (D max ) or hot spot and the sagittal dose gradient (SDG) being the gradient between the dose on inframammary crease and the dose prescribed. The data were analyzed using Wilcoxon signed rank test. The inverse planning significantly improves the V 105 (mean value 9.7% vs. 14.5%, p = 0.002), and the V 110 (mean value 1.4% vs. 3.2%, p = 0.006). However, the SDG is not statistically significantly different for either algorithm. Looking at the potential impact on skin acute reaction, although there is a significant reduction of V 110 using an inverse algorithm, it is unlikely this 1.6% volume reduction will present a significant clinical advantage over a forward algorithm. Both algorithms are equivalent in removing the hot spots on the inframammary fold, where acute skin reactions occur more frequently using a conventional wedge technique. Based on these results, we recommend that both forward and inverse algorithms should be considered for breast IMRT planning

  12. Building Generalized Inverses of Matrices Using Only Row and Column Operations

    Science.gov (United States)

    Stuart, Jeffrey

    2010-01-01

    Most students complete their first and only course in linear algebra with the understanding that a real, square matrix "A" has an inverse if and only if "rref"("A"), the reduced row echelon form of "A", is the identity matrix I[subscript n]. That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix…

  13. Computer-Aided Numerical Inversion of Laplace Transform

    Directory of Open Access Journals (Sweden)

    Umesh Kumar

    2000-01-01

    Full Text Available This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly because of the difficulty in finding the necessary poles and residues. The numerical inversion technique mentioned above does away with the poles and residues but uses precomputed numbers to find the time response. This technique is applicable to the solution of partially differentiable equations and certain classes of linear systems with time varying components.

  14. A finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M

    2008-01-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium

  15. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  16. Response matrix method for large LMFBR analysis

    International Nuclear Information System (INIS)

    King, M.J.

    1977-06-01

    The feasibility of using response matrix techniques for computational models of large LMFBRs is examined. Since finite-difference methods based on diffusion theory have generally found a place in fast-reactor codes, a brief review of their general matrix foundation is given first in order to contrast it to the general strategy of response matrix methods. Then, in order to present the general method of response matrix technique, two illustrative examples are given. Matrix algorithms arising in the application to large LMFBRs are discussed, and the potential of the response matrix method is explored for a variety of computational problems. Principal properties of the matrices involved are derived with a view to application of numerical methods of solution. The Jacobi iterative method as applied to the current-balance eigenvalue problem is discussed

  17. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    Science.gov (United States)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  18. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  19. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  20. On a quadratic inverse eigenvalue problem

    International Nuclear Information System (INIS)

    Cai, Yunfeng; Xu, Shufang

    2009-01-01

    This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable