WorldWideScience

Sample records for matrix flat-panel arrays

  1. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; Zhao Qihua; El-Mohri, Youcef; Du Hong; Wang Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and/or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous

  2. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    CERN Document Server

    Huang, W; Berry, J; Maolinbay, M; Martelli, C; Mody, P; Nassif, S; Yeakey, M

    1999-01-01

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The sys...

  3. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    International Nuclear Information System (INIS)

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-01-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d Se and the applied electric field E Se of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E Se dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E Se : (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy

  4. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    Science.gov (United States)

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  5. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.; Antonuk, L.E. E-mail: antonuk@umich.edu; Berry, J.; Maolinbay, M.; Martelli, C.; Mody, P.; Nassif, S.; Yeakey, M

    1999-07-11

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The system allows image capture in both radiographic mode (corresponding to the capture of individual X-ray images), and fluoroscopic mode (corresponding to the capture of a continual series of X-ray images). A detailed description of the system architecture and the underlying motivations for the design is reported in this paper. (author)

  6. Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems

    Science.gov (United States)

    Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.

    1982-09-01

    Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.

  7. Driver-Array Based Flat-Panel Loudspeakers: Theoretical Background and Design Guidelines

    Science.gov (United States)

    Anderson, David Allan

    This thesis relates to the simulation and design of flat-panel loudspeakers using moving-coil driver elements. A brief history of the industry is given, including a collection of products and patents from 1925 until the present, an overview of research papers, and a discussion of current products available. The mechanics of bending flat panels are developed with respect to localized driving forces, both in the frequency domain and the time domain as an impulse response. These simulations are compared to measurements on prototype panels. Additional resonant elements influence the behavior of the system: an optional ported rear enclosure and the resonant characteristics of the drivers. The governing equations for these systems are derived and solutions are implemented using equivalent mechanical circuits and numerical methods. The idea of using driver arrays to independently actuate modes of the panel is discussed at length with respect to modal addressability, modal spillover, and experimental validation. The numerical approach to determining the optimal driver placement for a given set of modes is derived and experimentally validated. An investigation of the acoustic behavior of flat panel loudspeakers is presented, using mechanical simulation results to predict the acoustic radiation. The simulations are compared to measurements and found to accurately predict important mechanical and acoustical behaviors. It is demonstrated that a driver array, with the proper biasing, is capable of creating a flat panel loudspeaker which acts more like a piston than a "diffuse radiator" flat panel loudspeaker. The techniques of "Modal Crossover Networks" are introduced, which use multi-band filters to bias the driver array differently for different frequency bands, optimized for audio reproduction. The question of how many drivers are necessary for a modal crossover network is addressed and found to be dependent on the estimated quality factor (Q) of the panel material and edge

  8. A camac based data acquisition system for flat-panel image array readout

    International Nuclear Information System (INIS)

    Morton, E.J.; Antonuk, L.E.; Berry, J.E.; Huang, W.; Mody, P.; Yorkston, J.; Longo, M.J.

    1993-01-01

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  9. Beyond the limits of present active matrix flat-panel imagers (AMFPIs) for diagnostic radiology

    Science.gov (United States)

    Antonuk, Larry E.; El-Mohri, Youcef; Jee, Kyung-Wook; Maolinbay, Manat; Nassif, Samer C.; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Zhao, Qihua; Street, Robert A.

    1999-05-01

    A theoretical cascaded systems analysis of the performance limits of x-ray imagers based on thin-film, active matrix flat-panel technology is presented. This analysis specifically focuses upon an examination of the functional dependence of the detective quantum efficiency on exposure. While the DQE of AMFPI systems is relatively high at the large exposure levels associated with radiographic x-ray imaging, there is a significant decline in DQE with decreasing exposure over the medium and lower end of the exposure range associated with fluoroscopic imaging. This fall-off in DQE originates from the relatively large size of the additive noise of AMFPI systems compared to their overall system gain. Therefore, strategies to diminish additive noise and increase system gain should significantly improve performance. Potential strategies for noise reduction include the use of charge compensation lines while strategies for gain enhancement include continuous photodiodes, pixel amplification structures, or higher gain converters. The effect of the implementation of such strategies is examined for a variety for hypothetical imager configurations. Through the modeling of these configurations, such enhancements are shown to hold the potential of making low frequency DQE response large and essentially independent of exposure while greatly reducing the fall-off in DQE at higher spatial frequencies.

  10. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    International Nuclear Information System (INIS)

    Posada, Chrystian M.; Grant, Edwin J.; Lee, Hyoung K.; Castaño, Carlos H.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana

    2014-01-01

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm 2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO 2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate

  11. Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    International Nuclear Information System (INIS)

    Sekiya, H.; Hattori, K.; Kubo, H.; Miuchi, K.; Nagayoshi, T.; Nishimura, H.; Okada, Y.; Orito, R.; Takada, A.; Takeda, A.; Tanimori, T.; Ueno, K.

    2006-01-01

    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6x6x20mm 3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to read out every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137 Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors

  12. Flat-panel video resolution LED display system

    Science.gov (United States)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  13. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  14. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  15. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    2005-01-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  16. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  17. The digital flat-panel X-Ray detectors

    International Nuclear Information System (INIS)

    Risticj, S. Goran

    2013-01-01

    In a digital imaging system, the incident x-ray image must be sampled both in the spatial and intensity dimensions. In the spatial dimensions, samples are obtained as averages of the intensity over picture elements or pixels. In the intensity dimension, the signal is digitalized into one of a finite number of levels or bits. Two main types of digital flat-panel detectors are based on the direct conversion, which contains the photoconductor, and on indirect conversion, which contains phosphor. The basics of these detectors are given. Coupling traditional x-ray detection material such as photoconductors and phosphors with a large-area active-matrix readout structure forms the basis of flat panel x-ray images. Active matrix technology provides a new, highly efficient, real time method for electronically storing and measuring the product of the x-ray interaction stage whether the product is visible wavelength photons or electrical charges. The direct and indirect detectors, made as the active-matrix flat-panel detectors containing sensing/storage elements, switching elements (diodes or thin film transistors (TFTS)) and image processing module, are described. Strengths and limitations of stimulable phosphors are discussed. The main advantages and disadvantages of mentioned x-ray detectors are also analyzed. (Author)

  18. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure.

    Science.gov (United States)

    Wronski, M; Zhao, W; Tanioka, K; Decrescenzo, G; Rowlands, J A

    2012-11-01

    The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography∕fluoroscopy (R∕F) applications. The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant

  19. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    International Nuclear Information System (INIS)

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-01-01

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  20. Design scenarios for flat panel photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel

  1. Should 3K zoom function be used for detection of pneumothorax in cesium iodide/amorphous silicon flat-panel detector radiographs presented on 1K-matrix soft copies?

    International Nuclear Information System (INIS)

    Herrmann, Karin A.; Zech, C.J.; Reiser, M.F.; Bonel, H.M.; Staebler, A.; Voelk, M.; Strotzer, M.

    2006-01-01

    The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p=0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice. (orig.)

  2. Design scenarios for flat panel photobioreactors

    International Nuclear Information System (INIS)

    Slegers, P.M.; Wijffels, R.H.; Straten, G. van; Boxtel, A.J.B. van

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel photobioreactors using the interaction between light and algae growth for the algae species Phaeodactylum tricornutum and Thalassiosira pseudonana. The effect of location, variable sunlight and reactor layout on biomass production in single standing and parallel positioned flat panels was considered. Three latitudes were studied representing the Netherlands, France and Algeria. In single standing reactors the highest yearly biomass production is achieved in Algeria. During the year biomass production fluctuates the most in the Netherlands, while it is almost constant in Algeria. Several combinations of path lengths and biomass concentrations can result in the same optimal biomass production. The productivity in parallel place flat panels is strongly influenced by shading and diffuse light penetration between the panels. Panel orientation has a large effect on productivity and at higher latitudes the difference between north-south and east-west orientation may go up to 50%.

  3. Evaluation of flat panel PMT for gamma ray imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Trotta, C.; Trotta, G.; Montani, L.; Ridolfi, S.; Garibaldi, F.; Scafe, R.; Belcari, N.; Del Guerra, A.

    2003-01-01

    The first position sensitive PMT, Hamamatsu R2486, developed in 1985, represented a strong technological advance for gamma-ray imaging. Hamamatsu H8500 Flat Panel PMT is the last generation position sensitive PMT: extremely compact with 2 in. active area. Its main features are: minimum peripheral dead zone (1 mm) and height of 12 mm. It was designed to be assembled in array to cover large detection area. It can represent a technical revolution for many applications in the field of gamma-ray imaging as for example nuclear medicine. This tube is based on metal channel dynode for charge multiplication and 8x8 anodes for charge collection and position calculation. In this paper we present a preliminary evaluation of the imaging performances addressed to nuclear medicine application. To this aim we have taken into account two different electronic readouts: resistive chain with Anger Camera principle and multianode readout. Flat panel PMT was coupled to CsI(Tl) and NaI(Tl) scintillation arrays. The results were also compared with the first generation PSPMT

  4. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  5. Flat Panel PMT: advances in position sensitive photodetection

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Trotta, C.; Cinti, M.N.; Bennati, P.; Trotta, G.; Iurlaro, G.; Montani, L.; Ridolfi, S.; Cusanno, F.; Garibaldi, F.

    2003-01-01

    Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application

  6. Flat-panel detectors in x-ray diagnosis

    International Nuclear Information System (INIS)

    Spahn, M.; Heer, V.; Freytag, R.

    2003-01-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography, mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method.For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications.Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography.Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods. (orig.) [de

  7. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, A.R. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)], E-mail: a.r.cowen@leeds.ac.uk; Kengyelics, S.M.; Davies, A.G. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)

    2008-05-15

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  8. Color quality management in advanced flat panel display engines

    Science.gov (United States)

    Lebowsky, Fritz; Neugebauer, Charles F.; Marnatti, David M.

    2003-01-01

    During recent years color reproduction systems for consumer needs have experienced various difficulties. In particular, flat panels and printers could not reach a satisfactory color match. The RGB image stored on an Internet server of a retailer did not show the desired colors on a consumer display device or printer device. STMicroelectronics addresses this important color reproduction issue inside their advanced display engines using novel algorithms targeted for low cost consumer flat panels. Using a new and genuine RGB color space transformation, which combines a gamma correction Look-Up-Table, tetrahedrization, and linear interpolation, we satisfy market demands.

  9. Flat panel computed tomography of human ex vivo heart and bone specimens: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaou, Konstantin; Becker, Christoph R.; Reiser, Maximilian F. [Ludwig-Maximilians-University, Department of Clinical Radiology, Munich (Germany); Flohr, Thomas; Stierstorfer, Karl [CT Division, Siemens Medical Solutions, Forchheim (Germany)

    2005-02-01

    The aim of this technical investigation was the detailed description of a prototype flat panel detector computed tomography system (FPCT) and its initial evaluation in an ex vivo setting. The prototype FPCT scanner consists of a conventional radiographic flat panel detector, mounted on a multi-slice CT scanner gantry. Explanted human ex vivo heart and foot specimens were examined. Images were reformatted with various reconstruction algorithms and were evaluated for high-resolution anatomic information. For comparison purposes, the ex vivo specimens were also scanned with a conventional 16-detector-row CT scanner (Sensation 16, Siemens Medical Solutions, Forchheim, Germany). With the FPCT prototype used, a 1,024 x 768 resolution matrix can be obtained, resulting in an isotropic voxel size of 0.25 x 0.25 x 0.25 mm at the iso-center. Due to the high spatial resolution, very small structures such as trabecular bone or third-degree, distal branches of coronary arteries could be visualized. This first evaluation showed that flat panel detector systems can be used in a cone-beam computed tomography scanner and that very high spatial resolutions can be achieved. However, there are limitations for in vivo use due to constraints in low contrast resolution and slow scan speed. (orig.)

  10. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    Science.gov (United States)

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  11. Diffractive flat panel solar concentrators of a novel design

    NARCIS (Netherlands)

    De Jong, T.M.; de Boer, D.K.G.; Bastiaansen, C.W.M.

    2016-01-01

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the

  12. Present and future of flat panel detectors in the world

    International Nuclear Information System (INIS)

    Inamura, Kiyonari

    2002-01-01

    Present status of development of flat panel detectors and their clinical application in the world have been surveyed, and future trends are also explored especially in the field of material researches and methods of manufacturing. Also the importance of role of medical physicists on user side is described because characteristic physics measurement of a detector assembly is unavoidable and essential in quality assurance in clinical routine and acceptance test in hospitals. Even though physics measurements and clinical evaluations on flat panel detectors have shown remarkable progress and advances in these several years, future problems of cost down in manufacturing and quality assurance to prevent individual differences between detector assemblies must be resolved. Results of evaluation in mammography, chest radiography, fluoroscopy for cardiovascular examination, bone tumor examination and radiotherapy application indicate that flat panel detectors are future promising materials. Their systematic operation is contributing to heighten accuracy of image examinations and preciseness of radiation therapy. Encouragement to medical physicists relevant to flat panel detectors is also raised in this paper. (author)

  13. MO-AB-BRA-07: Low Dose Imaging with Avalanche Amorphous Selenium Flat Panel Imager

    Energy Technology Data Exchange (ETDEWEB)

    Scheuermann, J; Howansky, A; Goldan, A; Tanioka, K; Zhao, W [Stony Brook University, Stony Brook, New York (United States); Leveille, S; Tousignant, O [2Analogic Canada, Saint-laurent, Quebec (Canada)

    2016-06-15

    Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. The HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.

  14. Digital radiography with large-area flat-panel detectors

    International Nuclear Information System (INIS)

    Kotter, E.; Langer, M.

    2002-01-01

    Large-area flat-panel detectors with active readout mechanisms have been on the market for the past 2 years. This article describes different detector technologies. An important distinction is made between detectors with direct and those with indirect conversion of X-rays into electrical charges. Detectors with indirect conversion are built with unstructured or structured scintillators, the latter resulting in less lateral diffusion of emitted light. Some important qualities of flat-panel detectors are discussed. The first phantom and clinical studies published report an image quality at least comparable to that of screen-film systems and a potential for dose reduction. The available studies are summarised in this article. (orig.)

  15. Flat panel planar optic display. Revision 4/95

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  16. Diffractive flat panel solar concentrators of a novel design.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  17. Development of flat panel X-ray detector utilizing a CdZnTe film as conversion layer

    International Nuclear Information System (INIS)

    Tokuda, Satoshi; Kishihara, Hiroyuki; Kaino, Masatomo; Sato, Toshiyuki

    2006-01-01

    A polycrystalline CdZnTe film formed by the CSS (closed-spaced sublimation) method is one of the most promising materials as a conversion layer of next-generation highly efficient flat-panel X-ray detectors. Therefore, we have developed a prototype of a new flat-panel X-ray detector (a sensing region of 3 inches by 3 inches) with the film and evaluated its commercial feasibility. This paper describes evaluation of the physical and imaging properties of the prototype and explains the features of the CdZnTe film and the construction, specifications, and fabrication procedures of the prototype. Also included in this paper are formation of a semiconductor thin film barrier layer by the CBD (chemical bath deposition) method and conjunction of a sensor substrate and a TFT array substrate with the bump electrodes formed by screen printing, both of which we have developed during the course of the development of the prototype. (author)

  18. Progress toward clinical implementation of the first flat-panel amorphous silicon imager

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; El-Mohri, Youcef; Weidong, Huang; Sandler, Howard; Siewerdsen, Jeffrey H.; Yorkston, John

    1995-01-01

    Purpose: Approximately 7 years after the development of the general concept, megavoltage imagers based on thin-film, flat-panel electronics will likely enter routine clinical use within the next few years. In this paper, current capabilities and anticipated development of this imaging technology as pertains to clinical use will be presented. The results of the first use of this technology with an early prototype imager in a clinical setting are reported. The development of a more advanced clinical prototype imager designed for routine clinical use is described and the clinically-relevant capabilities, advantages, and limitations of this device are described. Materials and Methods: Flat-panel amorphous silicon imagers consist of an imaging array, an x-ray converter, external data acquisition electronics, along with appropriate software and a host workstation. The array consists of a two-dimensional grid of imaging pixels with each pixel consisting of a transistor coupled to a photodiode. An initial study of patient imaging has been performed with an early prototype imager which incorporates a 512x560 array with 450 μm pixels giving an imaging surface of 23x25 cm 2 . Portal images acquired with this prototype imager and with film under similar geometric and irradiation conditions were acquired and compared. In addition, a clinical prototype imager based upon a 26x26 cm 2 array with 508 μm pixels (512x512 pixels) is under development. This prototype incorporates advanced analog and digital external electronics which will improve imaging performance thereby increasing clinical utility of the device. The imagers are interfaced to the operation of a treatment machine so as to allow both radiographic and fluoroscopic operation. Results: The image quality is limited by the presence of pixel and line defects in the array and by the presence of correlated and uncorrelated noise sources in the acquisition system. Nevertheless, the contrast and spatial resolution offered by

  19. Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

  20. Reconstruction of Spectra Using X-ray Flat Panel Detector; Reconstruccion de Espectros de Rayos X Utilizando un Detector Flat Panel

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Pozuelo, F.; Juste, B.; Rodenas, J.; Verdu, G.

    2013-07-01

    In this work, we used a flat panel detector with a wedge of PMMA for absorbed dose curve for given working conditions of X-ray tube The relationship between absorbed dose curve recorded by the flat panel and primary X-ray spectrum is defined by a response function that can be obtained using the Monte Carlo method, namely the MCNP5 code. However there are some problems that affect the applicability of this method such as: flat panel characteristics and the characteristics of the physical process (ill-conditioned problem). Both aspects are discussed in this paper.

  1. Advances in infrastructure support for flat panel display manufacturing

    Science.gov (United States)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  2. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    Science.gov (United States)

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  3. Feasibility study of flexible flat-panel X-ray detectors for digital radiography

    International Nuclear Information System (INIS)

    Joe, Ok La; Yun, Seung Man; Kim, Ho Kyung

    2010-01-01

    Flexible flat-panel detectors (FPDs), which utilize both organic photodiode (OPD) and organic thin-film transistor (OTFT) technologies, are recently concerned in digital radiography. The flexible FPD has several potential advantages, such as high accessibility to patient, avoidance of geometrical burr due to the oblique angle incidence of X-ray, great reduction in manufacturing cost due to jet-printing. At once, The OPD/OTFT arrays were fabricated by jet-printing techniques, mechanical robustness due to plastic substrates, and so on. In this study, we have investigated the feasibility of flexible FPD by comparing theoretical detective quantum efficiency (DQE) with that of the conventional amorphous silicon-based FPD. We chose copper phthalocyanine-fullerene (CuPc-C60) organic materials for the construction of the flexible FPD. DQE was calculated by the linear-systems transfer theory

  4. Quantitative digital radiography with two dimensional flat panels

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Darboux, M.

    2003-01-01

    Purpose: Attenuation law relates radiographic images to irradiated object thickness and chemical composition. Film radiography exploits qualitatively this property for diagnosis. Digital radiographic flat panels present large dynamic range, reproducibility and linearity properties which open the gate for quantification. We will present, through two applications (mammography and bone densitometry), an approach to extract quantitative information from digital 2D radiographs. Material and method: The main difficulty for quantification is X-rays scatter, which superimposes to acquisition data. Because of multiple scatterings and 3D geometry dependence, it cannot be directly exploited through an exact analytical model. Therefore we have developed an approach for its estimation and subtraction from medical radiographs, based on approximations and derivations of analytical models of scatter formation in human tissues. Results: In digital mammography, the objective is to build a map of the glandular tissue thickness. Its separation from fat tissue is based on two equations: height of compression and attenuation. This last equation needs X-Rays scatter correction. In bone densitometry, physicians look for quantitative bone mineral density. Today, clinical DEXA systems use collimated single or linear detectors to eliminate scatter. This scanning technology induces poor image quality. By applying our scatter correction approach, we have developed a bone densitometer using a digital flat panel (Lexxos, DMS). It provides with accurate and reproducible measurements while presenting radiological image quality. Conclusion: These applications show how information processing, and especially X-Rays scatter processing, enables to extract quantitative information from digital radiographs. This approach, associated to Computer Aided Diagnosis algorithms or reconstructions algorithms, gives access to useful information for diagnosis. (author)

  5. Review of flat panel display programs and defense applications

    Science.gov (United States)

    Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.

    1997-07-01

    Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.

  6. Evaluation of a flat-panel detector system

    International Nuclear Information System (INIS)

    Sato, Masami; Eguchi, Yoichi; Yamada, Kinichi; Kaga, Yuji; Endo, Yutaka; Yamazaki, Tatsuya

    2001-01-01

    We evaluated the imaging performance of a flat-panel detector digital radiography system (CXDI-11 X-ray Digital Camera, Canon Inc.) and a computed radiography system (FCR9000C-HQ, Fuji Film). The characteristics of the two detectors and of the overall systems were compared. This included evaluation and comparison of the fundamental physical characteristics, including x-ray response curve, modulation transfer function (MTF), Wiener spectra, noise-equivalent quanta, and x-ray tube voltage-dependent detector response. Overall system performance was evaluated using receiver operating characteristic (ROC) analysis. The results of the study showed that the dynamic range of the CXDI-11 measured relative to the input x-ray flux was 10 3 , similar to that of the FCR9000C-HQ. Both systems showed similar final MTFs, although the pre-sampling MTF of the CXDI-11 was better than that of the FCR9000C-HQ. Noise analysis, based on noise-equivalent quanta and Wiener spectra, showed that for normal exposure conditions the CXDI-11 had superior performance. With both systems, x-ray response (system output/incident x-ray exposure) increased with increasing x-ray tube voltage. ROC analysis indicated that the CXDI-11 was superior in overall performance. (author)

  7. Digital chest radiography: flat-panel detectors or conventional radiographs

    International Nuclear Information System (INIS)

    Schaefer-Prokop, C.; Uffmann, M.; Sailer, J.; Kabalan, N.; Herold, C.; Prokop, M.

    2003-01-01

    Flat panel detectors are characterized by improved handling and increased dose efficiency. This allows for increasing of work flow efficiency and for reducing the exposure dose by about 50% compared to current systems with a sensitivity of 400. Whether the increased dose efficiency should be used to reduce acquisition dose or to increase image quality in the chest, will be shown by further clinical experience and will be also determined by the subjective preference of the radiologists. The decreased level of image noise opens new perspectives for image processing that way that elaborated multifrequency processing allows for optimizing the display of very small and low contrast structures that was so far limited by overlying image noise. Specialized applications of dual energy subtraction and temporal subtraction will also profit by the new detector technology and will be further driven forward in context with applications such as computed assisted diagnosis even though this is currently not yet broadly applied. Storage phosphor radiography still represents an important alternative technique based on its larger flexibility with respect to equipment configuration, its broader application options in intensive care and emergency radiology and due to economic reasons. These facts are further underlined by the fact that image quality also in storage phosphor radiography could be constantly increased by improving detector technology and image processing and consequently has a high standard. (orig.) [de

  8. Characteristics and applications of a flat panel computer tomography system

    International Nuclear Information System (INIS)

    Knollmann, F.; Valencia, R.; Obenauer, S.; Buhk, J.H.

    2006-01-01

    Purpose: to assess a new flat panel volume computed tomography (FP-VCT) with very high isotropic spatial resolution as well as high Z-axis coverage. Materials and Methods: The prototype of an FP-VCT scanner with a detector cell size of 0.2 mm was used for numerous phantom studies, specimen examinations, and animal research projects. Results: The high spatial resolution of the new system can be used to accurately determine solid tumor volume, thus allowing for earlier assessment of the therapeutic response. In animal experimentation, whole-body perfusion mapping of mice is feasible. The high spatial resolution also improves the classification of coronary artery atherosclerotic plaques in the isolated post mortem human heart. With the depiction of intramyocardial segments of the coronary arteries, investigations of myocardial collateral circulation are feasible. In skeletal applications, an accurate analysis of the smallest bony structures, e.g., petrous bone and dental preparations, can be successfully performed, as well as investigations of repetitive studies of fracture healing and the treatment of osteoporosis. Conclusion: The introduction of FP-VCT opens up new applications for CT, including the field of molecular imaging, which are highly attractive for future clinical applications. Present limitations include limited temporal resolution and necessitate further improvement of the system. (orig.)

  9. Synchrotron applications of an amorphous silicon flat-panel detector

    International Nuclear Information System (INIS)

    Lee, J. H.; Can Aydiner, C.; Almer, J.; Bernier, J.; Chapman, K. W.; Chupas, P. J.; Haeffner, D.; Kump, K.; Lee, P. L.; Lienert, U.; Miceli, A.; Vera, G.; LANL; GE Healthcare

    2008-01-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 (micro)m x 200 (micro)m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 (micro)m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO 2 powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s -1 in radiography mode, 30 frames s -1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO 2 in particular, are presented to show the detector effectiveness in pair distribution function measurements

  10. Flat-panel detectors: how much better are they?

    International Nuclear Information System (INIS)

    Seibert, J.A.

    2006-01-01

    Interventional and fluoroscopic imaging procedures for pediatric patients are becoming more prevalent because of the less-invasive nature of these procedures compared to alternatives such as surgery. Flat-panel X-ray detectors (FPD) for fluoroscopy are a new technology alternative to the image intensifier/TV (II/TV) digital system that has been in use for more than two decades. Two major FPD technologies have been implemented, based on indirect conversion of X-rays to light (using an X-ray scintillator) and then to proportional charge (using a photodiode), or direct conversion of X-rays into charge (using a semiconductor material) for signal acquisition and digitization. These detectors have proved very successful for high-exposure interventional procedures but lack the image quality of the II/TV system at the lowest exposure levels common in fluoroscopy. The benefits for FPD image quality include lack of geometric distortion, little or no veiling glare, a uniform response across the field-of-view, and improved ergonomics with better patient access. Better detective quantum efficiency indicates the possibility of reducing the patient dose in accordance with ALARA principles. However, first-generation FPD devices have been implemented with less than adequate acquisition flexibility (e.g., lack of tableside controls/information, inability to easily change protocols) and the presence of residual signals from previous exposures, and additional cost of equipment and long-term maintenance have been serious impediments to purchase and implementation. Technological advances of second generation and future hybrid FPD systems should solve many current issues. The answer to the question ''how much better are they?'' is ''significantly better'', and they are certainly worth consideration for replacement or new implementation of an imaging suite for pediatric fluoroscopy. (orig.)

  11. Simulation of sparse matrix array designs

    Science.gov (United States)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  12. A performance comparison of direct- and indirect-detection flat-panel imagers

    CERN Document Server

    Partridge, M; Müller, L

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 mu m pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0+-0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with...

  13. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  14. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  15. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    International Nuclear Information System (INIS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-01-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd_2O_2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  16. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, Yonsei University, Gangwon-do 220-710 (Korea, Republic of)

    2016-09-21

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 µm 1-poly/4-metal CMOS process. The pixel size is 100 µm×100 µm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  17. Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Ploeger, Lennert S.; Brand, Bob; Smitsmans, Monique H.P.; Herk, Marcel van

    2004-01-01

    An independent verification of the leaf trajectories during each treatment fraction improves the safety of IMRT delivery. In order to verify dynamic IMRT with an electronic portal imaging device (EPID), the EPID response should be accurate and fast such that the effect of motion blurring on the detected moving field edge position is limited. In the past, it was shown that the errors in the detected position of a moving field edge determined by a scanning liquid-filled ionization chamber (SLIC) EPID are negligible in clinical practice. Furthermore, a method for leaf trajectory verification during dynamic IMRT was successfully applied using such an EPID. EPIDs based on amorphous silicon (a-Si) arrays are now widely available. Such a-Si flat panel imagers (FPIs) produce portal images with superior image quality compared to other portal imaging systems, but they have not yet been used for leaf trajectory verification during dynamic IMRT. The aim of this study is to quantify the effect of motion distortion and motion blurring on the detection accuracy of a moving field edge for an Elekta iViewGT a-Si FPI and to investigate its applicability for the leaf trajectory verification during dynamic IMRT. We found that the detection error for a moving field edge to be smaller than 0.025 cm at a speed of 0.8 cm/s. Hence, the effect of motion blurring on the detection accuracy of a moving field edge is negligible in clinical practice. Furthermore, the a-Si FPI was successfully applied for the verification of dynamic IMRT. The verification method revealed a delay in the control system of the experimental DMLC that was also found using a SLIC EPID, resulting in leaf positional errors of 0.7 cm at a leaf speed of 0.8 cm/s

  18. The effect of dose reduction on image quality in digital radiography using a flat-panel detector: experimental study in rabbits

    International Nuclear Information System (INIS)

    Jung, Sung Il; Goo, Jin Mo; Lee, Hyun Ju; Moon, Woo Kyung; Lim, Kun Young; Cho, Gyung Goo; Kim, Ji Hoon; Im, Jung Gi; Choi, Jang Yong; Nam, Sang Hee

    2005-01-01

    To evaluate the effect of dose reduction on image quality in digital radiography using a flat-panel detector. Digital radiographs of 30 rabbits were obtained at two different dose levels (33.23 μGY for the standard dose group and 20.09 μGY for the reduced dose group). The amorphous selenium-based flat-panel detector system had a panel size of 7 x 8.5 inches, a matrix of 1280 x 1536 (pixels?), and a pixel pitch of 138 μm. Four observers evaluated the soft-copy images on a high-resolution video monitor (2560 x 2048 x 8 bits) in random order. The observers rated the visibility of 13 different anatomic structures on a 5-point scale, viz, the retrocardiac lung, subdiaphragmatic lung, heart border, diaphragmatic border, proximal airway, unobscured lung, liver border, kidney border, bowel gas, flank stripe, ribs, and vertebrae in the mediastinal and abdominal regions. Statistical significance was determined using Wilcoxon's signed rank test. There was no statistically significant difference in the visibility of the anatomic structures on digital radiography between the standard and reduced dose groups. Digital radiography using an amorphous selenium-based flat-panel detector can preserve the image quality, though the dose is reduced to 40% of the standard level

  19. The effect of dose reduction on image quality in digital radiography using a flat-panel detector: experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Il; Goo, Jin Mo; Lee, Hyun Ju; Moon, Woo Kyung; Lim, Kun Young; Cho, Gyung Goo; Kim, Ji Hoon; Im, Jung Gi [Seoul National College of Medicine, Seoul (Korea, Republic of); Choi, Jang Yong; Nam, Sang Hee [Inje University, Seoul (Korea, Republic of)

    2005-07-15

    To evaluate the effect of dose reduction on image quality in digital radiography using a flat-panel detector. Digital radiographs of 30 rabbits were obtained at two different dose levels (33.23 {mu}GY for the standard dose group and 20.09 {mu}GY for the reduced dose group). The amorphous selenium-based flat-panel detector system had a panel size of 7 x 8.5 inches, a matrix of 1280 x 1536 (pixels?), and a pixel pitch of 138 {mu}m. Four observers evaluated the soft-copy images on a high-resolution video monitor (2560 x 2048 x 8 bits) in random order. The observers rated the visibility of 13 different anatomic structures on a 5-point scale, viz, the retrocardiac lung, subdiaphragmatic lung, heart border, diaphragmatic border, proximal airway, unobscured lung, liver border, kidney border, bowel gas, flank stripe, ribs, and vertebrae in the mediastinal and abdominal regions. Statistical significance was determined using Wilcoxon's signed rank test. There was no statistically significant difference in the visibility of the anatomic structures on digital radiography between the standard and reduced dose groups. Digital radiography using an amorphous selenium-based flat-panel detector can preserve the image quality, though the dose is reduced to 40% of the standard level.

  20. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  1. On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors

    NARCIS (Netherlands)

    Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass

  2. Volumetry of human molars with flat panel-based volume CT in vitro

    NARCIS (Netherlands)

    Hannig, C.; Krieger, E.; Dullin, C.; Merten, H.A.; Attin, T.; Grabbe, E.; Heidrich, G.

    2006-01-01

    The flat panel-based volume computed tomography (fpVCT) is a new CT device applicable for experimental, three-dimensional evaluation of teeth at a resolution of about 150 microm in the high contrast region. The aim of this study was to investigate whether fpVCT was suitable for quantification of the

  3. Implementation of a program of quality assurance of image in an imaging system of flat panel portal

    International Nuclear Information System (INIS)

    Gomez Barrado, A.; Sanchez Jimenez, E.; Benitez, J. A.; Sanchez-Reyes, A.

    2013-01-01

    (IGRT) image-guided radiation therapy is the one in which images are used to locate the area of treatment. Modern irradiation systems are equipped with different modalities for obtaining images, such as flat panel systems, systems conebeam, tomoimagen, etc. This paper describes the start-up and the experience of a quality assurance program based on a flat panel portal Imaging System. (Author)

  4. Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems

    International Nuclear Information System (INIS)

    Stritt, Carina; Plamondon, Mathieu; Hofmann, Jürgen; Flisch, Alexander; Sennhauser, Urs

    2017-01-01

    Active matrix flat-panel detectors have gained popularity amongst X-ray imaging systems due to their speed, resolution and high dynamic range. With appropriate shielding modern flat-panel imagers can even be used in high energy Computed Tomography (CT) systems of energies up to several mega-electronvolt (MeV). However, the performance of a digital detector is not independent of the rest of the radiographic system but depends on all other components of the system. Signal and noise transfer properties highly depend on all parameters of an imaging chain. This work focuses on quantifying the resolution capabilities and the noise in the signals of a MeV X-ray imaging system. The performance quantification is done by computing the modulation transfer function (MTF) using the standard edge method as well as the noise power spectrum (NPS) of the imaging system. We performed Monte Carlo (MC) simulations in order to understand the influence of scattered radiation on the measurements. A comparison of the horizontal and vertical MTF showed that the imaging behaviour of the detector is isotropic. Moreover, an additional investigation of the noise performance of the system showed that there is no measurable noise correlation present in the system. It was shown that the thickness of the edge device does not have a significant influence on the resulting system MTF. A rapid drop in the visibility could be observed resulting in a value of 1.2 line pairs per mm at 50% MTF. The visibility limit of line pair patterns was found to be at 2.3 line pairs per mm given by the 10% MTF value.

  5. Performance quantification of a flat-panel imager in industrial mega-voltage X-ray imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Stritt, Carina, E-mail: carina.stritt@empa.ch [Empa, Swiss Federal Laboratories for Material Science and Technology, Center for X-ray Analytics, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland); Plamondon, Mathieu; Hofmann, Jürgen; Flisch, Alexander [Empa, Swiss Federal Laboratories for Material Science and Technology, Center for X-ray Analytics, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland); Sennhauser, Urs [Empa, Swiss Federal Laboratories for Material Science and Technology, Reliability Science and Technology Laboratory, Ueberlandstrasse 129, 8600 Dübendorf (Switzerland)

    2017-03-11

    Active matrix flat-panel detectors have gained popularity amongst X-ray imaging systems due to their speed, resolution and high dynamic range. With appropriate shielding modern flat-panel imagers can even be used in high energy Computed Tomography (CT) systems of energies up to several mega-electronvolt (MeV). However, the performance of a digital detector is not independent of the rest of the radiographic system but depends on all other components of the system. Signal and noise transfer properties highly depend on all parameters of an imaging chain. This work focuses on quantifying the resolution capabilities and the noise in the signals of a MeV X-ray imaging system. The performance quantification is done by computing the modulation transfer function (MTF) using the standard edge method as well as the noise power spectrum (NPS) of the imaging system. We performed Monte Carlo (MC) simulations in order to understand the influence of scattered radiation on the measurements. A comparison of the horizontal and vertical MTF showed that the imaging behaviour of the detector is isotropic. Moreover, an additional investigation of the noise performance of the system showed that there is no measurable noise correlation present in the system. It was shown that the thickness of the edge device does not have a significant influence on the resulting system MTF. A rapid drop in the visibility could be observed resulting in a value of 1.2 line pairs per mm at 50% MTF. The visibility limit of line pair patterns was found to be at 2.3 line pairs per mm given by the 10% MTF value.

  6. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography

    International Nuclear Information System (INIS)

    Cowen, A.R.; Davies, A.G.; Sivananthan, M.U.

    2008-01-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design

  7. Scan equalization digital radiography (SEDR) implemented with an amorphous selenium flat-panel detector: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Lai Chaojen; Chen Lingyun; Han Tao; Zhong Yuncheng; Shen Youtao; Wang Tianpeng; Shaw, Chris C [Department of Imaging Physics, Digital Imaging Research Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009 (United States)], E-mail: xliu@di.mdacc.tmc.edu

    2009-11-21

    It is well recognized in projection radiography that low-contrast detectability suffers in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of a prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array-based flat-panel detector. With this system, slot-scan geometry with alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead (Pb) beam blockers attached, position feedback sensors and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs) and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for the SEDR technique in the lungs, and 77% for the full

  8. A performance comparison of direct- and indirect-detection flat-panel imagers

    International Nuclear Information System (INIS)

    Partridge, M.; Hesse, B.-M.; Mueller, L.

    2002-01-01

    A comparison of the performance of a direct- and an indirect-detection amorphous silicon flat-panel X-ray imager is presented for a 6 MV beam. Experimental measurements of the noise characteristics, image lag, spectral response, spatial resolution and quantum efficiency are described, compared and discussed. The two systems are comprised of 512x512 pixel, 400 μm pitch, arrays of a-Si:H p-i-n photodiodes and thin-film transistors. In the direct-detection system, X-rays interact to produce electron/hole pairs directly in the silicon photodiodes. For the indirect-detection system, a phosphor screen converts energy from the incident X-rays into visible light, which is then detected by the photodiodes. Both systems are shown to be quantum noise limited, with the total electronic noise in the detector 10-15 times smaller than the Poisson noise level in detected signal. The measured lag for both systems is 1.0±0.1% or less in the first frame with subsequent signals decaying exponentially with frame read-out, with a half-life of between 3.3 and 3.8 frames. Both systems are demonstrated to have a pronounced sensitivity to low-energy multiply scattered photons, although this is shown to be effectively filtered out using a 2 mm copper build-up plate. The direct-detection system, with the 2 mm Cu build-up, shows greater sensitivity to scattered radiation than the indirect system. The spatial resolutions of both systems were effectively equal with an f 50 of 0.25 mm -1 when pixels are binned 2x2, although a slight contribution from optical scattering in the phosphor screen is seen for the indirect-detection system. The quantum efficiency of the direct-detection system is a factor of 0.45 lower than that of the indirect-detection system. The application of these detectors to megavoltage CT is discussed, with the conclusion that the indirect-detection system is to be preferred

  9. Full dynamic resolution low lower DA-Converters for flat panel displays

    Directory of Open Access Journals (Sweden)

    C. Saas

    2006-01-01

    Full Text Available It has been shown that stepwise charging can reduce the power dissipated in the source drivers of a flat panel display. However the solution presented only provided a dynamic resolution of 3 bits which is not sufficient for obtaining a full color resolution display. In this work a further development of the basic idea is presented. The stepwise charging is increased to 4 bits and supplemented by a current source to provide an output signal which represents an 8 bit value with sufficient accuracy. Within this work the application is an AM-OLED flat panel display, but the concept can easily be applied to other display technologies like TFT-LCD as well.

  10. A novel heuristic for optimization aggregate production problem: Evidence from flat panel display in Malaysia

    Science.gov (United States)

    Al-Kuhali, K.; Hussain M., I.; Zain Z., M.; Mullenix, P.

    2015-05-01

    Aim: This paper contribute to the flat panel display industry it terms of aggregate production planning. Methodology: For the minimization cost of total production of LCD manufacturing, a linear programming was applied. The decision variables are general production costs, additional cost incurred for overtime production, additional cost incurred for subcontracting, inventory carrying cost, backorder costs and adjustments for changes incurred within labour levels. Model has been developed considering a manufacturer having several product types, which the maximum types are N, along a total time period of T. Results: Industrial case study based on Malaysia is presented to test and to validate the developed linear programming model for aggregate production planning. Conclusion: The model development is fit under stable environment conditions. Overall it can be recommended to adapt the proven linear programming model to production planning of Malaysian flat panel display industry.

  11. On site evaluation of three flat panel detectors for digital radiography

    International Nuclear Information System (INIS)

    Borasi, Giovanni; Nitrosi, Andrea; Ferrari, Paolo; Tassoni, Davide

    2003-01-01

    During a tender we evaluated the image performance of three commercially available active matrix flat panel imagers (AMFPI) for general radiography, one based on direct detection method (Se photoconductor) the other two on indirect detection method (CsI phosphor). Basic image quality parameters (MTF, NNPS, DQE) were evaluated with particular attention to dose and energy dependence. As it is known, presampling modulation transfer function (MTF) of selenium based detector is very high (at 70 kV, 2 cycles/mm, 2.5 μGy, about 0.80). Indirect detection panels exhibit a comparable (lower) resolution (at 70 kV, 2 cycles/mm, 2.5 μGy, MTF is about 0.34 for both the systems analyzed) and a more pronounced energy and dose dependence could also be noted in one of them. As a consequence of the very high resolution, the normalized noise power spectrum (NNPS) of the direct system is substantially flat, very similar to a white noise. Considering that the sensitive layer of all detectors is the same (0.5 mm), the relatively higher NNPS values are related to selenium absorption properties (lower Z respect to CsI:Tl) and detector inherent noise. NNPSs of the other systems, at low frequencies, are comparable but the frequency dependence is significantly different. At 70 kV, 2.5 μGy, 0.5 cycles/mm detective quantum efficiency (DQE) is about 0.35 for the direct detection system, and about the same (0.6) for the indirect ones. The combined effect of additive and multiplicative noise components makes DQE dependence on dose not monotonic. DQE present a maximum for an intermediate exposure. This complex behavior may be useful to characterize the systems in terms of the monodimensional integral over the frequency of DQE (IDQE). Both visual contrast-detail experiment and the direct evaluation of the signal-to-noise ratio confirmed, at least in a qualitative way, the system performances predicted by IDQE

  12. Attenuated phase-shift mask (PSM) blanks for flat panel display

    Science.gov (United States)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  13. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    Science.gov (United States)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  14. Resolution requirements for monitor viewing of digital flat-panel detector radiographs: a contrast detail analysis

    International Nuclear Information System (INIS)

    Peer, Siegfried; Giacomuzzi, Salvatore M.; Peer, Regina; Gassner, Eva; Steingruber, Iris; Jaschke, Werner

    2003-01-01

    With the introduction of digital flat-panel detector systems into clinical practice, the still unresolved question of resolution requirements for picture archiving communication system (PACS) workstation monitors has gained new momentum. This contrast detail analysis was thus performed to define the differences in observer performance in the detection of small low-contrast objects on clinical 1K and 2K monitor workstations. Images of the CDRAD 2.0 phantom were acquired at varying exposures on an indirect-type digital flat-panel detector. Three observers evaluated a total of 15 images each with respect to the threshold contrast for each detail size. The numbers of correctly identified objects were determined for all image subsets. No significant difference in the correct detection ratio was detected among the observers; however, the difference between the two types of workstations (1K vs 2K monitors) despite less than 3% was significant at a 95% confidence level. Slight but statistically significant differences exist in the detection of low-contrast nodular details visualized on 1K- and 2K-monitor workstations. Further work is needed to see if this result holds true also for comparison of clinical flat-panel detector images and may, for example, exert an influence on the diagnostic accuracy of chest X-ray readings. (orig.)

  15. Portable low-cost flat panel detectors for real-time digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena [Accent Pro 2000 S.R.L., Bucharest (Romania)

    2015-07-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  16. Portable low-cost flat panel detectors for real-time digital radiography

    International Nuclear Information System (INIS)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena

    2015-01-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  17. Evaluation of a flat panel digital radiographic system for low-dose portable imaging of neonates

    International Nuclear Information System (INIS)

    Samei, Ehsan; Hill, Jeanne G.; Frey, G. Donald; Southgate, W. Michael; Mah, Eugene; Delong, David

    2003-01-01

    The purpose of this study was to evaluate the clinical utility of an investigational flat-panel digital radiography system for low-dose portable neonatal imaging. Thirty image-pairs from neonatal intensive care unit patients were acquired with a commercial Computed Radiography system (Agfa, ADC 70), and with the investigational system (Varian, Paxscan 2520) at one-quarter of the exposure. The images were evaluated for conspicuity and localization of the endings of ancillary catheters and tubes in two observer performance experiments with three pediatric radiologists and three neonatologists serving as observers. The results indicated no statistically significant difference in diagnostic quality between the images from the investigational system and from CR. Given the investigational system's superior resolution and noise characteristics, observer results suggest that the high detective quantum efficiency of flat-panel digital radiography systems can be utilized to decrease the radiation dose/exposure to neonatal patients, although post-processing of the images remains to be optimized. The rapid availability of flat-panel images in portable imaging was found to be an added advantage for timely clinical decision-making

  18. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  19. Tracking brachytherapy sources using emission imaging with one flat panel detector

    International Nuclear Information System (INIS)

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-01-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  20. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  1. A semiempirical linear model of indirect, flat-panel x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r

  2. A semiempirical linear model of indirect, flat-panel x-ray detectors

    International Nuclear Information System (INIS)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M.

    2012-01-01

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r 2 of

  3. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    Science.gov (United States)

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  4. Aging of imaging properties of a CMOS flat-panel detector for dental cone-beam computed tomography

    Science.gov (United States)

    Kim, D. W.; Han, J. C.; Yun, S.; Kim, H. K.

    2017-01-01

    We have experimentally investigated the long-term stability of imaging properties of a flat-panel detector in conditions used for dental x-ray imaging. The detector consists of a CsI:Tl layer and CMOS photodiode pixel arrays. Aging simulations were carried out using an 80-kVp x-ray beam at an air-kerma rate of approximately 5 mGy s-1 at the entrance surface of the detector with a total air kerma of up to 0.6 kGy. Dark and flood-field images were periodically obtained during irradiation, and the mean signal and noise levels were evaluated for each image. We also evaluated the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). The aging simulation showed a decrease in both the signal and noise of the gain-offset-corrected images, but there was negligible change in the signal-to-noise performance as a function of the accumulated dose. The gain-offset correction for analyzing images resulted in negligible changes in MTF, NPS, and DQE results over the total dose. Continuous x-ray exposure to a detector can cause degradation in the physical performance factors such the detector sensitivity, but linear analysis of the gain-offset-corrected images can assure integrity of the imaging properties of a detector during its lifetime.

  5. Visual and ocular effects from the use of flat-panel displays

    Directory of Open Access Journals (Sweden)

    Esteban Porcar

    2016-06-01

    Full Text Available AIM: To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU users with flat-panel displays. METHODS: One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. RESULTS: Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%; followed by sensitivity to bright lights (12%, blurred vision at far distances (10%, eyestrain or dry eye or irritated or burning eyes (9%, difficulty in refocusing from one distance to another or headache (8% and blurred vision at near or intermediate distances (<4%. Eye symptoms were greater among females (P=0.005 and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01. CONCLUSION: Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use.

  6. Visual and ocular effects from the use of flat-panel displays.

    Science.gov (United States)

    Porcar, Esteban; Pons, Alvaro M; Lorente, Amalia

    2016-01-01

    To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%); followed by sensitivity to bright lights (12%), blurred vision at far distances (10%), eyestrain or dry eye or irritated or burning eyes (9%), difficulty in refocusing from one distance to another or headache (8%) and blurred vision at near or intermediate distances (<4%). Eye symptoms were greater among females (P=0.005) and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01). Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use.

  7. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    Science.gov (United States)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  8. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Science.gov (United States)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  9. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    International Nuclear Information System (INIS)

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  10. Correction of failure in antenna array using matrix pencil technique

    International Nuclear Information System (INIS)

    Khan, SU; Rahim, MKA

    2017-01-01

    In this paper a non-iterative technique is developed for the correction of faulty antenna array based on matrix pencil technique (MPT). The failure of a sensor in antenna array can damage the radiation power pattern in terms of sidelobes level and nulls. In the developed technique, the radiation pattern of the array is sampled to form discrete power pattern information set. Then this information set can be arranged in the form of Hankel matrix (HM) and execute the singular value decomposition (SVD). By removing nonprincipal values, we obtain an optimum lower rank estimation of HM. This lower rank matrix corresponds to the corrected pattern. Then the proposed technique is employed to recover the weight excitation and position allocations from the estimated matrix. Numerical simulations confirm the efficiency of the proposed technique, which is compared with the available techniques in terms of sidelobes level and nulls. (paper)

  11. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kyung Cha, Bo [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Seo, Chang-Woo [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, Wonju (Korea, Republic of); Yang, Keedong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeon, Seongchae, E-mail: sarim@keri.re.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Huh, Young [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2015-06-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80–120 kVp, and different current (10–50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally.

  12. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    International Nuclear Information System (INIS)

    Kyung Cha, Bo; Seo, Chang-Woo; Yang, Keedong; Jeon, Seongchae; Huh, Young

    2015-01-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80–120 kVp, and different current (10–50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally

  13. Flat panel detectors - closing the (digital) gap in chest and skeletal radiology

    International Nuclear Information System (INIS)

    Reiff, Kurt J.

    1999-01-01

    In the radiological department today the majority of all X-ray procedures on chest and skeletal radiography is performed with classical film-screen-systems. Using digital luminescence radiography (DLR or CR, which stands for Computed Radiography) as a technique has shown a way to replace this 100-year-old procedure of doing general radiography work by acquiring the X-rays digitally via phosphor screens, but this approach has faced criticism from lots of radiologists world wide and therefore has not been widely accepted except in the intensive care environment. A new technology is now rising based on the use of so called flat panel X-ray (FD) detectors. Semi-conducting material detects the X-rays in digital form directly and creates an instantaneous image for display, distribution and diagnosis. This ability combined with a large field of view and -- compared to existing methods -- excellent detective quantum efficiency represents a revolutionary step for chest and skeletal radiography and will put basic X-ray-work back into the focus of radiological solutions. This paper will explain the basic technology of flat panel detectors, possible system solutions based on this new technology, aspects of the user interface influencing the system utilization and versatility as well as the possibility to redefine the patient examination process for chest and skeletal radiography. Furthermore the author discusses limitations for the first released systems, upgrades for the installed base and possible scenarios for the future. e.g. fluoroscopy or angiography application

  14. Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System

    International Nuclear Information System (INIS)

    Jeong, Hoi Woun; Min, Jung Hwan; Kim, Jung Min; Park, Min Seok; Lee, Gaung Young

    2012-01-01

    The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

  15. Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Seoul (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Science, Korea University, Health Science College, Seoul (Korea, Republic of); Park, Min Seok [Korea Institue of Radiological and Medical Sicences, Research Institute of Radiologycal and Medical Sciences, Seoul (Korea, Republic of); Lee, Gaung Young [National Institute of Food and Drug Safety Evaluation, Seoul (Korea, Republic of)

    2012-06-15

    The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

  16. Comparison of dose and image quality of a Flat-panel detector and an image intensifier

    International Nuclear Information System (INIS)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da

    2016-01-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR "1"8FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  17. Performance evaluation of flat panel detector in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Grewal, R.K.; Mclean, I.D.

    2004-01-01

    Full text: Flat panel detectors are currently replacing the conventional image intensifiers in R-F imaging. We evaluated the performance of a biplane cardiac imaging system (Siemens Axiom Artis dBC), the image acquisition was based on a 25 cm diagonal digital fiat panel detector. Performance characteristics included image quality, typical patient entrance dose and measurement of input to the surface of flat detector. The results were compared with conventional image intensifier systems (Siemens Hicor Unit and Toshiba DPF 2000 A Biplane Unit) used in cardiac imaging at Westmead. Image quality and dose measurements were performed following standard protocols using Westmead test object and 20 cm solid water as absorber in the beam. For measurement of input to the surface of flat detector, 2 mm copper was placed on the collimator. Radcal 3cc and 180 cc ion chambers were used for dose measurements. Image quality: Our measurements on flat panel system indicate that high contrast resolution and threshold contrast is not affected by changing field size. This is expected due to minimum loss of signal in the imaging chain of digital systems and the independence of detector pixel size with change in field of view. While low contrast resolution was found to be similar to conventional systems, high contrast resolution was significantly superior using flat detector system for large and intermediate field of view (25-28 1p/cm against 18-20). Typical patient dose as measured using flat detector system was similar to the conventional Toshiba pulsed fluoroscopy system( ∼ 3 - 8 mGy/min depending on the field size). This was 40-50 % lower than our old Siemens hicore unit. Input to the surface of flat detector was found to vary with field size as is the case with a conventional II system. As described elsewhere, although there is no necessity to increase exposure or video gain in a digital magnification, digital data interpolation process introduces noise. As a result system

  18. Acoustic Analysis Method for Flat Panel Speaker Driven by Giant Magnetostrictive-Material-Based Exciter(Linear Motor concerning Daily Life)

    OpenAIRE

    兪, 炳振; 平田, 勝弘; 大西, 敦郎; Byungjin, YOO; Katsuhiro, HIRATA; Atsurou, OONISHI; 大阪大学; 大阪大学; 大阪大学

    2011-01-01

    This paper presents a coupled analysis method of electromagnetic-structural-acoustic fields for flat panel speaker driven by giant magnetostrictive material (GMM) based exciter designed by using the finite element method (FEM). The acoustic field creation of the flat panel speaker driven by GMM exciter relies on the vibration of flat panel caused by magnetostrictive phenomenon of GMM when a magnetic field is applied. In this case, to predict the sound pressure level (SPL) at audio frequency r...

  19. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  20. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Reims, N; Sukowski, F; Uhlmann, N

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  1. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    Science.gov (United States)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  2. Establishment of action levels for quality control of IMRT flat panel: experience with the algorithm iGRiMLO

    International Nuclear Information System (INIS)

    Gonzalez, V.; Dolores, VV. de los; Pastor, V.; Martinez, J.; Gimeno, J.; Guardino, C.; Crispin, V.

    2011-01-01

    Algorithm has been used at our institution iGRiMLO scheduled for individual verification of treatment plans for intensity modulated radiotherapy (IMRT) step and shoot through portal dosimetry pretreatment of non-transmission, triggering the plan directly to a portal imaging device (EPID) of an amorphous silicon flat panel.

  3. Initial experiences in clinical application of the THORAX-FD: flat-panel detector radiography in thoracic diagnosis

    International Nuclear Information System (INIS)

    Herrmann, K.A.; Staebler, A.; Bonel, H.; Kulinna, C.; Holzknecht, N.; Reiser, M.F.; Geiger, B.; Boehm, S.; Maschke, M.

    2000-01-01

    The flat-panel detector closes the gap between radiography and the digital diagnostics equipment currently in use. In addition to the dose reduction that can be expected, the availability of diagnostic information in digital form enables the user to optimize the clinical workflow and to network radiography directly with a digital archiving and communication system. (orig.)

  4. The impact of round window vs cochleostomy surgical approaches on interscalar excursions in the cochlea: Preliminary results from a flat-panel computed tomography study

    Directory of Open Access Journals (Sweden)

    Nicole T. Jiam

    2016-09-01

    Full Text Available Objective: To evaluate incidence of interscalar excursions between round window (RW and cochleostomy approaches for cochlear implant (CI insertion. Methods: This was a retrospective case-comparison. Flat-panel CT (FPCT scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round window insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Results: In our pilot study, cochleostomy approaches were associated with a higher likelihood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes to be outside the scala tympani. On the other hand, 8.5% of the electrode contacts (4 of 47 electrodes in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occurrence of 364° ± 133°, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400° or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19°–490°. Conclusions: Currently, the optimal surgical approach for standard CI electrode insertion is highly debated, to a certain extent due to a lack of post-operative assessment of intracochlear electrode contact. Based on our preliminary findings, cochleostomy approach is associated with an increased likelihood of interscalar excursions, and these findings should be further evaluated with future prospective studies. Keywords: Cochlear implantation, Round window insertion, Cochleostomy, Interscalar excursion, Electrode position, Flat-panel computed tomography, Surgical approach

  5. Source strength verification and quality assurance of preloaded brachytherapy needles using a CMOS flat panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Golshan, Maryam, E-mail: maryam.golshan@bccancer.bc.ca [Department of Physics, University of British Columbia, Vancouver, British Columbia V6T1Z1, Canada and Department of Medical Physics, Vancouver Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6 (Canada); Spadinger, Ingrid [Department of Medical Physics, Vancouver Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6 (Canada); Chng, Nick [Department of Medical Physics, Center for the North, British Columbia Cancer Agency, Prince George, British Columbia V2M 7E9 (Canada)

    2016-06-15

    Purpose: Current methods of low dose rate brachytherapy source strength verification for sources preloaded into needles consist of either assaying a small number of seeds from a separate sample belonging to the same lot used to load the needles or performing batch assays of a subset of the preloaded seed trains. Both of these methods are cumbersome and have the limitations inherent to sampling. The purpose of this work was to investigate an alternative approach that uses an image-based, autoradiographic system capable of the rapid and complete assay of all sources without compromising sterility. Methods: The system consists of a flat panel image detector, an autoclavable needle holder, and software to analyze the detected signals. The needle holder was designed to maintain a fixed vertical spacing between the needles and the image detector, and to collimate the emissions from each seed. It also provides a sterile barrier between the needles and the imager. The image detector has a sufficiently large image capture area to allow several needles to be analyzed simultaneously.Several tests were performed to assess the accuracy and reproducibility of source strengths obtained using this system. Three different seed models (Oncura 6711 and 9011 {sup 125}I seeds, and IsoAid Advantage {sup 103}Pd seeds) were used in the evaluations. Seeds were loaded into trains with at least 1 cm spacing. Results: Using our system, it was possible to obtain linear calibration curves with coverage factor k = 1 prediction intervals of less than ±2% near the centre of their range for the three source models. The uncertainty budget calculated from a combination of type A and type B estimates of potential sources of error was somewhat larger, yielding (k = 1) combined uncertainties for individual seed readings of 6.2% for {sup 125}I 6711 seeds, 4.7% for {sup 125}I 9011 seeds, and 11.0% for Advantage {sup 103}Pd seeds. Conclusions: This study showed that a flat panel detector dosimetry system

  6. Investigation of the dosimetric properties of an a-Si flat panel epid

    International Nuclear Information System (INIS)

    Fielding, A.L.; Jahangir, S.T.

    2004-01-01

    Full text: Electronic portal imaging devices (EPIDs) are primarily used as an electronic replacement for film to verify the set-up of radiotherapy patients based on imaged anatomy. There has recently been much interest in the use of amorphous silicon (a-Si) flat panel EPIDs for dosimetric verification in radiotherapy. The work presented here has been carried out to determine their suitability for dosimetric applications by investigating some of the basic response characteristics and the implications these might have. The measurements reported in this paper were performed using 6-MV photon beams from an Elekta Precise linear accelerator fitted with Elekta iViewGT amorphous silicon flat panel EPIDs. Measurements were performed to investigate the response of the EPID as a function of exposure and field size. Similar measurements were made with an ionisation chamber for comparison. Further measurements were carried out to investigate the response of the EPID to multiple low dose exposures (e.g. 5x2 MU) such as might be encountered in Intensity Modulated Radiotherapy (IMRT). This was compared with the response to a single high dose exposure (e.g. 10 MU) and repeated for a range of exposures. The results show the response of the EPID, to a good approximation, to be linear with dose over the range of 1 -200 MU. However, 'under-responses' in the EPID of up to 5% were seen at the lowest exposures. For multiple low dose segments the sum of the EPID responses was found to be less than the response to the same total exposure in a single large segment. This effect reduces with increase in the magnitude of the low dose segments. The variation in EPID response with field size was found to be greater than that indicated by the ionisation chamber. The results show that the a-Si detector responds to dose, to a good approximation, in a linear manner. The EPID under-response at low doses is thought to be related to the so called ghosting effect. Each image frame has a residual

  7. The Effect of Round Window vs Cochleostomy Surgical Approaches on Cochlear Implant Electrode Position: A Flat-Panel Computed Tomography Study.

    Science.gov (United States)

    Jiam, Nicole T; Jiradejvong, Patpong; Pearl, Monica S; Limb, Charles J

    2016-09-01

    The round window insertion (RWI) and cochleostomy approaches are the 2 most common surgical techniques used in cochlear implantation (CI). However, there is no consensus on which approach is ideal for electrode array insertion, in part because visualization of intracochlear electrode position is challenging, so postoperative assessment of intracochlear electrode contact is lacking. To measure and compare electrode array position between RWI and cochleostomy approaches for CI insertion. Retrospective case-comparison study of 17 CI users with Med-El standard-length electrode arrays who underwent flat-panel computed tomography scans after CI surgery at a tertiary referral center. The data was analyzed in October 2015. Flat-panel computed tomography scans were collected between January 1 and August 31, 2013, for 22 electrode arrays. The surgical technique was identified by a combination of operative notes and imaging. Eight cochleae underwent RWI and 14 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Interscalar electrode position and electrode centroid distance to the osseous spiral lamina, lateral bony wall, and central axis of the modiolus. Nine participants were men, and 8, women; the mean age was 54.4 (range, 21-64) years. Electrode position was significantly closer to cochlear neural elements with RWI than cochleostomy approaches. Between the 2 surgical approaches, the RWI technique produced shorter distances between the electrode and the modiolus (mean difference, -0.33 [95% CI, -0.29 to -0.39] mm in the apical electrode; -1.42 [95% CI, -1.24 to -1.57] mm in the basal electrode). This difference, which was most prominent in the first third and latter third of the basal turn, decreased after the basal turn. The RWI approach was associated with an increased likelihood of perimodiolar placement. Opting to use RWI over cochleostomy approaches in CI candidates may position electrodes closer to cochlear neural substrates and

  8. Technical trends of large-size photomasks for flat panel displays

    Science.gov (United States)

    Yoshida, Koichiro

    2017-06-01

    Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".

  9. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  10. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    Science.gov (United States)

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  11. Contrast-detail analysis of three flat panel detectors for digital radiography

    International Nuclear Information System (INIS)

    Borasi, Giovanni; Samei, Ehsan; Bertolini, Marco; Nitrosi, Andrea; Tassoni, Davide

    2006-01-01

    In this paper we performed a contrast detail analysis of three commercially available flat panel detectors, two based on the indirect detection mechanism (GE Revolution XQ/i, system A, and Trixell/Philips Pixium 4600, system B) and one based on the direct detection mechanism (Hologic DirectRay DR 1000, system C). The experiment was conducted using standard x-ray radiation quality and a widely used contrast-detail phantom. Images were evaluated using a four alternative forced choice paradigm on a diagnostic-quality softcopy monitor. At the low and intermediate exposures, systems A and B gave equivalent performances. At the high dose levels, system A performed better than system B in the entire range of target sizes, even though the pixel size of system A was about 40% larger than that of system B. At all the dose levels, the performances of the system C (direct system) were lower than those of system A and B (indirect systems). Theoretical analyses based on the Perception Statistical Model gave similar predicted SNR T values corresponding to an observer efficiency of about 0.08 for systems A and B and 0.05 for system C

  12. Practical expressions describing detective quantum efficiency in flat-panel detectors

    Science.gov (United States)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  13. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    International Nuclear Information System (INIS)

    Gupta, Rajiv; Brady, Tom; Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas; Bartling, Soenke H.

    2006-01-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  14. Clinical investigation of flat panel CT following middle ear reconstruction: a study of 107 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, K. [University Hospital Heidelberg, Ruprecht Karls University, Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg (Germany); Kromeier, J. [St. Josefs Hospital, RkK, Department of Radiology, Freiburg (Germany); Neudert, M.; Beleites, T.; Zahnert, T. [University Hospital Dresden, Technical University, Department of Otorhinolaryngology, Head and Neck Surgery, Dresden (Germany); Laszig, R.; Offergeld, C. [University Hospital Freiburg, Albert Ludwigs University, Department of Otorhinolaryngology, Head and Neck Surgery, Freiburg (Germany)

    2014-03-15

    After middle ear reconstruction using partial or total ossicular replacement prostheses (PORP/TORP), an air-bone gap (ABG) may persist because of prosthesis displacement or malposition. So far, CT of the temporal bone has played the main role in the diagnosis of reasons for postoperative insufficient ABG improvement. Recent experimental and clinical studies have evaluated flat panel CT (fpCT) as an alternative imaging technique that provides images with high isovolumetric resolution, fewer metal-induced artefacts and lower irradiation doses. One hundred and seven consecutive patients with chronic otitis media with or without cholesteatoma underwent reconstruction by PORP (n = 52) or TORP (n = 55). All subjects underwent preoperative and postoperative audiometric testing and postoperative fpCT. Statistical evaluation of all 107 patients as well as the sole sub-assembly groups (PORP or TORP) showed a highly significant correlation between hearing improvement and fpCT-determined prosthesis position. FpCT enables detailed postoperative information on patients with middle ear reconstruction. FpCT is a new imaging technique that provides immediate feedback on surgical results after reconstructive middle ear surgery. Specific parameters evaluated by fpCT may serve as a predictive tool for estimated postoperative hearing improvement. Therefore this imaging technique is suitable for postoperative quality control in reconstructive middle ear surgery. (orig.)

  15. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  16. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rajiv; Brady, Tom [Massachusetts General Hospital, Department of Radiology, Founders House, FND-2-216, Boston, MA (United States); Grasruck, Michael; Suess, Christoph; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Flohr, Thomas [Siemens Medical Solutions, Forchheim (Germany); Bartling, Soenke H. [Hannover Medical School, Department of Neuroradiology, Hannover (Germany)

    2006-06-15

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT). (orig.)

  17. Compact flat-panel gas-gap heat switch operating at 295 K

    Science.gov (United States)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  18. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    International Nuclear Information System (INIS)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi

    2003-01-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  19. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  20. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  1. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    International Nuclear Information System (INIS)

    Nickoloff, Edward L.; Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-01-01

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV) -N ] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables

  2. Evaluation of patient exposure with Flat Panel Detector (FPD) in X-ray TV system

    International Nuclear Information System (INIS)

    Yamada, M.; Komiya, N.; Kawaguchi, A.; Suzuki, M.; Suzuki, Shoichi; Asada, Yasuki

    2008-01-01

    The use of flat-panel detector (FPD) systems in TV equipment for gastrointestinal tract examination is increasing. The use of FPD systems is believed to reduce the exposure dose. When our institution changed its TV equipment from an image intensifier (GE; MS90Tj) system to an FPD (Shimadzu; SONIALVISION safire DAR-3500) system, we measured the doses produced and carried out a comparative examination of the extent to which exposure could be reduced. Two TV systems were used. We used an analyzer to measure output waveform, tube voltage, and half-value layer (HVL), and an ionization chamber dosimeter to carry out dose-in-air measurements. Body thickness, number of image acquisitions, and fluoroscopy time are required for the calculation of entrance skin dose (ESD). We therefore measured body thicknesses in 1000 upper gastrointestinal tract (UGI) and barium enemas and obtained average body thicknesses for males and females by age group. Values used for number of image acquisitions and fluoroscopy times were the averages in our institution over a two-year period. When an I.I. system was used, the average ESD during UGI examination were 126.8 mGy fluoroscopy dose and 11.62 mGy imaging dose, for an average total dose of 138.42 mGy per examination. ESD during barium enema averaged 201.73 mGy fluoroscopy dose and 45.2 mGy imaging dose, for an average total dose of 246.92 mGy per examination. When an FPD system was used, the average ESD during UGI examination were 58.71 mGy fluoroscopy dose and 5.72 mGy imaging dose, for an average total dose of 64.43 mGy per examination. ESD during barium enema averaged 112.21 mGy fluoroscopy dose and 24.55 mGy imaging dose, for an average total dose of 136.76 mGy per examination. The use of an FPD system reduced both fluoroscopy dose and imaging dose by 50%. The number of TV systems equipped with FPD in Japan has increased from around 1300 in 2006 to around 1700 in 2007. The use of FPD systems can be expected to increase in future. This

  3. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system

    International Nuclear Information System (INIS)

    Seslija, Petar; Teeter, Matthew G.; Yuan Xunhua; Naudie, Douglas D. R.; Bourne, Robert B.; MacDonald, Steven J.; Peters, Terry M.; Holdsworth, David W.

    2012-01-01

    Purpose: The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. Methods: An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland–Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. Results: The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07° in-plane, and 0.24 mm and 0.6° out-of-plane. The repeatability of kinematics measurements performed using the

  4. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    International Nuclear Information System (INIS)

    Dragusin, O; Bosmans, H; Pappas, C; Desmet, W

    2008-01-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ∼40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s -1 , detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  5. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Directory of Open Access Journals (Sweden)

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  6. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    Dragusin, O; Bosmans, H [Department of Radiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium); Pappas, C; Desmet, W [Department of Cardiology, University Hospital Gasthuisberg, 49, Herestraat, 3000-Leuven (Belgium)], E-mail: odragusin@yahoo.com

    2008-09-21

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 {mu}Gy/im. Radiation doses (IAK {approx}40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s{sup -1}, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 {mu}Gy/im to 0.17 {mu}Gy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the

  7. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  8. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    Science.gov (United States)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  9. A forward bias method for lag correction of an a-Si flat panel detector

    International Nuclear Information System (INIS)

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-01

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the

  10. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    International Nuclear Information System (INIS)

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-01-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology

  11. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  12. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    International Nuclear Information System (INIS)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-01-01

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  13. Dynamic Modeling of the Microalgae Cultivation Phase for Energy Production in Open Raceway Ponds and Flat Panel Photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsullo, Matteo [Department of Industrial Engineering, University of Padova, Padova (Italy); Mian, Alberto [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Ensinas, Adriano Viana [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Universidade Federal do ABC, Santo Andre (Brazil); Manente, Giovanni; Lazzaretto, Andrea, E-mail: andrea.lazzaretto@unipd.it [Department of Industrial Engineering, University of Padova, Padova (Italy); Marechal, François [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2015-09-15

    A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO{sub 2} and nutrients concentration in the water, light intensity, temperature of the water in the reactor, and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent and slightly overestimating the productivity in the case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha × year) in Southern Spain (Sevilla) and Brazil (Petrolina) and between 250 and 350 t/(ha × year) for the flat panel photobioreactor in the same locations.

  14. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  15. Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors

    Directory of Open Access Journals (Sweden)

    Matteo eMarsullo

    2015-09-01

    Full Text Available A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO2 and nutrients concentration in the water, light intensity, temperature of the water in the reactor and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent, slightly overestimating the productivity in case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha*year in Southern Spain (Sevilla and Brazil (Petrolina and between 250 and 350 t/(ha*year for the flat panel photobioreactor in the same locations.

  16. Coupled Electro-Magneto-Mechanical-Acoustic Analysis Method Developed by Using 2D Finite Element Method for Flat Panel Speaker Driven by Magnetostrictive-Material-Based Actuator

    Science.gov (United States)

    Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou

    In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.

  17. Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; Yorkston, John; Huang Weidong; Sandler, Howard; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1996-01-01

    Purpose: The creation of the first large-area, amorphous silicon megavoltage imager is reported. The imager is an engineering prototype built to serve as a stepping stone toward the creation of a future clinical prototype. The engineering prototype is described and various images demonstrating its properties are shown including the first reported patient image acquired with such an amorphous silicon imaging device. Specific limitations in the engineering prototype are reviewed and potential advantages of future, more optimized imagers of this type are presented. Methods and Materials: The imager is based on a two-dimensional, pixelated array containing amorphous silicon field-effect transistors and photodiode sensors which are deposited on a thin glass substrate. The array has a 512 x 560-pixel format and a pixel pitch of 450 μm giving an imaging area of ∼23 x 25 cm 2 . The array is used in conjunction with an overlying metal plate/phosphor screen converter as well as an electronic acquisition system. Images were acquired fluoroscopically using a megavoltage treatment machine. Results: Array and digitized film images of a variety of anthropomorphic phantoms and of a human subject are presented and compared. The information content of the array images generally appears to be at least as great as that of the digitized film images. Conclusion: Despite a variety of severe limitations in the engineering prototype, including many array defects, a relatively slow and noisy acquisition system, and the lack of a means to generate images in a radiographic manner, the prototype nevertheless generated clinically useful information. The general properties of these amorphous silicon arrays, along with the quality of the images provided by the engineering prototype, strongly suggest that such arrays could eventually form the basis of a new imaging technology for radiotherapy localization and verification. The development of a clinically useful prototype offering high

  18. Cone-Beam CT with Flat-Panel-Detector Digital Angiography System: Early Experience in Abdominal Interventional Procedures

    International Nuclear Information System (INIS)

    Hirota, Shozo; Nakao, Norio; Yamamoto, Satoshi; Kobayashi, Kaoru; Maeda, Hiroaki; Ishikura, Reiichi; Miura, Koui; Sakamoto, Kiyoshi; Ueda, Ken; Baba, Rika

    2006-01-01

    We developed a cone-beam computed tomography (CBCT) system equipped with a large flat-panel detector. Data obtained by 200 o rotation imaging are reconstructed by means of CBCT to generate three-dimensional images. We report the use of CBCT angiography using CBCT in 10 patients with 8 liver malignancies and 2 hypersplenisms during abdominal interventional procedures. CBCT was very useful for interventional radiologists to confirm a perfusion area of the artery catheter wedged on CT by injection of contrast media through the catheter tip, although the image quality was slightly degraded, scoring as 2.60 on average by streak artifacts. CBCT is space-saving because it does not require a CT system with a gantry, and it is also time-saving because it does not require the transfer of patients

  19. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays

    International Nuclear Information System (INIS)

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-01-01

    Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.

  20. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    International Nuclear Information System (INIS)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H.; Wiemann, Christian; Guenther, Rolf W.; Kyriakou, Yiannis; Kalender, Willi A.; Schmitz-Rode, Thomas

    2010-01-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  1. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    International Nuclear Information System (INIS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-01-01

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging quality was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)

  2. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H. [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Wiemann, Christian; Guenther, Rolf W. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Kyriakou, Yiannis; Kalender, Willi A. [Friedrich-Alexander University of Erlangen-Nuremberg, Institute for Medical Physics, Erlangen (Germany); Schmitz-Rode, Thomas [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany)

    2010-11-15

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 {+-} 0.9 mm (phantom) and 0.6 {+-} 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 {+-} 1.2 mm (phantom) and 0.5 {+-} 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 {+-} 0.9 mm and 1.0 {+-} 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 {+-} 17.3 s vs. 20.8 {+-} 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 {+-} 5.1 s vs. 28.6 {+-} 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 {+-} 9.0 s vs. 23.6 {+-} 7.2 s, p = 0.001) and IVD punctures (43.9 {+-} 16.1 s vs. 31.1 {+-} 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  3. Quality control beam of radiation through imaging system using a flat panel (ILD)

    International Nuclear Information System (INIS)

    Benitez Serrano, J. A.; Gomez Barrado, A.; Sanchez-Reyes, A.

    2013-01-01

    The daily quality checks of the accelerator include, among others, checks of the daily calibration, symmetry and uniformity of the radiation beam. Usually verification systems daily are used for this purpose, which employ arrays of detectors of solid-state or ionization chambers. This paper intends to carry out the control of quality through the irradiation of a number of fields in the portal imaging system and its subsequent analysis in software's own creation, as well as the comparison of results with the daily verification system. (Author)

  4. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    OpenAIRE

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).

  5. Implementation of a program of quality assurance of image in an imaging system of flat panel portal; Puesta en marcha de un programa de garantia de calidad de imagen en un sistema de imagen portal de panel plano

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Barrado, A.; Sanchez Jimenez, E.; Benitez, J. A.; Sanchez-Reyes, A.

    2013-07-01

    (IGRT) image-guided radiation therapy is the one in which images are used to locate the area of treatment. Modern irradiation systems are equipped with different modalities for obtaining images, such as flat panel systems, systems conebeam, tomoimagen, etc. This paper describes the start-up and the experience of a quality assurance program based on a flat panel portal Imaging System. (Author)

  6. FY 1998 annual summary report on comprehensive development study of high-function flat panel display techniques (second year); 1998 nendo koseino flat panel display gijutsu no sogo kaihatsu kenkyu seika hokokusho. Daininendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is aimed at creation of the new world display industry in Shikoku by developing the high-function flat panel display techniques and thereby establishing new techniques which solve the problems involved in, e.g., LEDs, plasma-aided devices and ELs other than liquid crystal devices. For development of emitters using diamond, important results have been obtained for the morphology, and cathode luminescence, Raman and photoluminescence spectra of polycrystalline diamond, synthesized by the vapor-phase process under varying conditions, on the electron radiation characteristics of the emitters. These results have led to clarification of the optimum vapor-phase synthesis conditions for diamond for high-function emitters. The techniques utilizing focused ion beams have also advanced to develop thin polycrystalline diamond films for emitters which correspond to the image elements of quality for television. For electron emitters, a structure prepared by implantation without using a high electrical field is proposed, and the device mechanisms involved are clarified. (NEDO)

  7. Gain and offset calibration reduces variation in exposure-dependent SNR among systems with identical digital flat-panel detectors.

    Science.gov (United States)

    Willis, Charles E; Vinogradskiy, Yevgeniy Y; Lofton, Brad K; White, R Allen

    2011-07-01

    The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 microGy air KERMA) to the detector. The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r2=0.9999). The dependence was greater than unity (m = 1.101 +/- 0.006), and the difference from unity was statistically significant (p grid replacement. The nonconformant behavior of the other system was corrected by replacing

  8. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments.

    Science.gov (United States)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Wiemann, Christian; Kyriakou, Yiannis; Kalender, Willi A; Günther, Rolf W; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-11-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures.

  9. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    International Nuclear Information System (INIS)

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-01-01

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ Q ), electronic noise (σ E ), and view aliasing (σ view ). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N proj ), dose (D tot ), and voxel size (b vox ). Results: The results reveal a nonmonotonic relationship between image noise andN proj at fixed total dose: for the CBCT system considered, noise decreased with increasing N proj due to reduction of view sampling effects in the regime N proj proj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f  β —and a general model of individual noise components (σ Q , σ E , and σ view ) demonstrated agreement with measurements over a broad range in N proj , D tot , and b vox . Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN proj ∼ 250–350, nearly an order of magnitude lower in N proj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain

  10. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    Science.gov (United States)

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed.

  11. Comparison of imaging properties of direct-type and indirect-type of flat-panel detector

    International Nuclear Information System (INIS)

    Matsumoto, Masao; Suekane, Koji; Ichimaru, Yasunobu; Ogata, Yuji; Inamura, Kiyonari; Kanai, Kouzou; Kanamori, Hitoshi

    2002-01-01

    A Flat-Panel Detector (FPD) has many advantages such as eliminating cassette handling and being able to display a preview image immediately in addition to the digital image processing and the networking. Thus, the FPD has ability to innovate the radiology department. We measured and evaluated the digital and over-all imaging properties (characteristic curves, modulation Transfer Functions, Wiener spectra and Noise Equivalent Quanta (NEQ) for the direct-type and indirect-type of FPD. The pre-sampling and overall NEQ of the indirect-type of FPD were better than the NEQ of the direct-type of FPD at lower spatial frequencies, but were worse at higher spatial frequencies. The FPD can take image data at real-time and be easy to digitalize. From these results, Screen/Film system and Computed Radiography system will be replaced by the FPD system, together with diffusion of CAD, cone beam Computed Tomography (CT) system and open-type Magnetic Resonance Imagining (MRI) system. (T. Tanaka)

  12. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  13. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    International Nuclear Information System (INIS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-01-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  14. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Guggenberger, Roman; Ulbrich, Erika J.; Kaelin, Pascal; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Dietrich, Tobias J. [Balgrist University Hospital, Department of Radiology, Zurich (Switzerland); Scholz, Rosemarie; Koehler, Christoph; Elsaesser, Thilo [Siemens Healthcare GmbH, Business Area Advanced Therapies, Forchheim (Germany); Le Corroller, Thomas [Aix-Marseille Universite, CNRS, ISM UMR 7287, Marseille (France); Radiology Department, APHM, Marseille (France)

    2017-02-15

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between κ = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. (orig.)

  15. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    International Nuclear Information System (INIS)

    Mehndiratta, Amit; Rabinov, James D.; Grasruck, Michael; Liao, Eric C.; Crandell, David; Gupta, Rajiv

    2015-01-01

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm 3 . Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  16. Characteristics and applications of a flat panel computer tomography system; Eigenschaften und Anwendungen der Flaechendetektor-basierten Volumen-Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Knollmann, F.; Valencia, R.; Obenauer, S. [Abt. Diagnostische Radiologie, Klinikum der Georg-August-Univ. Goettingen (Germany); Buhk, J.H. [Abt. Neuroradiologie, Univ. Goettingen (Germany)

    2006-09-15

    Purpose: to assess a new flat panel volume computed tomography (FP-VCT) with very high isotropic spatial resolution as well as high Z-axis coverage. Materials and Methods: The prototype of an FP-VCT scanner with a detector cell size of 0.2 mm was used for numerous phantom studies, specimen examinations, and animal research projects. Results: The high spatial resolution of the new system can be used to accurately determine solid tumor volume, thus allowing for earlier assessment of the therapeutic response. In animal experimentation, whole-body perfusion mapping of mice is feasible. The high spatial resolution also improves the classification of coronary artery atherosclerotic plaques in the isolated post mortem human heart. With the depiction of intramyocardial segments of the coronary arteries, investigations of myocardial collateral circulation are feasible. In skeletal applications, an accurate analysis of the smallest bony structures, e.g., petrous bone and dental preparations, can be successfully performed, as well as investigations of repetitive studies of fracture healing and the treatment of osteoporosis. Conclusion: The introduction of FP-VCT opens up new applications for CT, including the field of molecular imaging, which are highly attractive for future clinical applications. Present limitations include limited temporal resolution and necessitate further improvement of the system. (orig.)

  17. Cross Talk Study to the Single Photon Response of a Flat Panel PMT for the RICH Upgrade at LHCb

    CERN Multimedia

    Arnaboldi, C; Calvi, M; Fanchini, E; Gotti, C; Maino, M; Matteuzzi, C; Perego, D L; Pessina, G; Wang, J C

    2009-01-01

    The Ring Imaging CHerenkov, RICH, detector at LHCb is now readout by Hybrid Photon Detectors. In view of its upgrade a possible option is the adoption of the flat panel Photon Multipliers Tubes, PMT. An important issue for the good determination of the rings produced in the sensitive media is a negligible level of cross talk. We have experimentally studied the cross talk from the 64x64 pixels of the H9500 PMT from Hamamatsu. Results have shown that at the single photon signal level, as expected at LHCb, the statistics applied to the small number of electrons generated at the first dynode of the PMT chain leads to a cross talk mechanism that must be interpreted in term of the percentage of the number of induced signals rather than on the amplitude of the induced signals. The threshold to suppress cross talk must be increased to a significant fraction of the single photon signal for the worst case. The number of electrons generated at the first dynode is proportional to the biasing voltage. Measurements have sh...

  18. C-arm flat-panel CT arthrography of the shoulder: Radiation dose considerations and preliminary data on diagnostic performance

    International Nuclear Information System (INIS)

    Guggenberger, Roman; Ulbrich, Erika J.; Kaelin, Pascal; Pfammatter, Thomas; Alkadhi, Hatem; Andreisek, Gustav; Dietrich, Tobias J.; Scholz, Rosemarie; Koehler, Christoph; Elsaesser, Thilo; Le Corroller, Thomas

    2017-01-01

    To investigate radiation dose and diagnostic performance of C-arm flat-panel CT (FPCT) versus standard multi-detector CT (MDCT) shoulder arthrography using MRI-arthrography as reference standard. Radiation dose of two different FPCT acquisitions (5 and 20 s) and standard MDCT of the shoulder were assessed using phantoms and thermoluminescence dosimetry. FPCT arthrographies were performed in 34 patients (mean age 44 ± 15 years). Different joint structures were quantitatively and qualitatively assessed by two independent radiologists. Inter-reader agreement and diagnostic performance were calculated. Effective radiation dose was markedly lower in FPCT 5 s (0.6 mSv) compared to MDCT (1.7 mSv) and FPCT 20 s (3.4 mSv). Contrast-to-noise ratios (CNRs) were significantly (p < 0.05) higher in FPCT 20-s versus 5-s protocols. Inter-reader agreements of qualitative ratings ranged between κ = 0.47-1.0. Sensitivities for cartilage and rotator cuff pathologies were low for FPCT 5-s (40 % and 20 %) and moderate for FPCT 20-s protocols (75 % and 73 %). FPCT showed high sensitivity (81-86 % and 89-99 %) for bone and acromioclavicular-joint pathologies. Using a 5-s protocol FPCT shoulder arthrography provides lower radiation dose compared to MDCT but poor sensitivity for cartilage and rotator cuff pathologies. FPCT 20-s protocol is moderately sensitive for cartilage and rotator cuff tendon pathology with markedly higher radiation dose compared to MDCT. (orig.)

  19. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  20. Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications

    International Nuclear Information System (INIS)

    Son, Dang Ngoc; Van Duy, Nguyen; Jung, Sungwook; Yi, Junsin

    2010-01-01

    Nonvolatile memory (NVM) devices with a nitride–nitride–oxynitride stack structure on a rough poly-silicon (poly-Si) surface were fabricated using a low-temperature poly-Si (LTPS) thin film transistor technology on glass substrates for application of flat panel display (FPD). The plasma-assisted oxidation/nitridation method is used to form a uniform oxynitride with an ultrathin tunneling layer on a rough LTPS surface. The NVMs, using a Si-rich silicon nitride film as a charge-trapping layer, were proposed as one of the solutions for the improvement of device performance such as the program/erase speed, the memory window and the charge retention characteristics. To further improve the vertical scaling and charge retention characteristics of NVM devices, the high-κ high-density N-rich SiN x films are used as a blocking layer. The fabricated NVM devices have outstanding electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low subthreshold swing, a low operating voltage of less than ±9 V and a large memory window of 3.7 V, which remained about 1.9 V over a period of 10 years. These characteristics are suitable for electrical switching and data storage with in FPD application

  1. Digital chest radiography with an amorphous silicon flat-panel-detector versus a storage-phosphor system: comparison of soft-copy images

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Im, Jung Gi; Goo, Jin Mo; Lee, Chang Hyun

    2006-01-01

    We compared the soft-copy images produced by an amorphous silicon flat-panel-detector system with the images produced by a storage-phosphor radiography system for their ability to visualize anatomic regions of the chest. Two chest radiologists independently analyzed 234 posteroanterior chest radiographs obtained from 78 patients on high-resolution liquid crystal display monitors (2560 x 2048 x 8 bits). In each patient, one radiograph was obtained with a storage-phosphor system, and two radiographs were obtained via amorphous silicon flat-panel-detector radiography with and without spatial frequency filtering. After randomizing the 234 images, the interpreters rated the visibility and radiographic quality of 11 different anatomic regions. Each image was ranked on a five-point scale (1 = not visualized, 2 = poor visualization, 3 = fair visualization, 4 = good visualization, and 5 = excellent visualization). The statistical difference between each system was determined using the Wilcoxon's signed rank test. The visibility of three anatomic regions (hilum, heart border and ribs), as determined by the chest radiologist with 14 years experience (ρ < 0.05) and the visibility of the thoracic spine, as determined by the chest radiologist with 8 years experience (ρ = 0.036), on the amorphous silicon flat-panel-detector radiography prior to spatial frequency filtering were significantly superior to that on the storage-phosphor radiography. The visibility of 11 anatomic regions, as determined by the chest radiologist with 14 years experience (ρ < 0.0001) and the visibility of five anatomic regions (unobscured lung, rib, proximal airway, thoracic spine and overall appearance), as determined by the chest radiologist with 8 years experience (ρ < 0.05), on the amorphous silicon flat-panel-detector radiography after spatial frequency filtering were significantly superior to that on the storage-phosphor radiography. The amorphous silicon flat-panel-detector system depicted the

  2. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    Science.gov (United States)

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  3. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi [Shimadzu Corporation, Medical Systems Division, Research and Development, Kyoto (JP)] [and others

    2003-06-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  4. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    Science.gov (United States)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  5. Digital radiography with a large-scale electronic flat-panel detector vs screen-film radiography: observer preference in clinical skeletal diagnostics

    International Nuclear Information System (INIS)

    Hamers, S.; Freyschmidt, J.; Neitzel, U.

    2001-01-01

    The imaging performance of a recently developed digital flat-panel detector system was compared with conventional screen-film imaging in an observer preference study. In total, 34 image pairs of various regions of the skeleton were obtained in 24 patients; 30 image pairs were included in the study. The conventional images were acquired with 250- and 400-speed screen-film combinations, using the standard technique of our department. Within hours, the digital images were obtained using identical exposure parameters. The digital system employed a large-area (43 x 43 cm) flat-panel detector based on amorphous silicon (Trixell Pixium 4600), integrated in a Bucky table. Six radiologists independently evaluated the image pairs with respect to image latitude, soft tissue rendition, rendition of the periosteal and enosteal border of cortical bone, rendition of cancellous bone and the visibility of potentially present pathological changes, using a subjective five-point scale. The digital images were rated significantly (p=0.001) better than the screen-film images with respect to soft tissue rendition and image latitude. Also the rendition of the cancellous bone and the periosteal and enosteal border of the cortical bone was rated significantly (p=0.05) better for the flat-panel detector. The visibility of pathological lesions was equivalent; only large-area sclerotic lesions (n=2) were seen superiorly on screen-film images. The new digital flat-panel detector based on amorphous silicon appears to be at least equivalent to conventional screen-film combinations for skeletal examinations, and in most respects even superior. (orig.)

  6. A performance comparison of flat-panel imager-based MV and kV cone-beam CT

    International Nuclear Information System (INIS)

    Groh, B.A.; Siewerdsen, J.H.; Drake, D.G.; Wong, J.W.; Jaffray, D.A.

    2002-01-01

    The use of cone-beam computed tomography (CBCT) has been proposed for guiding the delivery of radiation therapy, and investigators have examined the use of both kilovoltage (kV) and megavoltage (MV) x-ray beams in the development of such CBCT systems. In this paper, the inherent contrast and signal-to-noise ratio (SNR) performance for a variety of existing and hypothetical detectors for CBCT are investigated analytically as a function of imaging dose and object size. Theoretical predictions are compared to the results of experimental investigations employing large-area flat-panel imagers (FPIs) at kV and MV energies. Measurements were performed on two different FPI-based CBCT systems: a bench-top prototype incorporating an FPI and kV x-ray source (100 kVp x rays), and a system incorporating an FPI mounted on the gantry of a medical linear accelerator (6 MV x rays). The SNR in volume reconstructions was measured as a function of dose and found to agree reasonably with theoretical predictions. These results confirm the theoretically predicted advantages of employing kV energy x rays in imaging soft-tissue structures found in the human body. While MV CBCT may provide a valuable means of correcting 3D setup errors and may offer an advantage in terms of simplicity of mechanical integration with a linear accelerator (e.g., implementation in place of a portal imager), kV CBCT offers significant performance advantages in terms of image contrast and SNR per unit dose for visualization of soft-tissue structures. The relatively poor SNR performance at MV energies is primarily a result of the low x-ray quantum efficiencies (∼a few percent or less) that are currently achieved with FPIs at high energies. Furthermore, kV CBCT with an FPI offers the potential of combined volumetric and radiographic/fluoroscopic imaging using the same device

  7. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    International Nuclear Information System (INIS)

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  8. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    International Nuclear Information System (INIS)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik; Park, Kun Woo; Yeom, Jin S.

    2011-01-01

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  9. Percutaneous sacroplasty with the use of C-arm flat-panel detector CT: technical feasibility and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Eun; Lee, Joon Woo; Kim, Joo Hyung; Kang, Heung Sik [Seoul National University Bundang Hospital, Department of Radiology, Gyeonggi-do (Korea, Republic of); Park, Kun Woo; Yeom, Jin S. [Seoul National University Bundang Hospital, Department of Orthopaedic Surgery, Gyeonggi-do (Korea, Republic of)

    2011-04-15

    Sacroplasty for sacral insufficiency fractures (SIFs) has been performed mostly under computed tomography (CT) or fluoroscopy guidance. The purposes of this study are to describe technical tips and clinical outcomes of sacroplasty under C-arm flat panel detector CT (C-arm CT) guidance, and to compare the cement distributions shown on C-arm CT with those on multi-detector CT (MDCT). This study consisted of patients who underwent sacroplasty for SIF using C-arm CT from May 2006 to May 2009. Technical success was assessed in terms of cement filling and leakage. Clinical outcome was assessed at short-term (less than 1 month) and long-term (more than 1 month) follow-up using a four-grade patient satisfaction scale: poor, fair, good, and excellent. After sacroplasty, all patients underwent MDCT and three radiologists compared MDCT images with C-arm CT images in consensus, focusing on the cement distribution and cement leakage. Sacroplasties were performed on both sacral alae in all 8 patients (male:female = 2:6, mean age = 76.9, range = 63-82). The technical success rate was 100%. At short-term follow up, 6 patients (87.5%) reported significant improvement. Five patients (62.5%) were available for long-term follow-up and all 5 patients reported a reduced pain and an improved ability to ambulate. Using MDCT as the standard of reference, the cement distribution was visualized equally well by C-arm CT. Sacroplasty under C-arm CT showed excellent technical success and good clinical outcome. There was an excellent correlation between C-arm CT and MDCT in evaluating cement distribution and cement leakage. (orig.)

  10. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  11. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  12. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  13. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    International Nuclear Information System (INIS)

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-01-01

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality

  14. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  15. Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT

    International Nuclear Information System (INIS)

    Doelken, M.; Struffert, T.; Richter, G.; Engelhorn, T.; Doerfler, A.; Nimsky, C.; Ganslandt, O.; Hammen, T.

    2008-01-01

    The aim of this study was to compare flat-panel volumetric CT (VCT) to conventional CT (cCT) in the visualization of the extent of subarachnoid hemorrhage (SAH) and the width of the ventricles in patients with acute SAH. Included in the study were 22 patients with an acutely ruptured cerebral aneurysm who received VCT during coil embolization. VCT image quality, the extent of SAH (using a modified Fisher score and total slice number with SAH visible) and the width of the ventricles (Evans index) were evaluated by two experienced neuroradiologists (RAD1 and RAD2) and compared to the findings on cCT. Ten patients undergoing VCT for reasons other than SAH served as negative controls. Interobserver agreement in rating image quality was excellent for cCT (Kendall W value 0.94) and good for VCT (0.74). SAH was identified by RAD1 and RAD2 on VCT images in all patients. The modified Fisher scores underestimated the extent of SAH on VCT images in comparison with cCT images. Pearson's correlation coefficient (r) regarding the number of image slices with SAH visible on cCT images compared with the number on VCT images was 0.85 for RAD1 and 0.84 for RAD2. The r value for the degree of interobserver agreement for the number of slices with SAH visible was 0.99 for cCT, and 0.95 for VCT images (n 19), respectively. The width of the ventricles measured in terms of the Evans Index showed excellent concordance between the modalities (r = 0.81 vs. 0.82). Our preliminary results indicate that VCT is helpful in evaluating SAH in the angiography suite. Additionally, reliable evaluation of ventricle width is feasible. However, there are limitations with regard to the visibility of SAH on VCT images in comparison to cCT images. (orig.)

  16. A new system for fully automatic inspection of digital flat-panel detector radiographs of aluminium castings

    International Nuclear Information System (INIS)

    Fuchs, T.; Hassler, U.; Huetten, U.; Wenzel, T.

    2006-01-01

    The aim of our work was the integration of various newly-developed methods into a system for fully automatic radioscopic inspection of arbitrary casting parts. Using a 16-bit flat-panel detector, projections in arbitrary directions through the part are acquired and analysed. The software tool for inspection can be separated into five stages: registration, calibration, image processing, fault segmentation, and quality assessment. Thereby, each step is realized with full 16-bit data processing. Within the first processing stage, information about the physical length and density of the aluminium structures is extracted from the primary projections. Next, the primary image is registered with a reference image, which was acquired previously. Afterwards, the third stage combines both reference image-based and reference-less testing. A filter is applied, which adapts automatically to the local object structure by referring to the properties of the reference. Thereby, the self-adapting filter selects its size, direction and filter method optimally according to the local situation. Similar to the reference-less procedure, a subtraction is followed by a threshold operation, resulting in a map of regions that are suspected to be faulty. The fourth step aims at an elimination of false-positive detections. Again, two methods are applied successively: evaluation of local image features at suspicious positions and a classification based on teachings independent of position and orientation of the faults. Within the last step the quality criteria are applied. These criteria may concern fault size and depth, the density of faults in critical regions and a minimum distance between two or more faults. (orig.)

  17. Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin.

    Science.gov (United States)

    Hong, Soo Yeong; Lee, Yong Hui; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Yun, Junyeong; You, Ilhwan; Zi, Goangseup; Ha, Jeong Sook

    2016-02-03

    A stretchable polyaniline nanofiber temperature sensor array with an active matrix consisting of single-walled carbon nanotube thin-film transistors is demonstrated. The integrated temperature sensor array gives mechanical stability under biaxial stretching of 30%, and the resultant spatial temperature mapping does not show any mechanical or electrical degradation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation the image obtained from X-ray flat-panel detectors utilizing a polycrystalline CdZnTe film as the conversion layer

    International Nuclear Information System (INIS)

    Tokuda, S.; Kishihara, H.; Kaino, M.; Sato, T.

    2006-01-01

    We can expect that fluoroscopic images with a high sensitivity and excellent detective efficiency can be obtained by using a semiconductor with a small W factor for the conversion layer of X-ray flat-panel detectors, which have experienced a rapid gain inpopularity for medical and non-destructive industrial inspection uses in recent years. We believe that polycrystalline CdZnTe film formed by the closed spaced sublimation (CSS) method is a promising conversion material for next-generation high efficiency X-ray flat-panel detectors, and have previously reported the results of feasibility studies. In this paper, we present an overview of X-ray flat-panel detectors and the features of CdZnTe film, then we describe the CSS method of deposition and evaluation of the physical characteristics of CdZnTe film, and finally we present the results of our fabrication and testing of proto-type detectors utilizing CdZnTe film. (author)

  19. Flat-Panel Computed Tomography (DYNA-CT) in Neuroradiology. From High-Resolution Imaging of Implants to One-Stop-Shopping for Acute Stroke.

    Science.gov (United States)

    Doerfler, A; Gölitz, P; Engelhorn, T; Kloska, S; Struffert, T

    2015-10-01

    Originally aimed at improving standard radiography by providing higher absorption efficiency and a wider dynamic range, flat-panel detector technology has meanwhile got widely accepted in the neuroradiological community. Especially flat-panel detector computed tomography (FD-CT) using rotational C-arm mounted flat-panel detector technology is capable of volumetric imaging with a high spatial resolution. By providing CT-like images of the brain within the angio suite, FD-CT is able to rapidly visualize hemorrhage and may thus improve complication management without the need of patient transfer. As "Angiographic CT" FD-CT may be helpful during many diagnostic and neurointerventional procedures and for noninvasive monitoring and follow-up. In addition, spinal interventions and high-resolution imaging of the temporal bone might also benefit from FD-CT. Finally, using novel dynamic perfusion and angiographic protocols, FD-CT may provide functional information on brain perfusion and vasculature with the potential to replace standard imaging in selected acute stroke patients.

  20. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  1. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  2. Matrix phased array (MPA) imaging technology for resistance spot welds

    Science.gov (United States)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  3. Matrix phased array (MPA) imaging technology for resistance spot welds

    International Nuclear Information System (INIS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-01-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed

  4. Piezo-Phototronic Matrix via a Nanowire Array.

    Science.gov (United States)

    Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2017-12-01

    Piezoelectric semiconductors, such as ZnO and GaN, demonstrate multiproperty coupling effects toward various aspects of mechanical, electrical, and optical excitation. In particular, the three-way coupling among semiconducting, photoexcitation, and piezoelectric characteristics in wurtzite-structured semiconductors is established as a new field, which was first coined as piezo-phototronics by Wang in 2010. The piezo-phototronic effect can controllably modulate the charge-carrier generation, separation, transport, and/or recombination in optical-electronic processes by modifying the band structure at the metal-semiconductor or semiconductor-semiconductor heterojunction/interface. Here, the progress made in using the piezo-phototronic effect for enhancing photodetectors, pressure sensors, light-emitting diodes, and solar cells is reviewed. In comparison with previous works on a single piezoelectric semiconducting nanowire, piezo-phototronic nanodevices built using nanowire arrays provide a promising platform for fabricating integrated optoelectronics with the realization of high-spatial-resolution imaging and fast responsivity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  6. Quantitative image quality evaluation of pixel-binning in a flat-panel detector for x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Srinivas, Yogesh; Wilson, David L.

    2004-01-01

    X-ray fluoroscopy places stringent design requirements on new flat-panel (FP) detectors, requiring both low-noise electronics and high data transfer rates. Pixel-binning, wherein data from more that one detector pixel are collected simultaneously, not only lowers the data transfer rate but also increases x-ray counts and pixel signal-to-noise ratio (SNR). In this study, we quantitatively assessed image quality of image sequences from four acquisition methods; no-binning and three types of binning; in synthetic images using a clinically relevant task of detecting an extended guidewire in a four-alternative forced-choice paradigm. Binning methods were conventional data-line (D) and gate-line (G) binning, and a novel method in which alternate frames in an image sequence used D and G binning. Two detector orientations placed the data lines either parallel or perpendicular to the guide wire. At a low exposure of 0.6 μR (1.548x10 -10 C/kg) per frame, irrespective of detector orientation, D binning with its reduced electronic noise was significantly (p -10 C/kg) per frame, with data lines parallel to the guidewire, detection with D binning was significantly (p<0.1) better than G binning. However, with data lines perpendicular to the guidewire, G binning was significantly (p<0.1) better than D binning because the partial area effect was reduced. Alternate binning was the best binning method when results were averaged over both orientations, and it was as good as the best binning method at either orientation. In addition, at low and high exposures, alternate binning gave a temporally fused image with a smooth guidewire, an important image quality feature not assessed in a detection experiment. While at high exposure, detection with no binning was as good, or better, than the best binning method, it might be impractical at fluoroscopy imaging rates. A computational observer model based on signal detection theory successfully fit data and was used to predict effects of

  7. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    International Nuclear Information System (INIS)

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-01-01

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  8. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve

  9. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    International Nuclear Information System (INIS)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm 2 and the total size of the detector head is 47.8 × 46.3 mm 2 . Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can

  10. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    Science.gov (United States)

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  11. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    Science.gov (United States)

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  12. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  13. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    International Nuclear Information System (INIS)

    Zbijewski, W.; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  14. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.; Mauerhofer, E. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Engels, R.; Kemmerling, G. [Central Institute for Engineering, Electronics and Analytics - Electronic Systems, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Frank, M. [MATHCCES - Department of Mathematics, RWTH Aachen University, 52062 Aachen (Germany); Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T. [Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 52062 Aachen (Germany); Schitthelm, O. [Corporate Technology, Siemens AG, 91058 Erlangen (Germany)

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  15. Direct closed-form covariance matrix and finite alphabet constant-envelope waveforms for planar array beampatterns

    KAUST Repository

    Ahmed, Sajid

    2016-11-24

    Various examples of methods and systems are provided for direct closed-form finite alphabet constant-envelope waveforms for planar array beampatterns. In one example, a method includes defining a waveform covariance matrix based at least in part upon a two-dimensional fast Fourier transform (2D-FFT) analysis of a frequency domain matrix Hf associated with a planar array of antennas. Symbols can be encoded based upon the waveform covariance matrix and the encoded symbols can be transmitted via the planar array of antennas. In another embodiment, a system comprises an N x M planar array of antennas and transmission circuitry configured to transmit symbols via a two-dimensional waveform beampattern defined based at least in part upon a 2D-FFT analysis of a frequency domain matrix Hf associated with the planar array of antennas.

  16. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment.

    Science.gov (United States)

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-08-01

    Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. The Usefulness of Three-Dimensional Angiography with a Flat Panel Detector of Direct Conversion Type in a Transcatheter Arterial Chemoembolization Procedure for Hepatocellular Carcinoma: Initial Experience

    International Nuclear Information System (INIS)

    Kakeda, Shingo; Korogi, Yukunori; Hatakeyama, Yoshihisa; Ohnari, Norihiro; Oda, Nobuhiro; Nishino, Kazuyoshi; Miyamoto, Wataru

    2008-01-01

    The purpose of this study was to assess the usefulness of a three-dimensional (3D) angiography system using a flat panel detector of direct conversion type in treatments with subsegmental transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). Thirty-six consecutive patients who underwent hepatic angiography were prospectively examined. First, two radiologists evaluated the degree of visualization of the peripheral branches of the hepatic arteries on 3D digital subtraction angiography (DSA). Then the radiologists evaluated the visualization of tumor staining and feeding arteries in 25 patients (30 HCCs) who underwent subsegmental TACE. The two radiologists who performed the TACE assessed whether the additional information provided by 3D DSA was useful for treatments. In 34 (94.4%) of 36 patients, the subsegmental branches of the hepatic arteries were sufficiently visualized. The feeding arteries of HCCs were sufficiently visualized in 28 (93%) of 30 HCCs, whereas tumor stains were sufficiently visualized in 18 (60%). Maximum intensity projection images were significantly superior to volume recording images for visualization of the tumor staining and feeding arteries of HCCs. In 27 (90%) of 30 HCCs, 3D DSA provided additional useful information for subsegmental TACE. The high-quality 3D DSA with flat panel detector angiography system provided a precise vascular road map, which was useful for performing subsegmental TACE .of HCCs

  18. TU-E-217BCD-06: Cone Beam Breast CT with a High Resolution Flat Panel Detector-Improvement of Calcification Visibility.

    Science.gov (United States)

    Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C

    2012-06-01

    To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.

  19. Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays.

    Science.gov (United States)

    Gunn, Nicholas M; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L

    2010-11-01

    The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, for example, progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent on the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence.

  20. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    Science.gov (United States)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  1. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.

    Science.gov (United States)

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C

    2013-10-01

    To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat

  2. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype

    International Nuclear Information System (INIS)

    Mei, X.; Pang, G.

    2005-01-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted

  3. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    DEFF Research Database (Denmark)

    Safafar, Hamed; Hass, Michael Z.; Møller, Per

    2016-01-01

    salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality...... of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scaleusing a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large...... after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark.The resulting biomass is a rich source of EPA and also a good...

  4. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris, E-mail: boris.schell@googlemail.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Heidenreich, Ralf, E-mail: ralf.heidenreich@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Heidenreich, Monika, E-mail: info@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Eichler, Katrin, E-mail: k.eichler@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Thalhammer, Axel, E-mail: axel.thalhammer@kgu.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Naeem, Naguib Nagy Naguib, E-mail: nagynnn@yahoo.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Vogl, Thomas Josef, E-mail: T.Vogl@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Zangos, Stefan, E-mail: Zangos@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)

    2012-12-15

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  5. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications.

    Science.gov (United States)

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-12-01

    To evaluate the radiation exposure for operating personnel associated with rotational flat-panel angiography and C-arm cone beam CT. Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8s/rotation, 20s/rotation and 5s/2 rotations), and 47 cm×18 cm (16s/2 rotations) and standard 2D angiography (10s, FOV 24 cm×18 cm). Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8s/rotation: 28.0 μSv, 20s/rotation: 79.3 μSv, 5s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20s/rotation). Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    International Nuclear Information System (INIS)

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-01-01

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  7. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn

    2017-03-31

    Highlights: • A thermo-enhanced field emission phenomenon was observed from dendritic ZnO nanowires under the temperature of 323–723 K. • Defect-assisted field emission mechanism was proposed and quantitative calculation fits well with the experiment results. • The mechanism was verified by the field emission from ZnO nanowires with different defect concentrations. • A diode X-ray source making use of thermo-enhanced field emission phenomenon was proposed for separate tuning of dose and energy. - Abstract: A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole–Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  8. Detection of Cement Leakage After Vertebroplasty with a Non-Flat-Panel Angio Unit Compared to Multidetector Computed Tomography - An Ex Vivo Study

    International Nuclear Information System (INIS)

    Baumann, Clemens; Fuchs, Heiko; Westphalen, Kerstin; Hierholzer, Johannes

    2008-01-01

    The purpose of this study was to investigate the detection of cement leakages after vertebroplasty using angiographic computed tomography (ACT) in a non-flat-panel angio unit compared to multidetector computed tomography (MDCT). Vertebroplasty was performed in 19 of 33 cadaver vertebrae (23 thoracic and 10 lumbar segments). In the angio suite, ACT (190 o ; 1.5 o per image) was performed to obtain volumetric data. Another volumetric data set of the specimen was obtained by MDCT using a standard algorithm. Nine multiplanar reconstructions in standardized axial, coronal, and sagittal planes of every vertebra were generated from both data sets. Images were evaluated on the basis of a nominal scale with 18 criteria, comprising osseous properties (e.g., integrity of the end plate) and cement distribution (e.g., presence of intraspinal cement). MDCT images were regarded as gold standard and analyzed by two readers in a consensus mode. Rotational acquisitions were analyzed by six blinded readers. Results were correlated with the gold standard using Cohen's κ-coefficient analysis. Furthermore, interobserver variability was calculated. Correlation with the gold standard ranged from no correlation (osseous margins of the neuroforamen, κ = 0.008) to intermediate (trace of vertebroplasty canula; κ = 0.615) for criteria referring to osseous morphology. However, there was an excellent correlation for those criteria referring to cement distribution, with κ values ranging from 0.948 (paravertebral cement distribution) to 0.972 (intraspinal cement distribution). With a minimum of κ = 0.768 ('good correlation') and a maximum of κ = 0.91 ('excellent'), interobserver variability was low. In conclusion, ACT in an angio suite without a flat-panel detector depicts a cement leakage after vertebroplasty as well as MDCT. However, the method does not provide sufficient depiction of osseous morphology.

  9. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field/R and D high performance flat panel display technology (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / koseino flat panel display gijutsu no sogo kaihatsu kenkyu (daiichi nendo ) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    One of the subjects in technology supporting the highly information-oriented society which will develop and diversify toward the 21st century is the construction of high grade man/machine interface. For it, high precision/high luminance/energy saving/thin plane displays are strongly requested. This R and D is to indicate models of systematical development in the region of element technology individually existing in the Shikoku area by forming a regional consortium in the industry/universities/government. Creation of new industries by gathering display related enterprises is a first step in a plan to realize `Display Island Shikoku.` As a concrete target, with the use of high-tech diamond semiconducting technology, a development is conducted of the high performance flat panel display using the negative electron affinity (NEA) electron emitter which drastically solves the problems such as luminance, visibility angle and response speed, the subjects on the commercialized liquid crystal flat panel display. 16 refs., 45 figs., 8 tabs.

  10. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: Preliminary phantom study

    International Nuclear Information System (INIS)

    Ning Ruola; Tang Xiangyang; Conover, David; Yu Rongfeng

    2003-01-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using

  11. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays.

    Science.gov (United States)

    Li, Jianfeng; Wang, Feng; Jiang, Defu

    2017-03-20

    A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  12. Additive model for thermal comfort generated by matrix experiment using orthogonal array

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Reuy-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-shin Road, Taichung 404 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-hua Road, Huwei, Yunlin 632 (China); Liang, Han-Hsi [Department of Architecture, National United University, No. 1, Lien Da, Kung-Ching Li, Miaoli 360 (China); Yang, Kuan-Hsiug; Yeh, Tsung-Chyn [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yet-Sen University, No. 91, Lien-hai Road, Kaohsiung (China)

    2009-08-15

    In addition to ensuring the thermal comfort of occupants, monitoring and controlling indoor thermal environments can reduce the energy consumed by air conditioning systems. This study develops an additive model for predicting thermal comfort with rapid and simple arithmetic calculations. The advantage of the additive model is its comprehensibility to administrators of air conditioning systems, who are unfamiliar with the PMV-PPD model but want to adjust an indoor environment to save energy without generating complaints of discomfort from occupants. In order to generate the additive model, a laboratory chamber experiment based on matrix experiment using orthogonal array, was performed. By applying the analysis of variance on observed thermal sensation votes and percentage of dissatisfaction, the factor effects of environmental variables that account for the additive model were determined. Additionally, the applicability of the PMV-PPD model in hot and humid climates is discussed in this study, based on experimental results. (author)

  13. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays

    Directory of Open Access Journals (Sweden)

    Jianfeng Li

    2017-03-01

    Full Text Available A fast direction of arrival (DOA estimation method using a real-valued cross-correlation matrix (CCM of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS method and estimation of signal parameter via rotational invariance (ESPRIT based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  14. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    Science.gov (United States)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  16. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  17. Flat-Panel Detector—Based Volume Computed Tomography: A Novel 3D Imaging Technique to Monitor Osteolytic Bone Lesions in a Mouse Tumor Metastasis Model

    Directory of Open Access Journals (Sweden)

    Jeannine Missbach-Guentner

    2007-09-01

    Full Text Available Skeletal metastasis is an important cause of mortality in patients with breast cancer. Hence, animal models, in combination with various imaging techniques, are in high demand for preclinical assessment of novel therapies. We evaluated the applicability of flat-panel volume computed tomography (fpVCT to noninvasive detection of osteolytic bone metastases that develop in severe immunodeficient mice after intracardial injection of MDA-MB-231 breast cancer cells. A single fpVCT scan at 200-wm isotropic resolution was employed to detect osteolysis within the entire skeleton. Osteolytic lesions identified by fpVCT correlated with Faxitron X-ray analysis and were subsequently confirmed by histopathological examination. Isotropic three-dimensional image data sets obtained by fpVCT were the basis for the precise visualization of the extent of the lesion within the cortical bone and for the measurement of bone loss. Furthermore, fpVCT imaging allows continuous monitoring of growth kinetics for each metastatic site and visualization of lesions in more complex regions of the skeleton, such as the skull. Our findings suggest that fpVCT is a powerful tool that can be used to monitor the occurrence and progression of osteolytic lesions in vivo and can be further developed to monitor responses to antimetastatic therapies over the course of the disease.

  18. Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination

    Directory of Open Access Journals (Sweden)

    Sutisna

    2017-07-01

    Full Text Available The purpose of this work is to design a prototype of a flat-panel (FP photoreactor for wastewater treatment via solar illumination using TiO2 nano-photocatalysts. The TiO2 nanoparticles are initially coated on transparent plastic granules to avoid the difficulties associated with the recovery of nanoparticles after completing the treatment process. The coated granules were distributed in the space inside the reactor panel. The upper cover of the reactor is a transparent material that allows light penetration to activate the catalyst. Wastewater is circulated into the spaces between the coated granules. When exposed to solar illumination, photocatalytic reactions occur on nearly the entire surface of the coated granules. To test the reactor viability, we used technical grade TiO2 (for affordability and a solution of Methylene Blue (MB as a sample of wastewater. The photoreactor was tested for treating 30 L of MB solution with an initial concentration of 25 mg L−1. We observed that the reactor was able to degrade more than 98% of the MB in the solution after 48 h of solar illumination. The performance of the FP photoreactor was also improved by arranging several reactor panels in series. Using four panels, we observed that the complete decomposition of the same MB solution can be achieved within 10 h. The proposed FP photoreactor is a very promising alternative for use in decomposing recalcitrant organic pollutants in wastewater.

  19. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.

    Science.gov (United States)

    Alves, Frauke; Dullin, Christian; Napp, Joanna; Missbach-Guentner, Jeannine; Jannasch, Katharina; Mathejczyk, Julia; Pardo, Luis A; Stühmer, Walter; Tietze, Lutz-F

    2009-05-01

    Conventional chemotherapy of cancer has its limitations, especially in advanced and disseminated disease and suffers from lack of specificity. This results in a poor therapeutic index and considerable toxicity to normal organs. Therefore, many efforts are made to develop novel therapeutic tools against cancer with the aim of selectively targeting the drug to the tumour site. Drug delivery strategies fundamentally rely on the identification of good-quality biomarkers, allowing unequivocal discrimination between cancer and healthy tissue. At present, antibodies or antibody fragments have clearly proven their value as carrier molecules specific for a tumour-associated molecular marker. This present review draws attention to the use of near-infrared fluorescence (NIRF) imaging to investigate binding specificity and kinetics of carrier molecules such as monoclonal antibodies. In addition, flat-panel volume computed tomography (fpVCT) will be presented to monitor anatomical structures in tumour mouse models over time in a non-invasive manner. Each imaging device sheds light on a different aspect; functional imaging is applied to optimise the dose schedule and the concept of selective tumour therapies, whereas anatomical imaging assesses preclinically the efficacy of novel tumour therapies. Both imaging techniques in combination allow the visualisation of functional information obtained by NIRF imaging within an adequate anatomic framework.

  20. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    International Nuclear Information System (INIS)

    Wagner, Marlies; Kyriakou, Yiannis; Mesnil de Rochemont, Richard du; Singer, Oliver C.; Berkefeld, Joachim

    2013-01-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy

  1. Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada

    Science.gov (United States)

    Klumpp, Allan R.; Kwong, David D.

    1986-01-01

    The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.

  2. Quantitative comparison using Generalized Relative Object Detectability (G-ROD) metrics of an amorphous selenium detector with high resolution Microangiographic Fluoroscopes (MAF) and standard flat panel detectors (FPD).

    Science.gov (United States)

    Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S

    2016-02-27

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  3. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    Science.gov (United States)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  4. Usefulness of DICOM headers in the analysis of two biplane X-ray systems setting (image intensifier and flat panel) used in pediatric interventional cardiology in Chile

    International Nuclear Information System (INIS)

    Ubeda, C.; Vergara, F.

    2009-01-01

    The setting of two biplane X ray systems were evaluated (image intensifier (II) and flat panel (PP)), through DICOM tags from 32 images created during the characterization of both systems. The technical parameters adjusted for systems were: 63,8 to 80,0 kV and 15,0 to 388,0 mA, for the system with II and 52,0 to 77,0 kV and 25,0 to 476,0 mA, for the system with PP detector. Both equipment presented a different mA adjustment, when moving from fluoroscopy modes low dose (FL), medium dose (FM) and high dose (FH) to cine mode (CI). Two dosimetric quantities were evaluated, the first one was the dose-area product (DAP) which gave as a result for FB mode, between 0,03 to 0,35 uGycm 2 /image (II) and from 0,05 a 0,69 uGycm 2 /image (PP), when the polymethyl methacrylate (PMMA) thickness was incremented from 4 to 16 cm. In cine mode the DAP quantity showed, percentage values from 24 to -1 % for the same PMMA increment. Skin cumulative dose was the second quantity evaluated and showed an increment of incident air kerma (KAI)/image in factors from 17 to 35 (II) and 15 to 28 (PP) when used in CI mode instead of FB mode, to the different PMMA thicknesses used. This dose increment for CI mode must be considered by cardiologists, to use the fluoroscopic run as an alternative to document part of the procedures when there is no need to use a high quality image (author)

  5. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: a truly hybrid x-ray/MR imaging system.

    Science.gov (United States)

    Fahrig, R; Wen, Z; Ganguly, A; DeCrescenzo, G; Rowlands, J A; Stevens, G M; Saunders, R F; Pelc, N J

    2005-06-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation.

  6. Detection of small pulmonary nodules on chest radiographs: efficacy of dual-energy subtraction technique using flat-panel detector chest radiography

    International Nuclear Information System (INIS)

    Oda, S.; Awai, K.; Funama, Y.; Utsunomiya, D.; Yanaga, Y.; Kawanaka, K.; Nakaura, T.; Hirai, T.; Murakami, R.; Nomori, H.; Yamashita, Y.

    2010-01-01

    Aim: To investigate the effect of a double-exposure dual-energy subtraction (DES) technique on the diagnostic performance of radiologists detecting small pulmonary nodules on flat-panel detector (FPD) chest radiographs. Materials and methods: Using FPD radiography 41 sets of chest radiographs were obtained from 26 patients with pulmonary nodules measuring ≤20 mm and from 15 normal participants. Each dataset included standard and corresponding DES images. There were six non-solid, 10 part-solid, and 10 solid nodules. The mean size of the 26 nodules was 15 ± 4.8 mm. Receiver operating characteristic (ROC) analysis was performed to compare the performance of the eight board-certified radiologists. Results: For the eight radiologists, the mean value of the area under the ROC curve (AUC) without and with DES images was 0.62 ± 0.05 and 0.68 ± 0.05, respectively; the difference was statistically significant (p = 0.02). For part-solid nodules, the difference of the mean AUC value was statistically significant (AUC = 0.61 ± 0.07 versus 0.69 ± 0.05; p < 0.01); for non-solid nodules it was not (AUC = 0.62 ± 0.1 versus 0.61 ± 0.09; p = 0.73), and for solid nodules it was not (AUC = 0.75 ± 0.1 versus 0.78 ± 0.08; p = 0.23). For nodules with overlapping bone shadows, the difference of the mean AUC value was statistically significant (p = 0.03), for nodules without overlapping, it was not (p = 0.26). Conclusion: Use of a double-exposure DES technique at FPD chest radiography significantly improved the diagnostic performance of radiologists to detect small pulmonary nodules.

  7. Comparison of Radiation Exposure during Endovascular Treatment of Peripheral Arterial Disease with Flat-Panel Detectors on Mobile C-arm versus Fixed Systems.

    Science.gov (United States)

    Guillou, Marie; Maurel, Blandine; Necib, Hatem; Vent, Pierre-Alexandre; Costargent, Alain; Chaillou, Philippe; Gouëffic, Yann; Kaladji, Adrien

    2018-02-01

    Flat-panel detectors on mobile C-arm (MC-arm) systems are currently challenging fixed C-arm (FC-arm) systems used in hybrid operating rooms. MC-arm systems offer an alternative to FC-arm systems in the endovascular treatment of peripheral arterial disease (PAD) but their efficiency has not been evaluated comparatively. Two series of patients undergoing arteriography with intention to treat were included. Each series consisted of 2 nonrandomized groups: an MC-arm group and an FC-arm group. Series 1 evaluated exposure to the patient (MC-arm, n = 113; FC-arm, n = 206) while series 2 evaluated exposure to patients and also health care personnel (MC-arm, n = 24; FC-arm, n = 76). The primary end points for evaluating exposure were air kerma (AK, in mGy) for patients and effective dose for health care personnel (in μSv). After adjustment for the effect of body mass index (analysis of covariance test), AK was found to be lower in the MC-arm group than in the FC-arm group (124.1 ± 142 vs. 173.3 ± 248.7, P = 0.025). There was no difference between the groups with regard to effective dose recorded for senior surgeons or for operating room nurses. However, a higher effective dose was recorded by the MC-arm group external dosimeter for the trainee resident and for nurse anesthetists. In endovascular treatment of lower limb PAD, use of an FC-arm system is associated with more radiation exposure to the patient than an MC-arm system. However, this type of imaging system does not appear to affect exposure to health care personnel. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-07-01

    Full Text Available Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA. Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids, tocopherols and carotenoids for potential use in aquaculture feed industry.

  9. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Rie; Ichikawa, Katsuhiro; Sanada, Sigeru; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Minohara, Shinichi; Kawashima, Hiroki

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ±5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. (author)

  10. Performance of a static-anode/flat-panel x-ray fluoroscopy system in a diagnostic strength magnetic field: A truly hybrid x-ray/MR imaging system

    International Nuclear Information System (INIS)

    Fahrig, R.; Wen, Z.; Ganguly, A.; DeCrescenzo, G.; Rowlands, J.A.; Stevens, G.M.; Saunders, R.F.; Pelc, N.J.

    2005-01-01

    Minimally invasive procedures are increasing in variety and frequency, facilitated by advances in imaging technology. Our hybrid imaging system (GE Apollo TM flat panel, custom Brand x-ray static anode x-ray tube, GE Lunar high-frequency power supply and 0.5 T Signa SP TM ) provides both x-ray and MR imaging capability to guide complex procedures without requiring motion of the patient between two distant gantries. The performance of the x-ray tube in this closely integrated system was evaluated by modeling and measuring both the response of the filament to an externally applied field and the behavior of the electron beam for field strengths and geometries of interest. The performance of the detector was assessed by measuring the slanted-edge modulation transfer function (MTF) and when placed at zero field and at 0.5 T. Measured resonant frequencies of filaments can be approximated using a modified vibrating beam model, and were at frequencies well below the 25 kHz frequency of our generator for our filament geometry. The amplitude of vibration was not sufficient to cause shorting of the filament during operation within the magnetic field. A simple model of electrons in uniform electric and magnetic fields can be used to estimate the deflection of the electron beam on the anode for the fields of interest between 0.2 and 0.5 T. The MTF measured at the detector and the DQE showed no significant difference inside and outside of the magnetic field. With the proper modifications, an x-ray system can be fully integrated with a MR system, with minimal loss of image quality. Any x-ray tube can be assessed for compatibility when placed at a particular location within the field using the models. We have also concluded that a-Si electronics are robust against magnetic fields. Detailed knowledge of the x-ray system installation is required to provide estimates of system operation

  11. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Davis, California, 95616 (United States)

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  12. Variation in X-ray dose quantity using an amorphous selenium based flat-panel detector - a study on the dose reduction rate up to the limit of diagnostical utilization

    International Nuclear Information System (INIS)

    Lehnert, T.; Wohlers, J.; Manegold, K.; Wetter, A.; Jacobi, V.; Mack, M.G.; Vogl, T.J.; Streng, W.

    2006-01-01

    Purpose: To evaluate the diagnostic quality and minimum required dose to obtain acceptable images for diagnostic purposes in the field of musculoskeletal radiology. Materials and methods: A critical comparison of the image quality produced by a novel flat panel detector and the conventional screen/film system using a contrast-detail phantom was performed in phase I. Images from both systems were obtained with the same dose and displayed with similar contrast and density. In phase II images of significant anatomical structures in cadaver extremities obtained using the digital detector system and the standard film/screen system were critically evaluated. After a successive reduction in the X-ray dose for 84 patients in phase III, eight independent radiologists compared the image quality of the screen/film system to that of the novel flat panel detector. Results: Phases I and II revealed a difference in the image quality achieved by the standard screen/film system and the digital detector system to the advantage of the digital detector system. In 77 of 84 patients (91.7%), phase III showed equal image quality after a 50% reduction in the X-ray dose. In 3 cases (3.6%) the image quality and the level of contrast were better. No unified statement could be made for 4 patients (4.7%). Conclusion: Digital imaging of skeletal disorders using the novel flat panel detector makes it possible to reduce the X-ray dose by 50% with equal or even better image quality. (orig.)

  13. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: Pre-clinical investigation in guidance of minimally invasive surgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Moseley, D.J.; Burch, S.; Bisland, S.K.; Bogaards, A.; Wilson, B.C.; Jaffray, D.A.

    2005-01-01

    A mobile isocentric C-arm (Siemens PowerMobil) has been modified in our laboratory to include a large area flat-panel detector (in place of the x-ray image intensifier), providing multi-mode fluoroscopy and cone-beam computed tomography (CT) imaging capability. This platform represents a promising technology for minimally invasive, image-guided surgical procedures where precision in the placement of interventional tools with respect to bony and soft-tissue structures is critical. The image quality and performance in surgical guidance was investigated in pre-clinical evaluation in image-guided spinal surgery. The control, acquisition, and reconstruction system are described. The reproducibility of geometric calibration, essential to achieving high three-dimensional (3D) image quality, is tested over extended time scales (7 months) and across a broad range in C-arm angulation (up to 45 deg.), quantifying the effect of improper calibration on spatial resolution, soft-tissue visibility, and image artifacts. Phantom studies were performed to investigate the precision of 3D localization (viz., fiber optic probes within a vertebral body) and effect of lateral projection truncation (limited field of view) on soft-tissue detectability in image reconstructions. Pre-clinical investigation was undertaken in a specific spinal procedure (photodynamic therapy of spinal metastases) in five animal subjects (pigs). In each procedure, placement of fiber optic catheters in two vertebrae (L1 and L2) was guided by fluoroscopy and cone-beam CT. Experience across five procedures is reported, focusing on 3D image quality, the effects of respiratory motion, limited field of view, reconstruction filter, and imaging dose. Overall, the intraoperative cone-beam CT images were sufficient for guidance of needles and catheters with respect to bony anatomy and improved surgical performance and confidence through 3D visualization and verification of transpedicular trajectories and tool placement

  14. SU-E-I-11: Cascaded Linear System Model for Columnar CsI Flat Panel Imagers with Depth Dependent Gain and Blur

    International Nuclear Information System (INIS)

    Peng, B; Lubinsky, A; Zheng, H; Zhao, W; Teymurazyan, A

    2014-01-01

    Purpose: To implement a depth dependent gain and blur cascaded linear system model (CLSM) for optimizing columnar structured CsI indirect conversion flat panel imager (FPI) for advanced imaging applications. Methods: For experimental validation, depth dependent escape efficiency, e(z), was extracted from PHS measurement of different CsI scintillators (thickness, substrate and light output). The inherent MTF and DQE of CsI was measured using high resolution CMOS sensor. For CLSM, e(z) and the depth dependent MTF(f,z), were estimated using Monte Carlo simulation (Geant4) of optical photon transport through columnar CsI. Previous work showed that Monte Carlo simulation for CsI was hindered by the non-ideality of its columnar structure. In the present work we allowed variation in columnar width with depth, and assumed diffusive reflective backing and columns. Monte Carlo simulation was performed using an optical point source placed at different depth of the CsI layer, from which MTF(z,f) and e(z) were computed. The resulting e(z) with excellent matching with experimental measurements were then applied to the CLSM, Monte Carlo simulation was repeated until the modeled MTF, DQE(f) also match experimental measurement. Results: For a 150 micron FOS HL type CsI, e(z) varies between 0.56 to 0.45, and the MTF at 14 cycles/mm varies between 62.1% to 3.9%, from the front to the back of the scintillator. The overall MTF and DQE(f) at all frequencies are in excellent agreement with experimental measurements at all frequencies. Conclusion: We have developed a CLSM for columnar CsI scintillators with depth dependent gain and MTF, which were estimated from Monte Carlo simulation with novel optical simulation settings. Preliminary results showed excellent agreement between simulation results and experimental measurements. Future work is aimed at extending this approach to optimize CsI screen optic design and sensor structure for achieving higher DQE(f) in cone-beam CT, which uses

  15. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  16. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    Science.gov (United States)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  17. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  18. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  19. Clinical evaluation of digital radiography based on a large-area cesium iodide-amorphous silicon flat-panel detector compared with screen-film radiography for skeletal system and abdomen

    International Nuclear Information System (INIS)

    Okamura, Terue; Tanaka, Saori; Koyama, Koichi; Norihumi, Nishida; Daikokuya, Hideo; Matsuoka, Toshiyuki; Yamada, Ryusaku; Kishimoto, Kenji; Hatagawa, Masakatsu; Kudoh, Hiroaki

    2002-01-01

    The aim of this clinical study was to compare the image quality of digital radiography using the new digital Bucky system based on a flat-panel detector with that of a conventional screen-film system for the skeletal structure and the abdomen. Fifty patients were examined using digital radiography with a flat-panel detector and screen-film systems, 25 for the skeletal structures and 25 for the abdomen. Six radiologists judged each paired image acquired under the same exposure parameters concerning three observation items for the bone and six items for the abdomen. Digital radiographic images for the bone were evaluated to be similar to screen-film images at the mean of 42.2%, to be superior at 50.2%, and to be inferior at 7.6%. Digital radiographic images for the abdomen were judged to be similar to screen-film images at the mean of 43.4%, superior at 52.4%, and inferior at 4.2%; thus, digital radiographic images were estimated to be either similar as or superior to screen-film images at over 92% for the bone and abdomen. On the statistical analysis, digital radiographic images were also judged to be preferred significantly in the most items for the bone and abdomen. In conclusion, the image quality of digital radiography with a flat-panel detector was superior to that of a screen-film system under the same exposure parameters, suggesting that dose reduction is possible with digital radiography. (orig.)

  20. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors.

    Science.gov (United States)

    Berbeco, Ross I; Jiang, Steve B; Sharp, Gregory C; Chen, George T; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-21

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  1. Comparison of dose and image quality of a Flat-panel detector and an image intensifier; Comparacao da dose e qualidade da imagem de um detector Flatpanel e um intensificador de imagem

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, M.; Friedrich, B.Q.; Luz, R.M. da; Silva, A.M.M. da, E-mail: marcos.lazzaro@acad.pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2016-07-01

    With the development of new technologies, have emerged new conversion methods of X-ray image, such as flat panel detectors. The aim of this work is the comparison of entrance surface air kerma (ESAK) and image quality between an image intensifier type of detector (A) and a flat panel (B). The ESAK was obtained by placing a ionization chamber under PMMA simulators of 10, 20 and 30 cm and the image quality was obtained by using the TOR {sup 18}FG simulator. The ESAK to the equipment A is higher when compared to the equipment B. The high contrast resolution is better for the equipment A for all thicknesses of simulators. The equipment A has low contrast resolution with a better viewing threshold for thicknesses of 10 and 20 cm, and a worse performance for 30 cm. It is concluded that the equipment B has ESAK smaller and despite having lower resolution, in almost all cases, have appropriate image quality for diagnosis. (author)

  2. Dose reduction of radiographs of the pediatric pelvis for diagnosing hip dysplasia using a digital flat-panel detector system; Dosisreduktion bei Roentgenaufnahmen des kindlichen Beckenskelettes zur Diagnostik der Hueftgelenksdysplasie unter Verwendung eines digitalen Flachdetektorsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, K.; Ahlers, K.; Kloska, S.; Vieth, V.; Meier, N.; Heindel, W. [Inst. fuer Klinische Radiologie, Westfaelische Wilhelms-Univ. Muenster (Germany); Sandmann, C.; Gosheger, G. [Orthopaedische Klinik, Westfaelische Wilhelms-Univ. Muenster (Germany)

    2003-01-01

    Purpose: To evaluate a possible dose reduction in pediatric pelvic radiographs in congenital hip dysplasia using a digital flat-panel system instead of a phosphor-storage system. Materials and Methods: During a six-month period, all pediatric patients referred for pelvic radiography for the evaluation of congenital hip dysplasia were randomely assigned to be examined by either a phosphor-storage system or a digital flat-panel system, whereby the latter system was operated with half the radiation dose. Thirty pairs of radiographs were assessed for the visibility of 16 anatomic details and for 5 orthopedic-radiographic measurements (5-point scale with 1 = excellent; three independent observers). The projection indices of Ball and Kommenda and of Toennis and Brunken were calculated for all radiographs. The Student's t-test was used to compare the flat-panel and the phosphor-storage radiographs for observers' assessments, patients' age and projection indices. Results: In a total of 7560 observations, the scores for the visibility of anatomic details and orthopedic-radiographic measurements were respectively 2.72 and 2.64 for the flat-panel system and 2.93 and 2.79 for the phosphor-storage system. No significant differences were found between both systems (p > 0.05) and between patient age and projection indices (p > 0.05). Conclusion: Pediatric pelvic radiographs can be obtained with a digital flat-panel system using half the radiation dose instead of a phosphor-storage system without sacrificing relevant information in the diagnosis of congenital hip dysplasia. (orig.) [German] Zielsetzung: Evaluation einer moeglichen Dosisreduktion bei kindlichen Beckenroentgenaufnahmen zur Diagnostik der Hueftgelenksdysplasie mit einem digitalen Flachdetektorsystem im Vergleich zu einem digitalen Speicherfoliensystem. Material und Methoden: Prospektiv wurden alle ueber einen Zeitraum von 6 Monaten zur Roentgenaufnahme des Beckenskelettes im Rahmen der Diagnostik der

  3. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  4. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  5. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  6. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  7. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Šmilauerová, J.; Harcuba, P.; Stráský, J.; Stráská, J.; Janeček, M.; Pospíšil, J.; Kužel, R.; Brunátová, T.; Holý, V.; Ilavský, J.

    2014-01-01

    Nanosized particles of ω phase in a β-Ti alloy were investigated by small-angle X-ray scattering using synchrotron radiation. We demonstrated that the particles are spontaneously weakly ordered in a three-dimensional cubic array along the 〈100〉-directions in the β-Ti matrix. The small-angle scattering data fit well to a three-dimensional short-range-order model; from the fit we determined the evolution of the mean particle size and mean distance between particles during ageing. The self-ordering of the particles is explained by elastic interaction between the particles, since the relative positions of the particles coincide with local minima of the interaction energy. We performed numerical Monte Carlo simulation of the particle ordering and we obtained a good agreement with the experimental data

  8. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  9. Comparison between radiation exposure levels using an image intensifier and a flat-panel detector-based system in image-guided central venous catheter placement in children weighing less than 10 kg

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Gerasia, Roberta; Maggio, Simona; Luca, Angelo [Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy); Piazza, Marcello [Department of Anesthesia, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy); Tuzzolino, Fabio [Department of Information Technology, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo (Italy)

    2014-09-10

    Ultrasound-guided central venous puncture and fluoroscopic guidance during central venous catheter (CVC) positioning optimizes technical success and lowers the complication rates in children, and is therefore considered standard practice. The purpose of this study was to compare the radiation exposure levels recorded during CVC placement in children weighing less than 10 kg in procedures performed using an image intensifier-based angiographic system (IIDS) to those performed in a flat-panel detector-based interventional suite (FPDS). A retrospective review of 96 image-guided CVC placements, between January 2008 and October 2013, in 49 children weighing less than 10 kg was performed. Mean age was 8.2 ± 4.4 months (range: 1-22 months). Mean weight was 7.1 ± 2.7 kg (range: 2.5-9.8 kg). The procedures were classified into two categories: non-tunneled and tunneled CVC placement. Thirty-five procedures were performed with the IIDS (21 non-tunneled CVC, 14 tunneled CVC); 61 procedures were performed with the FPDS (47 non-tunneled CVC, 14 tunneled CVC). For non-tunneled CVC, mean DAP was 113.5 ± 126.7 cGy cm{sup 2} with the IIDS and 15.9 ± 44.6 cGy . cm{sup 2} with the FPDS (P < 0.001). For tunneled CVC, mean DAP was 84.6 ± 81.2 cGy . cm{sup 2} with the IIDS and 37.1 ± 33.5 cGy cm{sup 2} with the FPDS (P = 0.02). The use of flat-panel angiographic equipment reduces radiation exposure in small children undergoing image-guided CVC placement. (orig.)

  10. A 194 kilowatt solar photovoltaic flat panel power system for the combined Beverly High School/C. H. Patten Vocational High School, Beverly, Massachusetts

    Science.gov (United States)

    Addiss, R. R., Jr.; Lawson, P. A.

    1980-06-01

    The design and performance of a photovoltaic power system is discussed. The 194 kW system consists of the photovoltaic array, the inverter/control subsystem, the building and utility interface, and the monitoring subsystem. The photovoltaic array consists of 56 separate subarrays of 112 photovoltaic modules each, deployed in rows on the southerly facing slope north of the school building. The wiring scheme permits individual modules to be disconnected without a radical change in subarray output current. Power is transmitted at 4160 V from the inverters and a step up transformer to the main 4160 V utility feed line in the school. Separate metering measures power bought and sold. At the optimum tilt angle of 40 deg, the array provides 232 MWH of AC energy annually, or 17 percent of the school load. The immediate impact is an $8000 saving in the annual utility bill. Levelized busbar energy costs are reduced from $2/kWH to $1/kWH when site specific parameters are used in the analysis instead of the JPL specified nominal values. A fault detection and isolation scheme which can find a single modulus failure is incorporated into the monitoring subsystem.

  11. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery.

    Science.gov (United States)

    Hwa, Kuo-Yuan; Chang, Vincent H S; Cheng, Yao-Yi; Wang, Yue-Da; Jan, Pey-Shynan; Subramani, Boopathi; Wu, Min-Ju; Wang, Bo-Kai

    2017-09-19

    Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the "all-in-one" fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.

  12. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    Science.gov (United States)

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  13. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    Science.gov (United States)

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  14. Objective assessment and design improvement of a staring, sparse transducer array by the spatial crosstalk matrix for 3D photoacoustic tomography.

    Directory of Open Access Journals (Sweden)

    Philip Wong

    Full Text Available Accurate reconstruction of 3D photoacoustic (PA images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT staring array system and analyze system performance using singular value decomposition (SVD. The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate. The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization.

  15. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT); Zerstoerungsfreie praeklinische Evaluation der Wurzelkanalanatomie menschlicher Zaehne mittels Flaechendetektor-Volumen-CT (FD-VCT)

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E. [Universitaetsklinikum Goettingen, Abt. Diagnostische Radiologie (Germany); Attin, T.; Hannig, C. [Universitaetsklinikum Goettingen, Abt. fuer Zahnerhaltung, Praeventive Zahnheilkunde und Paradontologie (Germany)

    2005-12-15

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 {mu}m. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  16. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  17. A study on 100 MeV O{sup 7+} irradiated SnO{sub 2}/Ag/SnO{sub 2} multilayer as transparent electrode for flat panel display application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vikas [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Singh, Satyavir, E-mail: satyavir84@gmail.com [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Road, New Delhi 110067 (India); Sachdev, Kanupriya [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017 India (India)

    2016-07-15

    The multilayer thin films of SnO{sub 2}/Ag/SnO{sub 2} were deposited using electron-beam and thermal evaporation for flat panel display application. The as-prepared SnO{sub 2}/Ag/SnO{sub 2} specimen was irradiated with 100 MeV O{sup 7+} ions by varying the fluences 1 × 10{sup 12} and 5 × 10{sup 12} ions/cm{sup 2}. The pristine and irradiated films were investigated using XRD, SEM, AFM and Raman to find out modification in the structure and surface morphology of the films. UV–Vis and Hall measurement techniques were used to investigate the optical and electrical properties respectively. It was observed that the roughness of the film after irradiation (for the fluence of 1 × 10{sup 12} ions/cm{sup 2}) ​ decreased to 0.68 nm from 1.6 nm and showed an increase in roughness to 1.35 nm on increasing the fluence to 5 × 10{sup 12} ions/cm{sup 2}. This oxide/metal/oxide structure fulfills the basic requirements of a TCE, like high-transmittance >75% for pristine and >80% for the fluence of 1 × 10{sup 12} ions/cm{sup 2} over a broad spectrum of visible light for practical applications. The multilayer structure shows change in the electrical resistivity from 1.6 × 10{sup −3} Ω cm to 6.3 × 10{sup −3} Ω cm after irradiation.

  18. Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Alberti, Nicolas, E-mail: nicoalbertibdx@gmail.com; Fonck, Mariane, E-mail: m.fonk@bordeaux.unicancer.fr [Institut Bergonié 229 Cours de l’Argonne, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it [Università “Campus Bio-Medico di Roma”, Department of Radiology and Diagnostic Imaging (Italy); Palussière, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié 229 Cours de l’Argonne, Department of Radiology (France)

    2015-02-15

    PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize the tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.

  19. Multiple Site Damage in Flat Panel Testing

    National Research Council Canada - National Science Library

    Shrage, Daniel

    2000-01-01

    This report aimed to experimentally verify analytical models that predict the residual strength of representative aircraft structures, such as wide panels, that are subjected to Multiple Site Damage (MSD...

  20. IMac G4/800 (Flat Panel)

    CERN Multimedia

    2002-01-01

    Apple introduced the iMac G4/800 on January 7, 2002. The total cost was about $2000 (base price of $1799 plus RAM upgrade). The iMac G4/800 has an 800 MHz G4 processor. The G4/800 has the following ports: three USB 1.1 ports, two Fire Wire 400-Mbps ports, one RJ-45, 10/100BASE-T Ethernet port, one RJ-11 56K V.90 modem port, one Mini-VGA output port, one speaker jack, and one headphone jack. There is a built in microphone set on the front of the monitor in the bottom left corner. There is a single internal SuperDrive capable of reading and writing CDs and DVDs. The disk drive is on the front of the computer. It opens by pushing the disk drive button on the iMac's keyboard. The monitor size is 15 inches. The G4/800 has a NVIDIA GeForce2 MX graphics processor with AGP 2X support that provides 32 MB of dedicated Double Data Rate (DDR) video memory. Native resolution is 1024 x 768, but the built in monitor is also capable of 640 x 480 and 800 x 600. RAM can be changed by removing a panel on the bottom of the chas...

  1. Software Simulates Sight: Flat Panel Mura Detection

    Science.gov (United States)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is intended for a wide variety of applications, such as evaluating vision from unmanned aerial vehicles, measuring visibility of damage to aircraft and to the space shuttles, predicting outcomes of corrective laser eye surgery, inspecting displays during the manufacturing process, estimating the quality of compressed digital video, evaluating legibility of text, and predicting discriminability of icons or symbols in a graphical user interface.

  2. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array.

    Science.gov (United States)

    Ren, Xiaochen; Pei, Ke; Peng, Boyu; Zhang, Zhichao; Wang, Zongrong; Wang, Xinyu; Chan, Paddy K L

    2016-06-01

    An organic flexible temperature-sensor array exhibits great potential in health monitoring and other biomedical applications. The actively addressed 16 × 16 temperature sensor array reaches 100% yield rate and provides 2D temperature information of the objects placed in contact, even if the object has an irregular shape. The current device allows defect predictions of electronic devices, remote sensing of harsh environments, and e-skin applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    Science.gov (United States)

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  4. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto

    2017-01-01

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  5. Time-Resolved Quantitative Analysis of the Diaphragms During Tidal Breathing in a Standing Position Using Dynamic Chest Radiography with a Flat Panel Detector System ("Dynamic X-Ray Phrenicography"): Initial Experience in 172 Volunteers.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-04-01

    Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Difference in the craniocaudal gradient of the maximum pixel value change rate between chronic obstructive pulmonary disease patients and normal subjects using sub-mGy dynamic chest radiography with a flat panel detector system.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-07-01

    To compare the craniocaudal gradients of the maximum pixel value change rate (MPCR) during tidal breathing between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. This prospective study was approved by the institutional review board and all participants provided written informed consent. Forty-three COPD patients (mean age, 71.6±8.7 years) and 47 normal subjects (non-smoker healthy volunteers) (mean age, 54.8±9.8 years) underwent sequential chest radiographs during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system. We evaluated the craniocaudal gradient of MPCR. The results were analyzed using an unpaired t-test and the Tukey-Kramer method. The craniocaudal gradients of MPCR in COPD patients were significantly lower than those in normal subjects (right inspiratory phase, 75.5±48.1 vs. 108.9±42.0s -1 cm -1 , P<0.001; right expiratory phase, 66.4±40.6 vs. 89.8±31.6s -1 cm -1 , P=0.003; left inspiratory phase, 75.5±48.2 vs. 108.2±47.2s -1 cm -1 , P=0.002; left expiratory phase, 60.9±38.2 vs. 84.3±29.5s -1 cm -1 , P=0.002). No significant differences in height, weight, or BMI were observed between COPD and normal groups. In the sub-analysis, the gradients in severe COPD patients (global initiative for chronic obstructive lung disease [GOLD] 3 or 4, n=26) were significantly lower than those in mild COPD patients (GOLD 1 or 2, n=17) for both right and left inspiratory/expiratory phases (all P≤0.005). A decrease of the craniocaudal gradient of MPCR was observed in COPD patients. The craniocaudal gradient was lower in severe COPD patients than in mild COPD patients. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    International Nuclear Information System (INIS)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873

  8. A comparison between magnetic resonance angiography at 3 teslas (time-of-flight and contrast-enhanced and flat-panel digital subtraction angiography in the assessment of embolized brain aneurysms

    Directory of Open Access Journals (Sweden)

    Guilherme S. Nakiri

    2011-01-01

    Full Text Available PURPOSE: To compare the time-of-flight and contrast-enhanced- magnetic resonance angiography techniques in a 3 Tesla magnetic resonance unit with digital subtraction angiography with the latest flat-panel technology and 3D reconstruction in the evaluation of embolized cerebral aneurysms. INTRODUCTION: Many embolized aneurysms are subject to a recurrence of intra-aneurismal filling. Traditionally, imaging surveillance of coiled aneurysms has consisted of repeated digital subtraction angiography. However, this method has a small but significant risk of neurological complications, and many authors have advocated the use of noninvasive imaging methods for the surveillance of embolized aneurysms. METHODS: Forty-three aneurysms in 30 patients were studied consecutively between November 2009 and May 2010. Two interventional neuroradiologists rated the time-of-flight-magnetic resonance angiography, the contrast-enhanced-magnetic resonance angiography, and finally the digital subtraction angiography, first independently and then in consensus. The status of aneurysm occlusion was assessed according to the Raymond scale, which indicates the level of recanalization according to degrees: Class 1: excluded aneurysm; Class 2: persistence of a residual neck; Class 3: persistence of a residual aneurysm. The agreement among the analyses was assessed by applying the Kappa statistic. RESULTS: Inter-observer agreement was excellent for both methods (K = 0.93; 95 % CI: 0.84-1. Inter-technical agreement was almost perfect between time-of-flight-magnetic resonance angiography and digital subtraction angiography (K = 0.98; 95 % CI: 0.93-1 and between time-of-flight-magnetic resonance angiography and contrast-enhanced-magnetic resonance angiography (K = 0.98; 95% CI: 0.93-1. Disagreement occurred in only one case (2.3%, which was classified as Class I by time-of-flight-magnetic resonance angiography and Class II by digital subtraction angiography. The agreement between

  9. Difference in diaphragmatic motion during tidal breathing in a standing position between COPD patients and normal subjects: Time-resolved quantitative evaluation using dynamic chest radiography with flat panel detector system (“dynamic X-ray phrenicography”)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Ueyama, Masako, E-mail: ueyamam@fukujuji.org [Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Abe, Takehiko, E-mail: takehikoabe@hotmail.com [Department of Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8522 (Japan); Araki, Tetsuro, E-mail: TARAKI@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Abe, Takayuki, E-mail: abe.t@keio.jp [Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Nishino, Mizuki, E-mail: Mizuki_Nishino11@dfci.harvard.edu [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215 (United States); and others

    2017-02-15

    Highlights: • Dynamic X-ray phrenicography is a useful method for the evaluation of the diaphragms. • Its radiation dose is comparable to conventional two projection chest radiography. • Diaphragm motion during tidal breathing is larger in COPD than in normal subjects. • Higher BMI is also associated with increased excursions of the bilateral diaphragm. - Abstract: Objectives: To quantitatively compare diaphragmatic motion during tidal breathing in a standing position between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. Materials and methods: Thirty-nine COPD patients (35 males; age, 71.3 ± 8.4 years) and 47 normal subjects (non-smoker healthy volunteers) (20 males; age, 54.8 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions and peak motion speeds of the diaphragms. The results were analyzed using an unpaired t-test and a multiple linear regression model. Results: The excursions of the diaphragms in COPD patients were significantly larger than those in normal subjects (right, 14.7 ± 5.5 mm vs. 10.2 ± 3.7 mm, respectively, P < 0.001; left, 17.2 ± 4.9 mm vs. 14.9 ± 4.2 mm, respectively, P = 0.022). Peak motion speeds in inspiratory phase were significantly faster in COPD patients compared to normal subjects (right, 16.3 ± 5.0 mm/s vs. 11.8 ± 4.2 mm/s, respectively, P < 0.001; left, 18.9 ± 4.9 mm/s vs. 16.7 ± 4.0 mm/s, respectively, P = 0.022). The multivariate analysis demonstrated that having COPD and higher body mass index were independently associated with increased excursions of the bilateral diaphragm (all P < 0.05), after adjusting for other clinical variables. Conclusions: Time-resolved quantitative evaluation of the diaphragm using dynamic chest radiography demonstrated that the diaphragmatic motion during tidal breathing in a standing position is larger and

  10. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo (SUNY), Buffalo, NY (United States)

    2015-06-15

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors without changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  11. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.

  12. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the capillary. Detection was accomplished by laser induced fluorescence detection. Mutation detection was performed by comparing the pattern changes between the homoduplex and the heteroduplex samples. High throughput, high detection rate and easy operation were achieved in this system. They further demonstrated fast and reliable genotyping based on CTTv STR system by multiple-capillary array electrophoresis. The PCR products from individuals were mixed with pooled allelic ladder as an absolute standard and coinjected with a 96-vial tray. Simultaneous one-color laser-induced fluorescence

  13. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  14. Quality control beam of radiation through imaging system using a flat panel (ILD); Control de calidad de haz de radiacion mediante un sistema de imagen de panel plano (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Serrano, J. A.; Gomez Barrado, A.; Sanchez-Reyes, A.

    2013-07-01

    The daily quality checks of the accelerator include, among others, checks of the daily calibration, symmetry and uniformity of the radiation beam. Usually verification systems daily are used for this purpose, which employ arrays of detectors of solid-state or ionization chambers. This paper intends to carry out the control of quality through the irradiation of a number of fields in the portal imaging system and its subsequent analysis in software's own creation, as well as the comparison of results with the daily verification system. (Author)

  15. Determination of selected water-soluble vitamins using hydrophilic chromatography: a comparison of photodiode array, fluorescence, and coulometric detection, and validation in a breakfast cereal matrix.

    Science.gov (United States)

    Langer, Swen; Lodge, John K

    2014-06-01

    Water-soluble vitamins are an important class of compounds that require quantification from food sources to monitor nutritional value. In this study we have analysed six water-soluble B vitamins ([thiamine (B1), riboflavin (B2), nicotinic acid (B3, NAc), nicotinamide (B3, NAm), pyridoxal (B6), folic acid (B9)], and ascorbic acid (vit C) with hydrophilic interaction liquid chromatography (HILIC), and compared UV, fluorescent (FLD) and coulometric detection to optimise a method to quantitate the vitamins from food sources. Employing UV/diode array (DAD) and fluorimetric detection, six B vitamins were detected in a single run using gradient elution from 100% to 60% solvent B [10mM ammonium acetate, pH 5.0, in acetonitrile and water 95:5 (v:v)] over 18 min. UV detection was performed at 268 nm for B1, 260 nm for both B3 species and 284 nm for B9. FLD was employed for B2 at excitation wavelength of 268 nm, emission of 513 nm, and 284 nm/317 nm for B6. Coulometric detection can be used to detect B6 and B9, and vit C, and was performed isocratically at 75% and 85% of solvent B, respectively. B6 was analysed at a potential of 720 mV, while B9 was analysed at 600 mV, and vit C at 30 mV. Retention times (0.96 to 11.81 min), intra-day repeatability (CV 1.6 to 3.6), inter-day variability (CV 1.8 to 11.1), and linearity (R 0.9877 to 0.9995) remained good under these conditions with limits of detection varying from 6.6 to 164.6 ng mL(-1), limits of quantification between 16.8 and 548.7 ng mL(-1). The method was successfully applied for quantification of six B vitamins from a fortified food product and is, to our knowledge, the first to simultaneously determine multiple water-soluble vitamins extracted from a food matrix using HILIC. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    Science.gov (United States)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  17. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  18. Field emission properties of ZnO nanosheet arrays

    International Nuclear Information System (INIS)

    Naik, Kusha Kumar; Rout, Chandra Sekhar; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J.; Thapa, Ranjit

    2014-01-01

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm 2 and current density of 50.1 μA/cm 2 at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications

  19. Usefulness of DICOM headers in the analysis of two biplane X-ray systems setting (image intensifier and flat panel) used in pediatric interventional cardiology in Chile;Utilidad de las cabeceras DICOM en el analisis de la configuracion de dos sistemas de rayos X biplano (intensificador de imagen y panel plano) utilizados en cardiologia intervencionista pediatrica en Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda, C.; Vergara, F. [Universidad de Tarapaca, Arica (Chile). Dept. de Ciencias Clinicas; Vano, E. [Universidad Complutense, Madrid, (Spain). Hospital Clinico San Carlos. Dept. de Radiologia; Miranda, P. [Hospital Luis Calvo Mackenna, Santiago (Chile). Dept. de Hemodinamia; Valenzuela, E. [Universidad Catolica de Chile, Santiago (Chile). Hospital Clinico. Servicio de Hemodinamia; Leyton, F. [Instituto de Salud Publica de Chile, Santiago (Chile)

    2009-07-01

    The setting of two biplane X ray systems were evaluated (image intensifier (II) and flat panel (PP)), through DICOM tags from 32 images created during the characterization of both systems. The technical parameters adjusted for systems were: 63,8 to 80,0 kV and 15,0 to 388,0 mA, for the system with II and 52,0 to 77,0 kV and 25,0 to 476,0 mA, for the system with PP detector. Both equipment presented a different mA adjustment, when moving from fluoroscopy modes low dose (FL), medium dose (FM) and high dose (FH) to cine mode (CI). Two dosimetric quantities were evaluated, the first one was the dose-area product (DAP) which gave as a result for FB mode, between 0,03 to 0,35 uGycm{sup 2}/image (II) and from 0,05 a 0,69 uGycm{sup 2}/image (PP), when the polymethyl methacrylate (PMMA) thickness was incremented from 4 to 16 cm. In cine mode the DAP quantity showed, percentage values from 24 to -1 % for the same PMMA increment. Skin cumulative dose was the second quantity evaluated and showed an increment of incident air kerma (KAI)/image in factors from 17 to 35 (II) and 15 to 28 (PP) when used in CI mode instead of FB mode, to the different PMMA thicknesses used. This dose increment for CI mode must be considered by cardiologists, to use the fluoroscopic run as an alternative to document part of the procedures when there is no need to use a high quality image (author)

  20. Human Visual Performance and Flat Panel Display Image Quality

    Science.gov (United States)

    1980-07-01

    visible light energy can be described in electro- magnetic energy space as that portion of the electromagnetic wavelength (or frequency) domain to...temporal frequency domain much as one analyzes spatial information in the spatial frequency domain. As the content of a complex but periodic sound ...briefly with the more intepretive aspects of information display, those pertaining to information encoding and the design problems and parame- ters

  1. CMOS Flat-Panel CBCT for Dental Imaging

    International Nuclear Information System (INIS)

    Youn, Han Bean; Cho, Min Kook; Kim, Jee Young; Lee, Hyun Ji; Cho, Bong Hye; Heo, Sung Kyn

    2009-01-01

    Computed tomography (CT) has become one of the most frequently used imaging modalities for the preoperative evaluation of the jaw for dental implants. Sometimes dental Implant surgery needs histologic information of the regeneration of bone structure However conventional dental CT cannot serve these information because of its resolution limit. Hence we suggest dental CT which has micro scale resolution with high magnification factor. In these regards, We investigated micro dental CT with optimal magnification factor about our hardware system and evaluated along the 2D and 3D performance experimentally

  2. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    Science.gov (United States)

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dosimetric verification of brain and head and neck intensity-modulated radiation therapy treatment using EDR2 films and 2D ion chamber array matrix

    Directory of Open Access Journals (Sweden)

    Varatharaj C

    2010-01-01

    Full Text Available Background: The evaluation of the agreement between measured and calculated dose plays an essential role in the quality assurance (QA procedures of intensity-modulated radiation therapy (IMRT. Aim: The purpose of this study is to compare performances of the two dosimetric systems (EDR2 and I′matriXX in the verification of the dose distributions calculated by the TPS for brain and head and neck dynamic IMRT cases. Materials and Methods: The comparison of cumulative fluence by using Kodak extended dose rate (EDR2 and I′matriXX detectors has been done for the evaluation of 10 brain, 10 head and neck IMRT cases treated with 6 MV beams. The parameter used to assess the quality of dose calculation is the gamma-index (g -index method. The acceptance limits for g calculation we have used are 3% and 3 mm respectively for dose agreement and distance to agreement parameters. Statistical analyses were performed by using the paired, two-tailed Student t-test, and P< 0.01 is kept as a threshold for the significance level. Results: The qualitative dose distribution comparison was performed using composite dose distribution in the measurement plane and profiles along various axes for TPS vs. EDR2 film and TPS Vs I′matriXX. The quantitative analysis between the calculated and measured dose distribution was evaluated using DTA and g-index. The percentage of pixels matching with the set DTA and g values are comparable for both with EDR2 film and I′matriXX array detectors. Statistically there was no significant variation observed between EDR2 film and I′matriXX in terms of the mean percentage of pixel passing g for brain cases (98.77 ± 1.03 vs 97.62 ± 1.66, P = 0.0218 and for head and neck cases (97.39 ± 2.13 vs 97.17 ± 1.52%, P = 0.7404. Conclusion: Due to simplicity and fast evaluation process of array detectors, it can be routinely used in busy departments without compromising the measurement accuracy.

  4. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  5. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  6. Modular Matrix Multiplication on a Linear Array.

    Science.gov (United States)

    1983-11-01

    is fl(n2). 2 Case e Irl __ (see Figure 5.2) 2 2 ,1 Y, " X2v- ’ Y2 -. x= -- ~ Y4 "i; Yin Figure 5Ŗ At t--xi, either all Gk, such that IkEA , have n...nat and Image Proceuing, IEEE Transactions on Computers, Vol. C-31, No. 10 22 (October, 1982), pp. IO0oo09. [41 H.T. Kung, Let’s Design Algorithms for...VLSI Systems, Proc. Caltech Conf. on Very Large Scale Integration: Architecture, Design , Fabrication (January, 1979), pp. 65. 90. 151 H.T. Kung, and

  7. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  8. Plane-wave scattering from half-wave dipole arrays

    DEFF Research Database (Denmark)

    Jensen, Niels E.

    1970-01-01

    A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays.......A matrix equation for determination of plane-wave scattering from arrays of thin short-circuited dipoles of lengths about half a wavelength is derived. Numerical and experimental results are presented for linear, circular, and concentric circular arrays....

  9. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  10. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  11. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  12. Development of a Java Package for Matrix Programming

    OpenAIRE

    Lim, Ngee-Peng; Ling, Maurice HT; Lim, Shawn YC; Choi, Ji-Hee; Teo, Henry BK

    2003-01-01

    We had assembled a Java package, known as MatrixPak, of four classes for the purpose of numerical matrix computation. The classes are matrix, matrix_operations, StrToMatrix, and MatrixToStr; all of which are inherited from java.lang.Object class. Class matrix defines a matrix as a two-dimensional array of float types, and contains the following mathematical methods: transpose, adjoint, determinant, inverse, minor and cofactor. Class matrix_operations contains the following mathematical method...

  13. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  14. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  15. Evaluation of digital detector arrays systems for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: aline@lin.ufrj.br, E-mail: davi@lin.ufrj.br.br, E-mail: celio@lin.ufrj.br, E-mail: soraia@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: davi.oliveira@uerj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentação Nuclear

    2017-07-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  16. Evaluation of digital detector arrays systems for industrial radiography

    International Nuclear Information System (INIS)

    Silva, Aline S.S.; Oliveira, Davi F.; Gomes, Célio S.; Azeredo, Soraia R.; Lopes, Ricardo T.

    2017-01-01

    Digital Detector Arrays (DDA) or Flat Panel Detector (FPD) is a highly efficient technique that is used in nondestructive testing of internal features of an object. The evaluation of DDA systems for industrial radiography is important to ensure the image quality and to enables long-term stability of this system. This evaluation is specified by ASTM E2737 - 10, which describes the fundamental parameters of DDA systems to be measured. The tests require the usage of either the five-groove wedge or the duplex plate phantom with separate Image Quality Indicators (IQIs). The purpose of this work was evaluate the radiographic performance achieved using both techniques in two DDA systems manufactured by GEIT: DXR250P and DXR250V, which have thallium-doped cesium iodide (CsI:Tl) and terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb - GOS) scintillators, respectively. For this purpose, it was used an X-ray equipment as radiation source. The image quality parameters analyzed were Image Lag (IL), Offset Level (OL), Bad Pixel distribution, Burn In (BI), Spatial Resolution (SR), Material Thickness Range (MTR), Contrast Sensitivity (CS), Signal Level (SL) and Signal-to-Noise Ratio (SNR). As result of this study, has been observed that the use of the five-groove wedge phantom made the measurements to become easier to execute. Regarding the DDA system, the DXR250P presented more IL and BI, but produced images with better CS and SNR and needed a dose almost twice smaller than the DXR250V to achieve a similar SL. (author)

  17. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  18. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  19. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  20. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  1. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  2. Structure and assembly of a paramyxovirus matrix protein.

    Science.gov (United States)

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  3. A Generalization of the Alias Matrix

    DEFF Research Database (Denmark)

    Kulahci, Murat; Bisgaard, S.

    2006-01-01

    The investigation of aliases or biases is important for the interpretation of the results from factorial experiments. For two-level fractional factorials this can be facilitated through their group structure. For more general arrays the alias matrix can be used. This tool is traditionally based...... on the assumption that the error structure is that associated with ordinary least squares. For situations where that is not the case, we provide in this article a generalization of the alias matrix applicable under the generalized least squares assumptions. We also show that for the special case of split plot error...... structure, the generalized alias matrix simplifies to the ordinary alias matrix....

  4. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  5. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    International Nuclear Information System (INIS)

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-01-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm"3 size) with "2"2Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  6. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonghai [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Sun, Xishan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Lou, Kai [Department of Electrical and Computer Engineering, Rice University, Houston, Tx (United States); Meier, Joseph [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Zhou, Rong; Yang, Chaowen [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Zhu, Xiaorong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Shao, Yiping [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States)

    2016-04-21

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm{sup 3} size) with {sup 22}Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  7. Optimal shortening of uniform covering arrays.

    Directory of Open Access Journals (Sweden)

    Jose Torres-Jimenez

    Full Text Available Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v, is an N × k array over [Formula: see text] with the property that every N × t sub-array covers all t-tuples of [Formula: see text] at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N - δ × (k - Δ such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a to produce smaller covering arrays from larger ones and (b to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays.

  8. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  9. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  10. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  12. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  13. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  14. Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications

    International Nuclear Information System (INIS)

    Kim, Se Il; Cho, Sang Hyun; Choi, Sung Ryong; Oh, Min Cheol; Jang, Ji Hyang; Song, Pung Keun

    2009-01-01

    ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO (SnO 2 : 10 wt.%) target and CeO 2 doped ITO (CeO 2 : 0.5, 3.0, 4.0 and 6.0 wt.%) ceramic targets, respectively, on unheated non-alkali glass substrates (corning E2000). The as-deposited films were annealed at 200 o C in an Ar atmosphere at a pressure of 1 Pa. The crystallization temperature of the ITO film was increased by introducing Ce atoms because they decrease the level of crystallinity. It was also confirmed that the etching rate, surface morphology and work function were improved by the addition of Ce atoms despite there being increased resistivity. The current voltage (I-V) characteristics of the OLED devices deteriorated with increasing Ce content in the ITO anode, which was attributed to a decrease in carrier density despite there being a high work function. Therefore, the carrier density is one of the most important factors that determine the turn-on voltage for OLED applications.

  15. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    International Nuclear Information System (INIS)

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-01-01

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems

  16. An experimental and numerical investigation of flat panel display cell using magnetic fluid

    International Nuclear Information System (INIS)

    Seo, J.-W.; Jeon, S.-M.; Park, S.J.; Lee, H.-S.

    2002-01-01

    Optical and fluid dynamical properties of magnetic fluid have been studied experimentally and numerically using a test device with a water-base magnetite magnetic fluid. It has been found that the 3.5 μm thick fluid film absorbs most of the incoming visible light and can be actuated fast enough to realize display devices. The computational simulation shows that the surface tension of the liquid plays the most dominant roles for the test device, and a device that can actuate the magnetic fluid magnetically is proposed

  17. Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor

    NARCIS (Netherlands)

    Hoekema, S.; Douma, R.D.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2006-01-01

    The main bottleneck in scale-up of phototrophic fermentation is the low efficiency of light energy conversion to the desired product, which is caused by an excessive dissipation of light energy to heat. The photoheterotrophic formation of hydrogen from acetate and light energy by the microorganism

  18. A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting

    Science.gov (United States)

    Hassan, Gul; Khan, Fasihullah; Hassan, Arshad; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2017-04-01

    Recently, many researchers have been paying attention to nanogenerators (NGs) as energy sources for self-powered mirco-nano systems, and studying how to achieve their higher power generation. Hence, we propose a hybrid-type NG for harvesting both the piezoelectric and triboelectric effect simultaneously. In the proposed hybrid NG, the piezoelectric NG (PNG) and triboelectric NG (TENG) are fabricated using polydimethylsiloxane (PDMS) and perovskite zinc stannite (ZnSnO3) nanocubes with a high charge polarization of 59 uC cm-2 composite (PDMS + ZnSnO3) and UV surface-treated PDMS, respectively. To effectively combine a high output current of PNG and a high voltage of TENG, these two NGs are stacked upon each other, and separated by sponge spacers providing a uniform air gap for the triboelectric effect. In particular, this fabricated structure has a low Young’s modulus for piezoelectricity. The proposed hybrid NG device effectively achieves a combined peak voltage of 300 V on an open circuit, a power density of 10.41 mW cm-2 at 1 MΩ load, and a maximum short circuit current density of 16 mA cm-2 at 50 Ω load. It is feasible that the proposed NG can be utilized as a source for various self-powered systems.

  19. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    International Nuclear Information System (INIS)

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-01-01

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10 11 cm -3 were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect

  20. The performance of an amorphous silicon flat panel for neutron imaging at the PSI NEUTRA facility

    International Nuclear Information System (INIS)

    Estermann, Mirko; Frei, Gabriel; Lehmann, Eberhard; Vontobel, Peter

    2005-01-01

    Commonly applied imaging methods in neutron radiography use a CCD camera in conjunction with a scintillator or imaging plates. CCDs and imaging plates have desirable properties concerning resolution, linearity, dynamic range and signal-to-noise ratio (S/N) but both techniques have the disadvantage of a slow read out and for the CCD camera, an additional disadvantage is the loss of light through the optical system. Amorphous silicon detectors, originally developed for medical and industrial X-ray imaging, generally do not have the above-mentioned disadvantages. These detectors have a much faster readout and, in comparison to the generally used crystalline silicon, can be put directly in the X-ray or neutron beam without being damaged. This type of detector also does not require any optical interface, minimizing possible light loss. The detector is operated at room temperature, which has some influence on the noise. Using the whole dynamic range with a low gain, results in a S/N of up to 30, for normal applications, however, a S/N of about 15-20 is typical. The main drawback of this imaging device is the dynamic range of only 12 bits and the relatively complicated operating system in which different operation modes can be chosen. In 2003, successful experiments were performed with this new device, but it is still in its fledgling stages and improvements from the manufacturer as well as the experience from the NEUTRA team will help to advance this technique for neutron imaging in a most efficient way

  1. Additive manufacturing of a compact flat-panel cryogenic gas-gap heat switch

    NARCIS (Netherlands)

    Vanapalli, Srinivas; Vermeer, Cristian Hendrik; Tirolien, T.

    2016-01-01

    State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the "On" and "Off" state). Using selective laser melting additive manufacturing technology, also

  2. Thin Film Flat Panel Off-Axis Solar Concentrator with Flux Distribution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Relatively small concentric thin film FRESNEL lenses and fresnel-like Multiple Parabolic Reflecting Surface (MPRS) reflectors have been successfully produced from...

  3. Edge-Spread Functions Expected for Several Changes in a Commercial Flat-Panel System

    International Nuclear Information System (INIS)

    Schach von Wittenau, A E

    2002-01-01

    The Bldg. 239 radiography facility uses a 9 MeV bremsstrahlung linac and a commercially available fiat-panel detector system. Ref. [1] discusses the facility in detail. Ref. [1] furthermore discusses the imaging quality of the fiat-panel system, and identifies several sources of image blur for the system in question. The maim'' contributors to the imaging blur are radiation scattered from the front cover of the detector housing, radiation scattered from the back cover of the detector housing, and radiation scattered from the aluminum plate that supports the amorphous-Si detector within the detector housing. The manufacturer of one such fiat-panel system seems willing to modify one of their products as requested, if such modifications may be made easily. Easy modifications would include making the detector housing thinner, decreasing the sizes of air gaps inside tile detector system, etc. Removing the aluminum support plate is considered to be a difficult modification. This memo reports the results of a set of Monte Carlo simulations that were performed to predict the changes in imaging quality, compared to that of the current system, if the detector is modified as suggested above. In particular, the edge-spread function (ESF) was calculated for each modification. ESFs were calculated for three photon energies: 100 keV, 450 keV, and 3 MeV. The results suggest that thinning and moving tile front and back covers of the detector housing should result in improved image quality for all of the photon energies considered. Interestingly, the results also suggest that removing the aluminum support plate would improve tim imaging performance at 100 keV and 450 keV, but that removing the plate has no additional benefit for imaging with 3 MeV photons

  4. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  5. Direction-of-Arrival Estimation for Coprime Array Using Compressive Sensing Based Array Interpolation

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    2017-01-01

    Full Text Available A method of direction-of-arrival (DOA estimation using array interpolation is proposed in this paper to increase the number of resolvable sources and improve the DOA estimation performance for coprime array configuration with holes in its virtual array. The virtual symmetric nonuniform linear array (VSNLA of coprime array signal model is introduced, with the conventional MUSIC with spatial smoothing algorithm (SS-MUSIC applied on the continuous lags in the VSNLA; the degrees of freedom (DoFs for DOA estimation are obviously not fully exploited. To effectively utilize the extent of DoFs offered by the coarray configuration, a compressing sensing based array interpolation algorithm is proposed. The compressing sensing technique is used to obtain the coarse initial DOA estimation, and a modified iterative initial DOA estimation based interpolation algorithm (IMCA-AI is then utilized to obtain the final DOA estimation, which maps the sample covariance matrix of the VSNLA to the covariance matrix of a filled virtual symmetric uniform linear array (VSULA with the same aperture size. The proposed DOA estimation method can efficiently improve the DOA estimation performance. The numerical simulations are provided to demonstrate the effectiveness of the proposed method.

  6. The matrix as in-situ data structure

    NARCIS (Netherlands)

    Kaldewaij, A.; de Vries, Laurens

    1995-01-01

    It is shown how a matrix can be used to implement a class of dictionaries. Instead of the strong requirement of ascendingness of a linear array, the weaker requirement of ascendingness of a matrix is used. This results in implementations that are efficient in both computation time and storage usage.

  7. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  8. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  9. Correction of failure in antenna array using matrix pencil technique

    Science.gov (United States)

    Khan, SU; Rahim, MKA

    2017-06-01

    Not Available Project sypported by the Research Management Centre (RMC), School of Postgraduate Studies (SPS), Communication Engineering Department, Faculty of Electrical Engineering (FKE), Universiti Teknologi Malaysia (UTM), Johor Bahru (Grant Nos. 12H09 and 03E20).

  10. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  11. Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques.

    Science.gov (United States)

    Togno, M; Wilkens, J J; Menichelli, D; Oechsner, M; Perez-Andujar, A; Morin, O

    2016-05-01

    To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm(3). The detector has been characterized with (60)Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, -0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09-2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm(2), the output factors are in agreement with a

  12. Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Togno, M., E-mail: michele.togno@iba-group.com [Physik-Department, Technische Universität München, Munich 85748 (Germany); Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); IBA Dosimetry GmbH, Schwarzenbruck 90592 (Germany); Wilkens, J. J. [Physik-Department, Technische Universität München, Munich 85748, Germany and Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); Menichelli, D. [IBA Dosimetry GmbH, Schwarzenbruck 90592 (Germany); Oechsner, M. [Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Munich 81675 (Germany); Perez-Andujar, A.; Morin, O. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143 (United States)

    2016-05-15

    Purpose: To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. Methods: The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm{sup 3}. The detector has been characterized with {sup 60}Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Results: Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, −0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09–2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm{sup 2}, the

  13. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  14. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Detection of Matrix Metalloproteinases by Zymography.

    Science.gov (United States)

    Tajhya, Rajeev B; Patel, Rutvik S; Beeton, Christine

    2017-01-01

    Matrix metalloproteinases (MMPs) represent more than 20 zinc-containing endopeptidases that cleave internal peptide bonds, leading to protein degradation. They play a critical role in many physiological cell functions, including tissue remodeling, embryogenesis, and angiogenesis. They are also involved in the pathogenesis of a vast array of diseases, including but not limited to systemic inflammation, various cancers, and cardiovascular, neurological, and autoimmune diseases. Here, we describe gel zymography to detect MMPs in cell and tissue samples and in cell culture supernatants.

  16. Wideband DOA Estimation through Projection Matrix Interpolation

    OpenAIRE

    Selva, J.

    2017-01-01

    This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

  17. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu

    2016-01-01

    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  19. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  20. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  1. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  2. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  3. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  4. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  5. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  6. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  7. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  8. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  9. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  10. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...

  11. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  12. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  13. GENERALIZED MATRIXES OF GALOIS PROTOCOLS EXCHANGE ENCRYPTION KEYS

    Directory of Open Access Journals (Sweden)

    Anatoly Beletsky

    2016-03-01

    Full Text Available The methods of construction of matrix formation the secret protocols legalized subscribers of public communications networks encryption keys. Based key exchange protocols laid asymmetric cryptography algorithms. The solution involves the calculation of one-way functions and is based on the use of generalized Galois arrays of isomorphism relationship with forming elements, and depending on the selected irreducible polynomial generating matrix. A simple method for constructing generalized Galois matrix by the method of filling the diagonal. In order to eliminate the isomorphism of Galois arrays and their constituent elements, limiting the possibility of building one-way functions, Galois matrix subjected to similarity transformation carried out by means of permutation matrices. The variant of the organization of the algebraic attacks on encryption keys sharing protocols and discusses options for easing the consequences of an attack.

  14. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  15. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  16. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  17. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  18. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  19. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    International Nuclear Information System (INIS)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-01-01

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd 2 O 2 S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision TM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8 ), 1.64 (p -13 ), 2.66 (p -9 ), respectively. For all imaging doses, soft tissue contrast was more

  20. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  1. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  2. Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.

    2014-01-01

    Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant...... photogalvanic effect is a plasmonic analogue of the bulk photovoltaic effect in ferroelectrics....

  3. Exact Cover Problem in Milton Babbitt's All-partition Array

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2015-01-01

    One aspect of analyzing Milton Babbitt’s (1916–2011) all- partition arrays requires finding a sequence of distinct, non-overlapping aggregate regions that completely and exactly covers an irregular matrix of pitch class integers. This is an example of the so-called exact cover problem. Given a set...

  4. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  5. Spectral statistics and scattering resonances of complex primes arrays

    Science.gov (United States)

    Wang, Ren; Pinheiro, Felipe A.; Dal Negro, Luca

    2018-01-01

    We introduce a class of aperiodic arrays of electric dipoles generated from the distribution of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quaternion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances using the vectorial Green's matrix method. In these systems we demonstrate several distinctive spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical statistics of level spacings, and the existence of critical modes, which are extended fractal modes with long lifetimes not supported by either random or periodic systems. Moreover, we show that one can predict important physical properties, such as the existence spectral gaps, by analyzing the eigenvalue distribution of the Green's matrix of the arrays in the complex plane. Our results unveil the importance of aperiodic correlations in prime number arrays for the engineering of gapped photonic media that support far richer mode localization and spectral properties compared to usual periodic and random media.

  6. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  7. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...

  8. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  9. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  10. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  11. Layout Optimisation of Wave Energy Converter Arrays

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Nava, Vincenzo; Topper, Mathew B. R.

    2017-01-01

    This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC) arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation......, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA), a genetic algorithm (GA) and the glowworm swarm optimisation (GSO) algorithm...

  12. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  13. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  14. Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations.

    Science.gov (United States)

    Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A

    2016-05-07

    Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.

  15. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  16. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  17. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  18. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  19. A class of parallel algorithms for computation of the manipulator inertia matrix

    Science.gov (United States)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  20. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  1. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  3. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  4. Detector array and method

    International Nuclear Information System (INIS)

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  5. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  6. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  7. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  8. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  9. A FPC-ROOT Algorithm for 2D-DOA Estimation in Sparse Array

    Directory of Open Access Journals (Sweden)

    Wenhao Zeng

    2016-01-01

    Full Text Available To improve the performance of two-dimensional direction-of-arrival (2D DOA estimation in sparse array, this paper presents a Fixed Point Continuation Polynomial Roots (FPC-ROOT algorithm. Firstly, a signal model for DOA estimation is established based on matrix completion and it can be proved that the proposed model meets Null Space Property (NSP. Secondly, left and right singular vectors of received signals matrix are achieved using the matrix completion algorithm. Finally, 2D DOA estimation can be acquired through solving the polynomial roots. The proposed algorithm can achieve high accuracy of 2D DOA estimation in sparse array, without solving autocorrelation matrix of received signals and scanning of two-dimensional spectral peak. Besides, it decreases the number of antennas and lowers computational complexity and meanwhile avoids the angle ambiguity problem. Computer simulations demonstrate that the proposed FPC-ROOT algorithm can obtain the 2D DOA estimation precisely in sparse array.

  10. Spectrum reconstruction with X rays and flat panel wedge PMMA by Monte Carlo codes and Penelope MCNPS; Reconstruccion del esptro de rayos X con flat panel y cuna de PMMa mediante los codigos de monte Carlo Penelope y MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Pozuelo, F.; Querol, A.; Juste, B.; Gallardo, S.; Rodenas, J.; Verdu, G.

    2012-07-01

    Obtaining the primary spectrum of X-rays to determine the quality of a photon beam produced by an X-ray tube, since the dosimetric characteristics of a radiation beam to have a direct relation to the primary X-ray spectrum. In this work are studied, the depth dose curves obtained in the energy range of diagnostic radiology, between 40 and 130 keV.

  11. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  12. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  13. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  14. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  15. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  16. The Big Optical Array

    International Nuclear Information System (INIS)

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  17. A 4 probe array

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  18. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    International Nuclear Information System (INIS)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman; Manhart, Michael

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  19. Osteoporosis diagnosis improvement on systems Esinga 2D digital flat-panel, by morphometry and bone architecture analysis

    International Nuclear Information System (INIS)

    Dinten, J.M.

    2004-01-01

    The objective of the project is to explore the complementary diagnosis elements of the fracture risk that could give simultaneously on a same system the measure of the bone mineral density and an image with a radiological quality. This project has explored two improvement ways of the fracture risk diagnosis: the vertebral and femoral morphometry, the characterization of the bone micro-architecture from projected radiographs. (N.C.)

  20. Scanner calibration of a small animal PET camera based on continuous LSO crystals and flat panel PSPMTs

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Carrilero, V.; Gonzalez, A.J.; Catret, J.; Lerche, Ch.W.; Abellan, D.; Garcia de Quiros, F.; Gimenez, M.; Modia, J.; Sanchez, F.; Pavon, N.; Ros, A.; Martinez, J.; Sebastia, A.

    2007-01-01

    We have constructed a small animal PET with four identical detector modules, each consisting of a continuous LYSO crystal attached to a Position Sensitive Photomultiplier Tube (PSPMT). The dimensions of the continuous crystal are 50x50 mm 2 and 10 mm thickness. The modules are separated 11 cm between each other in the scanner. In this paper we discuss the method used for the calibration of the camera for this special system with continuous detectors. We also present the preliminary values for the main performance parameters such as spatial and energy resolution, and sensitivity of the system

  1. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation.

    Science.gov (United States)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Manhart, Michael; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman

    2018-01-01

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared RESULTS: Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (pprototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. • Metal objects cause artefacts in cone-beam computed tomography (CBCT) imaging. • These artefacts can be corrected by metal artefact reduction (MAR) algorithms. • Corrected images show significantly better visibility of nearby hepatic vessels and tissue. • Better visibility may facilitate image interpretation, save time and radiation exposure.

  2. Dental flat panel conebeam CT in the evaluation of patients with inflammatory sinonasal disease: Diagnostic efficacy and radiation dose savings.

    Science.gov (United States)

    Leiva-Salinas, C; Flors, L; Gras, P; Más-Estellés, F; Lemercier, P; Patrie, J T; Wintermark, M; Martí-Bonmatí, L

    2014-01-01

    CT is the imaging modality of choice to study the paranasal sinuses; unfortunately, it involves significant radiation dose. Our aim was to assess the diagnostic validity, image quality, and radiation-dose savings of dental conebeam CT in the evaluation of patients with suspected inflammatory disorders of the paranasal sinuses. We prospectively studied 40 patients with suspected inflammatory disorders of the sinuses with dental conebeam CT and standard CT. Two radiologists analyzed the images independently, blinded to clinical information. The image quality of both techniques and the diagnostic validity of dental conebeam CT compared with the reference standard CT were assessed by using 3 different scoring systems. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were calculated for both techniques. The absorbed radiation dose to the lenses and thyroid and parotid glands was measured by using a phantom and dosimeter chips. The effective radiation dose for CT was calculated. All dental conebeam CT scans were judged of diagnostic quality. Compared with CT, the conebeam CT image noise was 37.3% higher (P radiation dose to the lenses and parotid and thyroid glands with conebeam CT was 4%, 7.8%, and 7.3% of the dose delivered to the same organs by conventional CT (P Dental conebeam CT is a valid imaging procedure for the evaluation of patients with inflammatory sinonasal disorders. © 2014 by American Journal of Neuroradiology.

  3. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  4. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  5. Whole body dual X-ray absorptiometry for bone mineral density and body composition using a flat panel detector

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Gonon, G.; Bordy, T.

    2003-01-01

    Whole-body dual-energy X-ray absorptiometry (DXA) systems are used for the determination of bone mineral density (BMD) but also for body composition estimates (lean mass and fat mass). The calculation is based on the difference in attenuation of body tissues for a low-energy of about 50 KeV and a high-energy of about 80-100 KeV. The measurement of dual-energy projections allows first to compute to the body composition in the non-bone area, and then to extrapolate the fat / lean ratio of soft tissue into the bone area in order to compute the BMD. Since detectors have limited area, a whole body examination requires a scan of the patient and a reconstruction process in order to build up a large field image from smaller radiographs. This reconstruction process must keep the quantitative value of the radiographs, and avoid any distortion which could be a consequence of the conic acquisition geometry. The cone angle is low (6 at maximum) and the large overlap between radiographs helps to reconstruct an image equivalent with a parallel-beam geometry. Scatter is corrected from the radiographs before reconstruction, as described in a previous paper ('Dual-energy X-rays absorptiometry using a 2D digital radiography detector. Application to bone densitometry', SPIE Medical Imaging 2001, Medical Physics). We have developed an original reconstruction method dedicated to whole-body examinations which will be described. Thanks to the quasi-radiologic quality of the detector, reconstructed images are of very good quality and this makes the measurement of BMD and fat / lean masses easier. (author)

  6. Physics-based optimization of image quality in 3D X-ray flat-panel cone-beam imaging

    NARCIS (Netherlands)

    Snoeren, R.M.

    2012-01-01

    This thesis describes the techniques for modeling and control of 3D X-ray cardiovascular systems in terms of Image Quality and patient dose, aiming at optimizing the diagnostic quality. When aiming at maximum Image Quality (IQ), a cascaded system constituted from inter-dependent imaging components,

  7. Standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites. 1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information see Appendix X1. 1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring) and at periodic intervals during the life of a structure. 1.4 This pra...

  8. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Fauler, A.; Fiederle, M.; Jandejsek, Ivan; Jakůbek, J.; Tureček, D.; Zwerger, A.

    2013-01-01

    Roč. 8, April (2013), C04009 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : X-ray digital radiography * fracture mechanics * crack path * X-ray defectoscopy Subject RIV: JM - Building Engineering Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/C04009/

  9. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Jiroušek, Ondřej; Dammer, J.

    2011-01-01

    Roč. 6, č. 1 (2011), s. 1038-1043 ISSN 1748-0221 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional research plan: CEZ:AV0Z20710524 Keywords : computed radiography * computerized tomography * medical-image reconstruction Subject RIV: JJ - Other Materials Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/01/C01038

  10. Determination of point spread function for a flat-panel X-ray imager and its application in image restoration

    International Nuclear Information System (INIS)

    Jeon, Sungchae; Cho, Gyuseong; Huh, Young; Jin, Seungoh; Park, Jongduk

    2006-01-01

    We investigate the image blur estimation methods, namely modified the Richardson-Lucy (R-L) estimator and the Wiener estimator. Based on the empirical model of the PSF, an image restoration is applied to radiological images. The accuracy of the PSF estimation under the Poisson noise and readout electronic noise is significantly better for the R-L estimator than the Wiener estimator. In the image restoration using the 2-D PSF from the R-L estimator, the result shows a good improvement in the low and middle range of spatial frequency

  11. 76 FR 45296 - In the Matter of Certain Flat Panel Display Devices, and Products Containing the Same; Notice of...

    Science.gov (United States)

    2011-07-28

    ... Optronics Corporation of Taiwan and AU Optronics Corporation America of Milpitas, California. A letter...,663,729 (``the `729 patent''). The complaint further alleges that an industry in the United States... an industry in the United States exists as required by subsection (a)(2) of section 337; (2) For the...

  12. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit

    Science.gov (United States)

    Dehairs, M.; Bosmans, H.; Desmet, W.; Marshall, N. W.

    2017-08-01

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s-1 and at a spatial frequency of 1.4 mm-1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  13. Prototype metal artefact reduction algorithm in flat panel computed tomography - evaluation in patients undergoing transarterial hepatic radioembolisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamie, Qeumars Mustafa; Kobe, Adrian Raoul; Mietzsch, Leif; Puippe, Gilbert Dominique; Pfammatter, Thomas; Guggenberger, Roman [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Manhart, Michael [Imaging Concepts, HC AT IN IMC, Siemens Healthcare GmbH, Advanced Therapies, Innovation, Forchheim (Germany)

    2018-01-15

    To investigate the effect of an on-site prototype metal artefact reduction (MAR) algorithm in cone-beam CT-catheter-arteriography (CBCT-CA) in patients undergoing transarterial radioembolisation (RE) of hepatic masses. Ethical board approved retrospective study of 29 patients (mean 63.7±13.7 years, 11 female), including 16 patients with arterial metallic coils, undergoing CBCT-CA (8s scan, 200 degrees rotation, 397 projections). Image reconstructions with and without prototype MAR algorithm were evaluated quantitatively (streak-artefact attenuation changes) and qualitatively (visibility of hepatic parenchyma and vessels) in near- (<1cm) and far-field (>3cm) of artefact sources (metallic coils and catheters). Quantitative and qualitative measurements of uncorrected and MAR corrected images and different artefact sources were compared Quantitative evaluation showed significant reduction of near- and far-field streak-artefacts with MAR for both artefact sources (p<0.001), while remaining stable for unaffected organs (all p>0.05). Inhomogeneities of attenuation values were significantly higher for metallic coils compared to catheters (p<0.001) and decreased significantly for both after MAR (p<0.001). Qualitative image scores were significantly improved after MAR (all p<0.003) with by trend higher artefact degrees for metallic coils compared to catheters. In patients undergoing CBCT-CA for transarterial RE, prototype MAR algorithm improves image quality in proximity of metallic coil and catheter artefacts. (orig.)

  14. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor

    Czech Academy of Sciences Publication Activity Database

    Zavřel, T.; Sinětova, M. A.; Búzová, Diana; Literáková, Petra; Červený, Jan

    2015-01-01

    Roč. 15, č. 1 (2015), s. 122-132 ISSN 1618-0240 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : Carbon dioxide * Exponential phase * Growth optimization * Light * Temperature Subject RIV: EH - Ecology, Behaviour Impact factor: 2.168, year: 2015

  15. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  16. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  17. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  18. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  19. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  20. 2016 MATRIX annals

    CERN Document Server

    Praeger, Cheryl; Tao, Terence

    2018-01-01

    MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...

  1. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  2. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  3. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  4. Lectin-Array Blotting.

    Science.gov (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  6. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  7. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  8. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  9. Ethical Matrix Manual

    NARCIS (Netherlands)

    Mepham, B.; Kaiser, M.; Thorstensen, E.; Tomkins, S.; Millar, K.

    2006-01-01

    The ethical matrix is a conceptual tool designed to help decision-makers (as individuals or working in groups) reach sound judgements or decisions about the ethical acceptability and/or optimal regulatory controls for existing or prospective technologies in the field of food and agriculture.

  10. Combinatorial matrix theory

    CERN Document Server

    Mitjana, Margarida

    2018-01-01

    This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

  11. Visualizing Matrix Multiplication

    Science.gov (United States)

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  12. Challenging the CSCW matrix

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Gynther, Karsten; Christensen, Ove

    2014-01-01

    useful information, we question whether the axis of time and space comprising the matrix pertains to relevant defining properties of the tools, technology or learning environments to which they are applied. Subsequently we offer an example of an Adobe Connect e-learning session as an illustration...

  13. A matrix-inversion method for gamma-source mapping from gamma-count data - 59082

    International Nuclear Information System (INIS)

    Bull, Richard K.; Adsley, Ian; Burgess, Claire

    2012-01-01

    Gamma ray counting is often used to survey the distribution of active waste material in various locations. Ideally the output from such surveys would be a map of the activity of the waste. In this paper a simple matrix-inversion method is presented. This allows an array of gamma-count data to be converted to an array of source activities. For each survey area the response matrix is computed using the gamma-shielding code Microshield [1]. This matrix links the activity array to the count array. The activity array is then obtained via matrix inversion. The method was tested on artificially-created arrays of count-data onto which statistical noise had been added. The method was able to reproduce, quite faithfully, the original activity distribution used to generate the dataset. The method has been applied to a number of practical cases, including the distribution of activated objects in a hot cell and to activated Nimonic springs amongst fuel-element debris in vaults at a nuclear plant. (authors)

  14. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    Science.gov (United States)

    2017-03-01

    Despite all actions and concerns, this problem continues to escalate due to offshore fabrication of the integrated circuits ICs [1]. In order to...diagnosis and fault isolation in ICs, as well as the characterization of the functionality of ICs including malicious circuitry. Integrated circuits ...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits   contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs

  15. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  16. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  17. Simultaneous determination and qualitative analysis of six types of components in Naoxintong capsule by miniaturized matrix solid-phase dispersion extraction coupled with ultra high-performance liquid chromatography with photodiode array detection and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Huilin; Jiang, Yan; Ding, Mingya; Li, Jin; Hao, Jia; He, Jun; Wang, Hui; Gao, Xiu-Mei; Chang, Yan-Xu

    2018-02-03

    A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  19. Maskless, parallel patterning with zone-plate array lithography

    International Nuclear Information System (INIS)

    Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark K.; Smith, Henry I.; Anderson, Erik H.

    1999-01-01

    Zone-plate array lithography (ZPAL) is a maskless lithography scheme that uses an array of shuttered zone plates to print arbitrary patterns on a substrate. An experimental ultraviolet ZPAL system has been constructed and used to simultaneously expose nine different patterns with a 3x3 array of zone plates in a quasidot-matrix fashion. We present exposed patterns, describe the system design and construction, and discuss issues essential to a functional ZPAL system. We also discuss another ZPAL system which operates with 4.5 nm x radiation from a point source. We present simulations which show that, with our existing x-ray zone plates and this system, we should be able to achieve 55 nm resolution. (c) 1999 American Vacuum Society

  20. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  1. Passive Detection of Narrowband Sources Using a Sensor Array

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Candy, J V; Guidry, B L

    2007-10-24

    In this report we derive a model for a highly scattering medium, implemented as a set of MATLAB functions. This model is used to analyze an approach for using time-reversal to enhance the detection of a single frequency source in a highly scattering medium. The basic approach is to apply the singular value decomposition to the multistatic response matrix for a time-reversal array system. We then use the array in a purely passive mode, measuring the response to the presence of a source. The measured response is projected onto the singular vectors, creating a time-reversal pseudo-spectrum. We can then apply standard detection techniques to the pseudo-spectrum to determine the presence of a source. If the source is close to a particular scatterer in the medium, then we would expect an enhancement of the inner product between the array response to the source with the singular vector associated with that scatterer. In this note we begin by deriving the Foldy-Lax model of a highly scattering medium, calculate both the field emitted by the source and the multistatic response matrix of a time-reversal array system in the medium, then describe the initial analysis approach.

  2. Array of piezoelectric energy harvesting by the equivalent impedance approach

    International Nuclear Information System (INIS)

    Lien, I C; Shu, Y C

    2012-01-01

    This article proposes to use the idea of equivalent impedance to investigate the electrical response of an array of piezoelectric oscillators endowed with distinct energy harvesting circuits. Three interface electronics systems are considered including standard AC/DC and parallel/series-SSHI (synchronized switch harvesting on inductor) circuits. Various forms of equivalent load impedance are analytically obtained for different interfaces. The steady-state response of an array system is then shown to be determined by the matrix formulation of generalized Ohm’s law whose impedance matrix is explicitly expressed in terms of the load impedance. A model problem is proposed for evaluating the ability of power harvesting under various conditions. It is shown first that harvested power is increased dramatically for the case of small deviation in the system parameters. On the other hand, if the deviation in mass is relatively large, the result is changed from the power-boosting mode to wideband mode. In particular, the parallel-SSHI array system exhibits much more significant bandwidth improvement than the other two cases. Surprisingly, the series-SSHI array system shows the worst electrical response. Such an observation is opposed to our previous finding that an SSHI technique avails against the standard technique in the case based on a single piezoelectric energy harvester and the explanation is under investigation. (fast track communication)

  3. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  4. Partially separable t matrix

    International Nuclear Information System (INIS)

    Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.

    1982-01-01

    The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space

  5. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  6. Inside the NIKE matrix

    OpenAIRE

    Brenner, Barbara; Schlegelmilch, Bodo B.; Ambos, Björn

    2013-01-01

    This case describes how Nike, a consumer goods company with an ever expanding portfolio and a tremendous brand value, manages the tradeoff between local responsiveness and global integration. In particular, the case highlights Nike's organizational structure that consists of a global matrix organization that is replicated at a regional level for the European market. While this organizational structure allows Nike to respond to local consumer tastes it also ensures that the company benefits f...

  7. A matrix contraction process

    Science.gov (United States)

    Wilkinson, Michael; Grant, John

    2018-03-01

    We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \

  8. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  9. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  10. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Layout Optimisation of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Pau Mercadé Ruiz

    2017-08-01

    Full Text Available This paper proposes an optimisation strategy for the layout design of wave energy converter (WEC arrays. Optimal layouts are sought so as to maximise the absorbed power given a minimum q-factor, the minimum distance between WECs, and an area of deployment. To guarantee an efficient optimisation, a four-parameter layout description is proposed. Three different optimisation algorithms are further compared in terms of performance and computational cost. These are the covariance matrix adaptation evolution strategy (CMA, a genetic algorithm (GA and the glowworm swarm optimisation (GSO algorithm. The results show slightly higher performances for the latter two algorithms; however, the first turns out to be significantly less computationally demanding.

  12. Combinatorial aspects of covering arrays

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn

    2004-11-01

    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  13. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  14. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  15. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  16. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  17. Diagnosable structured logic array

    Science.gov (United States)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  18. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  19. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  20. System Realization of Broad Band Digital Beam Forming for Digital Array Radar

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2013-09-01

    Full Text Available Broad band Digital Beam Forming (DBF is the key technique for the realization of Digital Array Radar (DAR. We propose the method of combination realization of the channel equalization and DBF time delay filter function by using adaptive Sample Matrix Inversion algorithm. The broad band DBF function is realized on a new DBF module based on parallel fiber optic engines and Field Program Gate Array (FPGA. Good performance is achieved when it is used to some radar products.

  1. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  2. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  3. Coulomb blockade threshold in finite one-dimensional arrays of small tunnel junctions

    International Nuclear Information System (INIS)

    Lien, Nguyen V.; Dat, Nguyen T.; Nam, Nguyen H.

    2001-11-01

    The current-voltage characteristics of one-dimensional tunnel junction arrays are simulated using the semiclassical and full capacitance matrix description. The threshold voltage V th of the Coulomb blockade (CB) is evaluated and analyzed in detail as a function of the gate capacitance C 0 , the array length N, the temperature, and the degree of disorder. The disordered effect is found to be essential, while the long range interaction included in the full capacitance matrix calculations, when decreasing V th , weakly affects the qualitative behaviour of the CB for the V th (C 0 ) - and the V th (N)-dependences. (author)

  4. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  5. The Mantle Isotopic Array: A Tale of Two FOZOs

    Science.gov (United States)

    Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.

    2017-12-01

    Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with

  6. Performance of the gamma-ray camera based on GSO(Ce) scintillator array and PSPMT with the ASIC readout system

    International Nuclear Information System (INIS)

    Ueno, Kazuki; Hattori, Kaori; Ida, Chihiro; Iwaki, Satoru; Kabuki, Shigeto; Kubo, Hidetoshi; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Nishimura, Hironobu; Orito, Reiko; Takada, Atsushi; Tanimori, Toru

    2008-01-01

    We have studied the performance of a readout system with ASIC chips for a gamma-ray camera based on a 64-channel multi-anode PSPMT (Hamamatsu flat-panel H8500) coupled to a GSO(Ce) scintillator array. The GSO array consists of 8x8 pixels of 6x6x13 mm 3 with the same pixel pitch as the anode of the H8500. This camera is intended to serve as an absorber of an electron tracking Compton gamma-ray camera that measures gamma rays up to ∼1 MeV. Because we need a readout system with low power consumption for a balloon-borne experiment, we adopted a 32-channel ASIC chip, IDEAS VA32 H DR11, which has one of the widest dynamic range among commercial chips. However, in the case of using a GSO(Ce) crystal and the H8500, the dynamic range of VA32 H DR11 is narrow, and therefore the H8500 has to be operated with a low gain of about 10 5 . If the H8500 is operated with a low gain, the camera has a narrow incident-energy dynamic range from 100 to 700 keV, and a bad energy resolution of 13.0% (FWHM) at 662 keV. We have therefore developed an attenuator board in order to operate the H8500 with the typical gain of 10 6 , which can measure up to ∼1 MeV gamma ray. The board makes the variation of the anode gain uniform and widens the dynamic range of the H8500. The system using the new attenuator board has a good uniformity of min:max∼1:1.6, an incident-energy dynamic range from 30 to 900 keV, a position resolution of less than 6 mm, and a typical energy resolution of 10.6% (FWHM) at 662 keV with a low power consumption of about 1.7 W/64ch

  7. Random matrix theory

    CERN Document Server

    Deift, Percy

    2009-01-01

    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  8. Matrix vector analysis

    CERN Document Server

    Eisenman, Richard L

    2005-01-01

    This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur

  9. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  10. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  11. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  12. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  13. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  14. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  15. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  16. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  17. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  18. Optimization of modal filters based on arrays of piezoelectric sensors

    International Nuclear Information System (INIS)

    Pagani, Carlos C Jr; Trindade, Marcelo A

    2009-01-01

    Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25–50%

  19. Characterization of supercapacitors matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sakka, Monzer Al, E-mail: Monzer.Al.Sakka@vub.ac.b [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium); FEMTO-ST Institute, ENISYS Department, FCLAB, UFC-UTBM, bat.F, 90010 Belfort (France); Gualous, Hamid, E-mail: Hamid.Gualous@unicaen.f [Laboratoire LUSAC, Universite de Caen Basse Normandie, Rue Louis Aragon - BP 78, 50130 Cherbourg-Octeville (France); Van Mierlo, Joeri [Vrije Universiteit Brussel, pleinlaan 2, B-1050 Brussels (Belgium)

    2010-10-30

    This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.

  20. Characterization of supercapacitors matrix

    International Nuclear Information System (INIS)

    Sakka, Monzer Al; Gualous, Hamid; Van Mierlo, Joeri

    2010-01-01

    This paper treats supercapacitors matrix characterization. In order to cut off transient power peaks and to compensate for the intrinsic limitations in embedded sources, the use of supercapacitors as a storage system is quite suitable, because of their appropriate electrical characteristics (huge capacitance, small series resistance, high specific energy, high specific power), direct storage (energy ready for use), and easy control by power electronic conversion. This use requires supercapacitors modules where several cells connected in serial and/or in parallel, thus a bypass system to balance the charging or the discharging of supercapacitors is required. In the matrix of supercapacitors, six elements of three parallel BCAP0350 supercapacitors in serial connections have been considered. This topology permits to reduce the number of the bypass circuits and it can work in degraded mode. Actually, it allows the system to have more reliability by providing power continually to the load even when there are one or more cells failed. Simulation and experimental results are presented and discussed.

  1. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  2. Optimizing strassen matrix multiply on GPUs

    KAUST Repository

    ul Hasan Khan, Ayaz; Al-Mouhamed, Mayez; Fatayer, Allam

    2015-01-01

    © 2015 IEEE. Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.

  3. Optimizing strassen matrix multiply on GPUs

    KAUST Repository

    ul Hasan Khan, Ayaz

    2015-06-01

    © 2015 IEEE. Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.

  4. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif; Sharawi, Mohammad Said

    2017-01-01

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  5. Effects of hydrodynamic interactions and control within a point absorber array on electrical output

    DEFF Research Database (Denmark)

    Nambiar, Anup J.; Forehand, David I.M.; Kramer, Morten

    2015-01-01

    the WECs and the total power extracted by the array can be modified. In this paper, different resistive and reactive PTO control strategies, applied to a time-domain wave-to-wire model of a three-float Danish Wavestar device, are compared. The time-domain modelling approach, as opposed to the frequency......-coordinated global array control (matrix control) was found to maximise the time-averaged power generated by the array. Fully-coordinated control potentially enables wave farm developers and device designers to explore the opportunities of connecting and maximising energy yields from installations...

  6. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  7. Dependently typed array programs don’t go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2009-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  8. Dependently typed array programs don't go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2008-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  9. 2D array design based on Fermat spiral for ultrasound imaging.

    Science.gov (United States)

    Martínez-Graullera, Oscar; Martín, Carlos J; Godoy, Gregorio; Ullate, Luis G

    2010-02-01

    The main challenge faced by 3D ultrasonic imaging with 2D array transducers is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimisation of the array layout, in order to reduce the number of active elements in the aperture, has been a research topic in the last years. Nowadays, array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position, allowing to study other configurations different to the classical matrix organisation, such as circular, archimedes spiral or polygonal layout between others. In this work, the problem of designing an imaging system array with large apertures and a very limited number of active elements (N(e)=128 and N(e)=256) using the Fermat spiral layout has been studied. As summary, a general discussion about the most interesting cases is presented.

  10. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  11. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  12. A matrix big bang

    International Nuclear Information System (INIS)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control

  13. A matrix big bang

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-10-15

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  14. ESPRIT And Uniform Linear Arrays

    Science.gov (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  15. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  17. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  18. Phenomenology of the CKM matrix

    International Nuclear Information System (INIS)

    Nir, Y.

    1989-01-01

    The way in which an exact determination of the CKM matrix elements tests the standard Model is demonstrated by a two-generation example. The determination of matrix elements from meson semileptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of the knowledge of the CKM matrix is presented. 19 refs., 2 figs

  19. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  20. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...